JP3800247B2 - Method for producing 6-membered ring carbonate - Google Patents

Method for producing 6-membered ring carbonate Download PDF

Info

Publication number
JP3800247B2
JP3800247B2 JP12626994A JP12626994A JP3800247B2 JP 3800247 B2 JP3800247 B2 JP 3800247B2 JP 12626994 A JP12626994 A JP 12626994A JP 12626994 A JP12626994 A JP 12626994A JP 3800247 B2 JP3800247 B2 JP 3800247B2
Authority
JP
Japan
Prior art keywords
urea
reaction
alkanediol
membered ring
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12626994A
Other languages
Japanese (ja)
Other versions
JPH07330756A (en
Inventor
正晴 銅谷
豊 神原
大川  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP12626994A priority Critical patent/JP3800247B2/en
Publication of JPH07330756A publication Critical patent/JPH07330756A/en
Application granted granted Critical
Publication of JP3800247B2 publication Critical patent/JP3800247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は6員環カーボネートの製造方法に関する。6員環カーボネートは、可塑剤、合成樹脂の原料、医薬品の原料、電子工業分野或はジアルキルカーボネート合成の中間体等として重要な物質である。
【0002】
【従来の技術】
6員環カーボネートは、例えば特開昭61−130288号で記載されているように、ホスゲンと対応するジオールとの反応により製造される。
また特開昭57−144283号には、尿素又はカーバメートとアルカンジオールとをエステル交換触媒の存在下に反応させる方法が記載されている。
【0003】
【発明が解決しようとする課題】
特開昭61−130288記載の方法では猛毒のホスゲンを使用することから、安全上、工業的な製造法としては好ましくない。
また特公昭57−144283号記載の方法では、収率が80%前後と低く、反応時間が10〜20時間と非常に長い。
本発明の目的は、尿素とアルカンジオールから6員環カーボネートを高収率で短時間に工業的に有利に製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
発明者等は、上記の如き目的を達成すべく鋭意検討した結果、減圧下、尿素とアルカンジオールとを触媒の存在下で反応させることにより6員環カーボネートが高収率に短時間で製造されることを見い出し、本発明に到達した。
【0005】
即ち本発明は、亜鉛、マグネシウム及び鉛から選ばれた一種以上の金属単体又は化合物からなる触媒を用い、一般式
【化2】

Figure 0003800247
(R〜Rは水素又は炭素数が1〜4の脂肪族低級アルキル基)で表されるアルカンジオールと尿素を、5〜700mmHgの減圧下で接触反応させることを特徴とする6員環カーボネートの製造方法である。
【0006】
本発明の反応は、通常、尿素とアルカンジオールの混合液に触媒を添加後、減圧し、次いで加熱することによって行われる。
本発明の原料に用いられるアルカンジオールは、一般式
【化3】
Figure 0003800247
(R1 〜R4 は水素又は炭素数が1〜4の脂肪族低級アルキル基)で表され、
1,3-プロパンジオール、1,3-ブタンジオール、1,3-ペンタンジオール、2,4-ペンタンジオール、2-メチル-2,4- ペンタンジオール、1,3-ヘキサンジオール、2,4-ヘキサンジオール、ネオペンチルグリコール等が挙げられる。
原料の尿素とアルカンジオールの比率は尿素1モルに対して上記のアルカンジオール1〜5モルの範囲である。尿素に対するアルカンジオールのモル比が1未満の場合には尿素自身の副反応により6員環カーボネートへの選択率が低下し、このモル比が5より大きい場合には経済的に好ましくない。
【0007】
本発明における触媒には、亜鉛、マグネシウム及び鉛から選ばれた一種以上の金属単体又は化合物が好適に用いられる。
亜鉛、マグネシウム及び鉛は、これらの金属粉、酸化物、亜酸化物、水酸化物、無機塩、炭酸塩、塩基性炭酸塩、有機酸塩、有機金属化合物等が用いられる。また亜鉛、マグネシウム及び鉛化合物が反応系中に存在する有機化合物、即ち尿素、アルカンジオール、6員環カーボネート等と反応した化合物も用いられる。これらの化合物は一種類でも良いし、二種類以上を混合して用いることもできる。また、反応に不活性な化合物や担体と混合させたり、或いは担持させて使用することもできる。
触媒の使用量は特に制限されないが、通常、尿素1モルに対して亜鉛、マグネシウム及び鉛が0.0001〜10モル、好ましくは0.001〜1モルの範囲となる量が用いられる。
【0008】
本発明においては、通常、アルカンジオール過剰系で反応が行われるが、原料が高沸点、高融点或は高粘度である場合には溶媒を使用することが望ましい。
溶媒の種類は反応系内で不活性で、反応系内で溶解するものであれば特に制限されないが、環状カーボネート、芳香族炭化水素、エ−テル等が好適である。
溶媒の使用量は特に制限されないが、通常、尿素1モルに対して0.1〜10モルの範囲となる量が用いられる。
【0009】
本発明の反応は、尿素、アルカンジオール及び触媒の混合物を減圧下で反応温度に保持し、同時に反応混合物から生成したアンモニアを除去することにより行われる。
アンモニアを除去するためには反応条件下で不活性ガスを反応液中に導入する方法も用いられるが、不活性ガスに代えてアルカンジオール或は溶媒の還流下で反応を行う方法がより効果的である。アルカンジオール或は溶媒の還流量は、生成するアンモニアに対して1〜100モルとする。
【0010】
本発明における反応温度は120〜200℃が好適である。反応温度が低すぎる場合には反応速度が遅く、高すぎる場合には副反応量が増大する。
反応の際の減圧度は、反応液組成や反応温度により異なるが、通常5〜700mmHgの範囲であり、反応温度でアルカンジオール又は溶媒が還流するような減圧度が適宜選択される。
反応時間はアルカンジオールの種類及び尿素とのモル比、触媒の種類及び量、反応温度ならびにアルカンジオールの還流量等により異なるが、通常0.5〜10時間である。
【0011】
反応で生成した6員環カーボネートは、反応終了後、常法により、例えば蒸留により反応液から容易に分離して回収することができる。
なお本発明の反応は回分式、連続式の何れの方法でも行うことができる。
【0012】
【実施例】
次に実施例により本発明をより具体的に説明する。但し本発明はこれらの実施例により制限されるものではない。
【0013】
実施例1
攪拌機、還流冷却器及び温度計を付した500mlの三ツ口フラスコに、尿素60.1g(1.0モル)、1,3-ブタンジオール180.2g(2.0モル)及び酸化亜鉛8.0gを加え、攪拌下、140mmHgに減圧して155℃に加熱した。4時間の反応後、冷却して216.2gの反応液を得た。反応液組成をガスクロマトグラフィーで分析したところ、未反応1,3-ブタンジオール93.8g、生成した1,3-ジオキサン-4- メチル-2- オン106.2gであった。
この結果は、1,3-ブタンジオールの転化率は理論値50.0%に対して47.9%、1,3-ブタンジオール基準の1,3-ジオキサン-4- メチル-2- オンの選択率が95.3%、尿素基準の1,3-ジオキサン-4- メチル-2- オンの収率が91.5%であることを示す(尿素転化率100%)。
【0014】
実施例2
攪拌機、還流冷却器及び温度計を付した300mlの三ツ口フラスコに、尿素60.1g(1.00モル)、1,3-プロパンジオール95.1g(1.25モル)及び炭酸亜鉛を6.0gを加え、攪拌下80mmHgに減圧して175℃に加熱した。5時間の反応後、冷却して127.8gの反応液を得た。反応液組成をガスクロマトグラフィーで分析したところ、未反応1,3-プロパンジオール21.0g、生成した1,3-ジオキサン-2- オン92.1gであった。
この結果は、1,3-プロパンジオールの転化率は理論値80.0%に対して77.9%、1,3-プロパンジオール基準の1,3-ジオキサン-2- オンの選択率92.6%、尿素基準の1,3-ジオキサン-2- オンの収率90.2%であることを示す(尿素転化率100%)。
【0015】
実施例3
攪拌機、還流冷却器及び温度計を付した500mlの三ツ口フラスコに、尿素60.1g(1.00モル)、ネオペンチルグリコール156.2g(1.5モル)、炭酸マグネシウム3.0g及びプロピレンカーボネート102.1g(1.00モル)を加え、攪拌下、50mmHgに減圧して185℃に加熱した。3時間の反応後、冷却して286.3gの反応液を得た。反応液組成をガスクロマトグラフィーで分析したところ、未反応ネオペンチルグリコール55.3g、生成した1,3-ジオキサン-5,5- ジメチル-2- オン123.0gであった。
この結果は、ネオペンチルグリコールの転化率は理論値66.7%に対して64.6%、ネオペンチルグリコール基準の1,3-ジオキサン-5,5- ジメチル-2- オンの選択率97.5%、尿素基準の1,3-ジオキサン-5,5- ジメチル-2- オンの収率94.5%であることを示す(尿素転化率100%)。
【0016】
比較例1
減圧度を常圧とした以外は実施例1と同様にして実験を行った。4時間の反応後、冷却して215.4gの反応液を得た。反応液組成をガスクロマトグラフィーで分析したところ、未反応1,3-ブタンジオール134.3g、生成した1,3-ジオキサン-4- メチル-2- オン40.5gであった。
この結果は、1,3-ブタンジオールの転化率は理論値50.0%に対して25.5%、1,3-ブタンジオール基準の1,3-ジオキサン-4- メチル-2- オンの選択率68.4%、尿素基準の1,3-ジオキサン-4- メチル-2- オンの収率34.9%であることを示す(尿素転化率100%)。
【0017】
比較例2
特開昭57−144283号に従い、攪拌機、環流冷却器及び温度計を付した500mlの三ツ口フラスコに、ネオペンチルグリコール104.2g(1.00モル)、尿素60.1g(1.00モル)、オクタノール130.2g(1.00モル)、炭酸タリウム0.05gを加え、常圧で、攪拌下最初に160℃に、次いで17時間かけて240℃まで加熱した。冷却後、251.6gの反応液を得た。反応液をガスクロマトグラフィーで分析したところ、未反応ネオペンチルグリコール14.3g、生成した1,3-ジオキサン-5,5- ジメチル-2- オン98.7gであった。
この結果はネオペンチルグリコールの転化率は理論値100%に対して86.3%、ネオペンチルグリコール基準の1,3-ジオキサン-5,5- ジメチル-2- オンの選択率87.9%、尿素基準の1,3-ジオキサン-5,5- ジメチル-2- オンの収率75.8%であることを示す(尿素転化率100%)。
【0018】
【発明の効果】
実施例に示される如く、本発明の方法により尿素とアルカンジオールから6員環カーボネートを高収率、高選択率で容易に得ることができる。
この方法は比較的安価な原料を用いて容易に製造することができるので、工業的に極めて優れた方法である。[0001]
[Industrial application fields]
The present invention relates to a method for producing a 6-membered ring carbonate. The 6-membered ring carbonate is an important material as a plasticizer, a raw material for synthetic resins, a raw material for pharmaceuticals, an electronic industry field, or an intermediate for dialkyl carbonate synthesis.
[0002]
[Prior art]
The 6-membered ring carbonate is produced by the reaction of phosgene and the corresponding diol as described in, for example, JP-A No. 61-130288.
JP-A-57-144283 describes a method of reacting urea or carbamate with alkanediol in the presence of a transesterification catalyst.
[0003]
[Problems to be solved by the invention]
In the method described in JP-A-61-130288, toxic phosgene is used, which is not preferable as an industrial production method for safety.
In the method described in JP-B-57-144283, the yield is as low as about 80% and the reaction time is as long as 10 to 20 hours.
An object of the present invention is to provide a method for industrially advantageously producing a 6-membered cyclic carbonate from urea and alkanediol in a high yield in a short time.
[0004]
[Means for Solving the Problems]
As a result of diligent investigations to achieve the above-described object, the inventors have produced a 6-membered cyclic carbonate in a high yield in a short time by reacting urea and alkanediol in the presence of a catalyst under reduced pressure. As a result, the present invention has been reached.
[0005]
That is, the present invention uses a catalyst composed of one or more kinds of simple metals or compounds selected from zinc, magnesium and lead, and has the general formula:
Figure 0003800247
A six-membered ring characterized in that an alkanediol represented by (R 1 to R 4 are hydrogen or an aliphatic lower alkyl group having 1 to 4 carbon atoms) and urea are contact-reacted under a reduced pressure of 5 to 700 mmHg. This is a method for producing carbonate.
[0006]
The reaction of the present invention is usually carried out by adding a catalyst to a mixed solution of urea and alkanediol, reducing the pressure and then heating.
The alkanediol used in the raw material of the present invention has the general formula:
Figure 0003800247
(R 1 to R 4 are hydrogen or an aliphatic lower alkyl group having 1 to 4 carbon atoms),
1,3-propanediol, 1,3-butanediol, 1,3-pentanediol, 2,4-pentanediol, 2-methyl-2,4-pentanediol, 1,3-hexanediol, 2,4- Examples include hexanediol and neopentyl glycol.
The ratio of the raw material urea and alkanediol is in the range of 1 to 5 moles of the above alkanediol with respect to 1 mole of urea. When the molar ratio of alkanediol to urea is less than 1, the selectivity to 6-membered ring carbonate decreases due to the side reaction of urea itself, and when this molar ratio is larger than 5, it is not economically preferable.
[0007]
As the catalyst in the present invention, one or more kinds of simple metals or compounds selected from zinc, magnesium and lead are preferably used.
For zinc, magnesium, and lead, these metal powders, oxides, suboxides, hydroxides, inorganic salts, carbonates, basic carbonates, organic acid salts, organic metal compounds, and the like are used. In addition, an organic compound in which zinc, magnesium and lead compounds are present in the reaction system, that is, a compound obtained by reacting with urea, alkanediol, 6-membered ring carbonate or the like is also used. These compounds may be used alone or in combination of two or more. It can also be used by mixing with or supporting a compound or carrier inert to the reaction.
The amount of the catalyst to be used is not particularly limited, but usually an amount of zinc, magnesium and lead in the range of 0.0001 to 10 mol, preferably 0.001 to 1 mol is used with respect to 1 mol of urea.
[0008]
In the present invention, the reaction is usually carried out in an alkanediol-excess system, but it is desirable to use a solvent when the raw material has a high boiling point, a high melting point or a high viscosity.
The type of the solvent is not particularly limited as long as it is inert in the reaction system and can be dissolved in the reaction system, but cyclic carbonates, aromatic hydrocarbons, ethers and the like are preferable.
Although the usage-amount of a solvent is not restrict | limited in particular, Usually, the quantity used as the range which is 0.1-10 mol with respect to 1 mol of urea is used.
[0009]
The reaction of the present invention is carried out by maintaining a mixture of urea, alkanediol and catalyst at the reaction temperature under reduced pressure, and simultaneously removing ammonia generated from the reaction mixture.
In order to remove ammonia, a method in which an inert gas is introduced into the reaction solution under the reaction conditions is also used, but a method in which the reaction is performed under reflux of alkanediol or solvent instead of the inert gas is more effective. It is. The reflux amount of the alkanediol or the solvent is 1 to 100 mol with respect to the ammonia to be produced.
[0010]
120-200 degreeC is suitable for the reaction temperature in this invention. When the reaction temperature is too low, the reaction rate is slow, and when it is too high, the amount of side reaction increases.
The degree of vacuum during the reaction varies depending on the composition of the reaction solution and the reaction temperature, but is usually in the range of 5 to 700 mmHg, and is appropriately selected so that the alkanediol or the solvent is refluxed at the reaction temperature.
Although the reaction time varies depending on the type of alkanediol and the molar ratio with urea, the type and amount of catalyst, the reaction temperature, the reflux amount of alkanediol, etc., it is usually 0.5 to 10 hours.
[0011]
The 6-membered ring carbonate produced by the reaction can be easily separated and recovered from the reaction solution by a conventional method, for example, by distillation after the reaction is completed.
The reaction of the present invention can be carried out by either a batch method or a continuous method.
[0012]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.
[0013]
Example 1
A 500 ml three-necked flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 60.1 g (1.0 mol) of urea, 180.2 g (2.0 mol) of 1,3-butanediol and 8.0 g of zinc oxide. In addition, with stirring, the pressure was reduced to 140 mmHg and the mixture was heated to 155 ° C. After the reaction for 4 hours, the reaction solution was cooled to obtain 216.2 g of a reaction solution. The reaction solution composition was analyzed by gas chromatography. As a result, 93.8 g of unreacted 1,3-butanediol and 106.2 g of 1,3-dioxane-4-methyl-2-one produced were found.
As a result, the conversion rate of 1,3-butanediol was 47.9% against the theoretical value of 50.0%, and 1,3-dioxane-4-methyl-2-one based on 1,3-butanediol It indicates that the selectivity is 95.3% and the yield of 1,3-dioxane-4-methyl-2-one based on urea is 91.5% (urea conversion 100%).
[0014]
Example 2
In a 300 ml three-necked flask equipped with a stirrer, a reflux condenser and a thermometer, 60.1 g (1.00 mol) of urea, 95.1 g (1.25 mol) of 1,3-propanediol and 6.0 g of zinc carbonate were added. Was added and the pressure was reduced to 80 mmHg with stirring and the mixture was heated to 175 ° C. After the reaction for 5 hours, the reaction solution was cooled to obtain 127.8 g of a reaction solution. The composition of the reaction solution was analyzed by gas chromatography. As a result, it was 21.0 g of unreacted 1,3-propanediol and 92.1 g of 1,3-dioxane-2-one produced.
As a result, the conversion of 1,3-propanediol was 77.9% with respect to the theoretical value of 80.0%, and the selectivity of 1,3-dioxane-2-one based on 1,3-propanediol was 92. It shows that the yield of 1,3-dioxan-2-one based on urea is 90.2% (urea conversion: 100%).
[0015]
Example 3
In a 500 ml three-necked flask equipped with a stirrer, a reflux condenser and a thermometer, urea 60.1 g (1.00 mol), neopentyl glycol 156.2 g (1.5 mol), magnesium carbonate 3.0 g and propylene carbonate 102 0.1 g (1.00 mol) was added, and the mixture was heated to 185 ° C. under reduced pressure to 50 mmHg with stirring. After the reaction for 3 hours, the reaction solution was cooled to obtain 286.3 g of a reaction solution. The reaction liquid composition was analyzed by gas chromatography. As a result, it was 55.3 g of unreacted neopentyl glycol and 123.0 g of 1,3-dioxane-5,5-dimethyl-2-one produced.
As a result, the conversion of neopentyl glycol was 64.6% with respect to the theoretical value of 66.7%, and the selectivity of 1,3-dioxane-5,5-dimethyl-2-one based on neopentyl glycol was 97. It shows that the yield of 1,3-dioxane-5,5-dimethyl-2-one based on urea is 94.5% (urea conversion 100%).
[0016]
Comparative Example 1
The experiment was performed in the same manner as in Example 1 except that the degree of vacuum was normal. After the reaction for 4 hours, the reaction solution was cooled to obtain 215.4 g of a reaction solution. The reaction solution composition was analyzed by gas chromatography. As a result, 134.3 g of unreacted 1,3-butanediol and 40.5 g of produced 1,3-dioxane-4-methyl-2-one were obtained.
As a result, the conversion rate of 1,3-butanediol was 25.5% against the theoretical value of 50.0%, and 1,3-dioxane-4-methyl-2-one based on 1,3-butanediol It indicates that the selectivity is 68.4%, and the yield of 1,3-dioxane-4-methyl-2-one based on urea is 34.9% (urea conversion 100%).
[0017]
Comparative Example 2
According to JP 57-144283 A, a 500 ml three-necked flask equipped with a stirrer, a reflux condenser and a thermometer was charged with 104.2 g (1.00 mol) of neopentyl glycol, 60.1 g (1.00 mol) of urea, 130.2 g (1.00 mol) of octanol and 0.05 g of thallium carbonate were added, and the mixture was heated at normal pressure to 160 ° C. with stirring and then to 240 ° C. over 17 hours. After cooling, 251.6 g of reaction solution was obtained. When the reaction solution was analyzed by gas chromatography, it was 14.3 g of unreacted neopentyl glycol and 98.7 g of 1,3-dioxane-5,5-dimethyl-2-one produced.
As a result, the conversion of neopentyl glycol was 86.3% relative to the theoretical value of 100%, the selectivity of 1,3-dioxane-5,5-dimethyl-2-one based on neopentyl glycol was 87.9%, The yield of 1,3-dioxane-5,5-dimethyl-2-one based on urea is 75.8% (urea conversion 100%).
[0018]
【The invention's effect】
As shown in the Examples, a 6-membered ring carbonate can be easily obtained from urea and alkanediol with high yield and high selectivity by the method of the present invention.
Since this method can be easily produced using relatively inexpensive raw materials, it is an industrially excellent method.

Claims (1)

亜鉛、マグネシウム及び鉛から選ばれた一種以上の金属単体又は化合物からなる触媒を用い、一般式
Figure 0003800247
(R〜Rは水素又は炭素数が1〜4の脂肪族低級アルキル基)で表されるアルカンジオールと尿素を、5〜700mmHgの減圧下で接触反応させることを特徴とする6員環カーボネートの製造方法。
Using a catalyst composed of one or more metals selected from zinc, magnesium and lead, or a general formula
Figure 0003800247
A six-membered ring characterized in that an alkanediol represented by (R 1 to R 4 are hydrogen or an aliphatic lower alkyl group having 1 to 4 carbon atoms) and urea are contact-reacted under a reduced pressure of 5 to 700 mmHg. A method for producing carbonate.
JP12626994A 1994-06-08 1994-06-08 Method for producing 6-membered ring carbonate Expired - Fee Related JP3800247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12626994A JP3800247B2 (en) 1994-06-08 1994-06-08 Method for producing 6-membered ring carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626994A JP3800247B2 (en) 1994-06-08 1994-06-08 Method for producing 6-membered ring carbonate

Publications (2)

Publication Number Publication Date
JPH07330756A JPH07330756A (en) 1995-12-19
JP3800247B2 true JP3800247B2 (en) 2006-07-26

Family

ID=14931015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626994A Expired - Fee Related JP3800247B2 (en) 1994-06-08 1994-06-08 Method for producing 6-membered ring carbonate

Country Status (1)

Country Link
JP (1) JP3800247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873661A1 (en) 2013-11-14 2015-05-20 Arkema France Synthesis process of trimethylene carbonate from 1,3-propanediol and urea by heterogeneous catalysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873661A1 (en) 2013-11-14 2015-05-20 Arkema France Synthesis process of trimethylene carbonate from 1,3-propanediol and urea by heterogeneous catalysis

Also Published As

Publication number Publication date
JPH07330756A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3374863B2 (en) Method for producing dialkyl carbonate
EP3235801B1 (en) Carboxylic acid ester production method
JP3085722B2 (en) Method for producing alkylene carbonate
EP0581131B1 (en) A process for producing alkylene carbonates
JPH05194297A (en) Hydroxyalkylation of fluorinated alcohol
RU2600741C2 (en) Methods of producing 1,5,7-triazabicycl[4,4,0]-dec-5-ene from reaction of disubstituted carbodiimide and dipropylene triamine
JPH06329663A (en) Production of glycerol carbonate
JP3800247B2 (en) Method for producing 6-membered ring carbonate
EP2125707B1 (en) Process for the manufacture of substituted 2-cyano cinnamic esters
JPH07330686A (en) Production of dialkyl carbonate
US6797844B2 (en) Process for producing phthalaldehyde
JP3417418B2 (en) Method for producing alkylene carbonate
JP4186404B2 (en) Method for producing 3,4-methylenedioxymandelic acid
JP3446761B2 (en) Method for producing alkylene carbonate
EP0889040B1 (en) Process for producing 2,4-oxazolidinedione
JP5188475B2 (en) Process for producing 2- (3-nitrobenzylidene) isopropyl acetoacetate
JP2000344718A (en) Production of asymmetric carbonic ester
JP3864997B2 (en) Method for producing 2,4-oxazolidinediones
KR101002123B1 (en) Method for Preparing Aromatic Carbonate Compound
JPH0648993A (en) Production of dialkyl carbonate
JP3446760B2 (en) Method for producing ethylene carbonate
JPH0245439A (en) Production of bisphenol
JP2002105064A (en) Method of producing high-purity oxazolidinone
JP3960504B2 (en) Method for producing asymmetric carbonate
JPH06321933A (en) Production of alkylene carbonate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees