JP2000344715A - Production of asymmetric carbonic ester - Google Patents

Production of asymmetric carbonic ester

Info

Publication number
JP2000344715A
JP2000344715A JP11158322A JP15832299A JP2000344715A JP 2000344715 A JP2000344715 A JP 2000344715A JP 11158322 A JP11158322 A JP 11158322A JP 15832299 A JP15832299 A JP 15832299A JP 2000344715 A JP2000344715 A JP 2000344715A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
carbonate
asymmetric
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11158322A
Other languages
Japanese (ja)
Other versions
JP3960504B2 (en
Inventor
Katsuaki Hasegawa
勝昭 長谷川
Masashi Inaba
正志 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15832299A priority Critical patent/JP3960504B2/en
Publication of JP2000344715A publication Critical patent/JP2000344715A/en
Application granted granted Critical
Publication of JP3960504B2 publication Critical patent/JP3960504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an asymmetric carbonic ester with a suppressed activity of a catalyst even when used for a long period in the method for producing the asymmetric carbonic ester using the heterogeneous catalyst. SOLUTION: This method for producing an asymmetric carbonic ester comprises carrying out a disproportionating transesterification between two kinds of symmetric carbonic esters in the presence of water at 100-10,000 wt.ppm expressed in terms of concentration in a raw material together with a heterogeneous catalyst when producing the asymmetric carbonic ester by the disproportionating transesterification. Further, the disproportionating transesterification is a reaction for converting dimethyl carbonate and diethyl carbonate into ethyl methyl carbonate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非対称炭酸エステ
ルの製造方法に関し、詳しくは、2種の対称炭酸エステ
ル間の不均化エステル交換反応により非対称炭酸エステ
ルを製造する方法に関する。非対称炭酸エステルは、溶
剤や各種有機合成試薬として有用であり、特に、リチウ
ムイオン電池などの非水電解液を使用する電池用やコン
デンサ用の溶媒として有用である。
The present invention relates to a method for producing an asymmetric carbonate, and more particularly to a method for producing an asymmetric carbonate by a disproportionated transesterification reaction between two symmetric carbonates. The asymmetric carbonate ester is useful as a solvent or various organic synthesis reagents, and particularly useful as a solvent for a battery using a non-aqueous electrolyte such as a lithium ion battery or for a capacitor.

【0002】[0002]

【従来の技術】従来、エステル交換触媒を利用して非対
称炭酸エステルを製造する方法の1つとして、2種の対
称炭酸エステル間の不均化エステル交換反応が知られて
いる。そして、エステル交換反応を平衡状態とするため
にはエステル交換触媒の使用が必須であり、その例とし
ては、アルカリ金属アルコラート触媒(特開平7−10
811号公報)、III族希土類元素の酸化物(特開平9
−328453号公報)が挙られる。そして、これらの
エステル交換触媒は均一系触媒と不均一系触媒に分類さ
れる。特に、不均一系触媒は、均一系触媒に比し活性が
低いため、多量の触媒や高温を必要とするが、それ自身
が反応液に不溶であるため、反応液から触媒を分離する
のが容易であり、工業的に好ましい。
2. Description of the Related Art Conventionally, as one method for producing an asymmetric carbonate ester using a transesterification catalyst, a disproportionated transesterification reaction between two kinds of symmetric carbonates is known. In order to bring the transesterification into an equilibrium state, the use of a transesterification catalyst is indispensable. For example, an alkali metal alcoholate catalyst (Japanese Patent Laid-Open No.
No. 811), an oxide of a group III rare earth element (Japanese Unexamined Patent Publication No.
-328453). These transesterification catalysts are classified into homogeneous catalysts and heterogeneous catalysts. In particular, heterogeneous catalysts require a large amount of catalyst and high temperature because they are less active than homogeneous catalysts, but since they themselves are insoluble in the reaction solution, it is difficult to separate the catalyst from the reaction solution. Easy and industrially preferred.

【0003】ところで、工業的規模の製造方法において
は、触媒の活性低下を如何に抑制するかが重要である。
固定床液相流通式反応の場合は、不均一系触媒が予め大
量に反応器中に充填されて使用されるため、触媒の活性
低下の抑制は特に重要である。
[0003] In an industrial-scale production method, how to suppress a decrease in the activity of a catalyst is important.
In the case of a fixed-bed liquid-phase flow reaction, since a heterogeneous catalyst is used in a state in which a large amount of the heterogeneous catalyst is filled in the reactor in advance, it is particularly important to suppress the decrease in the activity of the catalyst.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、不均
一系触媒を使用した非対称炭酸エステルの製造方法であ
って、長期間使用しても触媒の活性低下が抑制された上
記の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an asymmetric carbonate ester using a heterogeneous catalyst. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者らは、種々検討
を重ねた結果、反応系に特定の物質を存在させることに
より、上記の目的を容易に達成し得るとの知見を得て本
発明の完成に至った。
Means for Solving the Problems The present inventors have made various studies, and as a result, obtained the knowledge that the above object can be easily achieved by the presence of a specific substance in the reaction system. The invention has been completed.

【0006】すなわち、本発明の要旨は、2種の対称炭
酸エステル間の不均化エステル交換反応により非対称炭
酸エステルを製造するに当たり、不均一系触媒と共に原
料中の濃度として100〜10,000重量ppm以上
の水の存在下に上記の反応を行うことを特徴とする非対
称炭酸エステルの製造方法に存する。
That is, the gist of the present invention is to produce an asymmetric carbonate by a disproportionated transesterification reaction between two symmetric carbonates, and to have a concentration in a raw material of 100 to 10,000 weight with a heterogeneous catalyst. The present invention resides in a method for producing an asymmetric carbonate ester, characterized in that the above reaction is carried out in the presence of water of at least ppm.

【0007】[0007]

【発明の形態の実施】以下、本発明を詳細に説明する。
本発明においては、2種の対称炭酸エステル同士の不均
化反応が次記反応式(1)の様に進行し、目的とする非
対称炭酸エステルが生成する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the disproportionation reaction between the two types of symmetric carbonates proceeds as shown in the following reaction formula (1), and the desired asymmetric carbonate is formed.

【0008】[0008]

【化1】 Embedded image

【0009】式(1)において、R1とR2は、それぞ
れ、異なるアルキル基またはシクロアルキル基を表す。
アルキル基またはシクロアルキル基の炭素数は、特に制
限されないが、通常1〜12、好ましくは1〜6であ
る。直鎖状アルキル基としては、例えば、メチル基、エ
チル基、プロピル基、ブチル基、ペンチル基、ヘキシル
基、ヘプチル基、オクチリ基、ドデシル基を挙げること
が出来る。分枝状アルキル基としては、例えば、イソプ
ロピル基、イソブチル基、sec-ブチル基、tert-ブチル
基、イソアミル基、tert-アミル基、ネオペンチル基、
イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基を
挙げることが出来る。シクロアルキル基としては、例え
ば、シクロプロピル基、シクロブチル基、シクロペンチ
ル基、シクロヘキシル基、シクロヘプチル基、シクロオ
クチル基、シクロドデシル基、ノルボルニル基を挙げる
ことが出来る。
In the formula (1), R 1 and R 2 each represent a different alkyl group or a cycloalkyl group.
The number of carbon atoms of the alkyl group or cycloalkyl group is not particularly limited, but is usually 1 to 12, preferably 1 to 6. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a dodecyl group. Examples of the branched alkyl group include isopropyl, isobutyl, sec-butyl, tert-butyl, isoamyl, tert-amyl, neopentyl,
Examples include an isohexyl group, a sec-hexyl group, and a tert-hexyl group. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclododecyl group, and a norbornyl group.

【0010】原料である対称炭酸エステルの例として
は、ジメチルカーボネート(DMC)、ジエチルカーボ
ネート(DEC)、ジプロピルカーボネート、ジブチル
カーボネート、ジシクロヘキシルカーボネート等が挙げ
られる。目的物である非対称炭酸エステルの具体例とし
ては、エチルメチルカーボネート(EMC)、メチルプ
ロピルカーボネート、エチルプロピルカーボネート、ブ
チルメチルカーボネート、ブチルエチルカーボネート、
ブチルプロピルカーボネート、シクロヘキシルメチルカ
ーボネート等が挙げられる。なお、原料の種類は目的物
により決まり、目的物がEMCの場合は、原料としてD
MC及びDECが使用される。
Examples of the symmetric carbonate as a raw material include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Specific examples of the target asymmetric carbonic acid ester include ethyl methyl carbonate (EMC), methyl propyl carbonate, ethyl propyl carbonate, butyl methyl carbonate, butyl ethyl carbonate,
Butyl propyl carbonate, cyclohexyl methyl carbonate and the like. Note that the type of raw material is determined by the target, and when the target is EMC, D
MC and DEC are used.

【0011】出発原料となる2種の対称炭酸エステルの
モル比は特に限定されないが、通常は実質的に当モルで
使用するのが目的物である非対称炭酸エステルの収量を
高める意味で好ましい。しかし、一方の原料を過剰に使
用してもよく、この場合、モル比は1:1〜1:20の
範囲から選択するが好ましい。
The molar ratio of the two kinds of symmetric carbonates as starting materials is not particularly limited, but it is usually preferable to use them in substantially equimolar from the viewpoint of increasing the yield of the target asymmetric carbonate. However, one of the raw materials may be used in excess, and in this case, the molar ratio is preferably selected from the range of 1: 1 to 1:20.

【0012】反応は窒素などの不活性ガス雰囲気中で行
われる。反応温度は、通常0〜300℃、好ましくは5
0〜200℃の範囲から選択される。また、反応圧力
は、通常0〜5MPa、好ましくは0〜1MPaの範囲
から選択される。反応形式は、回分式でも流通式でもよ
いが、流通式は、大量に連続的に原料を処理できると共
に触媒を繰り返し長時間使用することが出来るため、工
業的に有利である。特に、固定床液相流通式反応が有利
である。そして、この際の触媒に対する液時空間速度
(LHSV)は、通常0.05〜50/hr、好ましく
は0.1〜10/hrの範囲から選択される。
The reaction is carried out in an atmosphere of an inert gas such as nitrogen. The reaction temperature is generally 0-300 ° C., preferably 5
It is selected from the range of 0 to 200 ° C. The reaction pressure is generally selected from the range of 0 to 5 MPa, preferably 0 to 1 MPa. The reaction system may be a batch system or a flow system, but the flow system is industrially advantageous because the raw material can be continuously processed in large quantities and the catalyst can be repeatedly used for a long time. In particular, a fixed bed liquid phase flow reaction is advantageous. The liquid hourly space velocity (LHSV) for the catalyst at this time is generally selected from the range of 0.05 to 50 / hr, preferably 0.1 to 10 / hr.

【0013】また、反応を液相で進行させることによ
り、原料自体に溶媒の役割を課すことが出来るため、他
の溶媒の使用を省略することが出来る。後処理の容易性
の観点から、他の溶媒を使用しない方が好ましい。反応
液は、常圧蒸留、減圧蒸留、加圧蒸留など公知の蒸留法
により、原料である2種の対称炭酸エステルと反応生成
物である非対称炭酸エステルに分離される。沸点の順番
として、例えば、一方の原料の対称エステル、目的物で
ある非対称炭酸エステル、他方の原料の対称炭酸エステ
ルの順で留出するので、目的物は蒸留の第二番目の留分
として所望の純度で得ることが出来る。ここで、原料の
うち沸点の高い鎖状炭酸エステルは留出させてもよい
し、蒸留釜に残し、反応にリサイクルしてもよい。
Further, by allowing the reaction to proceed in the liquid phase, the role of the solvent can be imposed on the raw material itself, so that the use of another solvent can be omitted. From the viewpoint of ease of post-treatment, it is preferable not to use another solvent. The reaction solution is separated into two kinds of symmetric carbonates as raw materials and an asymmetric carbonate as a reaction product by a known distillation method such as atmospheric distillation, reduced pressure distillation, and pressure distillation. As the order of the boiling points, for example, since the symmetric ester of one raw material, the asymmetric carbonate ester of the target, and the symmetric carbonate of the other raw material are distilled in this order, the target is desired as the second fraction of the distillation. Can be obtained. Here, the chain carbonate having a high boiling point among the raw materials may be distilled off, or may be left in the still and recycled for the reaction.

【0014】本発明において、触媒としては、従来公知
の不均一系触媒を制限なく使用することが出来る。特開
平9−328453号公報に記載された触媒、すなわ
ち、III族希土類元素の酸化物を有効成分とする触媒が
推奨される。III族希土類元素の具体例としては、S
c、Y、ランタニド族元素(La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu)、アクチニド族元素(Ac、Th、P
a、U)等が挙げられる。
In the present invention, a conventionally known heterogeneous catalyst can be used without limitation. A catalyst described in JP-A-9-328453, that is, a catalyst containing an oxide of a group III rare earth element as an active ingredient is recommended. Specific examples of Group III rare earth elements include S
c, Y, lanthanide group elements (La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu), actinide group elements (Ac, Th, P
a, U) and the like.

【0015】本発明の最大の特徴は、長時間使用におけ
る不均一系触媒の活性低下を抑制するため、不均一系触
媒と共に原料中の濃度として100〜1000重量pp
mの水の存在下に前記の反応を行う点にある。
The most important feature of the present invention is that, in order to suppress a decrease in the activity of the heterogeneous catalyst during long-term use, the concentration in the raw material together with the heterogeneous catalyst is 100 to 1000 parts per weight (pp).
m in the presence of water.

【0016】触媒活性が徐々に低下する態様としては、
例えば原料あるいは原料中に含まれる不純物の影響で触
媒自身が化学的変化を起こして触媒活性を失う場合、反
応で副生する重質物などにより触媒の表面が覆われて触
媒活性が有効に働かない場合、磨耗、圧壊などの物理的
な変化により触媒自身が損失する場合などが挙げられ
る。反応系に共存する水の作用は明らかでないが、何れ
にせよ、水により、不均化反応に必要な適度なエステル
交換能が触媒表面上に保持される。
The mode in which the catalytic activity gradually decreases is as follows.
For example, when the catalyst itself loses its catalytic activity due to a chemical change due to the influence of the raw material or impurities contained in the raw material, the catalytic activity does not work effectively because the surface of the catalyst is covered by heavy substances by-produced in the reaction In such a case, the catalyst itself may be lost due to physical changes such as abrasion and crushing. The effect of water coexisting in the reaction system is not clear, but in any case, the water maintains the appropriate transesterification capacity required for the disproportionation reaction on the catalyst surface.

【0017】反応系に存在させる水の量は、原料中の濃
度として100〜10,000重量ppmでなければな
らない。水の量が上記範囲より少ない場合は触媒の活性
低下の抑制効果が十分に発揮されず、水の量が上記範囲
より多い場合は、非対称鎖炭酸エステルと水が副反応を
起こしアルコールが生成するため、目的とする非対称炭
酸エステルの収率が低くなると共に精製工程でのロスが
大きくなる。原料中の水の濃度は、好ましくは200〜
5,000重量ppmの範囲である。
The amount of water to be present in the reaction system must be 100 to 10,000 ppm by weight in the raw material. When the amount of water is less than the above range, the effect of suppressing the decrease in the activity of the catalyst is not sufficiently exhibited, and when the amount of water is more than the above range, the asymmetric chain carbonate and water cause a side reaction to produce alcohol. Therefore, the yield of the target asymmetric carbonic acid ester decreases, and the loss in the purification step increases. The concentration of water in the raw material is preferably 200 to
It is in the range of 5,000 ppm by weight.

【0018】反応系に水を存在させる方法は、特に制限
されないが、工業的に有利な固定床液相流通式反応を採
用した場合は、通常、原料と共に反応系に添加する方法
が採用される。すなわち、原料として、100〜10,
000重量ppmの水を含有する2種の対称炭酸エステ
ルが使用される。そして、何れの場合も、反応系への水
の添加は、水濃度が平均して上記の範囲内となる様にパ
ルス的に行ってもよい。
The method for allowing water to be present in the reaction system is not particularly limited. However, when an industrially advantageous fixed bed liquid phase flow reaction is employed, a method of adding water to the reaction system together with the raw materials is usually employed. . That is, as raw materials,
Two symmetric carbonates containing 000 ppm by weight of water are used. In any case, the addition of water to the reaction system may be performed in a pulsed manner so that the water concentration is within the above range on average.

【0019】[0019]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0020】原料製造例1:市販の工業グレードのジメ
チルカーボネート(DMC)とジエチルカーボネート
(DEC)をそれぞれ使用し、理論段20段の蒸留塔に
より還流比5で蒸留し、仕込量に対して10重量%を初
留分として除き、次の80重量%の留分を製品として回
収した。得られたDMC及びDEC中の水含有量をカー
ルフィッシャー水分計で測定した所、20重量ppm以
下であった。このDMCとDECとをモル比1:1に混
合し、水分濃度15重量ppmの原料(1)を得た。
Raw material production example 1: Commercially available industrial grades of dimethyl carbonate (DMC) and diethyl carbonate (DEC) were used, respectively, and distilled at a reflux ratio of 5 using a distillation column having 20 theoretical stages, and 10 to the charged amount. % Was removed as the initial fraction, and the next 80% by weight fraction was recovered as product. When the water content in the obtained DMC and DEC was measured by a Karl Fischer moisture meter, it was 20 ppm by weight or less. The DMC and DEC were mixed at a molar ratio of 1: 1 to obtain a raw material (1) having a water concentration of 15 ppm by weight.

【0021】原料製造例2〜7:原料(1)に水を添加
して水分濃度200重量ppmの原料(2)を調製し
た。同様にして、水分濃度300重量ppmの原料
(3)、500重量ppmの原料(4)、1000重量
ppmの原料(5)、2000重量ppmの原料
(6)、5000重量ppmの原料(7)を調整した。
Raw material production examples 2 to 7: Water was added to raw material (1) to prepare raw material (2) having a water concentration of 200 ppm by weight. Similarly, a raw material (3) having a moisture concentration of 300 ppm by weight, a raw material (4) of 500 ppm by weight, a raw material (5) of 1000 ppm by weight, a raw material (6) of 2000 ppm by weight, and a raw material (7) of 5000 ppm by weight Was adjusted.

【0022】触媒製造例:硝酸イットリウム6水和物3
2.3kg(84.3モル)と硝酸コバルト6水和物2
4.5kg(84.2モル)を168リットルの純水に
溶解し、予め800リットルの攪拌槽に仕込み攪拌溶解
させた12重量%重炭酸アンモニウム水溶液550kg
中に約4時間かけて滴下し、沈殿物を含むスラリーを得
た。このスラリーをフィルタープレスでろ過し、純水で
洗浄した後、熱風乾燥機で12時間120℃乾燥し、触
媒前駆体24.5kgを得た。
Catalyst Production Example: Yttrium nitrate hexahydrate 3
2.3 kg (84.3 mol) of cobalt nitrate hexahydrate 2
4.5 kg (84.2 mol) was dissolved in 168 liters of pure water, and 550 kg of a 12% by weight aqueous solution of ammonium bicarbonate that had been previously charged and dissolved in an 800 liter stirring tank.
The resulting solution was dropped over about 4 hours to obtain a slurry containing a precipitate. This slurry was filtered with a filter press, washed with pure water, and then dried at 120 ° C. for 12 hours using a hot air drier to obtain 24.5 kg of a catalyst precursor.

【0023】次いで、上記の触媒前駆体100重量部に
水44重量部を加え、さらに成形助剤としてメチルセル
ロース5重量部とアビセル10重量部を添加し、加熱混
練してスラリー状とした後、真空押出成型法によって直
径4mmの円柱状物とした。押出成形性は良好であっ
た。この円柱状物を120℃で一晩乾燥し、続いて60
0℃の温度で3時間焼成し、直径が約3mmに焼き締ま
った触媒を得た。触媒には折れたり割れたりの外観上の
異常は認められなかった。また、触媒の金属原子比はイ
ットリウム:コバルトが1:1であった。
Next, 44 parts by weight of water was added to 100 parts by weight of the catalyst precursor, 5 parts by weight of methylcellulose and 10 parts by weight of Avicel were added as molding aids, and the mixture was heated and kneaded to form a slurry. A cylindrical product having a diameter of 4 mm was formed by an extrusion molding method. Extrudability was good. The column was dried at 120 ° C. overnight, followed by 60
The catalyst was calcined at a temperature of 0 ° C. for 3 hours to obtain a catalyst having a diameter of about 3 mm. No abnormalities in appearance such as breakage or cracking were observed in the catalyst. The metal atomic ratio of the catalyst was 1: 1 with yttrium: cobalt.

【0024】実施例1 内径17mm、長さ800mmのジャケット付き管型反
応器に触媒を35.0g充填し、定量ポンプにより原料
(2)(水濃度200重量ppm)を通液し、窒素で
0.9MPaの背圧をかけながら140℃でLHSV2
(100ml/hr)の通液条件で反応させた。50時
間後の反応液をガスクロ分析したところ、反応液の組成
は、DMC21.7重量%、エチルメチルカーボネート
(EMC)49.5重量%、DEC28.5重量%であ
った。これはEMC収率として49.5%に相当する。
このときのEMC生成速度は触媒1g当たり1.41g
/hrであった。この後、同じ条件下で反応を継続し、
反応経過時間毎のEMCの収率と触媒1g当たりのEM
C生成速度を表1に示した。
Example 1 35.0 g of a catalyst was charged into a jacketed tubular reactor having an inner diameter of 17 mm and a length of 800 mm, and the raw material (2) (water concentration: 200 ppm by weight) was passed through a metering pump. LHSV2 at 140 ° C. while applying a back pressure of 0.9 MPa
(100 ml / hr). After 50 hours, the reaction solution was analyzed by gas chromatography. As a result, the composition of the reaction solution was 21.7% by weight of DMC, 49.5% by weight of ethyl methyl carbonate (EMC), and 28.5% by weight of DEC. This corresponds to an EMC yield of 49.5%.
The EMC generation rate at this time was 1.41 g per 1 g of the catalyst.
/ Hr. After this, the reaction is continued under the same conditions,
EMC yield per reaction time and EM / g catalyst
Table 1 shows the C generation rate.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1 実施例1において、原料(1)(水分濃度15重量pp
m)を使用した以外は、実施例1と同一条件で反応を行
った。42時間後の反応液をガスクロ分析したところ、
反応液の組成は、DMC21.5重量%、エチルメチル
カーボネート(EMC)49.7重量%、DEC28.
4重量%であった。これはEMC収率として49.7%
に相当する。このときのEMC生成速度は触媒1g当た
り1.42g/hrであった。この後、同じ条件下で反
応を継続し、反応経過時間毎のEMCの収率と触媒1g
当たりのEMC生成速度を表2に示した。表2から明ら
かな様に、EMCの収率および生成速度が反応時間と共
に低下していることが分かる。
Comparative Example 1 In Example 1, the raw material (1) (water concentration 15 wt.
The reaction was carried out under the same conditions as in Example 1 except that m) was used. The reaction solution after 42 hours was analyzed by gas chromatography.
The composition of the reaction solution was 21.5% by weight of DMC, 49.7% by weight of ethyl methyl carbonate (EMC), and DEC28.
It was 4% by weight. This is 49.7% as an EMC yield.
Is equivalent to The EMC generation rate at this time was 1.42 g / hr per 1 g of the catalyst. Thereafter, the reaction was continued under the same conditions.
Table 2 shows the EMC generation rate per unit. As is clear from Table 2, it can be seen that the yield and generation rate of EMC decrease with the reaction time.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例2 原料(1)から原料(2)に変更して比較例1に継続し
て反応を行った。原料を変更して50時間後の反応液を
ガスクロ分析したところ、反応液の組成は、DMC2
2.1重量%、エチルメチルカーボネート(EMC)4
8.5重量%、DEC29.1重量%であった。これは
EMC収率として48.5%に相当する。このときのE
MC生成速度は触媒1g当たり1.39g/hrであっ
た。すなわち、比較例1で低下した触媒性能が回復し
た。その後、同じ条件下で反応を継続し、反応経過時間
毎のEMCの収率と触媒1g当たりのEMC生成速度を
表3に示した。
Example 2 The reaction was carried out in the same manner as in Comparative Example 1 except that the raw material (1) was changed to the raw material (2). Gas chromatographic analysis of the reaction mixture 50 hours after changing the raw materials revealed that the composition of the reaction mixture was DMC2.
2.1% by weight, ethyl methyl carbonate (EMC) 4
8.5% by weight and DEC 29.1% by weight. This corresponds to an EMC yield of 48.5%. E at this time
The MC generation rate was 1.39 g / hr / g of catalyst. That is, the catalyst performance lowered in Comparative Example 1 was recovered. Thereafter, the reaction was continued under the same conditions. Table 3 shows the EMC yield and the EMC generation rate per 1 g of the catalyst for each reaction elapsed time.

【0029】[0029]

【表3】 [Table 3]

【0030】実施例3〜7 実施例1において、原料(3)〜(7)をそれぞれ使用
した以外は、実施例1と同一条件で反応を行った。所定
の反応経過時間のEMCの収率と触媒1g当たりのEM
C生成速度を表4に示した。
Examples 3 to 7 The reaction was carried out under the same conditions as in Example 1 except that the raw materials (3) to (7) were used. The yield of EMC for a given reaction elapsed time and the EM / g of catalyst
Table 4 shows the C generation rate.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【発明の効果】以上説明した本発明によれば、長期間を
使用しても触媒の活性低下が抑制された非対称炭酸エス
テルの製造方法の製造方法が提供され、本発明の工業的
価値は顕著である。
According to the present invention described above, there is provided a method for producing an asymmetric carbonate in which a decrease in the activity of a catalyst is suppressed even after a long period of use, and the industrial value of the present invention is remarkable. It is.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2種の対称炭酸エステル間の不均化エス
テル交換反応により非対称炭酸エステルを製造するに当
たり、不均一系触媒と共に原料中の濃度として100〜
10,000重量ppmの水の存在下に上記の反応を行
うことを特徴とする非対称炭酸エステルの製造方法。
In producing an asymmetric carbonate by disproportionation transesterification between two symmetric carbonates, the concentration in a raw material together with a heterogeneous catalyst is from 100 to 100.
A process for producing an asymmetric carbonic acid ester, wherein the above reaction is carried out in the presence of 10,000 ppm by weight of water.
【請求項2】 不均化エステル交換反応がジメチルカー
ボネートとジエチルカーボネートからエチルメチルカー
ボネートへの反応である請求項1に記載の製造方法。
2. The production method according to claim 1, wherein the disproportionated transesterification reaction is a reaction from dimethyl carbonate and diethyl carbonate to ethyl methyl carbonate.
JP15832299A 1999-06-04 1999-06-04 Method for producing asymmetric carbonate Expired - Fee Related JP3960504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15832299A JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15832299A JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Publications (2)

Publication Number Publication Date
JP2000344715A true JP2000344715A (en) 2000-12-12
JP3960504B2 JP3960504B2 (en) 2007-08-15

Family

ID=15669116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15832299A Expired - Fee Related JP3960504B2 (en) 1999-06-04 1999-06-04 Method for producing asymmetric carbonate

Country Status (1)

Country Link
JP (1) JP3960504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057579A (en) * 2021-12-08 2022-02-18 河北工业大学 Method for preparing asymmetric carbonate by rectifying catalytic reaction of symmetric carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057579A (en) * 2021-12-08 2022-02-18 河北工业大学 Method for preparing asymmetric carbonate by rectifying catalytic reaction of symmetric carbonate

Also Published As

Publication number Publication date
JP3960504B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US8445713B2 (en) Catalyst for the synthesis of organic carbonates, process for preparing the same and application thereof
JPH0753470A (en) Production of dialkyl carbonate
EP0701998B1 (en) Process for production of tertiary n-alkenyl carboxylic acid amide
KR100441458B1 (en) A process for producing an unsymmetrical chain carbonic ester
JP2004313984A (en) Dimethycarbonate synthetic catalyst
JP2000344718A (en) Production of asymmetric carbonic ester
US5414104A (en) Process for preparing dialkyl carbonates
JP3960504B2 (en) Method for producing asymmetric carbonate
US9238638B2 (en) Method for preparing alcohol carbonate using rare earth oxides as catalysts
EP1199299A2 (en) Process for producing benzyl acetate and benzyl alcohol
JP4197763B2 (en) Method for producing anhydrous 2-amino-1-methoxypropane
JP2003517032A (en) Method for producing both dialkyl carbonate and alkanediol
KR102637950B1 (en) Method for producing alkanediols and dialkyl carbonates
JPS62258335A (en) Production of methyl isobutyl ketone
JP2003277326A (en) Method for producing dialkyl carbonate
JPH10139736A (en) Production of alkyl aryl carbonate
JPH0648993A (en) Production of dialkyl carbonate
KR101002123B1 (en) Method for Preparing Aromatic Carbonate Compound
CN107552092B (en) Oxygen-bridged tetranuclear amidino aluminum catalyst, and preparation method and application thereof
JP2000167400A (en) Preparation of carbonylation catalyst and acid ester
JPH09328453A (en) Production of asymmetrical chain carbonic acid ester
JP3800247B2 (en) Method for producing 6-membered ring carbonate
JP2001316332A (en) Method for producing dialkyl carbonate
JPH06329567A (en) Production of 1,6-hexanediol
JPH0725745B2 (en) Method for producing amine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Ref document number: 3960504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees