JP3959228B2 - 放射化分析方法および放射化分析装置 - Google Patents

放射化分析方法および放射化分析装置 Download PDF

Info

Publication number
JP3959228B2
JP3959228B2 JP2000295211A JP2000295211A JP3959228B2 JP 3959228 B2 JP3959228 B2 JP 3959228B2 JP 2000295211 A JP2000295211 A JP 2000295211A JP 2000295211 A JP2000295211 A JP 2000295211A JP 3959228 B2 JP3959228 B2 JP 3959228B2
Authority
JP
Japan
Prior art keywords
target
laser beam
energy
activation analysis
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000295211A
Other languages
English (en)
Other versions
JP2002107499A (ja
Inventor
孝七 根本
琢弥 名雪
祐嗣 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000295211A priority Critical patent/JP3959228B2/ja
Publication of JP2002107499A publication Critical patent/JP2002107499A/ja
Application granted granted Critical
Publication of JP3959228B2 publication Critical patent/JP3959228B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高エネルギー粒子の発生方法およびこれを利用した放射化分析方法と、高エネルギー粒子発生装置および放射化分析装置に関する。更に詳述すると、本発明は、レーザ光線を利用した高エネルギー粒子の発生方法およびこれを利用した放射化分析方法と、高エネルギー粒子発生装置および放射化分析装置に関するものである。
【0002】
【従来の技術】
物質の状態を測定する方法として、短時間パルスのイオンビームや電子ビームあるいはX線などを測定対象物に照射し、その後の測定対象物の過渡的な特性変化、例えば特定波長の光の吸収量の変化や蛍光X線などを計測することで測定対象物の分析を行う放射化分析がある。
【0003】
従来の放射化分析では、短時間パルスのイオンビーム、電子ビーム、X線等を発生させるのに加速器を使用していた。即ち、高エネルギー粒子源として、加速器が使用されていた。
【0004】
【発明が解決しようとする課題】
しかしながら、加速器の使用は設備装置類を大掛かりなものとし、しかも高価にしていた。また、その取り扱いに専門的な知識が必要であり、その取り扱いを複雑なものにしていた。
【0005】
本発明は、設備装置類の小型化、低コスト化が可能で、しかも取り扱いが簡便な高エネルギー粒子の発生方法およびこれを利用した放射化分析方法と高エネルギー粒子発生装置および放射化分析装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するために請求項1記載の放射化分析方法は、瞬間的な照射でターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線をターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させ、高エネルギー粒子を測定対象物に照射して放射化分析を行うものである。
【0007】
即ち、高エネルギーのレーザ光線をターゲットに照射すると、レーザ光線の電界等によってターゲットが電離して電子や正イオン(原子核)等が加速され、高エネルギーの粒子が発生する。レーザ光線の照射は瞬間的なものであり、正イオンが拡散し始める前に正イオンを加速する電界を十分に形成することができる。
【0008】
発生させる高エネルギー粒子の種類はターゲットの材料の選択等により決めることができる。例えば、ターゲットとしてガスなどを用いれば電子を、薄膜を用いればイオンを、厚い金属ターゲットを用いれば電磁波を、主な高エネルギー粒子として選択的に発生させることが可能である。
【0009】
そして、上述の高エネルギー粒子の発生方法によって発生させた高エネルギー粒子を測定対象物に照射して放射化分析を行うことができる。
この場合、請求項記載の放射化分析方法のように、高エネルギー粒子として、中性子、X線、電子、陽電子のいずれかを用いるようにしても良い。
【0010】
さらに、請求項3記載の放射化分析装置は、ターゲットと、瞬間的な照射でターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線をターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させるレーザ光線照射手段と、高エネルギー粒子の照射を受けた測定対象物の変化を計測する計測手段とを備えるものである。
【0011】
したがって、レーザ光線照射手段によって高エネルギーのパルスレーザ光線をターゲットに照射すると、ターゲットの照射面が電離して電子や正イオンが加速され、高エネルギー粒子が発生する。レーザ光線の照射は瞬間的なものであり、正イオンが拡散し始める前に正イオンを加速する電界を十分に形成することができる。そして、この高エネルギー粒子は測定対象物を放射化できるエネルギーを有する。放射化された測定対象物の変化を計測手段によって計測し、その結果に基づいて諸特性を分析する。例えば、レーザ光線をターゲットに照射することで高エネルギー電子を発生させ、この高エネルギーの電子ビームを測定対象物としての水に照射すると、水中に水和電子が生成される。計測手段によって水和電子が有する720nmの吸収の過渡特性を計測することで、水和電子の寿命を計測することができる。水和電子の寿命は水の純度に大きく影響されるので、計測結果に基づいて測定対象物の純度を評価することができる。
【0012】
発生させる高エネルギー粒子の種類はターゲットの材料の選択等により決めることができる。例えば、ターゲットとしてガスなどを用いれば電子を、薄膜を用いればイオンを、厚い金属ターゲットを用いれば電磁波を、主な高エネルギー粒子として選択的に発生させることが可能である。
【0013】
また、請求項記載の放射化分析装置は、ターゲットが固体である。したがって、ターゲットが気体である場合に比べて、よりパルス幅の短い高エネルギー粒子を発生させることができると共に、光学的なアライメントの調整が容易である。
【0014】
また、請求項記載の放射化分析装置は、ターゲットがガス状又はクラスター状の物体である。ガス状のターゲットに高エネルギーのレーザ光線を照射すると、プラズマ波によって荷電粒子を加速するので、より高エネルギーの荷電粒子を発生させることができ、さらには、制動放射によってより高エネルギーの電磁波を発生させることができる。一方、クラスター状のターゲットに高エネルギーのレーザ光線を照射すると、レーザ光線の吸収効率が高まり、より多くの高エネルギー粒子を発生させることができる。
【0015】
また、請求項記載の放射化分析装置は、ターゲットのレーザ照射面とは反対側へ高エネルギー粒子を射出するようにしている。
【0018】
【発明の実施の形態】
以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。
【0019】
図1に本発明を適用した高エネルギー粒子の発生方法の実施形態の一例を、図2に本発明を適用した高エネルギー粒子発生装置の実施形態の一例をそれぞれ示す。
【0020】
この高エネルギー粒子発生装置11は、ターゲット12と、瞬間的な照射でターゲット12の電離と照射領域から電子を追い出し加速することが可能なエネルギーのレーザ光線13をターゲット12に瞬間的に照射して高エネルギー粒子14を発生させるレーザ光線照射手段15を備えて構成されている。レーザ光線照射手段15によってターゲット12の電離と照射領域から電子を追い出し加速することが可能なエネルギーのレーザ光線13をターゲット12に瞬間的に照射する(ステップS1)と、高エネルギー粒子14が発生(ステップS2)する。なお、ターゲット12は真空中に配置されており、真空中で高エネルギー粒子14を発生させる。
【0021】
例えば、ピークパワーが1テラW以上のレーザ光線13を、例えばポリエチレンテレフタレートの薄膜よりなるターゲット12に集光して瞬間的に照射する。すると、レーザ光線13の非常に高い電界や光圧力、レーザパルスにより誘起されたプラズマ波により生じた進行電界などにより、極微少な照射領域から電子が追い出され加速される。レーザによる電界はターゲット12の垂直方向に急激に減衰するので、追い出された電子はターゲット12に垂直な方向に加速される。即ち、高エネルギー粒子14として、ターゲット12に対して垂直、且つレーザ照射面12aとは反対側に進む高エネルギー電子を発生させることができる。
【0022】
一方、発生した高エネルギー電子がターゲット12中で減速等されると、高エネルギー電子が進んでいた方向に向けて制動放射によるX線が発生する。即ち、高エネルギー粒子14として、ターゲット12に対して垂直、且つレーザ照射面12aとは反対側に進むX線を発生させることができる。なお、制動放射を起こさせるためにターゲット12とは別の部材を設けても良い。
【0023】
また、ターゲット12のレーザ照射領域において、電子が追い出されて電離された原子核(正イオン)は電子に比べて質量が大きいため、レーザ光線13の照射後しばらくの間はほとんど動かない。このため、極微少な照射領域が正イオンの高密度領域となり、その静電気力で正イオンは爆発的に加速され、例えば図3に示すような10メガ電子ボルトに近い高エネルギーの正イオンが発生する。つまり、レーザ光線13の照射領域は一定の面積を有しているので、正イオンの高密度領域は例えば直径数十μm、厚み10μm以下程度のシート状のものとなり、平面的な電位分布が形成される。したがって、この電界によって加速される正イオンはレーザ光線13の照射面に対して垂直で、且つレーザ照射面12aとは反対側に進む。即ち、レーザ光線13をターゲット12に照射することで、高エネルギー粒子14として、ターゲット12に対して垂直、且つレーザ照射面12aとは反対側に進む高エネルギーの正イオンを発生させることができる。
【0024】
さらに、上述のようにして発生させた正イオン,電子,X線がターゲット12中で他の原子核に核反応を起こさせたり、他の物質との間で相互作用を起こすことで、高エネルギーの中性子、電子と陽電子、同位体、γ線、α粒子等を発生させることができる。
【0025】
つまり、いろいろな種類の高エネルギー粒子源として使用することができる。
【0026】
なお、ターゲット12に照射するレーザ光線13は短パルスのもの、例えばパルス幅が1ピコ秒以下のものが好ましい。パルス幅が1ピコ秒よりも長くなると、レーザ光線13の瞬間的な照射時間が長くなることからレーザ光線13によって電離された原子核の拡散が照射終了前に始まり、電荷分離領域の形成が不十分になって原子核を十分に加速するのが困難になるからである。また、同じエネルギーでもパルス幅を短くすることでピークパワーを高くすることができてレーザ光線13による電界を大きくすることができ、より電荷分離領域の正負の差を大きくして加速に適したものにすることができるからである。ただし、パルス幅が1ピコ秒よりも長いレーザ光線13の使用も可能である。
【0027】
この高エネルギー粒子発生装置11では、ターゲット12の厚みと材料を適切に選択することで、発生した高エネルギー粒子14、特に電子のターゲット12中における損失を最小に抑えることが可能である。
【0028】
また、ターゲット12としては、ポリエチレンテレフタレートの薄膜に限るものではなく、ポリエチレンテレフタレート以外の薄膜や、薄膜以外のものでも良い。さらに、固体のターゲット12に限るものではなく、ガスジェット等の気体のターゲット12を使用しても良い。気体のターゲット12を使用する場合には、レーザ光線13の照射によってガスが発生して真空が劣化するため、ポンプ等の真空排気装置を設置する。
【0029】
なお、ターゲット12として固体のものを使用する場合には、高エネルギー粒子14の発生がレーザ光線13の照射時に限られるので、パルス幅が短いレーザ光線13を使用することで、パルス幅が短い高エネルギー粒子14のパルスビームを発生させることができる。例えば、パルス幅が10フェムト秒程度の高エネルギー粒子ビームの発生が可能である。一方、ターゲット12としてガスジェットを使用する場合には、まずプラズマを作り、それにレーザ光線13を透過させることにより、プラズマ波という電子密度の粗密波が発生し、このプラズマ波によって電子を加速する。一般に、プラズマ波の寿命はレーザ光線13のパルス幅よりも長い。したがって、これにより発生する粒子ビームの時間的な長さはレーザ光線13のパルス幅よりも長くなる。このため、ターゲット12としてガスジェットを使用する場合には、固体のターゲット12を使用する場合よりも高エネルギー粒子14のビームのパルス幅が長くなる。
【0030】
一方、ターゲット12としてガス状のものを使用する場合には、上述のようにプラズマ波によって電子を加速することになるので、より高エネルギーの電子を発生させることができる。例えば、固体のターゲット12を使用した場合に比べて約10倍位の高エネルギーに電子を加速することができる。そして、かかる高エネルギーの電子の制動放射によってより高エネルギーの電磁波を発生させることができる。
【0031】
また、ターゲット12としてクラスター状のものを使用する場合には、ターゲット12のレーザ光線の吸収効率を高めることができるため、より多くの高エネルギー粒子を発生させることができる。このため、レーザ光線照射手段15を小型化することができる。クラスター状のターゲット12を用いる場合には、ターゲット12となる気体を冷却して真空中に高速で噴射させる。この気体は断熱膨張による冷却で凝集が進み、原子や分子の集合体であるクラスターとなる。この凝集は非常に短時間で進むため、気体の噴出口の近くにレーザ光線を照射する。即ち、クラスター状のターゲット12にレーザ光線を照射することができる。
【0032】
以上のような高エネルギー粒子発生装置11を粒子源として使用し、放射化分析を行うことができる。図4に本発明に係る放射化分析方法の実施形態の一例を、図5に本発明に係る放射化分析装置の実施形態の一例をそれぞれ示す。この放射化分析装置は、高エネルギー粒子発生装置11と、高エネルギー粒子発生装置11によって発生させた高エネルギー粒子14の照射を受けた測定対象物16の変化を計測する計測手段17を備えている。なお、本実施形態では、例えば水の放射化により生成された水和電子の寿命を計測することで水の純度を評価するパルスラジオリシスを例に説明する。
【0033】
レーザ光線照射手段15は、例えば10TWの出力のハイブリッドチタン:サファイヤ/Nd:燐酸塩ガラスCPAレーザ装置である。このレーザ装置は、例えばパルス幅400フェムト秒で3ジュール程度のエネルギーを有するレーザ光線13を、例えば直径10ミクロン程度の大きさに集光してターゲット12に照射することができる。即ち、このレーザ装置では、発振器で発生させたレーザ光線13をパルス幅拡張器でパルス幅の拡張を行った後、増幅器で増幅し、さらにパルス幅圧縮機でパルス幅を圧縮することでピークパワーを増加させている。そして、この様にして発生させた超短パルスでピークパワーの大きなレーザ光線13を集光レンズによって集光し、ターゲット12に照射する。例えば、発振器で発生させたパルス時間幅が0.1ピコ秒、レーザエネルギーが1マイクロJのレーザ光線をパルス幅拡張器によってパルス時間幅が1ナノ秒、レーザエネルギーが10マイクロJのレーザ光線にした後、増幅器でパルス時間幅が1ナノ秒、レーザエネルギーが1J以下のレーザ光線にし、さらにパルス幅圧縮器によってパルス時間幅が0.4ピコ秒、レーザエネルギーが1J以下のレーザ光線に変換する。このようにパルス時間幅を圧縮することで、レーザ光線13のピーク出力を約10テラWにすることができる。
【0034】
パルス幅がピコ秒程度よりも短いレーザ光線13を物体に照射すると、高エネルギーかつ超短時間パルス(例えば数10フェムト秒程度の短パルス)の高エネルギー粒子14が発生する。
【0035】
例えば、レーザ照射時に発生する高エネルギー電子の温度(エネルギー)を求める式を数式1に示す。
【数1】
Figure 0003959228
ここで、Tehotは発生する電子の温度、mは電子の質量、cは光の速度、Iはレーザ光線13の単位面積当たりの出力である。
【0036】
これによると、例えば、プラスチック薄膜の固体のターゲット12に対してレーザ光線13をI=1019W/cmに集光して照射した場合には、波長800nmのレーザ光線13によって0.7MeVの高エネルギー電子を発生させることができる。また、レーザ光線13にプレパルスがなければ、レーザ光線13は非常に急峻な境界面を照射することになり、この時はいわゆるバーネル加熱機構により数式1で記述されるようなポンデラ・モーティブ・ポテンシャル以上のエネルギーまで電子を加速することができる。
【0037】
計測手段17は、例えば720nmの波長の光を測定対象物16である水に照射する光源18と、測定対象物16を透過した光を検出するディテクタ19を備えている。短パルスのレーザ光線13をターゲット12に照射して発生させた数10ナノ秒程度の短パルスの電子ビームを測定対象物16である水に照射すると、水中に水和電子が生成される。水和電子が生成された水に光源18から光を照射し、この水を透過した光をディテクタ19によって測定することで水和電子が有する720nmの波長の光の吸収過渡特性を利用して水和電子の寿命を測定することができる。水和電子の寿命は水の純度に大きく影響されるので、データ分析装置22はディテクタ19の測定結果に基づいて水の純度を評価する。
【0038】
なお、測定対象物16に照射する電子ビームを短パルスにすることで、水和電子の寿命に対して照射時間を十分に短くすることができ、より高精度の計測が可能になる。すなわち、電子ビームのパルス幅が長くなり水の照射時間があまり長くなると、照射開始直後に生成された水和電子が消滅してから照射終了直前に生成された水和電子が消滅するまでの時間が長くなり、水和電子の寿命の計測に対して大きく影響するようになって計測値に含まれる誤差が大きくなる。このため、高エネルギー粒子14の照射を誤差が許容できる程度の瞬間的なものにしている。本実施形態では、高エネルギー粒子14のビームとして、パルス幅が数10フェムト秒程度の瞬間的な短パルスを使用している。
【0039】
また、水和電子によって水の純度を評価するパルスラジオリシス以外の用途に適用する場合であっても、短パルスの高エネルギー粒子ビームを使用することで、時間分解能を有するようになり、このため高エネルギー粒子ビームの照射などにより発生した光やγ線の飛来時間に基づいて、空間分解能を有することが可能になる。また、短パルスの高エネルギー粒子ビームの照射後すぐに特性X線などが出てくる場合には、ゲート時間を短くすることにより、S/N比(信号対雑音比)を向上させることができる。
【0040】
本実施形態では、測定対象物16である水を、例えば石英の容器20に封入している。この容器20は、発生した高エネルギー粒子14が測定対象物16に達するまでの伝播時間が水和電子の寿命の計測に対して問題にならない程度にターゲット12に十分近づけて配置されている。すなわち、容器20をターゲット12に十分近づけて配置することで、発生した高エネルギー粒子14のエネルギーに大きなばらつきがあっても、高エネルギー粒子14の測定対象物16への到達時間のばらつきが水和電子の寿命計測時に問題となる誤差を発生させるのを防止することができる。
【0041】
また、ターゲット12のレーザ照射面12aの劣化を防止するために、ターゲット12をディスク形状に成形して回転機構で回転駆動したり、あるいはテープ状に成形して巻き取り機構で巻き取り走行させたりして、常に異なる部分にレーザ光線13が照射されるようにしている。
【0042】
なお、ターゲット12と測定対象物16の間には、レーザ光遮蔽用の薄膜21が設けられている。高エネルギー粒子14は、この薄膜21を透過することができる。薄膜21によってレーザ光線13を遮ることでこのレーザ光線13が測定対象物16に入射するのを防止し、光源18の光の吸収を計測する際のノイズの発生を防止する。
【0043】
次に、放射化分析方法について説明する。この方法は、上述の高エネルギー粒子の発生方法によって発生させた高エネルギー粒子14を測定対象物16に照射して放射化分析を行うものである。即ち、ターゲット12の電離と照射領域から電子を追い出し加速することが可能なエネルギーのレーザ光線13をターゲット12に瞬間的に照射(ステップS31)して高エネルギー粒子14を発生させ(ステップS32)、この高エネルギー粒子14を測定対象物16に照射し(ステップS33)、測定対象物16の変化を計測することで放射化分析を行う(ステップS34,S35)ものである。
【0044】
例えば、水和電子を計測するパルスラジオリシスでは、先ず、パルス幅が1ピコ秒程度以下の超短パルスのレーザ光線13をターゲット12に高強度に集光させて瞬間的に照射する(ステップS31)。
【0045】
超短パルスのレーザ光線13の照射により、高エネルギー粒子14として電子がレーザ光パルスの時間幅程度の時間的パルス幅で発生する。この高エネルギー電子はターゲット12のレーザ照射面12aにて発生するが、ターゲット12は十分薄いので、高エネルギー電子はターゲット12をあまり減衰されることなく透過する。例えば、0.1MeVの電子の透過長はアルミニュウムの場合には100μm程度である。したがって、厚さが数100μmのターゲット12であれば、数MeVの高エネルギー電子は透過することができる。
【0046】
発生した高エネルギー電子はレーザ光遮蔽用の薄膜21を通り抜け、測定対象物16の水を照射する。高エネルギー電子は石英の容器20を透過し、水を励起し、水中に水和電子を発生させる。水和電子は水分子を分極させることにより生ずるポテンシャルを発生させ、そこにトラップされた電子は常温、常圧では720nmの波長光について吸収を生ずる。光源18の光を水に対して透過させ、前述した吸収による光の減衰の時間特性を測ることにより、水和電子の寿命を計測することができる。水和電子の寿命は水の純度などに依存することが知られており、これに基づいて水の純度の評価などを行うことができる。
【0047】
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、パルスラジオリシスを例にしていたがこれに限るものではないことは勿論である。例えば、イオン誘起X線発光スペクトロメトリ、中性子ラジオリシス、X線誘起蛍光法等に適用しても良い。なお、イオン誘起X線発光スペクトロメトリに適用する場合には、例えば高エネルギー粒子14として水素などのイオンを使用し、測定手段として半導体やプラスチックシンチレータなどのX線ディテクタを使用することが好ましい。また、中性子ラジオリシスに適用する場合には、例えば高エネルギー粒子14として中性子を使用し、測定手段として半導体やプラスチックシンチレータなどのX線ディテクタを使用することが好ましい。さらに、X線誘起蛍光法等に適用する場合には、例えば高エネルギー粒子14としてX線を使用し、測定手段として半導体やプラスチックシンチレータなどのX線ディテクタを使用することが好ましい。
また、本発明をアクティベーション法による内部診断に適用しても良い。
【0048】
【発明の効果】
以上説明したように、請求項1記載の放射化分析方法では、瞬間的な照射でターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線をターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させるので、加速器等の大掛かりな装置類を使用しなくても、高エネルギー粒子を発生させることができる。このため、高エネルギー粒子源として小型化されたものを提供することができ、また低コストで、且つ取り扱い易い高エネルギー粒子源を提供することができる。
【0049】
また、上述の高エネルギー粒子の発生方法によって発生させた高エネルギー粒子を測定対象物に照射して放射化分析を行うので、加速器等の大掛かりな装置類を使用しなくても、放射化分析を行うことができる。
【0050】
この場合、請求項記載の放射化分析方法のように、高エネルギー粒子として、中性子、X線、電子、陽電子のいずれかを用いるようにしても良い。即ち、放射化分析の対象等に応じて適当な高エネルギー粒子を使用することができる。
【0051】
さらに、請求項3記載の放射化分析装置では、ターゲットと、瞬間的な照射でターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線をターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させるレーザ光線照射手段と、高エネルギー粒子の照射を受けた測定対象物の変化を計測する計測手段とを備えているので、加速器等の大掛かりな装置類を使用しなくても、高エネルギー粒子を発生させることができ、放射化分析を簡便に且つ低コストで行うことができる。このため、高エネルギー粒子源として小型化されたものを提供することができ、また低コストで、且つ取り扱い易い高エネルギー粒子源を提供することができる。また、かかる高エネルギー粒子発生装置の使用により、パルスラジオリシス等の放射化分析の普及促進を図ることができる。
【0052】
また、請求項記載の放射化分析装置では、ターゲットが固体であるので、ターゲットが気体である場合に比べて、よりパルス幅の短い高エネルギー粒子を発生させることができると共に、光学的なアライメントの調整が容易になる。
【0053】
また、請求項記載の放射化分析装置では、ターゲットがガス状又はクラスター状の物体であるので、ガス状のターゲットを使用する場合にはプラズマ波によって荷電粒子を加速するので、より高エネルギーの荷電粒子を発生させることができ、さらには、制動放射によってより高エネルギーの電磁波を発生させることができる。一方、クラスター状のターゲットを使用する場合にはレーザ光線の吸収効率が高まるので、より多くの高エネルギー粒子を発生させることができる。このため、レーザ光線照射手段を小型化することができる。
【0054】
また、請求項記載の放射化分析装置では、ターゲットのレーザ照射面とは反対側へ高エネルギー粒子を射出するようにしている。
【図面の簡単な説明】
【図1】本発明を適用した高エネルギー粒子の発生方法の実施形態の一例を示すフローチャートである。
【図2】本発明を適用した高エネルギー粒子発生装置の実施形態の一例を示す概略構成図である。
【図3】レーザ光線の強さと発生するイオンの最大エネルギーとの関係を示す図である。
【図4】本発明を適用した放射化分析方法の実施形態の一例を示すフローチャートである。
【図5】本発明を適用した放射化分析装置の実施形態の一例を示す概略構成図である。
【符号の説明】
11 高エネルギー粒子発生装置
12 ターゲット
12a レーザ照射面
13 レーザ光線
14 高エネルギー粒子
15 レーザ光線照射手段
16 測定対象物
17 計測手段

Claims (6)

  1. 瞬間的な照射でターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線を前記ターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させ、該高エネルギー粒子を測定対象物に照射して放射化分析を行うことを特徴とする放射化分析方法。
  2. 前記高エネルギー粒子として、中性子、X線、電子、陽電子のいずれかを用いることを特徴とする請求項1記載の放射化分析方法。
  3. ターゲットと、瞬間的な照射で前記ターゲット電離すると共に照射領域から電子を追い出し加速するレーザ光線であってパルス幅が0.4ピコ秒以下且つレーザエネルギーが1J以下でありピーク出力が10 19 W/cm のレーザ光線を前記ターゲットに瞬間的に照射してポンデラ・モーティブ・ポテンシャル以上のエネルギーまで加速させた高エネルギー粒子を発生させるレーザ光線照射手段と、前記高エネルギー粒子の照射を受けた測定対象物の変化を計測する計測手段とを備えることを特徴とする放射化分析装置。
  4. 前記ターゲットは固体であることを特徴とする請求項3記載の放射化分析装置。
  5. 前記ターゲットはガス状又はクラスター状の物体であることを特徴とする請求項3記載の放射化分析装置。
  6. 前記ターゲットのレーザ照射面とは反対側へ高エネルギー粒子を射出することを特徴とする請求項3から5のいずれか一つに記載の放射化分析装置。
JP2000295211A 2000-09-27 2000-09-27 放射化分析方法および放射化分析装置 Expired - Fee Related JP3959228B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295211A JP3959228B2 (ja) 2000-09-27 2000-09-27 放射化分析方法および放射化分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295211A JP3959228B2 (ja) 2000-09-27 2000-09-27 放射化分析方法および放射化分析装置

Publications (2)

Publication Number Publication Date
JP2002107499A JP2002107499A (ja) 2002-04-10
JP3959228B2 true JP3959228B2 (ja) 2007-08-15

Family

ID=18777673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295211A Expired - Fee Related JP3959228B2 (ja) 2000-09-27 2000-09-27 放射化分析方法および放射化分析装置

Country Status (1)

Country Link
JP (1) JP3959228B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879990B2 (ja) * 2002-05-17 2007-02-14 独立行政法人放射線医学総合研究所 スラッシュガスターゲットの製造方法とその装置
JP3817634B2 (ja) * 2002-07-05 2006-09-06 関西ティー・エル・オー株式会社 極短波長の光を発生させるターゲット、そのターゲットを製造する方法、そのターゲットを用いた光発生方法及びそのための装置
JP4189836B2 (ja) * 2002-10-29 2008-12-03 独立行政法人 日本原子力研究開発機構 光子誘起による陽電子消滅γ線分光及び短寿命原子核準位の測定法
JP4641139B2 (ja) * 2002-12-10 2011-03-02 財団法人電力中央研究所 高エネルギー粒子の発生方法および高エネルギー粒子発生装置
JP4116425B2 (ja) * 2002-12-27 2008-07-09 浜松ホトニクス株式会社 重陽子発生ターゲット及び重陽子発生ターゲット装置
JP4070202B2 (ja) * 2003-01-14 2008-04-02 独立行政法人 日本原子力研究開発機構 レーザー逆コンプトンガンマ線を用いた核異性体生成による高精度、高s/n、高効率での同位体分析法
JP4005551B2 (ja) * 2003-03-19 2007-11-07 日本電信電話株式会社 X線及び高エネルギー粒子発生装置とその発生方法
JP4104132B2 (ja) * 2003-04-23 2008-06-18 独立行政法人科学技術振興機構 高速粒子発生装置
JP2006084241A (ja) * 2004-09-14 2006-03-30 Japan Atom Energy Res Inst 核破砕中性子源水銀ターゲット容器の診断方法及び装置
CN101282612A (zh) * 2007-04-06 2008-10-08 北京大学 一种激光加速离子的方法
JP4996376B2 (ja) * 2007-07-09 2012-08-08 浜松ホトニクス株式会社 レーザプラズマイオン源用ターゲットおよびレーザプラズマイオン発生装置
JP4950785B2 (ja) * 2007-07-10 2012-06-13 浜松ホトニクス株式会社 X線発生装置
US9236215B2 (en) 2009-12-20 2016-01-12 HIL Applied Medical, Ltd. System for fast ions generation and a method thereof
ES2801976T3 (es) * 2008-12-18 2021-01-15 Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd Sistema para la generación de iones rápidos y procedimiento para el mismo
JP2011033468A (ja) * 2009-07-31 2011-02-17 Japan Atomic Energy Agency レーザー駆動陽子線を用いる薄層放射化装置
JP5483175B2 (ja) * 2009-11-20 2014-05-07 独立行政法人日本原子力研究開発機構 荷電粒子加速方法及び荷電粒子加速装置、粒子線照射装置、医療用粒子線照射装置
GB2544118B (en) * 2015-11-09 2020-12-09 Res & Innovation Uk Inspection of nuclear waste

Also Published As

Publication number Publication date
JP2002107499A (ja) 2002-04-10

Similar Documents

Publication Publication Date Title
JP3959228B2 (ja) 放射化分析方法および放射化分析装置
Glinec et al. High-resolution γ-ray radiography produced by a laser-plasma driven electron source
Harilal et al. Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects
Holmlid et al. Charged particle energy spectra from laser-induced processes: nuclear fusion in ultra-dense deuterium D (0)
JP4913938B2 (ja) 核反応の誘起方法および核反応誘起装置
Bolaños et al. Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers
Allison et al. The physics of charged particle identification: dE/dx, Cerenkov and transition radiation
Soures et al. Short-pulse-laser-heated plasma experiments
Toncian et al. Properties of a plasma-based laser-triggered micro-lens
Faenov et al. Generation of Quantum Beams in Large Clusters Irradiated by Super‐Intense, High–Contrast Femtosecond Laser Pulses
Motobayashi Indirect measurements of the solar-neutrino production reaction 7Be (p, γ) 8B
Orzel et al. Time-resolved studies of ultracold ionizing collisions
Mondal et al. Misjudging negative ions for electrons in intense laser plasma diagnostics
Golovin et al. Internal electron conversion of the isomeric 57Fe nucleus state with an energy of 14.4 keV excited by the radiation of the plasma of a high-power femtosecond laser pulse
Gruen et al. Laser spectroscopy of sputtered atoms
Spickermann Laser-driven ion beam characteristics and dose measurements for medical applications
Holmlid et al. Detection of spontaneous Neutral kaons K0L and K0s from ultra-dense hydrogen H (0)
Trost Time-resolved Fragmentation of Diiodomethane studied in an XUV Pump-Probe Experiment
Pikuz et al. Solid-state track detectors in laser plasma investigations
Margarone et al. Real-time diagnostics of fast light ion beams accelerated by a sub-nanosecond laser
Fei Trapping low-energy antiprotons in an ion trap
Kirillov et al. Status of laser fusion research at VNIIEF (Arzamas-16)
JP2000088809A (ja) 固体中の特定原子の検出方法及び検出装置
Dubrovsky et al. DPF device application in the material characterization
Faenov et al. Excitation of X rays by electrons accelerated in air in the wake wave of a laser pulse

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060622

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees