JP3958501B2 - Organic electroluminescence device and panel manufacturing method and manufacturing apparatus - Google Patents

Organic electroluminescence device and panel manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP3958501B2
JP3958501B2 JP2000204006A JP2000204006A JP3958501B2 JP 3958501 B2 JP3958501 B2 JP 3958501B2 JP 2000204006 A JP2000204006 A JP 2000204006A JP 2000204006 A JP2000204006 A JP 2000204006A JP 3958501 B2 JP3958501 B2 JP 3958501B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
organic
film
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000204006A
Other languages
Japanese (ja)
Other versions
JP2001085164A (en
Inventor
研二 森
嘉一 坂口
譲治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2000204006A priority Critical patent/JP3958501B2/en
Publication of JP2001085164A publication Critical patent/JP2001085164A/en
Application granted granted Critical
Publication of JP3958501B2 publication Critical patent/JP3958501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセンス素子(以下、「有機EL素子」という。)及び有機EL素子を用いた有機ELパネルの製造法に関するものである。
【0002】
【従来の技術】
エレクトロルミネッセンス素子(以下、「EL素子」という。)は、自発光型の平面型表示素子としての用途が有望視されている。EL素子の中でも有機EL素子は、無機EL素子とは異なり、交流駆動かつ高電圧が必要といった制約が無く、また、有機化合物の多様性により、多色化が比較的容易であると考えられることから、フルカラーディスプレイなどへの応用が期待され、盛んに研究開発が行なわれており、低電圧で高い輝度を有する構造が開発されている。無機EL素子は、電界励起型の発光である。一方、有機EL素子は、陽極から正孔を、陰極から電子を注入して動作する、いわゆるキャリア注入型の発光である。両電極から注入された正負のキャリアーは、各々対極に移動し、これらの再結合によって励起子が形成される。この励起子が、緩和される際に放出される光が有機EL素子における発光である。有機EL素子は、古くは高純度のアントラセン単結晶を用いての研究が盛んであったが、高電圧印加を必要とする割に輝度、発光効率共に低く安定性に欠けていた。しかし、1987年になって、イーストマン・コダック社のTangらが有機薄膜の2層積層型の構造で低電圧で高輝度な安定した発光が得られることを発表して以来、有機EL素子の研究開発は一気に活発化した。これは、電極対に狭持される有機層を、発光層と正孔輸送層との2層の積層構造としたもので、これにより10Vの印加電圧で1,000cd/m2という従来にない優れた特性を示すものであった(Tang et.al,Appl.Phys.Lett.,51(12),913(1987))。最近では、発光層、正孔輸送層だけでなく陰極と発光層の間に電子輸送層を設けたり、あるいは正孔輸送層と陽極の間に正孔注入層を設けることもある。また、各層に用いる材料の種々の検討の結果、高発光効率化、長寿命化等に関して多くの成果が挙げられ、素子をX−Y平面に配列して形成するフラットパネルディスプレイへの応用が大いに期待されており、単純マトリクス方式の256×64ドットのモノクロディスプレイが開発されている(例えば、仲田 仁ら、ディスプレイ アンド イメージング Vol.5,pp.273−277(1997) や仲田 仁、「有機EL素子の基礎から実用化技術まで」応用物理学会 有機分子・バイオエレクトロニクス分科会 第6回講習会テキスト、pp.147−154(1997)など)。
【0003】
256×64ドット単純マトリクス駆動方式の有機ELパネルは、通常、陰極を1/64デューティーで走査し、陽極を駆動する線順次駆動方式がとられる。その際に整流性が優れた有機EL素子が得られてないと、非選択の画素も発光してしまい、いわゆるクロストーク現象が見られ、表示品位を大きく低下させてしまう(例えば選択画素を中心として、隣接する画素が十文字に発光する等の現象である。詳細は、大槻 重義、「有機EL素子の基礎から実用化技術まで」応用物理学会 有機分子・バイオエレクトロニクス分科会 第6回講習会テキスト、pp.139−146(1997))。
【0004】
有機EL素子は、正負のキャリア注入型の発光素子なので、原理的には逆バイアス印加時(正孔輸送層側の電極にマイナスの、電子輸送層側の電極にプラスの電圧を印加したとき)電流は流れない。しかし、実際のデバイスでは、逆バイアス印加時に微量のリーク電流が流れることがある。その原因として、有機層および電極の構成材料自身で決定されてしまう固有の性質も影響を与えることが考えられるが、一方で有機層や金属層の膜構造の乱れなどの物理的な変化なども考えられる。しかし、はっきりしたメカニズムは現在のところ不明である。なお、固有の電極材料を陰極に用いることにより、整流性が向上することが報告されている(浅井 伸利ら、ディスプレイ アンド イメージング Vol.5,pp.279−283(1997))。しかしながら、製造プロセスの条件を検討した例は少なく、優れた整流特性を有する素子作成に必要な有効な条件は今まで見出されていない。
【0005】
以上のように、有機EL素子をX−Y平面に配列しパネルを形成し、単純マトリックス駆動をしようとする場合、素子の整流性が低いと前述のリーク電流が原因となりクロストーク現象が発生し表示品位が大きく損なわれてしまう。
【0006】
【発明が解決しようとする課題】
本発明は、上述の問題点に鑑みなされたものであり、従来の有機EL素子の特性を維持しつつ、高い整流比を示す素子及び、該素子を利用した有機ELパネルの製造方法を提供することが目的である。
【0007】
【課題を解決するための手段】
本発明者らは、この課題を解決すべく実験および研究を重ねた結果、有機膜および電極の成膜の際、支持基板の成膜側表面の温度変化の速度および温度を特定の範囲内に保つことが、前記課題を解決することを見出し本発明に至った。
本発明は、基板上に、
A)第一の電極を成膜する工程と、
B)該第一の電極上に発光層を含む一層以上の有機化合物薄膜層を積層する工程と、
C)該有機化合物薄膜層上に第二の電極を積層する工程と、
を少なくとも有する有機エレクトロルミネッセンス素子の製造方法において、
工程B及びCと、工程BとCとの間と、工程C終了後、基板の成膜側表面の温度が室温となるまでの間と、における該基板の成膜側表面の温度が70℃以下であり、かつ、
温度変化速度の絶対値が1.5℃/sec以内である有機エレクトロルミネッセンス素子の製造方法を提供する。
【0008】
有機EL素子を形成するための基板は、表面が充分に平坦であり、製造プロセス中の種々のストレスに耐えることができ、かつ、素子からの光の取り出しロスが少ない種々の材料から選択可能であるが、特にガラスが好適に用いられる。
【0009】
基板の成膜側表面の温度変化の速度は絶対値で1.5℃/sec以内であれば、本発明の効果が得られるが、より好ましくは温度変化の絶対値が0.75℃/sec以内であり、最も好ましくは支持基板を一定温度とすることである。
【0010】
基板の成膜側表面の最高温度は、80℃以下であれば本発明の効果が確認できるが、本発明の効果が明確となるのは70℃以下であり、最も望ましくは50℃以下である。
【0011】
また、基板の最低温度は実用的には室温程度での実施が一般的である。
【0012】
なお、基板の成膜面側の温度(以下、「基板温度」という。)とは、支持基板の各種の膜が成膜される側の表面若しくは、第一の電極が既に基板上に成膜されている場合は第一の電極の表面、に温度センサーを設置して測定したものとする。以下、支持基板を単に「基板」とする。
【0013】
また、発光層を含む有機化合物薄膜層が、正孔輸送層、電子輸送層等を有する2層以上の積層構造である場合、工程Bは、各々の有機化合物薄膜の成膜を実施する工程のみでなく、各成膜工程の間で基板が成膜装置内部に放置されている期間をも含むこととする。
【0014】
また、本発明で、基板の成膜面側の温度及び、温度変化速度の制御を行なう期間は、少なくとも、蒸着装置のメインシャッターを開放し有機化合物薄膜の成膜を開始した時点から、第二の電極の成膜終了後、室温まで冷却が完了し基板を成膜装置から取り出すことが可能となるまでの全期間であることが望ましい。
【0015】
ここで、基板の温度制御を始める点を蒸着装置のメインシャッターを開放した時点からとしたが、実用上は、これに先立つ蒸発源の加熱の時から温度制御を行なってもよい。
【0016】
本発明で提案した製造方法により有機EL素子を作製することで、逆バイアス電圧が印加された際のリーク電流が小さい有機EL素子を製造することが可能となった。
【0017】
本発明により素子の整流性が向上した理由は推測であるが、各層を構成する材料の熱的性質の違いから生じる熱応力によってもたらされたヘテロ界面の乱れが、基板温度の変化を緩やかにすることで緩和されたために、有機EL素子のリーク電流が減少したものと思われる。
【0018】
また、本発明では、前記工程B及びCを真空蒸着法で行うことが望ましい。
真空蒸着法とは、真空下で蒸発源を加熱することで材料を気化、或いはクラスター化し、基板上に堆積させる手法である。加熱法としては、電子ビームを照射して材料を直接加熱する電子ビーム加熱法、抵抗加熱法等がある。
【0019】
また、本発明では、真空蒸着装置を構成する部材として、
1)基板を支持するための滑らかな平面を有する基板支持具と、
2)基板の成膜側表面の温度を制御するために少なくとも
2-1)温度センサー、2-2)演算ユニット、2-3)熱放出・吸収体
より構成される基板温度制御装置と、
を少なくとも有する真空蒸着装置を提供する。温度センサーで検出された基板温度の変化は演算ユニットで評価され、基板に生じた温度変化を打ち消し、設定された基板の温度及び、温度変化速度となるように熱吸収・加熱体に信号が出される。
【0020】
この基板温度制御装置により、成膜中に発生する基板温度の変化を緩やかとすることが可能となった。また、成膜中の基板温度を70℃以下に抑えることが可能となり、良好な有機EL素子を得ることが可能となった。
【0021】
また、前記熱吸収体・放出体と基板支持具とが一体化されていることが望ましい。
【0022】
また、前記真空蒸着装置に設置される基板温度制御装置は、基板の成膜側表面の温度を70℃以下の温度に、かつ、基板の成膜側表面の温度の変化速度の絶対値を1.5℃/sec以内に、制御可能であることが望ましい。
【0023】
ここで、前記基板支持具の前記滑らかな平面の表面粗さがJIS B0601-1994よる算術平均粗さ(Ra)が200nm以下であり、かつ、最大高さ(Ry)が800nm以下であることが望ましい。基板支持具の表面粗さがこれより小さい場合には、基板と支持具との接触面積が大きくなり、基板と基板支持具と一体化した熱放出・吸収体による基板の温度制御性がより向上する。
【0024】
さらに、基板支持具の滑らかな平面と支持すべき基板の間を軟らかな金属により隙間なく充填してもよい。金属を基板と基板支持具との間の間隙に埋め込むことにより、基板の温度制御性が一層向上する。
【0025】
ここで、軟らかな金属としては、インジウム、アルミニウム等が挙げられる。市販のインジウムシート等がこの目的に好適に用いられる。
【0026】
本発明の真空蒸着装置は前記工程B及び工程Cに好適に用いられる。
【0027】
また、本発明では、さらに、本発明の有機エレクトロルミネッセンス素子の製造方法を用いて製造された有機エレクトロルミネッセンス素子を提供する。
【0028】
また、本発明は、この有機エレクトロルミネッセンス素子をマトリックス上に複数個配置した有機エレクトロルミネッセンスパネルに好適に用いられる。本発明で提供する逆バイアス電圧印加時のリーク電流が少ない有機EL素子によりディスプレイパネルを作製することで、クロストークが抑えられた表示品質の良いディスプレイパネルを得ることができる。
【0029】
【発明の実施の形態】
図1は、一般的な有機EL素子の構造の一例を模式的に表した図である。
支持基板11上には透明電極12が形成され、透明電極上に正孔輸送層13、発光層14、電子輸送層15が、電子輸送層上に陰極16が存在している。
【0030】
本発明の実施に当たって、構造上の限定事項等は無いので、これまでの研究開発成果を適用できる。すなわち、支持基板、陽極、各種有機材料、陰極などは、各種公知のものを使用できる。図1は、3層の有機層(13,14,15)から成る有機EL素子の模式図であるが、一方若しくは両方のキャリア輸送層と発光層を兼ねた構成とすること、あるいは3層以上とすることも可能である。また、各層とも、2種類以上の材料を混ぜ合わせて構成してもよい。なお、支持基板は陰極側としてもよいし、光の取り出し方向もいずれでもよい。素子の製造順序は、図1に示した素子では、支持基板上に、陽極、正孔輸送層、発光層、電子輸送層、陰極の順に積層していく方法が比較的簡便であるが、特に限定されるものではない。陰極側に支持基板を設ける場合は、陰極、電子輸送層、発光層、正孔輸送層、陽極の順に構成してゆく方法が簡便であるが、この場合も特に限定されるものではない。
【0031】
図2は、本発明の基板温度制御装置付きの真空蒸着装置の真空槽の実施の一例を示したものである。図2において、成膜が行われる基板24は熱放出・吸収体と一体となった基板支持具に固定されている。基板24の表面には基板温度を測定するための熱伝対23が設置されている。ただし、基板24表面に既に第一の電極が成膜されている時は熱伝対23はこの第一の電極上に設置される。
【0032】
基板温度の制御は、熱伝対23により評価された基板温度及びその変化速度を演算ユニット21で評価し、基板に生じた温度変化を打ち消し、設定された範囲(基板温度変化速度の絶対値が1.5℃/sec、かつ、基板温度が70℃以下)になるような信号を基板支持具と一体化した熱放出・吸収体22(以下「基板支持具付き熱放出・吸収体」という。)に送り、基板支持具付き熱放出・吸収体22がこの信号に応じて、基板と熱の授受を行なう事でなされる。
【0033】
また、成膜材料は蒸着源27に設置され、抵抗加熱方式又は、電子ビーム方式により加熱される。成膜は、蒸発源シャッター26とメインシャッター25を開放することで開始され、メインシャッター25を閉鎖することで終了する。
【0034】
これらのうち、本発明に関わる基板支持具付き熱放出・吸収体22、熱伝対23は、真空雰囲気下にされられるので、他の部品と同様、真空系に悪影響を及ぼさないような材質、構成とすべきである。熱伝対23は基板表面の温度をモニターするためのもので、図2では一つであるが、複数あってもよい。成膜させる基板サイズが大きかったり、材料蒸発源がいくつかある場合などは、数個設置したほうが望ましい。ただし、この場合、いずれの熱伝対も基板に向かって飛来する蒸気流を妨げないような配置及び大きさとするべきである。基板支持具付き熱放出・吸収体22は、基板と熱の授受を行い基板の温度変化を相殺する方向に作用する。
【0035】
本発明に於ける熱放出・吸収体は、基板と接する面(基板支持具付き熱放出・吸収体22における基板24と接する面)の表面粗さをJIS B0601−1994で規定される定義に基づいた値で、算術平均粗さ(Ra)を200nm以下、最大高さ(Ry)を800nm以下とすることが好ましい。このように表面を滑らかにすることにより、基板と基板支持具付き熱放出・吸収体22との間に高い密着性が生まれ、高真空雰囲気下でも素早い熱伝導が可能となる。
【0036】
なお、基板側(基板裏面)においても熱放出・吸収体22と接する面の表面粗さが、基板支持具付き熱放出・吸収体22表面と同レベル、若しくはそれよりも小さくないと、前記の良好な熱伝導は得られないことに注意が必要である。両表面の密着性が不十分な場合、熱の伝導が円滑に行われず、基板温度の制御性が低下する(例えば、温度制御のタイムラグ等)。
【0037】
インジウム等の熱伝導性がよく、比較的軟らかい金属シート等を両表面間に挟み圧着させることにより密着性を高めると、基板24と基板支持具付き熱放出・吸収体22との熱移動はよりスムーズとなる。この金属シートは、前述した密着性の悪い場合のみでなく、密着性の良い場合に用いても温度の制御性をより一層向上することが可能となる。
【0038】
演算ユニット21は、熱伝対の温度変化を計算し、それを相殺するように基板支持具付き熱放出・吸収体22に信号を発信する。信号を受け取った、基板支持具付き熱放出・吸収体22は、信号のレベルにあわせ基板接触面の温度を変化させる。
このような制御法により、成膜プロセスの間、基板の温度変化の速度の絶対値を1.5℃/sec以内、より好ましくは0.75℃/sec以内であり、最も好ましくは一定温度に、並びに、基板温度を70℃以下に、調整することが可能となる。なお、熱放出・吸収体22は、本体内部に加熱器・冷却器を有する構造でも良いし、不活性液体等を内部に循環させる構造でも良い。
【0039】
その他、図2には記載していないが、真空蒸着装置の真空槽内には、蒸発レートをモニターするため装置、膜のパターニング用のマスク等必要な部品が必要数装着される。
【0040】
また、蒸発源は、図2では3つ記したが、蒸着すべき膜の数に応じて、これ以上とすることも可能である。
【0041】
一般に、真空蒸着法で成膜を行う際の基板の温度は、蒸発源加熱開始と共に緩やかに上昇する。そしてメインシャッター開放と同時により急激に上昇し、温度上昇はメインシャッターを閉じるまで継続する。蒸発源加熱開始から成膜終了までの温度上昇を緩やかとし、かつ基板温度を70℃以下とすることが本発明の第一の重要部分である。温度上昇の速さは、1.5℃/sec以内が好ましい。さらに言えば、0.75℃/sec以内がより好ましいが、最も好ましくは、メインシャッターを開放しても基板温度が一定温度で保たれることである。
【0042】
成膜が終了し、メインシャッターを閉じ蒸発源加熱を停止すると、熱の供給が絶たれるため基板温度は急激に低下する。この温度低下を緩やかとすることが、本発明の第二の重要部分である。基板の温度下降の速さは1.5℃/sec以上、より好ましくは0.75℃/sec以上とすること好ましい。
【0043】
なお、このような基板の昇温・降温現象は、特に高沸点材料を蒸着させる場合に見られ、一般的な有機EL素子作成プロセスでは、電極に用いる金属材料の成膜の際に特に問題となる。各種の有機化合物薄膜の成膜の際も材料の物性、蒸着レートの安定性、膜厚等により基板温度の変化速度が大きくなる場合もある。したがって実用上、リーク電流の少ない有機EL素子を得るには真空蒸着装置内で連続して行われる全ての層の成膜工程とその前後工程(基板上に最初の膜を成膜する場合の前工程を除く。)にわたって、基板温度制御装置を作動させる方が好ましい。
【0044】
なお、多層の積層膜を作成する際は、前述の範囲内の温度変化速度および温度を保ち得れば、そのつど蒸発源の温度を加熱前の温度に戻るまで待つ必要はない。
【0045】
なお、蒸発源は熱の発生源でもあるので、蒸発源と基板との距離が十分に長い場合、昇温速度が抑えられ、膜厚、蒸着速度、蒸発源の形状によっては、特に基板温度制御を施さなくても、本発明記載の温度、温度変化速度範囲内に収まることも考えられる。しかし、蒸発源と基板との距離を取り過ぎると蒸着材料の多くが、真空槽内の基板以外の各部分に付着してしまい、材料の利用効率が低下する問題がある。この点に関しても、本発明による基板温度制御装置を動作させることにより、基板温度の上昇を抑えることができるので、基板と蒸発源の距離を短くすることができ、材料の有効利用が可能となる。このことも本発明の重要事項として挙げられる。
【0046】
【実施例】
以下、本発明の実施例を説明するが、本発明の要旨を逸脱しない限り、本発明は以下の実施例に限定されるものではない。
<実施例1>
=工程A(第一の電極の成膜)=
厚さ0.7mmのガラス基板上にITO(インジウム錫酸化物)をスパッタリングによってシート抵抗15Ω/□になるように成膜し、不要な部分をエッチングにより除去し、パターニングしてITO陽極(第一の電極)付き支持基板とした(以下、この項においては単に「基板」という)。この基板を、中性洗剤、イソプロピルアルコール中で順次超音波洗浄し、充分に乾燥させた後に、110℃に加熱しながら、UV−オゾン洗浄を5分間行なった。
=工程B(有機化合物薄膜層の積層)=
この基板の第一の電極が存在しない側を、基板温度制御機構付き抵抗加熱式真空蒸着装置の真空槽内の基板支持具と一体となった熱放出・吸収体に密着して固定した。この際、基板と基板支持具との密着性を高めるために、インジウムシートで両者を圧着した。
【0047】
なお、本実施例で用いた真空蒸着装置は5つの蒸発源を持ち、蒸発源から基板表面までの距離が約30cmである。
【0048】
また、熱放出体・吸収体は、ステンレス製であり、温度調節は、フッ素系不活性液体を内部に循環させて、この液体を介して間接的に行う方式とした。熱放出・吸収体の基板と接する面の表面粗さは、算術平均粗さ(Ra)を200nm以下、最大高さ(Ry)を800nm以下とした。
【0049】
熱放出・吸収体に基板を固定すると共に、成膜される全ての膜の原料物質を蒸発源に取り付ける。すなわち、
▲1▼正孔輸送材料であるN,N’−ジフェニル− N,N’−ビス(α−ナフチル)−1,1’―ビフェニル−4,4’−ジアミン(以下、α−NPDと略記する。)を200mgをモリブデンボートに入れ、蒸発源にセットした。
なお、α−NPDの構造を以下に示す。
【0050】
【化1】

Figure 0003958501
▲2▼電子輸送材料を兼ねた緑色発光材料であるトリス(8−ヒドロキシキノリノール)アルミニウム(以下、Alqと略記する。)を200mgモリブデンボートに入れ、蒸発源にセットした。
なお、Alqの構造を以下に示す。
【0051】
【化2】
Figure 0003958501
▲3▼陰極材料である、アルミニウムを2g、リチウムを0.5gそれぞれタングステンボートに入れ蒸発源にセットした。リチウムのセットは、表面の酸化を抑えるために素早く行い、セット後ただちに真空引きをした。
【0052】
その後、真空槽内を10-5Pa台まで減圧し、基板温度制御装置を作動させ、基板温度の調整を開始した。α−NPD入りのモリブデンボートをゆっくり加熱し、約0.1nm/secの蒸着レートで安定したところで、メインシャッターを開放し、成膜を開始した。膜厚が50nmとなったところで、メインシャッターを閉じ正孔輸送層の形成を終了した。同様にして、Alqを蒸着レート約0.1nm/secで蒸着し、膜厚70nmの電子輸送層を兼ねた発光層を形成した。これら、一連の有機層の蒸着時には、同じマスクを介して行い、有機膜のパターンを形成した。
=工程C(第二の電極の成膜)=
工程Bに続いて陰極用の別のマスクをセットした。なお、陰極用のマスクと有機化合物薄膜用のマスクはあらかじめ真空槽内にセットしておき、真空槽外部からの操作によりいずれかを選択できるような機構を有する真空蒸着装置を用いた。陰極用マスクをセットした後、リチウム入りタングステンボートおよびアルミニウム入りタングステンボートを加熱しアルミニウムに対するリチウムの重量比率が約0.1%となるように各々の蒸着レートを制御した後、メインシャッターを開放した。この場合の陰極の成膜速度は2nm/secである。陰極の膜厚が250nmとなったところでメインシャッターを閉じ、蒸発源の加熱を停止した。
【0053】
なお、本実施例において陰極は、リチウムとアルミニウムの混合物としたが、リチウムは電子注入効率を上げるために混合されるのであり、有機層と電極の界面から数十nmまでに存在すれば良い。そこで、リチウムとアルミニウム混合物電極の成膜がある程度進み、上述の数十nmのリチウム含有アルミニウム層が形成されたならば、リチウムの蒸着を停止して、その後は、アルミニウムのみで電極を形成しても構わない。
【0054】
全ての膜の成膜が終了後、基板温度の変化速度の絶対値が1.5℃/sec以内となるように、基板温度制御装置を作動させたまま、室温まで冷却し、続いて、ゆっくりと乾燥窒素を真空槽に導入した。
真空槽内の圧力が大気圧となったところで、素早く取り出し、乾燥窒素存在下でキャップと接着剤により封止した。
【0055】
基板温度制御装置は、真空槽を開放し、完成した素子を取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。なお、1枚の基板につき、2mm×2mmの発光部を4箇所設け、同一基板に4つの同構造の画素を作成した。
<比較例1>
一連の成膜工程(α−NPDの蒸発源加熱〜成膜〜加熱終了〜放置〜Alqの蒸発源加熱〜成膜〜加熱終了〜放置〜陰極材料蒸発源加熱〜成膜〜加熱終了〜放置〜取り出し)の間、基板温度制御装置を作動させなかったこと以外は、実施例1と同様の手順で、同じ構造の有機EL素子を作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に金属材料である陰極の蒸着時に顕著に見られ、この時の温度上昇時の温度変化速度は、最も速い時で2.1℃/secであった。また、陰極成膜終了後の温度の低下速度も、最も速い時で1.8℃/secであった。また、基板温度も70℃を超えて約80℃を示していた。
【0056】
有機膜の成膜時も、有機材料中最も高い気化温度を有するAlqの成膜時に温度変化の速さが1.5℃/secを上回っていた。
<実施例2>
=工程A(第一の電極の成膜)=
実施例1と同様にしてITO陽極(第一の電極)を基板上に成膜し、洗浄処理を施し工程Aを終了した。
=工程B(有機化合物薄膜層の積層)=
本工程及び工程Cでは実施例1と同じ真空蒸着装置を用いている。また、実施例1と同様に、基板を熱放出・吸収体と一体化した基板支持具に固定するとともに、以下に示す必要な成膜用の原料物質をボートに入れ蒸発源に取り付けた。
用いたボートは実施例1と同様に、有機材料についてはモリブデン製であり、陰極材料についてはタングステン製である。
▲1▼正孔輸送材料であるα−NPD(図3)を200mg
▲2▼青色発光材料である4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(以下、DPVBiと略記する。)を200mg
なお、DPVBiの構造を以下に示す。
【0057】
【化3】
Figure 0003958501
▲3▼電子輸送材料であるAlqを200mg
▲4▼陰極材料であるAlを2g、
▲5▼陰極材料であるLiを0.5g
なお、リチウム取り付け時の注意も実施例と1同様である。
【0058】
その後、実施例1と同様に真空引きを行ない、10-5Pa台となった時点で、基板温度制御装置による基板温度の調整を開始した。
【0059】
その後、α−NPD入りのモリブデンボートをゆっくり加熱し、約0.1nm/secの蒸着レートで安定したところで、メインシャッターを開放し、成膜を開始した。膜厚が50nmとなったところで、メインシャッターを閉じ正孔輸送層の成膜を終了した。同様にして、DPVBiを蒸着レート約0.1nm/secで蒸着し、膜厚50nmの発光層を形成した。さらに、同様にして、Alqを蒸着レート約0.1nm/secで蒸着し膜厚40nmの電子輸送層を形成した。これら、一連の有機層の蒸着時には、実施例1と同じ形状のマスクを介して行い、有機膜のパターンを形成した。
=工程C(第二の電極の成膜)=
続いて陰極用の別のマスクをセットし、実施例1と同様に陰極の形成を行ない、終了後、規定の基板温度変化速度で室温まで冷却した後、実施例1と同様にして、封止して素子を得た。
【0060】
基板温度制御装置は、真空槽を開放し、完成した素子を取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。なお、1枚の基板につき、2mm×2mmの発光部を4箇所設け、同一基板に4つの同構造の画素を作成した。
<比較例2>
一連の成膜工程(α−NPDの蒸発源加熱〜成膜〜加熱終了〜放置〜DPVBiの蒸発源加熱〜成膜〜加熱終了〜放置〜Alqの蒸発源加熱〜成膜〜加熱終了〜放置〜陰極材料蒸発源加熱〜成膜〜加熱終了〜放置〜取り出し)の間、基板温度制御装置を作動させなかったこと以外は、実施例2と同様の手順で、同じ構造の有機EL素子を作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に金属材料である陰極の蒸着時に顕著に見られ、この時の温度上昇時の温度変化速度は、最も速い場合で2.2℃/secであった。また、陰極成膜終了後の温度の低下速度も、最も速い場合で1.8℃/secであった。また、基板温度も70℃を超えて約80℃を示していた。
【0061】
有機膜の成膜時も、有機材料中最も高い気化温度を有するAlqの成膜時に温度変化の速さが1.5℃/secを上回っていた。
<実施例3>
=工程A(第一の電極の成膜)=
実施例1と同様にしてITO陽極(第一の電極)を基板上に成膜し、洗浄処理を施し工程Aを終了した。
=工程B(有機化合物薄膜層の積層)=
本工程及び工程Cでは実施例1と同じ真空蒸着装置を用いている。また、実施例1と同様に、基板を熱放出・吸収体と一体化した基板支持具に固定するとともに、以下に示す必要な成膜用の原料物質をボートに入れ蒸発源に取り付けた。
用いたボートは実施例1と同様に、有機材料についてはモリブデン製であり、陰極材料についてはタングステン製である。
▲1▼正孔輸送材料であるα−NPD(図3)を200mg
▲2▼赤色発光材料である4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(以下、DCMと略記する。)を100mg
なお、DCMの構造を以下に示す。
【0062】
【化4】
Figure 0003958501
▲3▼Alqを200mg
▲4▼陰極材料であるAlを2g、
▲5▼陰極材料であるLiを0.5g
なお、リチウム取り付け時の注意も実施例と1同様である。
【0063】
その後、実施例1と同様に真空引きを行ない、10-5Pa台となった時点で、基板温度制御装置による基板温度の調整を開始した。
【0064】
その後、α−NPD入りのモリブデンボートをゆっくり加熱し、約0.1nm/secの蒸着レートで安定したところで、メインシャッターを開放し、成膜を開始した。膜厚が50nmとなったところで、メインシャッターを閉じ正孔輸送層の成膜を終了した。続いて、Alq入りモリブデンボートとDCM入りモリブデンボートを加熱しAlqに対するDCMの重量比率が1%となるように各々の蒸着レートを制御した後、メインシャッターを解放した。AlqとDCMの混合膜の膜厚が50nmとなったところで、DCM入りボートの加熱源のシャッターのみを閉じ加熱を止めた。発光層におけるAlqは、発光材料DCMをドープするためのホスト材料としての機能を持つ。
さらに、電子輸送層を成膜するためにAlqのみさらに35nm成膜を続けた。こうして、発光層(AlqとDCMの混合層)と電子輸送層(Alqのみから成る層)を形成した。これら、一連の有機層の蒸着時には、実施例1と同じ形状のマスクを介して行い、有機膜のパターンを形成した。
=工程C(第二の電極の成膜)=
続いて陰極用の別のマスクをセットし、実施例1と同様に陰極の形成を行ない、終了後、規定の基板温度変化速度で室温まで冷却した後、実施例1と同様にして、封止して素子を得た。
【0065】
基板温度制御装置は、真空槽を開放し、完成した素子を取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。なお、1枚の基板につき、2mm×2mmの発光部を4箇所設け、同一基板に4つの同構造の画素を作成した。
<比較例3>
一連の成膜工程(α−NPDの蒸発源加熱〜成膜〜加熱終了〜放置〜AlqとDCMの蒸発源加熱〜成膜〜DCM蒸発源の加熱終了、Alqの蒸発源加熱続行〜Alqの加熱終了〜放置〜陰極材料蒸発源加熱〜成膜〜加熱終了〜放置〜取り出し)の間、基板温度制御装置を作動させなかったこと以外は、実施例3と同様の手順で、同じ構造の有機EL素子を作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に金属材料である陰極の蒸着時に顕著に見られ、この時の温度上昇時の温度変化速度は、最も速い場合で2.1℃/secであった。また、陰極成膜終了後の温度の低下速度も、最も速い場合で1.8℃/secであった。また、基板温度も70℃を超えて約80℃を示していた。
【0066】
有機膜の成膜時も、有機材料中最も高い気化温度を有するAlqの成膜時に温度変化の速さが1.5℃/secを上回っていた。
<実施例4>
実施例1で作成した有機EL素子と同じ材料で、同じ膜厚構成の、256(陽極本数)×64(陰極本数)ドット緑色発光有機ELパネルを作成した。各画素の形状は、縦横いずれも0.33mmピッチ/スペース0.04mmとした。ガラス基板、陽極パターン、有機膜用マスク、陰極用マスク、封止キャップの形状がそれぞれ異なる以外は、同じ材料を用いて、同じ膜厚とし、実施例1と同様、温度制御装置を作動させ周辺からの熱の授受に伴う温度変化に対し、その変化速度の絶対値を0.75℃/sec以内に制御した上で成膜した。成膜終了後も、温度制御装置を作動させた状態でしばらく放置し、基板温度が室温に戻ったところで、ゆっくりと乾燥窒素を真空槽に導入した。真空槽内の圧力が大気圧となったところで、素早く取り出し、乾燥窒素存在下でキャップと接着剤により封止した。基板温度制御装置は、真空槽を開放し、完成したパネルを取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。
<比較例4>
温度制御装置を作動させなかった以外は、実施例4と同様の手法、材料を用いて、同構造の有機ELパネルを作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に陰極蒸着時に顕著に見られ、温度上昇時の温度変化速度は、速い時は、2℃/secを上回った。また、成膜終了後の温度の低下速度は1.5℃/secを上回っていた。有機膜の成膜時も材料によっては、温度変化の速さが、速い時は、1.5℃/secを上回っていた。基板温度は、陰極成膜時に70℃を超えていた。
<実施例5>
実施例4で用いたものと同様の陽極パターン付ガラス基板、有機膜用マスク、陰極用マスク、封止キャップを用いて、実施例2と同じ膜構造の青色発光有機ELパネルを作成した。実施例2と同様、温度制御装置を作動させ、周辺からの熱の授受に伴う温度変化に対し、その変化速度の絶対値を0.75℃/sec以内に制御した上で成膜した。成膜終了後も、温度制御装置を作動させた状態でしばらく放置し、基板温度が室温に戻ったところで、ゆっくりと乾燥窒素を真空槽に導入した。真空槽内の圧力が大気圧となったところで、素早く取り出し、乾燥窒素存在下でキャップと接着剤により封止した。基板温度制御装置は、真空槽を開放し、完成したパネルを取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。
<比較例5>
温度制御装置を作動させなかった以外は、実施例5と同様の手法、材料を用いて、同構造の有機ELパネルを作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に陰極蒸着時に顕著に見られ、温度上昇時の温度変化速度は、速い時は2℃/secを上回った。また、成膜終了後の温度の低下速度は1.5℃/secを上回っていた。有機膜の成膜時も材料によっては、温度変化の速さが速い時は1.5℃/secを上回っていた。基板温度は、陰極成膜時に70℃を超えていた。
<実施例6>
実施例4で用いたものと同様の陽極パターン付ガラス基板、有機膜用マスク、陰極用マスク、封止キャップを用いて、実施例3と同じ膜構造の赤色発光有機ELパネルを作成した。実施例3と同様、温度制御装置を作動させ、周辺からの熱の授受に伴う温度変化に対し、その変化速度の絶対値を0.75℃/sec以内に制御した上で成膜した。成膜終了後も、温度制御装置を作動させた状態でしばらく放置し、基板温度が室温に戻ったところで、ゆっくりと乾燥窒素を真空槽に導入した。真空槽内の圧力が大気圧となったところで、素早く取り出し、乾燥窒素存在下でキャップと接着剤により封止した。基板温度制御装置は、真空槽を開放し、完成したパネルを取り出すまで動作させておいた。また、途中の基板表面の温度は最高でも60℃前後で、70℃を上回ることはなかった。
<比較例6>
温度制御装置を作動させなかった以外は、実施例6と同様の手法、材料を用いて、同構造の有機ELパネルを作成した。なお、基板温度制御装置を動作させなかった為、基板温度は、蒸発源加熱開始と共に徐々に上昇し、メインシャッター解放時にさらに急激に上昇し、メインシャッターを閉じるまで温度は上昇し続けた。また、メインシャッターを閉じ蒸発源加熱を止めると同時に急激に低下した。これらの傾向は、特に陰極蒸着時に顕著に見られ、温度上昇時の温度変化速度は、速い時は2℃/secを上回った。また、成膜終了後の温度の低下速度は1.5℃/secを上回っていた。有機膜の成膜時も材料によっては、温度変化の速さが、速い時は1.5℃/secを上回っていた。基板温度は、陰極成膜時に70℃を超えていた。
<比較例と実施例の比較>
以上の手順で作製した各有機EL素子(実施例1〜3,比較例1〜3)の印加電圧−電流特性を、−15〜+15Vにわたり測定した。測定は、
▲1▼0Vから+15Vまで印加電圧を上昇する順方向と、
▲2▼0Vから−15Vまで印加電圧を減少する逆方向と、
の2方向に分けて行なった。
素子の電圧−電流特性の再現性を調査するために、測定は素子毎に3回繰り返した。
【0067】
図3に、実施例1と比較例1の場合の測定データを例示した。図3の横軸は印加電圧である。縦軸は、電流値の絶対値を対数軸上に示したものである。図3から明らかなように、順方向の特性には実施例1と比較例1で大きな差異は見られなかった。実施例1、比較例1のどちらもが、電圧10Vで約10-3Aの電流となる。
【0068】
それに対し、逆方向リーク電流では大きな差異が見られた。実施例1では、電圧を減少させても、電流はほぼ10-10Aで一定であるのに対し、比較例1では、電圧の絶対値が大きくなればなるほどリーク電流が増加した。−15Vで比較した場合、比較例1は実施例1に比べ2〜4桁大きなリーク電流が流れていた。
【0069】
また、実施例1では、順方向、逆方向ともに再現性のよいデータが得られたのに対し、比較例1では、同一基板内に作製された画素間においても、逆方向電圧印加時に流れるリーク電流にバラツキが見られた。なお、この傾向は比較例2,比較例3においても認められた。実施例2、実施例3は、実施例1と同様に、再現性が高く、バラツキの少ないデータが得られた。得られた結果を基に以下の式で表される整流比を算出し、表1に
結果を示した。
【0070】
整流比=|+15V印加時の電流量|/|−15V印加時の電流量|
【0071】
【表1】
Figure 0003958501
この表から明らかなように、本発明により、逆方向のリーク電流が低減され、整流性特性の優れた有機EL素子が作成できることが分かる。
【0072】
また、以上の手順で作成した256×64ドット有機ELパネル(実施例4〜6,比較例4〜6)を駆動回路に接続した。ロウ側(陰極側)を1/64デューティーで順次グランドにスイッチする一方で、カラム側(陽極)から定電流データ信号を送る方式で駆動し、文字、キャラクター及び模様等を表示させ、目視観察でクロストークの有無を観測した。
【0073】
表2に、クロストークの有無を示した。これらから明らかなように、本発明により、整流特性の優れた画素をパネル内に形成することが可能となり、表示品位の優れた単純マトリックス駆動方式の有機EL素子パネルが作成できた。
【0074】
【表2】
Figure 0003958501
【0075】
【発明の効果】
本発明によれば、薄膜形成およびその前後のプロセスの間、基板温度の変化速度の絶対値を1.5℃/sec以内、かつ基板温度を70℃以下とすることにより、優れた整流特性を有する有機EL素子を作成できる。また、本発明の手法により単純マトリックス駆動有機ELパネルを作成することで、クロストークが無く表示品位の高い表示パネルを作成でき、ディスプレイデバイスとしての性能向上に著しい効果をもたらす。
【図面の簡単な説明】
【図1】一般的な有機EL素子の模式図である。
【図2】本発明による基板温度制御を可能にした真空蒸着装置の真空槽の構造をあらわす模式図である。
【図3】実施例1,および比較例1で作成した有機EL素子の電流−電圧特性である。縦軸は、マイナスの方向に流れる電流を対数表示するために絶対値で表記している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescence element (hereinafter referred to as “organic EL element”) used for a planar light source and a display element, and a method for producing an organic EL panel using the organic EL element.
[0002]
[Prior art]
An electroluminescence element (hereinafter referred to as an “EL element”) is expected to be used as a self-luminous flat display element. Among EL elements, organic EL elements, unlike inorganic EL elements, are not subject to the need for AC drive and high voltage, and are considered to be relatively easy to achieve multiple colors due to the diversity of organic compounds. Therefore, it is expected to be applied to full-color displays and the like, and research and development has been actively conducted, and a structure having high luminance at a low voltage has been developed. The inorganic EL element emits electric field excitation light. On the other hand, the organic EL element is a so-called carrier injection type light emission that operates by injecting holes from the anode and electrons from the cathode. Positive and negative carriers injected from both electrodes move to the counter electrode, and excitons are formed by recombination of these carriers. The light emitted when the excitons are relaxed is light emission in the organic EL element. In the past, organic EL devices had been actively studied using high-purity anthracene single crystals. However, although high voltage application was required, both luminance and luminous efficiency were low and lacked stability. However, since 1987, Tang et al. Of Eastman Kodak Company announced that stable light emission with low voltage and high luminance can be obtained with a two-layer structure of organic thin films. Research and development has become very active. This is an organic layer sandwiched between electrode pairs having a laminated structure of two layers of a light emitting layer and a hole transport layer, and thereby, 1000 cd / m at an applied voltage of 10V. 2 (Tang et. Al, Appl. Phys. Lett., 51 (12), 913 (1987)). Recently, in addition to the light emitting layer and the hole transport layer, an electron transport layer may be provided between the cathode and the light emitting layer, or a hole injection layer may be provided between the hole transport layer and the anode. In addition, as a result of various examinations of materials used for each layer, many achievements have been given regarding high luminous efficiency, long life, etc., and the application to flat panel displays in which elements are arranged in the XY plane is greatly increased. A simple matrix type 256 × 64 dot monochrome display has been developed (for example, Hitoshi Nakata et al., Display and Imaging Vol. 5, pp. 273-277 (1997), Hitoshi Nakata, “Organic EL From the basics of the device to the technology for practical use ”The Applied Physics Society Organic Molecule / Bioelectronics Subcommittee 6th Workshop Text, pp. 147-154 (1997)).
[0003]
A 256 × 64 dot simple matrix driving type organic EL panel normally employs a line sequential driving method in which the cathode is scanned at a duty of 1/64 and the anode is driven. If an organic EL element with excellent rectifying properties is not obtained at this time, non-selected pixels also emit light, so-called crosstalk phenomenon is observed, and display quality is greatly reduced (for example, the selected pixels are mainly centered). For example, Shigeyoshi Ohtsuki, “From Basics of Organic EL Devices to Practical Technologies”, Applied Physics Society Organic Molecules and Bioelectronics Subcommittee, 6th Workshop Text Pp.139-146 (1997)).
[0004]
Organic EL elements are positive and negative carrier injection type light emitting elements, so in principle when reverse bias is applied (when a negative voltage is applied to the hole transport layer side electrode and a positive voltage is applied to the electron transport layer side electrode) No current flows. However, in an actual device, a small amount of leakage current may flow when a reverse bias is applied. This may be due to the inherent properties that are determined by the organic layer and the electrode material itself, but also physical changes such as disruption of the organic layer and metal layer structures. Conceivable. However, the exact mechanism is currently unknown. It has been reported that the use of a specific electrode material for the cathode improves the rectification (Nobutoshi Asai et al., Display and Imaging Vol. 5, pp. 279-283 (1997)). However, there are few examples of examining the conditions of the manufacturing process, and no effective conditions necessary for producing an element having excellent rectifying characteristics have been found so far.
[0005]
As described above, when organic EL elements are arranged in the XY plane to form a panel and simple matrix driving is to be performed, if the rectification of the elements is low, the above-described leakage current causes the crosstalk phenomenon. The display quality is greatly impaired.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and provides an element exhibiting a high rectification ratio while maintaining the characteristics of a conventional organic EL element, and a method for producing an organic EL panel using the element. Is the purpose.
[0007]
[Means for Solving the Problems]
As a result of repeated experiments and researches to solve this problem, the inventors of the present invention set the temperature change rate and temperature of the support substrate on the film formation side within a specific range when forming the organic film and the electrode. It has been found that maintaining the above-mentioned problem solves the above-mentioned problems, and has led to the present invention.
The present invention provides a substrate on which
A) forming a first electrode;
B) laminating one or more organic compound thin film layers including a light emitting layer on the first electrode;
C) laminating a second electrode on the organic compound thin film layer;
In the method for producing an organic electroluminescence device having at least
The temperature of the film-forming side surface of the substrate between Steps B and C, between Steps B and C and after the completion of Step C until the temperature of the film-forming side surface of the substrate reaches room temperature is 70 ° C. And
Provided is a method for producing an organic electroluminescence device having an absolute value of a temperature change rate within 1.5 ° C./sec.
[0008]
The substrate for forming the organic EL element can be selected from various materials that have a sufficiently flat surface, can withstand various stresses during the manufacturing process, and have low light extraction loss from the element. In particular, glass is preferably used.
[0009]
The effect of the present invention can be obtained if the temperature change rate on the film-forming side surface of the substrate is 1.5 ° C./sec or less in absolute value, but the absolute value of temperature change is more preferably 0.75 ° C./sec. Most preferably, the supporting substrate is kept at a constant temperature.
[0010]
The effect of the present invention can be confirmed if the maximum temperature on the film formation side surface of the substrate is 80 ° C. or less, but the effect of the present invention is clearly 70 ° C. or less, and most desirably 50 ° C. or less. .
[0011]
The minimum substrate temperature is , Practically, it is generally performed at about room temperature.
[0012]
The temperature on the film formation surface side of the substrate (hereinafter referred to as “substrate temperature”) is the surface of the support substrate on which various films are formed, or the first electrode is already formed on the substrate. In the case where it is measured, it is assumed that a temperature sensor is installed on the surface of the first electrode and measured. Hereinafter, the support substrate is simply referred to as “substrate”.
[0013]
In addition, when the organic compound thin film layer including the light emitting layer has a laminated structure of two or more layers having a hole transport layer, an electron transport layer, etc., the process B is only a process of forming each organic compound thin film. In addition, a period during which the substrate is left in the film forming apparatus between the film forming steps is also included.
[0014]
In the present invention, the temperature on the film forming surface side of the substrate and the temperature change rate are controlled at least from the time when the main shutter of the vapor deposition apparatus is opened and the film formation of the organic compound thin film is started. It is desirable that the entire period is from the completion of the electrode deposition until the cooling to room temperature is completed and the substrate can be taken out of the deposition apparatus.
[0015]
Here, the point at which the temperature control of the substrate is started is from the time when the main shutter of the vapor deposition apparatus is opened, but in practice, the temperature control may be performed from the time of heating the evaporation source prior to this.
[0016]
By producing an organic EL element by the production method proposed in the present invention, it becomes possible to produce an organic EL element having a small leakage current when a reverse bias voltage is applied.
[0017]
The reason why the rectifying property of the element is improved by the present invention is speculated, but the disturbance of the heterointerface caused by the thermal stress caused by the difference in the thermal properties of the material constituting each layer moderately changes the substrate temperature. It is considered that the leakage current of the organic EL element was reduced because of the relaxation.
[0018]
In the present invention, the steps B and C are preferably performed by a vacuum deposition method.
The vacuum evaporation method is a technique in which materials are vaporized or clustered by heating an evaporation source under vacuum and deposited on a substrate. Examples of the heating method include an electron beam heating method in which a material is directly heated by irradiation with an electron beam, and a resistance heating method.
[0019]
In the present invention, as a member constituting the vacuum evaporation apparatus,
1) a substrate support having a smooth plane for supporting the substrate;
2) At least in order to control the temperature of the film-forming side surface of the substrate
2-1) Temperature sensor, 2-2) Computing unit, 2-3) Heat release / absorber
A substrate temperature control device comprising:
A vacuum deposition apparatus having at least The change in substrate temperature detected by the temperature sensor is evaluated by the arithmetic unit, canceling the temperature change that occurred in the substrate, and sending a signal to the heat absorption / heating body so that the set substrate temperature and temperature change rate are achieved. It is.
[0020]
With this substrate temperature control device, it is possible to moderate the change in substrate temperature that occurs during film formation. In addition, the substrate temperature during film formation can be suppressed to 70 ° C. or lower, and a good organic EL element can be obtained.
[0021]
Moreover, it is desirable that the heat absorber / emission body and the substrate support are integrated.
[0022]
Further, the substrate temperature control device installed in the vacuum deposition apparatus sets the temperature of the substrate deposition side surface to a temperature of 70 ° C. or less, and sets the absolute value of the change rate of the temperature of the substrate deposition side surface to 1 It is desirable to be able to control within 5 ° C / sec.
[0023]
Here, the surface roughness of the smooth plane of the substrate support has an arithmetic average roughness (Ra) according to JIS B0601-1994 of 200 nm or less and a maximum height (Ry) of 800 nm or less. desirable. When the surface roughness of the substrate support is smaller than this, the contact area between the substrate and the support becomes large, and the temperature controllability of the substrate by the heat release / absorber integrated with the substrate and the substrate support is further improved. To do.
[0024]
Furthermore, the space between the smooth plane of the substrate support and the substrate to be supported may be filled with a soft metal without a gap. By embedding metal in the gap between the substrate and the substrate support, the temperature controllability of the substrate is further improved.
[0025]
Here, examples of the soft metal include indium and aluminum. A commercially available indium sheet or the like is preferably used for this purpose.
[0026]
The vacuum vapor deposition apparatus of the present invention is suitably used for the process B and the process C.
[0027]
Moreover, in this invention, the organic electroluminescent element manufactured using the manufacturing method of the organic electroluminescent element of this invention is provided further.
[0028]
Moreover, this invention is used suitably for the organic electroluminescent panel which has arrange | positioned this organic electroluminescent element in multiple numbers on the matrix. By manufacturing a display panel using an organic EL element with a small leakage current when applying a reverse bias voltage provided in the present invention, a display panel with good display quality with reduced crosstalk can be obtained.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram schematically showing an example of the structure of a general organic EL element.
A transparent electrode 12 is formed on the support substrate 11, a hole transport layer 13, a light emitting layer 14, and an electron transport layer 15 are present on the transparent electrode, and a cathode 16 is present on the electron transport layer.
[0030]
In carrying out the present invention, since there are no structural limitations, the research and development results so far can be applied. That is, various known materials can be used as the support substrate, the anode, various organic materials, the cathode, and the like. FIG. 1 is a schematic diagram of an organic EL device composed of three organic layers (13, 14, 15). However, the structure may serve as one or both of the carrier transport layer and the light emitting layer, or three or more layers. It is also possible. Each layer may be configured by mixing two or more kinds of materials. The support substrate may be on the cathode side, and the light extraction direction may be any. In the element manufacturing sequence shown in FIG. 1, the method of laminating the anode, the hole transport layer, the light emitting layer, the electron transport layer, and the cathode in this order on the support substrate is relatively simple. It is not limited. When the support substrate is provided on the cathode side, a method of forming the cathode, the electron transport layer, the light emitting layer, the hole transport layer, and the anode in this order is simple, but this case is not particularly limited.
[0031]
FIG. 2 shows an example of the implementation of the vacuum chamber of the vacuum deposition apparatus with the substrate temperature control apparatus of the present invention. In FIG. 2, a substrate 24 on which film formation is performed is fixed to a substrate support unit integrated with a heat release / absorber. A thermocouple 23 for measuring the substrate temperature is provided on the surface of the substrate 24. However, when the first electrode is already formed on the surface of the substrate 24, the thermocouple 23 is placed on the first electrode.
[0032]
The control of the substrate temperature is performed by evaluating the substrate temperature evaluated by the thermocouple 23 and its change rate by the arithmetic unit 21, canceling the temperature change generated on the substrate, and setting a range (the absolute value of the substrate temperature change rate is A signal that gives 1.5 ° C./sec and a substrate temperature of 70 ° C. or less is referred to as a heat release / absorber 22 integrated with the substrate support (hereinafter referred to as “heat release / absorber with substrate support”). ), And the heat radiating / absorbing body 22 with the substrate supporter exchanges heat with the substrate in response to this signal.
[0033]
Further, the film forming material is installed in the vapor deposition source 27 and heated by a resistance heating method or an electron beam method. The film formation starts when the evaporation source shutter 26 and the main shutter 25 are opened, and ends when the main shutter 25 is closed.
[0034]
Among these, since the heat releasing / absorbing body 22 with substrate support and the thermocouple 23 according to the present invention are placed in a vacuum atmosphere, like other parts, a material that does not adversely affect the vacuum system, Should be configured. The thermocouple 23 is for monitoring the temperature of the substrate surface, and is one in FIG. 2, but there may be a plurality of thermocouples. When the substrate to be deposited is large or there are several material evaporation sources, it is desirable to install several. In this case, however, any thermocouple should be arranged and sized so as not to impede the vapor flow flying toward the substrate. The heat release / absorber 22 with the substrate support acts in a direction to exchange heat with the substrate to cancel out the temperature change of the substrate.
[0035]
The heat release / absorber in the present invention is based on the definition prescribed in JIS B0601-1994 for the surface roughness of the surface in contact with the substrate (the surface in contact with the substrate 24 in the heat release / absorber 22 with substrate support). The arithmetic average roughness (Ra) is preferably 200 nm or less and the maximum height (Ry) is preferably 800 nm or less. By smoothing the surface in this manner, high adhesion is produced between the substrate and the heat-dissipating / absorbing body 22 with the substrate support, and quick heat conduction is possible even in a high vacuum atmosphere.
[0036]
In addition, the surface roughness of the surface in contact with the heat release / absorber 22 on the substrate side (backside of the substrate) must be the same level as or lower than the surface of the heat release / absorber 22 with the substrate support. It should be noted that good heat conduction cannot be obtained. When the adhesion between both surfaces is insufficient, heat conduction is not performed smoothly, and the controllability of the substrate temperature is reduced (for example, a time lag of temperature control).
[0037]
When the adhesion is improved by sandwiching and pressing a relatively soft metal sheet having good thermal conductivity such as indium between both surfaces, the heat transfer between the substrate 24 and the heat release / absorber 22 with the substrate support is more Smooth. This metal sheet can further improve the controllability of temperature not only when the adhesion is poor but also when the adhesion is good.
[0038]
The arithmetic unit 21 calculates a temperature change of the thermocouple, and sends a signal to the heat-dissipating / absorbing body 22 with the substrate support so as to cancel out the change. The heat-dissipating / absorbing body 22 with the substrate support that has received the signal changes the temperature of the substrate contact surface according to the level of the signal.
By such a control method, the absolute value of the temperature change rate of the substrate during the film forming process is within 1.5 ° C./sec, more preferably within 0.75 ° C./sec, and most preferably at a constant temperature. In addition, the substrate temperature can be adjusted to 70 ° C. or lower. The heat releasing / absorbing body 22 may have a structure having a heater / cooler inside the main body or a structure in which an inert liquid or the like is circulated inside.
[0039]
Although not shown in FIG. 2, a necessary number of necessary parts such as a device for monitoring the evaporation rate and a mask for patterning the film are mounted in the vacuum chamber of the vacuum deposition apparatus.
[0040]
Further, although three evaporation sources are shown in FIG. 2, the number of evaporation sources can be increased depending on the number of films to be deposited.
[0041]
In general, the temperature of the substrate when forming a film by a vacuum evaporation method gradually increases with the start of evaporation source heating. As the main shutter is opened, the temperature rises more rapidly, and the temperature rise continues until the main shutter is closed. It is the first important part of the present invention that the temperature rise from the start of evaporation source heating to the end of film formation is moderate and the substrate temperature is 70 ° C. or lower. The rate of temperature rise is preferably within 1.5 ° C./sec. Further speaking, it is more preferably within 0.75 ° C./sec, but most preferably, the substrate temperature is kept constant even when the main shutter is opened.
[0042]
When the film formation is completed and the main shutter is closed and the evaporation source heating is stopped, the supply of heat is cut off, so that the substrate temperature rapidly decreases. It is the second important part of the present invention to moderate this temperature drop. substrate Temperature drop speed Is preferably 1.5 ° C./sec or more, more preferably 0.75 ° C./sec or more.
[0043]
Such a temperature rise / fall phenomenon of the substrate is particularly seen when a high boiling point material is deposited, and in a general organic EL element production process, there is a particular problem when forming a metal material used for an electrode. Become. Even when various organic compound thin films are formed, the change rate of the substrate temperature may increase depending on the physical properties of the material, the stability of the deposition rate, the film thickness, and the like. Therefore, in practical use, in order to obtain an organic EL element with a small leakage current, all the layers are continuously formed in the vacuum evaporation apparatus and the steps before and after that (before the first film is formed on the substrate). It is preferable to operate the substrate temperature control apparatus over all the steps).
[0044]
When producing a multilayer film, it is not necessary to wait until the temperature of the evaporation source returns to the temperature before heating each time as long as the temperature change rate and temperature within the above-mentioned range can be maintained.
[0045]
Since the evaporation source is also a heat generation source, if the distance between the evaporation source and the substrate is sufficiently long, the rate of temperature rise can be suppressed, and depending on the film thickness, vapor deposition rate, and shape of the evaporation source, particularly the substrate temperature control Even if it is not applied, it is conceivable that it falls within the temperature and temperature change speed range described in the present invention. However, if the distance between the evaporation source and the substrate is too long, much of the vapor deposition material adheres to each part other than the substrate in the vacuum chamber, and there is a problem that the utilization efficiency of the material is lowered. Also in this regard, since the increase in the substrate temperature can be suppressed by operating the substrate temperature control apparatus according to the present invention, the distance between the substrate and the evaporation source can be shortened, and the material can be effectively used. . This is also an important matter of the present invention.
[0046]
【Example】
Examples of the present invention will be described below. However, the present invention is not limited to the following examples without departing from the gist of the present invention.
<Example 1>
= Step A (film formation of the first electrode) =
An ITO (indium tin oxide) film is formed on a glass substrate having a thickness of 0.7 mm so as to have a sheet resistance of 15 Ω / □ by sputtering, unnecessary portions are removed by etching, and patterned to form an ITO anode (first (Hereinafter referred to simply as “substrate” in this section). This substrate was sequentially ultrasonically washed in a neutral detergent and isopropyl alcohol, sufficiently dried, and then subjected to UV-ozone cleaning for 5 minutes while heating to 110 ° C.
= Step B (Lamination of organic compound thin film layer) =
The side of the substrate on which the first electrode does not exist was fixed in close contact with a heat releasing / absorbing body integrated with a substrate support in a vacuum chamber of a resistance heating vacuum deposition apparatus with a substrate temperature control mechanism. At this time, in order to enhance the adhesion between the substrate and the substrate support, both were pressed with an indium sheet.
[0047]
The vacuum deposition apparatus used in this example has five evaporation sources, and the distance from the evaporation source to the substrate surface is about 30 cm.
[0048]
Further, the heat emitting body / absorber is made of stainless steel, and the temperature is adjusted indirectly by circulating a fluorine-based inert liquid through the liquid. As for the surface roughness of the surface of the heat release / absorber that is in contact with the substrate, the arithmetic average roughness (Ra) is 200 nm or less, and the maximum height (Ry) is 800 nm or less.
[0049]
The substrate is fixed to the heat-dissipating / absorbing body, and the raw material materials for all films to be formed are attached to the evaporation source. That is,
(1) N, N′-diphenyl-N, N′-bis (α-naphthyl) -1,1′-biphenyl-4,4′-diamine (hereinafter abbreviated as α-NPD) which is a hole transport material 200) was placed in a molybdenum boat and set in an evaporation source.
The structure of α-NPD is shown below.
[0050]
[Chemical 1]
Figure 0003958501
{Circle around (2)} Tris (8-hydroxyquinolinol) aluminum (hereinafter abbreviated as Alq), which is a green light emitting material that also serves as an electron transport material, was placed in a 200 mg molybdenum boat and set in an evaporation source.
The structure of Alq is shown below.
[0051]
[Chemical 2]
Figure 0003958501
(3) 2 g of aluminum and 0.5 g of lithium, which are cathode materials, were placed in a tungsten boat and set in an evaporation source. Lithium was set quickly to suppress surface oxidation, and vacuum was drawn immediately after setting.
[0052]
Then, in the vacuum chamber, -Five The pressure was reduced to the Pa level, the substrate temperature control device was activated, and substrate temperature adjustment was started. When the molybdenum boat containing α-NPD was slowly heated and stabilized at a deposition rate of about 0.1 nm / sec, the main shutter was opened and film formation was started. When the film thickness reached 50 nm, the main shutter was closed to complete the formation of the hole transport layer. Similarly, Alq was vapor-deposited at a vapor deposition rate of about 0.1 nm / sec to form a light-emitting layer serving as an electron transport layer having a thickness of 70 nm. These series of organic layers were deposited through the same mask to form an organic film pattern.
= Process C (deposition of second electrode) =
Subsequent to Step B, another mask for the cathode was set. In addition, the mask for cathodes and the mask for organic compound thin films were previously set in a vacuum chamber, and the vacuum evaporation apparatus which has a mechanism which can select either by operation from the vacuum chamber exterior was used. After setting the cathode mask, the tungsten boat containing lithium and the tungsten boat containing aluminum were heated to control the deposition rate so that the weight ratio of lithium to aluminum was about 0.1%, and then the main shutter was opened. . In this case, the deposition rate of the cathode is 2 nm / sec. When the cathode film thickness reached 250 nm, the main shutter was closed and heating of the evaporation source was stopped.
[0053]
In this embodiment, the cathode is a mixture of lithium and aluminum. However, lithium is mixed in order to increase the electron injection efficiency, and it is sufficient that the cathode exists within several tens of nanometers from the interface between the organic layer and the electrode. Therefore, if the film formation of the lithium and aluminum mixture electrode proceeds to some extent and the lithium-containing aluminum layer having a thickness of several tens of nanometers is formed, the deposition of lithium is stopped, and then the electrode is formed only with aluminum. It doesn't matter.
[0054]
After all the films have been formed, the substrate temperature control device is operated and cooled to room temperature so that the absolute value of the substrate temperature change rate is within 1.5 ° C./sec. And dry nitrogen were introduced into the vacuum chamber.
When the pressure in the vacuum chamber reached atmospheric pressure, it was quickly taken out and sealed with a cap and an adhesive in the presence of dry nitrogen.
[0055]
The substrate temperature control device was operated until the vacuum chamber was opened and the completed device was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C. Note that four light-emitting portions of 2 mm × 2 mm were provided on one substrate, and four pixels having the same structure were formed on the same substrate.
<Comparative Example 1>
A series of film forming steps (α-NPD evaporation source heating-film formation-heating end-standing-Alq evaporation source heating-film formation-heating end-standing-cathode material evaporation source heating-film formation-heating end-standing- An organic EL element having the same structure was prepared in the same procedure as in Example 1 except that the substrate temperature control device was not operated during the (extraction). Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies are particularly noticeable during the deposition of a cathode, which is a metal material, and the temperature change rate when the temperature rises at this time is 2.1 ° C./sec at the fastest time. Further, the rate of temperature decrease after the cathode film formation was 1.8 ° C./sec at the fastest. Also, the substrate temperature exceeded 70 ° C. and was about 80 ° C.
[0056]
Even during the formation of the organic film, the temperature change rate exceeded 1.5 ° C./sec during the formation of Alq having the highest vaporization temperature among the organic materials.
<Example 2>
= Step A (film formation of the first electrode) =
In the same manner as in Example 1, an ITO anode (first electrode) was formed on the substrate, washed, and Step A was completed.
= Step B (Lamination of organic compound thin film layer) =
In this step and step C, the same vacuum vapor deposition apparatus as in Example 1 is used. Further, as in Example 1, the substrate was fixed to a substrate support integrated with a heat release / absorber, and the necessary film forming raw materials shown below were placed in a boat and attached to an evaporation source.
As in Example 1, the used boat is made of molybdenum for the organic material and made of tungsten for the cathode material.
(1) 200 mg of α-NPD (FIG. 3) as a hole transport material
(2) 200 mg of 4,4′-bis (2,2′-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVBi) which is a blue light emitting material.
The structure of DPVBi is shown below.
[0057]
[Chemical 3]
Figure 0003958501
(3) 200 mg of Alq, an electron transport material
(4) 2 g of Al, which is a cathode material,
(5) 0.5 g of Li as a cathode material
In addition, the precautions at the time of lithium attachment are the same as in the first embodiment.
[0058]
Thereafter, evacuation is performed in the same manner as in Example 1, and 10 -Five When the pressure reached the Pa level, adjustment of the substrate temperature by the substrate temperature control device was started.
[0059]
Thereafter, the molybdenum boat containing α-NPD was slowly heated, and when the film was stabilized at a deposition rate of about 0.1 nm / sec, the main shutter was opened and film formation was started. When the film thickness reached 50 nm, the main shutter was closed and film formation of the hole transport layer was completed. Similarly, DPVBi was deposited at a deposition rate of about 0.1 nm / sec to form a light emitting layer with a thickness of 50 nm. Further, similarly, Alq was deposited at a deposition rate of about 0.1 nm / sec to form an electron transport layer having a thickness of 40 nm. When vapor-depositing a series of these organic layers, it performed through the mask of the same shape as Example 1, and formed the pattern of the organic film.
= Process C (deposition of second electrode) =
Subsequently, another mask for the cathode was set, and the cathode was formed in the same manner as in Example 1. After the completion, the substrate was cooled to room temperature at a prescribed substrate temperature change rate, and then sealed in the same manner as in Example 1. Thus, an element was obtained.
[0060]
The substrate temperature control device was operated until the vacuum chamber was opened and the completed device was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C. Note that four light-emitting portions of 2 mm × 2 mm were provided on one substrate, and four pixels having the same structure were formed on the same substrate.
<Comparative example 2>
A series of film formation steps (evaporation source heating of α-NPD-film formation-heating end-standing-DPVBi evaporation source heating-film formation-heating end-leaving-Alq evaporation source heating-film formation-heating end-standing- An organic EL element having the same structure was prepared in the same procedure as in Example 2 except that the substrate temperature control device was not operated during the cathode material evaporation source heating-film formation-heating end-leaving-taking out). . Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies are particularly noticeable during vapor deposition of the cathode, which is a metal material, and the temperature change rate when the temperature rises at this time is 2.2 ° C./sec in the fastest case. Further, the rate of temperature decrease after completion of the cathode film formation was 1.8 ° C./sec in the fastest case. Also, the substrate temperature exceeded 70 ° C. and was about 80 ° C.
[0061]
Even during the formation of the organic film, the temperature change rate exceeded 1.5 ° C./sec during the formation of Alq having the highest vaporization temperature among the organic materials.
<Example 3>
= Step A (film formation of the first electrode) =
In the same manner as in Example 1, an ITO anode (first electrode) was formed on the substrate, washed, and Step A was completed.
= Step B (Lamination of organic compound thin film layer) =
In this step and step C, the same vacuum vapor deposition apparatus as in Example 1 is used. Further, as in Example 1, the substrate was fixed to a substrate support integrated with a heat release / absorber, and the necessary film forming raw materials shown below were placed in a boat and attached to an evaporation source.
As in Example 1, the used boat is made of molybdenum for the organic material and made of tungsten for the cathode material.
(1) 200 mg of α-NPD (FIG. 3) as a hole transport material
(2) 100 mg of 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (hereinafter abbreviated as DCM) which is a red light emitting material.
The structure of DCM is shown below.
[0062]
[Formula 4]
Figure 0003958501
(3) 200mg Alq
(4) 2 g of Al, which is a cathode material,
(5) 0.5 g of Li as a cathode material
In addition, the precautions at the time of lithium attachment are the same as in the first embodiment.
[0063]
Thereafter, evacuation is performed in the same manner as in Example 1, and 10 -Five When the pressure reached the Pa level, adjustment of the substrate temperature by the substrate temperature control device was started.
[0064]
Thereafter, the molybdenum boat containing α-NPD was slowly heated, and when the film was stabilized at a deposition rate of about 0.1 nm / sec, the main shutter was opened and film formation was started. When the film thickness reached 50 nm, the main shutter was closed and film formation of the hole transport layer was completed. Subsequently, the molybdenum boat containing Alq and the molybdenum boat containing DCM were heated to control the vapor deposition rate so that the weight ratio of DCM to Alq was 1%, and then the main shutter was released. When the film thickness of the mixed film of Alq and DCM reached 50 nm, only the shutter of the heating source of the DCM-containing boat was closed to stop the heating. Alq in the light emitting layer functions as a host material for doping the light emitting material DCM.
Furthermore, in order to form an electron transport layer, only Alq was further deposited to a thickness of 35 nm. In this manner, a light emitting layer (mixed layer of Alq and DCM) and an electron transport layer (layer consisting of only Alq) were formed. When vapor-depositing a series of these organic layers, it performed through the mask of the same shape as Example 1, and formed the pattern of the organic film.
= Process C (deposition of second electrode) =
Subsequently, another mask for the cathode was set, and the cathode was formed in the same manner as in Example 1. After the completion, the substrate was cooled to room temperature at a prescribed substrate temperature change rate, and then sealed in the same manner as in Example 1. Thus, an element was obtained.
[0065]
The substrate temperature control device was operated until the vacuum chamber was opened and the completed device was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C. Note that four light-emitting portions of 2 mm × 2 mm were provided on one substrate, and four pixels having the same structure were formed on the same substrate.
<Comparative Example 3>
A series of film forming steps (evaporation source heating of α-NPD-film formation-heating end-standing-heating of Alq and DCM evaporation source-film formation-heating of DCM evaporation source, continuing heating of Alq evaporation source-heating of Alq Organic EL of the same structure in the same procedure as in Example 3 except that the substrate temperature control device was not operated during the period from end to standing to cathode material evaporation source heating to film formation to heating to standing to leaving. A device was created. Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies are particularly noticeable during the deposition of the cathode, which is a metal material, and the temperature change rate at the time of the temperature rise is 2.1 ° C./sec in the fastest case. Further, the rate of temperature decrease after completion of the cathode film formation was 1.8 ° C./sec in the fastest case. Also, the substrate temperature exceeded 70 ° C. and was about 80 ° C.
[0066]
Even during the formation of the organic film, the temperature change rate exceeded 1.5 ° C./sec during the formation of Alq having the highest vaporization temperature among the organic materials.
<Example 4>
A 256 (number of anodes) × 64 (number of cathodes) dot green light-emitting organic EL panel having the same film thickness and the same material as the organic EL element created in Example 1 was produced. The shape of each pixel was 0.33 mm pitch / space 0.04 mm in both vertical and horizontal directions. The glass substrate, the anode pattern, the organic film mask, the cathode mask, and the sealing cap have the same film thickness except that they are different from each other. The film was formed after the absolute value of the change rate was controlled within 0.75 ° C./sec with respect to the temperature change accompanying the transfer of heat from. Even after the film formation was completed, the temperature control device was operated for a while, and when the substrate temperature returned to room temperature, dry nitrogen was slowly introduced into the vacuum chamber. When the pressure in the vacuum chamber reached atmospheric pressure, it was quickly taken out and sealed with a cap and an adhesive in the presence of dry nitrogen. The substrate temperature control apparatus was operated until the vacuum chamber was opened and the completed panel was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C.
<Comparative example 4>
An organic EL panel having the same structure was produced using the same methods and materials as in Example 4 except that the temperature control device was not operated. Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies were particularly noticeable during cathode deposition, and the rate of temperature change when the temperature rose was higher than 2 ° C./sec when fast. Further, the rate of temperature decrease after film formation was over 1.5 ° C./sec. Even when the organic film was formed, depending on the material, the speed of temperature change was higher than 1.5 ° C./sec when it was fast. The substrate temperature exceeded 70 ° C. during the cathode film formation.
<Example 5>
A blue light-emitting organic EL panel having the same film structure as that of Example 2 was prepared using the same glass substrate with an anode pattern as used in Example 4, a mask for organic film, a mask for cathode, and a sealing cap. In the same manner as in Example 2, the temperature controller was operated, and the film was formed after the absolute value of the change rate was controlled within 0.75 ° C./sec with respect to the temperature change accompanying the transfer of heat from the surroundings. Even after the film formation was completed, the temperature control device was operated for a while, and when the substrate temperature returned to room temperature, dry nitrogen was slowly introduced into the vacuum chamber. When the pressure in the vacuum chamber reached atmospheric pressure, it was quickly taken out and sealed with a cap and an adhesive in the presence of dry nitrogen. The substrate temperature control apparatus was operated until the vacuum chamber was opened and the completed panel was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C.
<Comparative Example 5>
An organic EL panel having the same structure was produced using the same method and materials as in Example 5 except that the temperature control device was not operated. Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies were particularly noticeable during the cathode deposition, and the temperature change rate when the temperature rose was higher than 2 ° C./sec when it was fast. Further, the rate of temperature decrease after film formation was over 1.5 ° C./sec. Even when the organic film was formed, depending on the material, it was higher than 1.5 ° C./sec when the temperature change was fast. The substrate temperature exceeded 70 ° C. during the cathode film formation.
<Example 6>
A red light-emitting organic EL panel having the same film structure as that of Example 3 was prepared using the same glass substrate with an anode pattern as used in Example 4, an organic film mask, a cathode mask, and a sealing cap. In the same manner as in Example 3, the temperature control device was operated, and the film was formed after the absolute value of the change rate was controlled within 0.75 ° C./sec with respect to the temperature change accompanying the transfer of heat from the surroundings. Even after the film formation was completed, the temperature control device was operated for a while, and when the substrate temperature returned to room temperature, dry nitrogen was slowly introduced into the vacuum chamber. When the pressure in the vacuum chamber reached atmospheric pressure, it was quickly taken out and sealed with a cap and an adhesive in the presence of dry nitrogen. The substrate temperature control apparatus was operated until the vacuum chamber was opened and the completed panel was taken out. Further, the temperature of the substrate surface in the middle was about 60 ° C. at the maximum and never exceeded 70 ° C.
<Comparative Example 6>
An organic EL panel having the same structure was produced using the same method and materials as in Example 6 except that the temperature control device was not operated. Since the substrate temperature control device was not operated, the substrate temperature gradually increased with the start of evaporation source heating, further rapidly increased when the main shutter was released, and the temperature continued to increase until the main shutter was closed. In addition, the main shutter was closed and the evaporation source heating was stopped. These tendencies were particularly noticeable during the cathode deposition, and the temperature change rate when the temperature rose was higher than 2 ° C./sec when it was fast. Further, the rate of temperature decrease after film formation was over 1.5 ° C./sec. Even when the organic film was formed, depending on the material, the rate of temperature change was higher than 1.5 ° C./sec. The substrate temperature exceeded 70 ° C. during the cathode film formation.
<Comparison between Comparative Example and Example>
The applied voltage-current characteristics of each organic EL element (Examples 1 to 3 and Comparative Examples 1 to 3) produced by the above procedure were measured over -15 to + 15V. The measurement is
(1) Forward direction in which the applied voltage is increased from 0V to + 15V,
(2) Reverse direction to decrease the applied voltage from 0V to -15V,
This was divided into two directions.
In order to investigate the reproducibility of the voltage-current characteristics of the device, the measurement was repeated three times for each device.
[0067]
FIG. 3 illustrates measurement data in the case of Example 1 and Comparative Example 1. The horizontal axis in FIG. 3 is the applied voltage. The vertical axis represents the absolute value of the current value on the logarithmic axis. As is clear from FIG. 3, there was no significant difference in the forward characteristics between Example 1 and Comparative Example 1. Both Example 1 and Comparative Example 1 were about 10 at a voltage of 10V. -3 A current.
[0068]
On the other hand, a large difference was observed in the reverse leakage current. In Example 1, even if the voltage is decreased, the current is approximately 10%. -Ten Whereas A is constant, in Comparative Example 1, the leakage current increased as the absolute value of the voltage increased. When compared at −15 V, the leakage current of Comparative Example 1 was 2 to 4 orders of magnitude larger than that of Example 1.
[0069]
Further, in Example 1, data with good reproducibility was obtained in both the forward direction and the reverse direction, whereas in Comparative Example 1, a leak that flows when a reverse voltage is applied between pixels fabricated on the same substrate. There was variation in the current. This tendency was also observed in Comparative Examples 2 and 3. As in Example 1, Example 2 and Example 3 were highly reproducible and obtained data with little variation. Based on the obtained results, the rectification ratio represented by the following formula is calculated.
Results are shown.
[0070]
Rectification ratio = | Current amount when + 15V is applied | / | Current amount when −15V is applied |
[0071]
[Table 1]
Figure 0003958501
As is apparent from this table, it can be seen that according to the present invention, the leakage current in the reverse direction can be reduced and an organic EL element having excellent rectifying characteristics can be produced.
[0072]
Moreover, the 256 * 64 dot organic EL panel (Examples 4-6, Comparative Examples 4-6) produced in the above procedure was connected to the drive circuit. While the row side (cathode side) is sequentially switched to ground at 1/64 duty, it is driven by sending a constant current data signal from the column side (anode) to display characters, characters, patterns, etc. The presence or absence of crosstalk was observed.
[0073]
Table 2 shows the presence or absence of crosstalk. As is clear from these, according to the present invention, it is possible to form pixels with excellent rectification characteristics in the panel, and a simple matrix driving type organic EL element panel with excellent display quality can be produced.
[0074]
[Table 2]
Figure 0003958501
[0075]
【The invention's effect】
According to the present invention, during the thin film formation and before and after the process, the absolute value of the change rate of the substrate temperature is set to 1.5 ° C./sec or less and the substrate temperature is set to 70 ° C. or less, thereby providing excellent rectification characteristics. The organic EL element which has can be created. Further, by producing a simple matrix drive organic EL panel by the method of the present invention, a display panel having no crosstalk and having a high display quality can be produced, which brings about a remarkable effect in improving the performance as a display device.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a general organic EL element.
FIG. 2 is a schematic view showing the structure of a vacuum chamber of a vacuum vapor deposition apparatus that enables substrate temperature control according to the present invention.
FIG. 3 shows current-voltage characteristics of the organic EL elements prepared in Example 1 and Comparative Example 1. The vertical axis represents the current flowing in the negative direction as an absolute value for logarithm display.

Claims (1)

基板上に、
A)第一の電極を成膜する工程と、
B)該第一の電極上に発光層を含む一層以上の有機化合物薄膜層を積層する工程と、
C)該有機化合物薄膜層上に第二の電極を積層する工程と、
を少なくとも有する有機エレクトロルミネッセンス素子の製造方法において、
工程B及びCにおける基板の温度上昇の温度変化速度は1.5℃/sec以内であり、かつ、該基板温度は70℃以下であると共に、工程BとCとの間と、工程C終了後、基板温度が室温となるまでの間と、においても温度下降の温度変化速度が1.5℃/sec以内であり、かつ、該基板温度70℃以下である有機エレクトロルミネッセンス素子の製造方法。
On the board
A) forming a first electrode;
B) laminating one or more organic compound thin film layers including a light emitting layer on the first electrode;
C) laminating a second electrode on the organic compound thin film layer;
In the method for producing an organic electroluminescence device having at least
The temperature change rate of the temperature rise of the substrate in steps B and C is within 1.5 ° C./sec, the substrate temperature is 70 ° C. or less, and between step B and C and after the end of step C , and until the substrate temperature is room temperature is within the temperature change rate of 1.5 ° C. / sec of temperature drop even, and method of producing an organic electroluminescent device substrate temperature is 70 ° C. or less.
JP2000204006A 1999-07-14 2000-07-05 Organic electroluminescence device and panel manufacturing method and manufacturing apparatus Expired - Lifetime JP3958501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204006A JP3958501B2 (en) 1999-07-14 2000-07-05 Organic electroluminescence device and panel manufacturing method and manufacturing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-200382 1999-07-14
JP20038299 1999-07-14
JP2000204006A JP3958501B2 (en) 1999-07-14 2000-07-05 Organic electroluminescence device and panel manufacturing method and manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007015617A Division JP4589346B2 (en) 1999-07-14 2007-01-25 Organic electroluminescence device and panel manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001085164A JP2001085164A (en) 2001-03-30
JP3958501B2 true JP3958501B2 (en) 2007-08-15

Family

ID=26512155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204006A Expired - Lifetime JP3958501B2 (en) 1999-07-14 2000-07-05 Organic electroluminescence device and panel manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3958501B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG113448A1 (en) 2002-02-25 2005-08-29 Semiconductor Energy Lab Fabrication system and a fabrication method of a light emitting device
JP4882091B2 (en) * 2004-04-23 2012-02-22 日本精機株式会社 Manufacturing method of organic EL panel
JP4974568B2 (en) * 2005-04-06 2012-07-11 エルジー ディスプレイ カンパニー リミテッド Electroluminescent display device
JP2007287356A (en) * 2006-04-12 2007-11-01 Hitachi Displays Ltd Method for manufacturing organic el display device
JP2008140684A (en) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR100813851B1 (en) * 2007-04-05 2008-03-17 삼성에스디아이 주식회사 Organic light emitting device having cathode of transparent conducting oxide layer and method of fabricating the same
JP2011117058A (en) * 2009-12-07 2011-06-16 Sumitomo Electric Ind Ltd Film deposition system and film deposition method
JP2012001762A (en) * 2010-06-16 2012-01-05 Nippon Electric Glass Co Ltd Vapor deposition method and vapor deposition device

Also Published As

Publication number Publication date
JP2001085164A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
CN100580976C (en) Organic luminous display, cathode composite layer and method for manufacturing same
JP3614335B2 (en) Organic EL display device and manufacturing method thereof
JPH08245955A (en) Organic electroluminescent element
Islam et al. A review on fabrication process of organic light emitting diodes
JPH10275681A (en) Organic el element
JP3958501B2 (en) Organic electroluminescence device and panel manufacturing method and manufacturing apparatus
KR20070036835A (en) Method for preparation of organic light emitting devices comprising inorganic buffer layer
JP4589346B2 (en) Organic electroluminescence device and panel manufacturing method and manufacturing apparatus
JP2002313567A (en) Organic electroluminescence element and its manufacturing method
JP2003229269A (en) Organic el element
JP3763325B2 (en) Organic electroluminescence device
JPH07166160A (en) Organic thin film el element
US20090236982A1 (en) Packaging structure of organic light-emitting diode and method for manufacturing the same
JP2002343579A (en) Organic el element and image display device
JP3910010B2 (en) Organic electroluminescence device
US8102114B2 (en) Method of manufacturing an inverted bottom-emitting OLED device
US20050017632A1 (en) Organic buffer layer for organic light-emitting device and producing method thereof
JP3736881B2 (en) Organic thin film EL device
TW518908B (en) Organic electroluminescent element, and method for manufacturing the same
JPH10255974A (en) Bidirectional field drive type organic electroluminescent element
JP2003151779A (en) Organic led element, transfer donor substrate, and method of manufacturing organic lead element
JP2951083B2 (en) Organic thin film electroluminescent device
JP2002056983A (en) Organic electroluminescent element and manufacturing method of the same
WO2020098068A1 (en) Electroluminescent display device and preparation method therefor
US20100051997A1 (en) Organic light emitting diode and method of fabricating the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061024

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3958501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term