JP3960440B2 - Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper - Google Patents

Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper Download PDF

Info

Publication number
JP3960440B2
JP3960440B2 JP22420197A JP22420197A JP3960440B2 JP 3960440 B2 JP3960440 B2 JP 3960440B2 JP 22420197 A JP22420197 A JP 22420197A JP 22420197 A JP22420197 A JP 22420197A JP 3960440 B2 JP3960440 B2 JP 3960440B2
Authority
JP
Japan
Prior art keywords
filter paper
filter
weight
air cleaning
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22420197A
Other languages
Japanese (ja)
Other versions
JPH1147522A (en
Inventor
伸彦 種市
雅典 府川
智彦 楚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Paper Mills Ltd
Teijin Ltd
Original Assignee
Hokuetsu Paper Mills Ltd
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Paper Mills Ltd, Toho Tenax Co Ltd filed Critical Hokuetsu Paper Mills Ltd
Priority to JP22420197A priority Critical patent/JP3960440B2/en
Publication of JPH1147522A publication Critical patent/JPH1147522A/en
Application granted granted Critical
Publication of JP3960440B2 publication Critical patent/JP3960440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気清浄フィルター用濾紙、その製造方法およびその濾紙を用いた空気清浄フィルターに関し、更に詳しくはクリーンルーム等に用いられる高性能空気浄化用フィルター用濾紙、その製造方法及びその濾紙を用いた空気清浄フィルターに関する。
【0002】
【従来の技術】
従来、クリーンルーム、クリーンベンチ、無菌室などの高度な清浄環境を要求されている超微粉塵などを除去する必要のある分野に、ガラス繊維製のいわゆる「高性能空気清浄フィルター用濾紙」が用いられている。該「高性能空気清浄フィルター用濾紙」は、MIL−STD MIL−F−51079Cに規定されており、0.3μmのフタル酸ジオクチル粒子(略語:DOP粒子)の捕集効率が面風速5.33cm/秒の条件下で99.97%以上の性質を示し、通常HEPA(High Efficiency Particulate Air filter) と呼ばれているガラス繊維濾紙であると規定されている。
【0003】
特開平4−284803号公報には、従来のHEPA用ガラス繊維濾紙の捕集効率を維持し、且つ従来のHEPA用ガラス繊維濾紙の圧力損失が高いという欠点を改良した高性能空気清浄フィルター用濾紙が示されている。該公報に記載の高性能空気清浄フィルター用濾紙は、ガラス繊維の組成が、10〜50重量%の繊維径10μm以下のガラスチョップドストランド繊維、及び90〜50重量%の極細ガラス繊維からなり、上記HEPAの特性を有し且つ圧力損失の少ないガラス繊維濾紙である。しかしながら、前記従来の「高性能空気浄化用フィルター濾紙」(HEPA)は除塵機能を有しているが脱臭機能は無いという問題があった。
【0004】
一方、特開平2−115013号公報には、活性炭素繊維を40〜70重量%、ガラス繊維を20〜40重量%、接着剤を1〜4重量%含有させて混抄することにより、従来の中性能空気浄化用フィルター濾紙と同様の除塵機能を有し、圧力損失が小さく、且つ脱臭機能を付与した中性能フィルター用濾紙を得たことが示されている。しかしながら、該公報の空気浄化用フィルター濾紙は中性能であり、超微粉塵などの捕集効率が高性能空気浄化用フィルター濾紙に比べて低いという問題があった。
【0005】
また、特開平7−289828号公報には、活性炭素繊維を10〜40重量%、平均繊維径2〜3μmのガラス繊維を10重量%以上、接着剤を4〜6重量%含有させて混抄することにより、引っ張り強度を確保でき、圧力損失を低く抑えることができ、且つ脱臭機能を付与した中性能フィルター用濾紙を得たことが示されている。しかしながら、該公報の空気浄化用フィルター濾紙は中性能であり、超微粉塵などの捕集効率が高性能空気浄化用フィルター濾紙に比べて低いという問題があった。
【0006】
【発明が解決しようとする課題】
そこで本発明は、MIL−STD MIL−F−51079Cに規定される「高性能空気浄化用フィルター濾紙」(HEPA)の除塵性能を有し且つ脱臭等の吸着機能を付与した、空気清浄フィルター用濾紙、その製造方法及びその濾紙を用いた空気清浄フィルターを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記した問題点を解決するために、本発明の空気清浄フィルター用濾紙は、
(1)平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して、
(2)比表面積500〜1300m2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部、及び
(3)接着剤を1〜7重量部
の割合で含ませている。
【0008】
上記構成のガラス繊維、活性炭素繊維及び接着剤の組み合わせとすることにより、MIL−STD MIL−F−51079Cに規定される「高性能空気浄化用フィルター濾紙」(HEPA)とすることができ、且つ脱臭性能を付加することができる。即ち、0.3μm粒子の捕集効率が99.97%以上で、且つトルエンの吸着能が1%以上の空気清浄フィルター用濾紙とすることができる。
【0009】
本発明の空気清浄フィルター用濾紙に使用されるガラス繊維は、平均繊維径0.3〜2.0μmのマイクロファイバーを含むことが「高性能空気浄化用フィルター濾紙」とするためには重要な要件である。しかしながら、ガラス繊維全体の平均径が0.3〜2.0μmの範囲であるならば、濾紙の強度付与のため、太径のチョップドストランドガラス繊維を数%配合しても構わない。濾紙の捕集性能は圧力損失と捕集効率によって決定され、圧力損失が高いほど捕集効率の高い濾紙となるが、圧力損失が高くなるとフィルターを運転する送風機の負荷が高くなりエネルギーコストがかかるので好ましくない。通常、使用目的に合わせた濾材設計を行うために、ガラス繊維の平均繊維径が決定される。ガラス繊維の平均繊維径2.0μm以上では捕集効率99.97%未満となり、HEPAとしての捕集性能が満たせず、逆に0.3μm以下では圧力損失が高くなりすぎて好ましくはない。
【0010】
本発明の空気清浄フィルター用濾紙において、活性炭素繊維の径を5μm以上15μm未満と限定した理由は、5μm未満だと活性炭素繊維の製造が困難となり、また15μmを超えると得られた濾紙の加工性が悪くなり、フィルター製作時のプリーツ加工が困難となるからである。
【0011】
本発明の空気清浄フィルター用濾紙において、活性炭素繊維の比表面積を500〜1300m2 /gとした理由は、500m2 /g未満だと脱臭性能等の吸着性能が十分ではなく、また1300m2 /gを超えると、活性炭素繊維の強度が不十分となり、取り扱い性が悪くなる。
【0012】
本発明の空気清浄フィルター用濾紙において、活性炭素繊維の繊維長を1mm〜20mmとする理由は、1mm未満にすることは困難で、価格が高くなり、工業的に不適であるからであり、また20mmを超えると活性炭素繊維の水分散性が悪くなり、均一な濾紙を得ることが困難となるからである。
【0013】
本発明の空気清浄フィルター用濾紙において、相対湿度37%における活性炭素繊維の平衡水分率を10%以上とする理由は、10%未満では、湿式抄紙時に分散性が悪く、均一な濾紙を得ることが困難となるからである。
【0014】
極細ガラス繊維を使用した空気清浄フィルター用濾紙において捕集性能は、濾紙を構成するガラス繊維の充填ばらつきに影響されることが経験的に分かっている。すなわち、充填のばらつきが大きければ、これに伴ってガラス繊維相互により形成される細孔のばらつきが大きくなり、最大径が大きくなり、そのため捕集効率が低下することになり、HEPAとはならない。したがって、本発明においては、極細ガラス繊維に対して添加する活性炭素繊維を均一に分散させることは、捕集効率を低下させないために重要な要件である。
【0015】
本発明に使用される活性炭素繊維(ACF)は、ポリアクリロニトリル系繊維、セルロース系繊維、フェノール系繊維、ピッチ系繊維を原料として既知の方法で賦活してつくられる比表面積500〜1300m2 /gの繊維状活性炭である。これらの活性炭素繊維の中でも、特に、ポリアクリロニトリル系活性炭素繊維は、水分散性において特に優れており、均一に分布した濾紙となるので、極細ガラス繊維の除塵機能を損なうことが無い。また、湿式抄紙時に分散性が良いので、ダマとならず、活性炭素繊維自体の吸着性能を損なうことはない。
【0016】
本発明に使用される活性炭素繊維は、上記各特性を併せ持つことが、捕集性能が良好なHEPAとする上で重要である。特に、活性炭素繊維の分散性は、捕集性能に大いに影響を与え、分散不良だと、活性炭素繊維の塊部分よりリークが発生し、HEPAとしての除塵性能を達成することができない。
【0017】
本発明の空気清浄フィルター用濾紙において、接着剤(バインダー)としては、アクリル系、酢ビ系、ウレタン系、エポキシ系、ポリエステル系、SBR系、NBR系ラテックス或いはポリビニルアルコール、澱粉などの製紙工程で一般的に用いられる紙力剤、或いは湿熱溶融タイプのポリビニルアルコール繊維状バインダー、鞘部に低融点のポリエチレンテレフタレート、変成ポリプロピレン、変成ポリエステルを用いた芯鞘繊維などの繊維状バインダー等が、単独或いは組み合わせて用いられる。また、濾紙に撥水性を付与するため、シリコン系、フッ素系、パラフィン系等の撥水剤を併用しても良い。
【0018】
接着剤の添加量については、平均繊維径0.3μm以上2.0μm未満のガラス繊維を100重量部に対して、1〜7重量部が望ましく、1重量部以下では濾紙に十分な実用強度が付与できず、7重量部以上では濾紙の構成繊維間に接着剤の水かき状態が増えるため、圧力損失が高くなりすぎて好ましくない。
【0019】
本発明の空気清浄フィルター用濾紙の第一番目の製造方法は、平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して比表面積500〜1300m2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部、接着剤を1〜7重量部の割合で含む水懸濁液を湿式にて抄紙した後、乾燥することを特徴とする。
【0020】
本発明の空気清浄フィルター用濾紙の第二番目の製造方法は、平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して比表面積500〜1300m2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部の割合で含む水懸濁液を湿式にて抄紙した湿紙に接着剤1〜7重量部を付着させ、その後に乾燥することを特徴とする。
【0021】
すなわち、本発明の空気清浄フィルター用濾紙は、前記濾紙構成繊維をパルパーなどを用いて水中に分散させ、このスラリーを抄紙機で湿式抄紙して湿紙を得て、その後乾燥させる方法である。原料繊維の分散工程では分散性を良くするために、硫酸酸性でpH2〜4の範囲で調整する方法をとるが、pH中性で分散剤等の界面活性剤を使用しても良い。
【0022】
また接着剤の付与方法としては、接着剤を分散時に配合する内添法と、抄紙機により得られ湿紙に接着剤を付着させその後乾燥させる外添法とがあり、いずれの方法を採用しても本発明の効果に変わりはなく、接着剤のトータル量が1重量部以上7重量部以下であるならば、内添法と外添法を併用しても良い。外添法での付与方法としては特に限定されるものではないが、湿紙を付着液に浸漬する方法、湿紙にスプレーで吹き付ける方法、ロールに付着液を付着させ湿紙に転写する方法などが用いられる。
【0023】
乾燥方法としては、熱風乾燥機、ロールドライヤーなどを利用し、110〜150℃で乾燥することが望ましい。
【0024】
【実施例】
以下の各実施例で用いた試験法は次のようにして行った。
【0025】
圧力損失
有効面積100cm2 の濾紙に面風速5.33cm/秒で空気を通過させ、そのときの差圧を微差圧計で測定した。
【0026】
DOP捕集効率
ラスキンノズルで発生させた多分散DOP粒子を含む空気を、有効面積100cm2 の濾紙に面風速5.33cm/秒で通風した時のDOP捕集効率をリオン社製レーザーパーティクルカウンターにて測定した。尚、対象粒径は0.3μmで測定した。
【0027】
PF値
濾材の濾過性能の指標となるPF値は、上記圧力損失と捕集効率の測定値に基づき次式より求めた。(PF値の高い方が同一圧力損失で高捕集効率を示す。)
【0028】
【数1】

Figure 0003960440
【0029】
引張強度
濾紙の縦方向より1インチ巾にカットした試験片をスパン長100mm、引張速度15mm/分で定速引張試験機を用い測定した。
【0030】
トルエン吸着能
1gのサンプルを105℃で1時間乾燥後、JIS−K 1477−95に準拠してトルエン吸着能を測定した。
【0031】
平衡水分率
25℃、RH37%にて、JISに準拠して測定した。
【0032】
活性炭素繊維の分散性
濾紙における活性炭素繊維の分散性は、目視にて、分散性が良好なものを〇、ダマが明らかに確認され分散性が悪いものを×、分散性がいずれともいえないものを△の評価で示した。
【0033】
〔実施例1〕
平均繊維径1.41μmのガラス繊維100重量部に対して、比表面積750m2 /g、繊維径12μm、繊維長5mm、平衡水分率(RH37%下)16%のPAN系ACF(商品名:ファインガード、製造元:東邦レーヨン(株))11重量部を配合し、濃度0.5%、硫酸酸性pH3.5でパルパーで離解し、次いで抄紙機にて抄紙して湿紙を得た。次いで、接着剤組成としてアクリル系ラテックス(商品名:プライマルE−358、製造元:日本アクリル化学)1.85重量部、フッ素系撥水剤(商品名:ライトガードFRG−1、製造元:共栄社化学)0.16重量部の接着剤を外添法により湿紙に付与し、その後130℃のロールドライヤーで乾燥し、目付70g/m2 、接着剤付着量6.2重量部の濾紙を得た。
【0034】
得られた濾紙の圧力損失、捕集効率、PF値、引張強度、トルエン吸着能を測定し、その結果を下記の表1に示す。
【0035】
〔実施例2〕
平均繊維径1.25μmのガラス繊維100重量部に対して、比表面積900m2 /g、繊維径10μm、繊維長8mm、平衡水分率13%(RH37%下)のPAN系ACF(商品名:ファインガード、製造元:東邦レーヨン(株))25重量部を配合した以外は、前記実施例1と同様にして目付70g/m2 、接着剤付着量6.2重量部の濾紙を得た。
【0036】
得られた濾紙の圧力損失、捕集効率、PF値、引張強度、トルエン吸着能を測定し、その結果を下記の表1に示す。
【0037】
〔実施例3〕
平均繊維径1.41μmのガラス繊維100重量部に対して、比表面積800m2 /g、繊維径12μm、繊維長10mm、平衡水分率14%(RH37%下)のPAN系ACF(商品名:ファインガード、製造元:東邦レーヨン(株))11重量部、内添系接着剤として湿熱溶解タイプのポリビニルアルコール繊維状バインダー(商品名:VPB107−2、製造元:クラレ(株))3.3重量部を配合し、濃度0.5%、硫酸酸性pH3.5でパルパーで離解し、次いで抄紙機にて抄紙して湿紙を得た。次いで、液濃度0.014重量%のフッ素系撥水剤を外添法により湿紙に付与し、その後130℃のロールドライヤーで乾燥し、目付70g/m2 、接着剤付着量3.0重量部の濾紙を得た。
【0038】
得られた濾紙の圧力損失、捕集効率、PF値、引張強度、トルエン吸着能を測定し、その結果を下記の表1に示す。
【0039】
〔実施例4〕
平均繊維径1.25μmのガラス繊維100重量部に対して、比表面積1000m2 /g、繊維径10μm、繊維長7mm、平衡水分率12%のPAN系ACF(商品名:ファインガード、製造元:東邦レーヨン(株))25重量部を配合した以外は、前記実施例3と同様にして接着剤付着量3.0重量部の濾紙を得た。
【0040】
得られた濾紙の圧力損失、捕集効率、PF値、引張強度、トルエン吸着能を測定し、その結果を下記の表1に示す。
【0041】
〔比較例〕
平均繊維径1.41μmのガラス繊維100重量部に対して、比表面積1000m2 /g、繊維径18μm、繊維長5mm、平衡水分率5%(RH37%下)のピッチ系活性炭素繊維(商品名:リノベス、製造元:大阪ガス(株))11重量部を配合した以外は前記実施例1と同様にして目付70g/m2 、接着剤付着量6.2重量部の濾紙を得た。
【0042】
得られた濾紙の圧力損失、捕集効率、PF値、引張強度、トルエン吸着能を測定し、その結果を下記の表1に示す。
【0043】
【表1】
Figure 0003960440
【0044】
表1によれば、繊維径が15μm以上の、平衡水分率が10%未満の活性炭素繊維を使用したピッチ系活性炭素繊維を使用した濾紙は、分散性が悪く、捕集効率が低く、脱臭成分等の吸着率が低いのに対して、本発明の空気清浄フィルター用濾紙は、活性炭素繊維の分散性がよく、従って、捕集効率が高く、脱臭成分等の吸着率が高いことが分かる。
【0045】
【発明の効果】
本発明の空気清浄フィルター用濾紙は、MIL−STD MIL−F−51079Cに規定される「高性能空気浄化用フィルター濾紙」(HEPA)の除塵性能と脱臭等の吸着機能を同時に有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter paper for an air cleaning filter, a manufacturing method thereof, and an air cleaning filter using the filter paper. More specifically, a filter paper for a high performance air cleaning filter used in a clean room or the like, a manufacturing method thereof, and the filter paper thereof are used. It relates to an air cleaning filter.
[0002]
[Prior art]
Conventionally, so-called “filter paper for high-performance air cleaning filters” made of glass fiber has been used in fields where it is necessary to remove ultra-fine dust, etc. that require a highly clean environment such as clean rooms, clean benches, and aseptic rooms. ing. The “filter paper for high-performance air cleaning filter” is defined in MIL-STD MIL-F-51079C, and the trapping efficiency of 0.3 μm dioctyl phthalate particles (abbreviation: DOP particles) is 5.33 cm. It is specified to be a glass fiber filter that exhibits a property of 99.97% or more under the condition of / sec and is generally called HEPA (High Efficiency Particulate Air filter).
[0003]
Japanese Patent Application Laid-Open No. 4-284803 discloses a filter paper for a high-performance air cleaning filter that maintains the collection efficiency of the conventional glass fiber filter paper for HEPA and has improved the disadvantage of high pressure loss of the conventional glass fiber filter paper for HEPA. It is shown. The filter paper for a high-performance air purifying filter described in the publication is composed of a glass chopped strand fiber having a fiber diameter of 10 to 50% by weight and a fiber diameter of 10 μm or less, and an ultrafine glass fiber of 90 to 50% by weight, It is a glass fiber filter paper having HEPA characteristics and low pressure loss. However, the conventional “high performance air purification filter paper” (HEPA) has a dust removal function but no deodorization function.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 2-115513 discloses a conventional method by mixing 40 to 70% by weight of activated carbon fiber, 20 to 40% by weight of glass fiber, and 1 to 4% by weight of adhesive. It is shown that a filter paper for medium performance filters having a dust removal function similar to that of a filter paper for performance air purification, a small pressure loss and a deodorizing function is obtained. However, the filter paper for air purification of the publication has a medium performance, and there is a problem that the collection efficiency of ultra fine dust and the like is lower than that of the filter paper for high-performance air purification.
[0005]
In JP-A-7-289828, 10-40% by weight of activated carbon fibers, 10% by weight or more of glass fibers having an average fiber diameter of 2-3 μm, and 4-6% by weight of an adhesive are mixed and mixed. Thus, it is shown that a tensile filter strength can be secured, a pressure loss can be kept low, and a filter paper for medium performance filters having a deodorizing function is obtained. However, the filter paper for air purification of the publication has a medium performance, and there is a problem that the collection efficiency of ultra fine dust and the like is lower than that of the filter paper for high-performance air purification.
[0006]
[Problems to be solved by the invention]
Accordingly, the present invention provides a filter paper for an air cleaning filter having a dust removal performance of “High Performance Air Purification Filter Filter Paper” (HEPA) defined in MIL-STD MIL-F-51079C and having an adsorption function such as deodorization. An object of the present invention is to provide an air purification filter using the manufacturing method and the filter paper.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the filter paper for an air cleaning filter of the present invention is:
(1) For 100 parts by weight of glass fiber having an average fiber diameter of 0.3 μm or more and less than 2.0 μm,
(2) 5 to 40 parts by weight of activated carbon fiber having a specific surface area of 500 to 1300 m 2 / g, fiber diameter of 5 μm to less than 15 μm and fiber length of 1 to 20 mm, and (3) 1 to 7 parts by weight of adhesive. Included.
[0008]
By combining the glass fiber, the activated carbon fiber, and the adhesive having the above-described configuration, it can be a “filter filter paper for high-performance air purification” (HEPA) defined in MIL-STD MIL-F-51079C, and Deodorizing performance can be added. That is, a filter paper for an air cleaning filter having a trapping efficiency of 0.3 μm particles of 99.97% or more and an adsorption capacity of toluene of 1% or more can be obtained.
[0009]
The glass fiber used in the filter paper for the air cleaning filter of the present invention is an important requirement for making a "high performance air cleaning filter paper" containing microfibers having an average fiber diameter of 0.3 to 2.0 μm. It is. However, if the average diameter of the entire glass fiber is in the range of 0.3 to 2.0 μm, a few percent of thick chopped strand glass fibers may be blended to impart filter paper strength. Filter paper collection performance is determined by pressure loss and collection efficiency. The higher the pressure loss, the higher the collection efficiency, but the higher the pressure loss, the higher the load on the fan that drives the filter and the higher the energy cost. Therefore, it is not preferable. Usually, the average fiber diameter of the glass fibers is determined in order to design the filter medium according to the purpose of use. When the average fiber diameter of the glass fiber is 2.0 μm or more, the collection efficiency is less than 99.97%, and the collection performance as HEPA is not satisfied. On the other hand, when the glass fiber is 0.3 μm or less, the pressure loss becomes too high.
[0010]
In the filter paper for an air cleaning filter of the present invention, the reason why the diameter of the activated carbon fiber is limited to 5 μm or more and less than 15 μm is that if it is less than 5 μm, it becomes difficult to produce the activated carbon fiber, and if it exceeds 15 μm, the obtained filter paper is processed. This is because the properties are deteriorated and pleating during production of the filter becomes difficult.
[0011]
The air cleaning filter for filter paper of the present invention, the reason why the specific surface area of the active carbon fibers was 500~1300m 2 / g, the adsorption performance of such deodorizing performance and less than 500 meters 2 / g is not sufficient, also 1300 m 2 / If it exceeds g, the strength of the activated carbon fiber becomes insufficient, and the handleability deteriorates.
[0012]
In the filter paper for an air cleaning filter of the present invention, the reason why the active carbon fiber has a fiber length of 1 mm to 20 mm is because it is difficult to make the fiber length less than 1 mm, the price is high, and it is industrially unsuitable. This is because when the thickness exceeds 20 mm, the water dispersibility of the activated carbon fiber is deteriorated, and it is difficult to obtain a uniform filter paper.
[0013]
In the filter paper for an air cleaning filter of the present invention, the reason why the equilibrium moisture content of the activated carbon fiber at a relative humidity of 37% is 10% or more is that if it is less than 10%, the dispersibility is poor during wet papermaking and a uniform filter paper is obtained. This is because it becomes difficult.
[0014]
It has been empirically found that the collection performance of the filter paper for an air cleaning filter using ultrafine glass fibers is affected by the filling variation of the glass fibers constituting the filter paper. That is, if the variation in filling is large, the variation in pores formed by the glass fibers increases accordingly, and the maximum diameter increases, so that the collection efficiency decreases, and HEPA does not occur. Therefore, in the present invention, uniformly dispersing the activated carbon fiber added to the ultrafine glass fiber is an important requirement in order not to lower the collection efficiency.
[0015]
The activated carbon fiber (ACF) used in the present invention is a specific surface area of 500 to 1300 m 2 / g produced by activating a known method using polyacrylonitrile fiber, cellulose fiber, phenol fiber and pitch fiber as raw materials. It is a fibrous activated carbon. Among these activated carbon fibers, in particular, polyacrylonitrile-based activated carbon fibers are particularly excellent in water dispersibility and become a uniformly distributed filter paper, so that the dust removing function of the ultrafine glass fibers is not impaired. Moreover, since the dispersibility is good at the time of wet papermaking, it does not become lumpy and does not impair the adsorption performance of the activated carbon fiber itself.
[0016]
It is important for the activated carbon fiber used in the present invention to have both of the above characteristics in order to obtain HEPA with good collection performance. In particular, the dispersibility of the activated carbon fiber greatly affects the collection performance. If the dispersion is poor, leakage occurs from the lump portion of the activated carbon fiber, and the dust removal performance as HEPA cannot be achieved.
[0017]
In the filter paper for an air cleaning filter of the present invention, as an adhesive (binder), an acrylic, vinyl acetate, urethane, epoxy, polyester, SBR, NBR latex, polyvinyl alcohol, starch, or other papermaking process is used. Commonly used paper strength agents, wet heat melting type polyvinyl alcohol fibrous binders, low-melting point polyethylene terephthalate in the sheath, modified polypropylene, fibrous binders such as core-sheath fibers using modified polyester, etc. Used in combination. Further, in order to impart water repellency to the filter paper, a water-repellent agent such as silicon, fluorine, or paraffin may be used in combination.
[0018]
The amount of the adhesive added is preferably 1 to 7 parts by weight with respect to 100 parts by weight of glass fiber having an average fiber diameter of 0.3 μm or more and less than 2.0 μm, and if it is 1 part by weight or less, the filter paper has sufficient practical strength. If it is 7 parts by weight or more, the amount of webbed adhesive is increased between the constituent fibers of the filter paper, which is not preferable because the pressure loss becomes too high.
[0019]
The first method for producing the filter paper for an air cleaning filter of the present invention is a specific surface area of 500 to 1300 m 2 / g and a fiber diameter of 5 μm or more with respect to 100 parts by weight of glass fibers having an average fiber diameter of 0.3 μm or more and less than 2.0 μm. It is characterized in that an aqueous suspension containing 5 to 40 parts by weight of activated carbon fiber having a fiber length of less than 15 μm and a fiber length of 1 to 20 mm and an adhesive in a proportion of 1 to 7 parts by weight is made by paper and then dried. .
[0020]
The second production method of the filter paper for an air cleaning filter of the present invention is a specific surface area of 500 to 1300 m 2 / g and a fiber diameter of 5 μm or more with respect to 100 parts by weight of glass fibers having an average fiber diameter of 0.3 μm or more and less than 2.0 μm. Adhesive 1-7 parts by weight is attached to a wet paper obtained by wet-making a water suspension containing 5-40 parts by weight of activated carbon fibers having a fiber length of less than 15 μm and a fiber length of 1-20 mm, and then dried. It is characterized by that.
[0021]
That is, the filter paper for an air cleaning filter of the present invention is a method in which the filter paper-constituting fibers are dispersed in water using a pulper or the like, the slurry is wet-made by a paper machine to obtain wet paper, and then dried. In order to improve the dispersibility in the raw fiber dispersion step, a method of adjusting the pH within a range of 2 to 4 with sulfuric acid acid is used, but a neutral surfactant such as a dispersant may be used.
[0022]
In addition, there are two methods for applying the adhesive: an internal addition method in which the adhesive is blended at the time of dispersion, and an external addition method in which the adhesive is attached to the wet paper obtained by a paper machine and then dried. However, the effect of the present invention is not changed, and if the total amount of the adhesive is 1 part by weight or more and 7 parts by weight or less, the internal addition method and the external addition method may be used in combination. The application method by the external addition method is not particularly limited, but a method of immersing the wet paper in the adhering liquid, a method of spraying the wet paper with a spray, a method of attaching the adhering liquid to the roll and transferring it to the wet paper, etc. Is used.
[0023]
As a drying method, it is desirable to dry at 110 to 150 ° C. using a hot air dryer or a roll dryer.
[0024]
【Example】
The test methods used in the following examples were performed as follows.
[0025]
Pressure loss Air was passed through a filter paper having an effective area of 100 cm < 2 > at a surface wind speed of 5.33 cm / sec, and the differential pressure at that time was measured with a fine differential pressure gauge.
[0026]
DOP collection efficiency DOP collection efficiency when air containing polydisperse DOP particles generated by a Ruskin nozzle is passed through a filter paper with an effective area of 100 cm 2 at a surface wind speed of 5.33 cm / sec. Measured with a laser particle counter. The target particle size was measured at 0.3 μm.
[0027]
PF value The PF value serving as an index of the filtration performance of the filter medium was obtained from the following equation based on the measured values of the pressure loss and the collection efficiency. (The higher the PF value, the higher the collection efficiency with the same pressure loss.)
[0028]
[Expression 1]
Figure 0003960440
[0029]
Tensile strength A test piece cut to a width of 1 inch from the longitudinal direction of the filter paper was measured using a constant speed tensile tester at a span length of 100 mm and a tensile speed of 15 mm / min.
[0030]
A 1 g toluene adsorption capacity sample was dried at 105 ° C. for 1 hour, and then the toluene adsorption capacity was measured according to JIS-K 1477-95.
[0031]
The measurement was performed in accordance with JIS at an equilibrium moisture content of 25 ° C. and RH of 37%.
[0032]
Dispersibility of activated carbon fibers The dispersibility of the activated carbon fibers in the filter paper is ◯ when the dispersibility is good, ◯ when the dispersibility is clearly confirmed, and when the dispersibility is poor. Those that could not be said were indicated by a △ evaluation.
[0033]
[Example 1]
PAN-based ACF (trade name: Fine) with a specific surface area of 750 m 2 / g, fiber diameter of 12 μm, fiber length of 5 mm, and equilibrium water content (under 37% RH) of 100 parts by weight of glass fiber having an average fiber diameter of 1.41 μm Guard, manufacturer: Toho Rayon Co., Ltd. (11 parts by weight) was blended, disaggregated with a pulper at a concentration of 0.5% and sulfuric acid pH of 3.5, and then paper was made with a paper machine to obtain a wet paper. Next, acrylic latex (trade name: Primal E-358, manufacturer: Nippon Acrylic Chemical) 1.85 parts by weight as an adhesive composition, fluorine-based water repellent (trade name: Lightguard FRG-1, manufacturer: Kyoeisha Chemical) 0.16 parts by weight of the adhesive was applied to the wet paper by the external addition method, and then dried with a roll dryer at 130 ° C. to obtain a filter paper having a basis weight of 70 g / m 2 and an adhesive adhesion amount of 6.2 parts by weight.
[0034]
The pressure loss, collection efficiency, PF value, tensile strength, and toluene adsorption ability of the obtained filter paper were measured, and the results are shown in Table 1 below.
[0035]
[Example 2]
PAN-based ACF (trade name: Fine) with a specific surface area of 900 m 2 / g, fiber diameter of 10 μm, fiber length of 8 mm, and equilibrium moisture content of 13% (under RH 37%) for 100 parts by weight of glass fiber having an average fiber diameter of 1.25 μm Guard, manufacturer: Toho Rayon Co., Ltd.) A filter paper having a basis weight of 70 g / m 2 and an adhesive adhesion amount of 6.2 parts by weight was obtained in the same manner as in Example 1 except that 25 parts by weight was blended.
[0036]
The pressure loss, collection efficiency, PF value, tensile strength, and toluene adsorption ability of the obtained filter paper were measured, and the results are shown in Table 1 below.
[0037]
Example 3
PAN-based ACF (trade name: Fine) with a specific surface area of 800 m 2 / g, fiber diameter of 12 μm, fiber length of 10 mm, and equilibrium moisture content of 14% (under RH 37%) with respect to 100 parts by weight of glass fiber having an average fiber diameter of 1.41 μm Guard, manufacturer: Toho Rayon Co., Ltd. 11 parts by weight, wet heat dissolving type polyvinyl alcohol fibrous binder (trade name: VPB107-2, manufacturer: Kuraray Co., Ltd.) 3.3 parts by weight as an internal adhesive The mixture was blended, disaggregated with a pulper at a concentration of 0.5% and sulfuric acid pH of 3.5, and then paper was made with a paper machine to obtain a wet paper. Next, a fluorine-based water repellent with a liquid concentration of 0.014% by weight was applied to the wet paper by the external addition method, and then dried with a roll dryer at 130 ° C., with a basis weight of 70 g / m 2 and an adhesive adhesion amount of 3.0%. Part of filter paper was obtained.
[0038]
The pressure loss, collection efficiency, PF value, tensile strength, and toluene adsorption ability of the obtained filter paper were measured, and the results are shown in Table 1 below.
[0039]
Example 4
PAN-based ACF with a specific surface area of 1000 m 2 / g, fiber diameter of 10 μm, fiber length of 7 mm, and equilibrium moisture content of 12% with respect to 100 parts by weight of glass fiber having an average fiber diameter of 1.25 μm (trade name: Fineguard, manufacturer: Toho A filter paper having an adhesive adhesion amount of 3.0 parts by weight was obtained in the same manner as in Example 3 except that 25 parts by weight of Rayon Co., Ltd. was blended.
[0040]
The resulting filter paper was measured for pressure loss, collection efficiency, PF value, tensile strength, and toluene adsorption capacity, and the results are shown in Table 1 below.
[0041]
[Comparative Example]
Pitch-based activated carbon fiber having a specific surface area of 1000 m 2 / g, a fiber diameter of 18 μm, a fiber length of 5 mm, and an equilibrium moisture content of 5% (under RH 37%) with respect to 100 parts by weight of glass fiber having an average fiber diameter of 1.41 μm (trade name) : Renoves, manufacturer: Osaka Gas Co., Ltd.) Except for blending 11 parts by weight, a filter paper having a basis weight of 70 g / m 2 and an adhesive adhesion amount of 6.2 parts by weight was obtained in the same manner as in Example 1.
[0042]
The resulting filter paper was measured for pressure loss, collection efficiency, PF value, tensile strength, and toluene adsorption capacity, and the results are shown in Table 1 below.
[0043]
[Table 1]
Figure 0003960440
[0044]
According to Table 1, filter paper using pitch-based activated carbon fibers using activated carbon fibers having a fiber diameter of 15 μm or more and an equilibrium moisture content of less than 10% has poor dispersibility, low collection efficiency, and deodorization. While the adsorption rate of components and the like is low, it can be seen that the filter paper for an air cleaning filter of the present invention has good dispersibility of activated carbon fibers, and thus has a high collection efficiency and a high adsorption rate of deodorized components and the like. .
[0045]
【The invention's effect】
The filter paper for an air cleaning filter of the present invention has the dust removal performance and the adsorption function such as deodorization of the “filter filter paper for high performance air purification” (HEPA) defined in MIL-STD MIL-F-51079C.

Claims (7)

(1)平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して、
(2)比表面積500〜1300m2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部、及び
(3)接着剤を1〜7重量部
の割合で含む空気清浄フィルター用濾紙であって、
(4)0.3μm粒子の捕集効率が99.97%以上で、且つトルエンの吸着能が1%以上の空気清浄フィルター用濾紙。
(1) For 100 parts by weight of glass fiber having an average fiber diameter of 0.3 μm or more and less than 2.0 μm,
(2) 5 to 40 parts by weight of activated carbon fiber having a specific surface area of 500 to 1300 m 2 / g, fiber diameter of 5 μm to less than 15 μm and fiber length of 1 to 20 mm, and (3) 1-7 parts by weight of adhesive. Including filter paper for an air cleaning filter ,
(4) Filter paper for an air cleaning filter having a trapping efficiency of 0.3 μm particles of 99.97% or more and a toluene adsorption capacity of 1% or more.
該活性炭素繊維が、相対湿度37%における平衡水分率が10%以上である請求項1記載の空気清浄フィルター用濾紙。  The filter paper for an air cleaning filter according to claim 1, wherein the activated carbon fiber has an equilibrium moisture content of 10% or more at a relative humidity of 37%. 該活性炭素繊維がPAN系である請求項1又は2記載の空気清浄フィルター用濾紙。  The filter paper for an air cleaning filter according to claim 1 or 2, wherein the activated carbon fiber is a PAN system. 湿式抄紙により得られた請求項1、2又は3記載の空気清浄フィルター用濾紙。The filter paper for an air cleaning filter according to claim 1, 2 or 3, obtained by wet papermaking. 平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して比表面積500〜1300mSpecific surface area of 500 to 1300 m with respect to 100 parts by weight of glass fiber having an average fiber diameter of 0.3 μm or more and less than 2.0 μm 2 2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部、接着剤を1〜7重量部の割合で含む水懸濁液を湿式にて抄紙した後、乾燥することを特徴とする空気清浄フィルター用濾紙の製造方法。/ G, 5 μm to less than 15 μm in fiber diameter, 5 to 40 parts by weight of activated carbon fiber having a fiber length of 1 to 20 mm, and papermaking an aqueous suspension containing 1 to 7 parts by weight of an adhesive, A method for producing a filter paper for an air cleaning filter, characterized by drying. 平均繊維径0.3μm以上2.0μm未満のガラス繊維100重量部に対して比表面積500〜1300mSpecific surface area of 500 to 1300 m with respect to 100 parts by weight of glass fiber having an average fiber diameter of 0.3 μm or more and less than 2.0 μm 2 2 /g、繊維径5μm以上15μm未満、繊維長1〜20mmの活性炭素繊維を5〜40重量部の割合で含む水懸濁液を湿式にて抄紙した湿紙に接着剤1〜7重量部を付着させ、その後に乾燥することを特徴とする空気清浄フィルター用濾紙の製造方法。/ G, 1-7 parts by weight of an adhesive on a wet paper made with a water suspension containing 5-40 parts by weight of activated carbon fiber having a fiber diameter of 5 μm or more and less than 15 μm and a fiber length of 1-20 mm. A method for producing filter paper for an air cleaning filter, wherein the filter paper is attached and then dried. 請求項1、2、3又は4記載の空気清浄フィルター用濾紙を用いた空気清浄フィルター。An air cleaning filter using the filter paper for an air cleaning filter according to claim 1, 2, 3 or 4.
JP22420197A 1997-08-06 1997-08-06 Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper Expired - Fee Related JP3960440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22420197A JP3960440B2 (en) 1997-08-06 1997-08-06 Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22420197A JP3960440B2 (en) 1997-08-06 1997-08-06 Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper

Publications (2)

Publication Number Publication Date
JPH1147522A JPH1147522A (en) 1999-02-23
JP3960440B2 true JP3960440B2 (en) 2007-08-15

Family

ID=16810118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22420197A Expired - Fee Related JP3960440B2 (en) 1997-08-06 1997-08-06 Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper

Country Status (1)

Country Link
JP (1) JP3960440B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239937A1 (en) * 1999-11-23 2002-09-18 Pall Corporation Porous media for dissipating electrical charge
JP4674026B2 (en) 1999-11-23 2011-04-20 ポール・コーポレーション Conductive filter cartridge
JP2003071216A (en) * 2001-09-03 2003-03-11 Nitta Ind Corp Antibacterial filter medium and production method therefor
GB0521910D0 (en) * 2005-10-27 2005-12-07 Madison Filter 981 Ltd Improved filter element
JP5319380B2 (en) * 2009-04-24 2013-10-16 北越紀州製紙株式会社 Low basis weight air filter media
JP5635922B2 (en) * 2011-02-03 2014-12-03 北越紀州製紙株式会社 Filter material for air filter and method for producing the same

Also Published As

Publication number Publication date
JPH1147522A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
JP6212619B2 (en) Air filter medium and air filter including the same
JP5122048B2 (en) Low boron content micro glass fiber filtration media
KR102061092B1 (en) Manufacturing method of air filter media
JP6951482B2 (en) Filter media for air filters, their manufacturing methods, and air filters
WO2010122999A1 (en) Low-basis-weight filter media for air filters
JP6691497B2 (en) Method for manufacturing filter material for air filter and method for manufacturing air filter
JP2017177091A (en) Filter medium for air filter
JP2018038983A (en) Production method of filtering medium for air filter
JP6527800B2 (en) Filter paper for filter and manufacturing method thereof
JP3960440B2 (en) Filter paper for air cleaning filter, manufacturing method thereof, and air cleaning filter using the filter paper
JP6087207B2 (en) Filter material for air filter and method for producing the same
JP6270971B2 (en) Filter material for air filter and method for producing the same
JP3527793B2 (en) Filter media and air filters
JP5536537B2 (en) Air filter media
JP5797175B2 (en) Air filter media
JP3784595B2 (en) Antibacterial treatment method and antibacterial filter medium
JPH08196829A (en) Air cleaning filter medium and its production
WO2022239430A1 (en) Filter material for air filter and production method therefor
JPH1080612A (en) Filter material and air filter
JP4891498B2 (en) Filter material for air filter and method for producing the same
JP6964033B2 (en) Filter material for air filter
JPH05261224A (en) Filter material for air filter
JP7215871B2 (en) AIR FILTER MEDIUM AND MANUFACTURING METHOD THEREOF
JP7349414B2 (en) Filter medium for air filter and its manufacturing method
JP7453375B2 (en) Filter medium for air filter and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees