JP2003229269A - Organic el element - Google Patents

Organic el element

Info

Publication number
JP2003229269A
JP2003229269A JP2002027510A JP2002027510A JP2003229269A JP 2003229269 A JP2003229269 A JP 2003229269A JP 2002027510 A JP2002027510 A JP 2002027510A JP 2002027510 A JP2002027510 A JP 2002027510A JP 2003229269 A JP2003229269 A JP 2003229269A
Authority
JP
Japan
Prior art keywords
layer
organic
cathode
anode
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002027510A
Other languages
Japanese (ja)
Other versions
JP4394331B2 (en
Inventor
Mikihiro Yamanaka
幹宏 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002027510A priority Critical patent/JP4394331B2/en
Publication of JP2003229269A publication Critical patent/JP2003229269A/en
Application granted granted Critical
Publication of JP4394331B2 publication Critical patent/JP4394331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element having efficient electron injection electrodes and good working stability to improve a visual field effect better than that of previous EL elements. <P>SOLUTION: For the organic EL composed of a positive electrode, a base board, and an organic EL layer comprising a negative electrode, a negative electrode buffer layer, an electron carrier layer, a light emitting layer, a hole carrier layer, and a positive electrode buffer layer, an electron carry efficiency is accurately controlled depending on the element structure alternately laminating the electron carrier layers and the negative electrode buffer layers more than twice. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機EL素子に関
し、詳しくは、有機化合物の薄膜に電界を印加して光を
放出する素子に用いられる無機/有機接合構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL device, and more particularly to an inorganic / organic junction structure used in a device that emits light by applying an electric field to a thin film of an organic compound.

【0002】[0002]

【従来の技術】有機発光素子(有機EL素子等、発光デ
ィスプレイやレーザー素子)は、強い蛍光を持つ有機絶
縁体薄膜の両面に取り付けた電極に直流電圧を印加する
と、陽極及び陰極からそれぞれ正負の電荷が注入され、
生じた電場により正負の電荷は薄膜中を移動し、ある確
率で再結合する際に放出されるエネルギーを蛍光分子の
一重項励起状態(分子励起子)の形成に消費し、その発
光量子効率の割合だけ外部に光を放出して基底状態に戻
り、この際放出される光を利用するものである。
2. Description of the Related Art Organic light emitting devices (e.g., organic EL devices such as light emitting displays and laser devices) have positive and negative polarities from an anode and a cathode when a DC voltage is applied to electrodes attached to both sides of an organic insulator thin film having strong fluorescence. Charge is injected,
Positive and negative charges move in the thin film due to the generated electric field, and with a certain probability, the energy released during recombination is consumed to form the singlet excited state (molecular exciton) of the fluorescent molecule, and its emission quantum efficiency is increased. Light is emitted to the outside in a proportion to return to the ground state, and the light emitted at this time is used.

【0003】上記の有機絶縁体薄膜は、例えば電子注入
層、電子輸送層、発光層、正孔輸送層等からなり、総称
して有機EL層と呼ばれる。陰極にはアルミニウムやマ
グネシウム合金(MgAg、MgCa等)が使われるこ
とが多く、陽極にはEL発光を取り出すために、ITO
等の透明電極が用いられる事が多い。また陰極、陽極そ
れぞれと有機EL層の間には、バッファ層が形成される
場合が多い。
The above organic insulator thin film is composed of, for example, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, etc., and is generically called an organic EL layer. Aluminum or magnesium alloy (MgAg, MgCa, etc.) is often used for the cathode, and ITO is used for the anode to extract EL light emission.
Often transparent electrodes such as are used. A buffer layer is often formed between each of the cathode and the anode and the organic EL layer.

【0004】有機ELデバイスに用いられる陰極構造
は、特開平10−74586に開示されているような2
層構造を有するものが知られている。これによると、陰
極は有機EL層に接触するフッ化物層と、このフッ化物
層に接触する導電層から構成されている。電子注入機能
を司る陰極としては、低い仕事関数を有する金属を用い
ることが望ましい。しかしながら低仕事関数を有する金
属は大気による酸化が常に問題となる。そこで、フッ化
物などの極薄層を導電層と有機EL層の間に製膜するこ
とで、耐酸化性を向上させながら、低い動作電圧及び低
い電流密度で高いデバイス効率を示す素子の作成に成功
している。
A cathode structure used in an organic EL device has a cathode structure as disclosed in JP-A-10-74586.
Those having a layered structure are known. According to this, the cathode is composed of a fluoride layer in contact with the organic EL layer and a conductive layer in contact with the fluoride layer. It is desirable to use a metal having a low work function as the cathode that controls the electron injection function. However, metals with low work functions are always subject to atmospheric oxidation. Therefore, by forming an ultrathin layer such as a fluoride film between the conductive layer and the organic EL layer, it is possible to fabricate an element that exhibits high device efficiency at low operating voltage and low current density while improving oxidation resistance. Have been successful.

【0005】[0005]

【発明が解決しようとする課題】しかし、現在、更なる
視野効率向上の為に、効率の良い電子注入電極と良好な
動作安定性を有する有機EL素子が求められおり、従来
の有機EL材料における電子輸送性能では、デバイスの
高効率化、高信頼性を考えると不十分である。
However, at present, in order to further improve the visual field efficiency, an organic EL element having an efficient electron injecting electrode and good operational stability is demanded, and it is necessary to use the conventional organic EL material. In terms of electron transport performance, it is insufficient in view of high efficiency and high reliability of the device.

【0006】有機ELデバイスにおいて、最も一般的に
陽極に用いられる材料はITOであるが、ITOは基本
的に多結晶性膜であり、表面凹凸が〜20nm程度存在
する。図3に示すように陽極7の表面に凹凸を残したま
ま、電子輸送層3、発光層4、正孔輸送層5、陽極バッ
ファ層6からなる有機EL層9と陰極1、陰極バッファ
層2からなる2層陰極11を製膜すると有機EL層が不
連続になったり、実際に素子を動作させた場合には、電
界が不均一に印加されたりして、ダークスポットと呼ば
れる非発光点(面)が形成され、素子発光特性として深
刻な問題となる。有機EL層9全体の厚みを増やすこと
で有機EL層の不連続箇所を減らしたり、陰極と陽極と
の空間的距離を離したりすることも可能であるが、有機
EL層材料の電子物性を考慮すると信頼性の面では改善
が見られても、素子発光特性面での改善は見られない。
ITO表面に研磨処理を施して表面ラフネスを下げるこ
とで、電界不均一によるダークスポットの形成を防止す
ることも可能であるが、時間的ロス、コストの問題が発
生してしまう。
In the organic EL device, the material most commonly used for the anode is ITO, but ITO is basically a polycrystalline film and has surface irregularities of about 20 nm. As shown in FIG. 3, the organic EL layer 9 including the electron transport layer 3, the light emitting layer 4, the hole transport layer 5, and the anode buffer layer 6, the cathode 1, and the cathode buffer layer 2 while leaving the surface of the anode 7 uneven. When the two-layer cathode 11 made of is formed into a film, the organic EL layer becomes discontinuous, and when the device is actually operated, the electric field is nonuniformly applied, and a non-emission point called a dark spot ( Surface is formed, which is a serious problem in terms of device light emission characteristics. It is possible to reduce the discontinuous portion of the organic EL layer by increasing the thickness of the entire organic EL layer 9 or to increase the spatial distance between the cathode and the anode, but consider the electronic physical properties of the organic EL layer material. Then, although the reliability is improved, the element light emission characteristics are not improved.
It is possible to prevent the formation of dark spots due to non-uniformity of the electric field by polishing the ITO surface to reduce the surface roughness, but this causes problems of time loss and cost.

【0007】また、従来の有機EL素子のフッ化物層は
0.5〜1nm程度と極薄層である為、製膜条件によっ
ては膜が不連続となり易い。その結果、図4に示すよう
に有機EL層9と2層陰極11とのコンタクトが不十分
なため陰極が浮き上がる現象や、駆動時に発生する熱で
有機EL層9が劣化して発生した酸素等の不純物10、
あるいは陽極7の表面凹凸に由来して浸入する大気中の
水分や酸素等の不純物10が、電界の不均一な印加によ
り拡散し、2層陰極11まで到達した結果、陰極が浮き
上がる現象が起きている。陰極の有機EL層からの剥離
は、そのままダークスポットとなるため、有機EL素子
の発光に関する信頼性を限りなく損なうことになる。
Moreover, since the fluoride layer of the conventional organic EL element is an extremely thin layer of about 0.5 to 1 nm, the film is likely to be discontinuous depending on the film forming conditions. As a result, as shown in FIG. 4, the contact between the organic EL layer 9 and the two-layer cathode 11 is insufficient, so that the cathode floats up, or the oxygen generated by the deterioration of the organic EL layer 9 due to the heat generated during driving. Impurities of 10,
Alternatively, impurities 10 such as moisture and oxygen in the atmosphere that enter due to the unevenness of the surface of the anode 7 diffuse by the uneven application of an electric field and reach the two-layer cathode 11, resulting in the phenomenon that the cathode floats. There is. The peeling of the cathode from the organic EL layer directly results in a dark spot, which impairs the reliability of light emission of the organic EL element without limit.

【0008】本発明では上記課題を解決するために、電
子輸送層と陰極バッファ層とを交互に少なくとも2回以
上積層するように構成した有機EL素子を提案する。
In order to solve the above problems, the present invention proposes an organic EL device in which an electron transport layer and a cathode buffer layer are alternately laminated at least twice or more.

【0009】[0009]

【課題を解決するための手段】本発明は、陰極と、陰極
バッファ層と、電子輸送層、発光層、正孔輸送層、陽極
バッファ層からなる有機EL層と、陽極と、基板からな
る有機EL素子において、電子輸送層と陰極バッファ層
とを交互に、少なくとも2回以上積層することを特徴と
する。
The present invention is directed to a cathode, a cathode buffer layer, an organic EL layer including an electron transport layer, a light emitting layer, a hole transport layer, and an anode buffer layer, an anode, and an organic layer including a substrate. In the EL element, the electron transport layer and the cathode buffer layer are alternately laminated at least twice or more.

【0010】本発明の有機EL素子は、交互に積層され
る陰極バッファ層と電子輸送層の各層厚と数により、発
光層へ注入される電子数を、任意に制御することを特徴
とする。
The organic EL device of the present invention is characterized in that the number of electrons injected into the light emitting layer is arbitrarily controlled by the thicknesses and the numbers of the cathode buffer layers and the electron transport layers which are alternately laminated.

【0011】本発明の有機EL素子は、交互に積層され
る陰極バッファ層の少なくとも1層がフッ化物等のハロ
ゲン化合物であることを特徴とする。
The organic EL device of the present invention is characterized in that at least one of the alternately stacked cathode buffer layers is a halogen compound such as a fluoride.

【0012】本発明の有機EL素子は、交互に積層され
る陰極バッファ層の少なくとも1層が酸化物であること
を特徴とする。
The organic EL device of the present invention is characterized in that at least one of the cathode buffer layers alternately laminated is an oxide.

【0013】本発明の有機EL素子は、交互に積層され
る陰極バッファ層の各膜厚が0.2〜15nmであるこ
とを特徴とする。
The organic EL device of the present invention is characterized in that the cathode buffer layers which are alternately laminated each have a thickness of 0.2 to 15 nm.

【0014】本発明の有機EL素子は、交互に積層する
電子輸送層の各膜厚が10〜1000nmであることを
特徴とする。
The organic EL device of the present invention is characterized in that the electron transport layers which are alternately laminated each have a thickness of 10 to 1000 nm.

【0015】有機EL素子において、発光層における
1:1の電子−正孔対の形成が非常に重要であり、余剰
のキャリアは素子の発光効率、信頼性を大きく損なう
為、各種有機材料から成る電子輸送材料、正孔輸送材料
の組み合わせに対応できる構造が必要である。本発明
は、特に電子輸送効率を素子構造から正確に制御するこ
とが特徴である。具体的には、発光層へ注入される電子
の数を、交互に積層する陰極バッファ層と電子輸送層の
各層厚と積層回数により、任意に制御するものである。
In the organic EL device, the formation of 1: 1 electron-hole pairs in the light emitting layer is very important, and the excess carriers impair the light emitting efficiency and reliability of the device. A structure that can handle a combination of an electron transport material and a hole transport material is required. The present invention is particularly characterized in that the electron transport efficiency is accurately controlled from the device structure. Specifically, the number of electrons injected into the light emitting layer is arbitrarily controlled by the thickness of each of the cathode buffer layer and the electron transport layer which are alternately stacked and the number of stacks.

【0016】さらに電子輸送層と陰極バッファ層とを交
互に少なくとも2回以上積層する構造にすること、すな
わち有機/無機界面構造を素子の中に積極的に取り入れ
ることで、電子増幅効果により電子注入効率を高めつ
つ、陰極と陽極の空間的距離を離したことが特徴であ
る。空間的距離を離したことにより、外圧や陰極、陽極
表面の構造上の突起などに起因する素子動作時の電界不
均一による電流リーク、ダークスポットの発生を防止
し、有機/無機界面の繰り返しにより、大気中に存在す
る水分や酸素の拡散、更には陰極、陽極成分、あるいは
正孔輸送層等の有機EL層構成成分の反応、拡散による
陰極剥離及び素子劣化を防止している。
Further, by making the structure in which the electron transport layer and the cathode buffer layer are alternately laminated at least twice or more, that is, by positively incorporating the organic / inorganic interface structure into the device, the electron injection effect is achieved. The characteristic is that the spatial distance between the cathode and the anode is increased while improving the efficiency. Separation of the spatial distance prevents current leaks and dark spots due to non-uniform electric field during device operation due to external pressure, cathodes, and structural protrusions on the surface of the anode, and prevents repeated organic / inorganic interfaces. In addition, diffusion of water and oxygen existing in the atmosphere, reaction of cathode, anode components, components of the organic EL layer such as the hole transport layer, peeling of the cathode due to diffusion, and device deterioration are prevented.

【0017】[0017]

【発明の実施の形態】以下に本発明の有機EL素子につ
いて添付図面に従い説明する。図1は本発明による有機
EL素子の模式図であり、1は陰極、2は陰極バッファ
層、3は電子輸送層、4は発光層、5は正孔輸送層、6
は陽極バッファ層、7は陽極、8は基板を各々示す。
BEST MODE FOR CARRYING OUT THE INVENTION The organic EL device of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view of an organic EL device according to the present invention, where 1 is a cathode, 2 is a cathode buffer layer, 3 is an electron transport layer, 4 is a light emitting layer, 5 is a hole transport layer, and 6
Is an anode buffer layer, 7 is an anode, and 8 is a substrate.

【0018】陰極1に用いられる材料は、一般的に低仕
事関数の金属が好ましく、スズ、マグネシウム、インジ
ウム、カルシウム、アルミニウム、銀等の金属、あるい
は、これらを主成分とする合金が望ましい。また、大気
中で比較的安定な金属に低仕事関数の金属を微量ドープ
した材料を用いることも可能である。陰極の厚さは通常
0.1nm〜10μmであり、好ましくは50nm〜1
μmである。陰極は、真空蒸着法、スパッタリング法、
電子ビーム蒸着法、プラズマCVD法、及び塗布法によ
り形成されることが多い。真空蒸着法では、材料を入れ
た坩堝を真空容器内に設置して、適当な真空ポンプで1
-4Pa程度まで排気後、坩堝を加熱して材料を目的の
膜厚だけ昇華または蒸発させることで形成し、塗布法で
は適当なバインダー樹脂溶液や塗布性改良材に分散した
導電性金属微粒子を、スピンコートやインクジェット等
で目的とする箇所へ塗布して形成する。
The material used for the cathode 1 is generally preferably a low work function metal, and is preferably a metal such as tin, magnesium, indium, calcium, aluminum or silver, or an alloy containing these as the main components. It is also possible to use a material in which a metal that is relatively stable in the air is slightly doped with a metal having a low work function. The thickness of the cathode is usually 0.1 nm to 10 μm, preferably 50 nm to 1
μm. The cathode is a vacuum deposition method, a sputtering method,
It is often formed by an electron beam evaporation method, a plasma CVD method, and a coating method. In the vacuum deposition method, the crucible containing the material is placed in a vacuum container, and the
After evacuation to about 0 -4 Pa, the crucible is heated to sublimate or evaporate the material to a desired film thickness, and in the coating method, conductive metal fine particles dispersed in an appropriate binder resin solution or coatability improving material. Is applied to a desired place by spin coating, ink jet, or the like to be formed.

【0019】陰極バッファ層2は、陰極と有機EL層と
の密着性を向上させるとともに、陰極材料の有機発光層
側への拡散を防止し、さらに陰極からの電子注入効率を
向上させる機能を兼ね備える。陰極バッファ層に用いら
れる材料は、アルカリ金属ハロゲン化合物、アルカリ土
類金属ハロゲン化合物や各種酸化物である。ハロゲンと
はフッ素、塩素、臭素、ヨウ素、アスタチンの5元素で
あるが、本発明に用いられるハロゲン化合物としてはフ
ッ化物、塩化物、臭化物、ヨウ化物が好ましい。具体的
に好ましいハロゲン化合物を列挙すると、フッ化リチウ
ム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジ
ウム、フッ化カルシウム、フッ化マグネシウム、フッ化
ストロンチウム、フッ化バリウム、塩化リチウム、塩化
カルシウム、塩化ナトリウム、塩化マグネシウム、塩化
ストロンチウム、塩化バリウム、臭化リチウム、臭化カ
ルシウム、臭化マグネシウム、臭化ストロンチウム、臭
化バリウム等である。また、本発明に用いられる各種酸
化物として具体的に好ましい酸化物を列挙すると、酸化
リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリ
ウム、酸化セシウム、酸化ストロンチウム、酸化マグネ
シウム、及び酸化カルシウム等である。各々の陰極バッ
ファ層は同じ材料を用いても、異種材料を用いても構わ
ない。陰極バッファ層は通常真空蒸着法、スパッタリン
グ法、電子ビーム蒸着法により形成され、各層厚は0.
2nm〜30nmであり、好ましくは0.2〜15nm
である。
The cathode buffer layer 2 has the functions of improving the adhesion between the cathode and the organic EL layer, preventing the diffusion of the cathode material to the organic light emitting layer side, and further improving the efficiency of electron injection from the cathode. . The material used for the cathode buffer layer is an alkali metal halogen compound, an alkaline earth metal halogen compound, and various oxides. Halogen is five elements of fluorine, chlorine, bromine, iodine and astatine, and as the halogen compound used in the present invention, fluoride, chloride, bromide and iodide are preferable. Specific preferred halogen compounds are listed below: lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, calcium fluoride, magnesium fluoride, strontium fluoride, barium fluoride, lithium chloride, calcium chloride, sodium chloride. , Magnesium chloride, strontium chloride, barium chloride, lithium bromide, calcium bromide, magnesium bromide, strontium bromide, barium bromide and the like. Specific examples of preferable oxides for use in the present invention include lithium oxide, rubidium oxide, potassium oxide, sodium oxide, cesium oxide, strontium oxide, magnesium oxide, and calcium oxide. The same material or different materials may be used for each cathode buffer layer. The cathode buffer layer is usually formed by a vacuum vapor deposition method, a sputtering method, or an electron beam vapor deposition method, and each layer has a thickness of 0.
2 nm to 30 nm, preferably 0.2 to 15 nm
Is.

【0020】電子輸送層3は、電界を与えられた電極間
において、陰極からの電子を効率よく正孔輸送層の方向
に輸送することができる化合物より形成される。これら
化合物には電子親和力が大きく、電子移動度が大きく、
安定性に優れ、製造時や使用時に電子のトラップとなる
不純物が発生しにくいことが要求される。このような条
件を満たす化合物材料としては、テトラフェニルブタジ
エン等の芳香族化合物、Alq3等の金属錯体、10−
ハイドロキシベンゾ〔h〕キノリン金属錯体、混合配位
子アルミニウムキレート錯体、シクロペンタジエン誘導
体、ぺリノン誘導体、オキサジアゾール誘導体、ビスス
チリルベンゼン誘導体、ぺリレン誘導体、クマリン化合
物、希土類錯体、ジスチリルピラジン誘導体、p−フェ
ニレン化合物、チアジアゾロピリジン誘導体、ピロロピ
リジン誘導体、ナフチリジン誘導体等が挙げられる。各
々の電子輸送層に、上記のような材料を一種、もしくは
複数種用いても構わない。電子輸送層は真空蒸着法ある
いは塗布法を用いて形成されることが多く、各層厚は通
常、5〜1000nmであり、好ましくは10〜100
nmである。
The electron transport layer 3 is formed of a compound capable of efficiently transporting electrons from the cathode in the direction of the hole transport layer between the electrodes to which an electric field is applied. These compounds have high electron affinity, high electron mobility,
It is required that it has excellent stability and that impurities that become electron traps are unlikely to be generated during manufacturing or use. As a compound material satisfying such a condition, an aromatic compound such as tetraphenylbutadiene, a metal complex such as Alq 3 or 10-
Hydroxybenzo [h] quinoline metal complex, mixed ligand aluminum chelate complex, cyclopentadiene derivative, perinone derivative, oxadiazole derivative, bisstyrylbenzene derivative, perylene derivative, coumarin compound, rare earth complex, distyrylpyrazine derivative, Examples thereof include p-phenylene compounds, thiadiazolopyridine derivatives, pyrrolopyridine derivatives, and naphthyridine derivatives. One kind or a plurality of kinds of the above materials may be used for each electron transport layer. The electron transport layer is often formed by using a vacuum deposition method or a coating method, and the thickness of each layer is usually 5 to 1000 nm, preferably 10 to 100 nm.
nm.

【0021】この陰極バッファ層2と電子輸送層3をナ
ノメートル以下のオーダーで制御し交互に積層すること
が本発明の最大の特徴である。
The greatest feature of the present invention is that the cathode buffer layer 2 and the electron transport layer 3 are controlled and stacked alternately on the order of nanometers or less.

【0022】発光層4は素子の発光効率を向上させるこ
とに併せて、発光色を変える目的で作成される。発光色
を変える例としては、例えばAlq3をホスト材料と
し、クマリン等のレーザー用蛍光色素をドープすること
等が知られている。電子輸送層をホスト材料として、蛍
光色素をドープすることは、素子の駆動寿命を改善する
目的においても重要である。例えばAlq3をホスト材
料とし、ルブレンに代表されるナフタセン誘導体、キナ
クリドン誘導体、ペリレン誘導体等の縮合多環芳香族環
を、ホスト材料に対して0.1〜10重量%ドープする
ことにより、素子の発光特性、特に駆動安定性を大きく
向上させることができる。これら発光層は真空蒸着法、
塗布法により形成される場合が多く、層厚は通常5〜2
00nmであり、好ましくは10〜100nmである。
The light emitting layer 4 is formed for the purpose of changing the color of emitted light in addition to improving the light emitting efficiency of the device. As an example of changing the emission color, it is known to use Alq 3 as a host material and dope a fluorescent dye for laser such as coumarin. Doping a fluorescent dye with the electron transport layer as a host material is also important for the purpose of improving the driving life of the device. For example, Alq 3 is used as a host material, and a fused polycyclic aromatic ring such as a naphthacene derivative represented by rubrene, a quinacridone derivative, and a perylene derivative is doped in an amount of 0.1 to 10% by weight with respect to the host material. It is possible to greatly improve the light emission characteristics, particularly the driving stability. These light emitting layers are formed by vacuum vapor deposition,
Often formed by a coating method, the layer thickness is usually 5 to 2
It is 00 nm, preferably 10 to 100 nm.

【0023】正孔輸送層5には、陽極から注入された正
孔を効率よく発光層側へ輸送することが要求される。そ
の為にはイオン化ポテンシャルが小さく、可視光に対す
る透明性が高く、正孔移動度が大きく、安定性が良く、
製造時や使用時に正孔のトラップとなる不純物が発生し
にくい、ガラス転移温度が70℃以上である耐熱性に優
れた材料が望ましい。このような要求を満たす材料は、
例えば、1,1−ビス(4−ジ−p−トリルアミノフェ
ニル)シクロヘキサン等の芳香族ジアミン化合物、4,
4'−ビス〔(N−1−ナフチル)−N−フェニルアミ
ノ〕ビフェニル等の芳香族アミン、トリフェニルベンゼ
ンの誘導体でスターバースト構造を有する芳香族トリア
ミン、N,N'−ジフェニル−N,N'−ビス(3−メチルフ
ェニル)ビフェニル−4,4'−ジアミン等の芳香族ジ
アミン、N,N,N−トリフェニルアミン誘導体、α,
α,α',α'−テトラメチル−α,α'−ビス(4−ジ
−p−トリルアミノフェニル)−p−キシレン等が挙げ
られる。正孔輸送層は真空蒸着法、塗布法により形成さ
れる場合が多く、層厚は通常5〜200nmであり、好
ましくは10〜100nmである。
The hole transport layer 5 is required to efficiently transport the holes injected from the anode to the light emitting layer side. Therefore, the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is good,
It is desirable to use a material having a glass transition temperature of 70 ° C. or higher and having excellent heat resistance, in which impurities that become hole traps are unlikely to be generated during production or use. Materials that meet these requirements are
For example, aromatic diamine compounds such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, 4,
Aromatic amines such as 4'-bis [(N-1-naphthyl) -N-phenylamino] biphenyl and derivatives of triphenylbenzene, aromatic triamines having a starburst structure, N, N'-diphenyl-N, N Aromatic diamines such as'-bis (3-methylphenyl) biphenyl-4,4'-diamine, N, N, N-triphenylamine derivatives, α,
Examples include α, α ′, α′-tetramethyl-α, α′-bis (4-di-p-tolylaminophenyl) -p-xylene. The hole transport layer is often formed by a vacuum vapor deposition method or a coating method, and the layer thickness is usually 5 to 200 nm, preferably 10 to 100 nm.

【0024】陽極バッファ層6に使用する材料は、陽極
とのコンタクトが良く均一な薄膜が形成できることと、
融点が300℃以上、ガラス転移点が100℃以上の熱
的安定性が要求される。更にイオン化ポテンシャルが低
く、陽極からの正孔注入が容易なこと、正孔移動度が大
きいことが望ましい。このような要求を満たす材料とし
て、ポルフィリン誘導体やフタロシアニン化合物等が挙
げられる。陽極バッファ層6は真空蒸着法や塗布法にて
形成され、層厚は通常3〜100nmであり、好ましく
は10〜50nmである。
The material used for the anode buffer layer 6 has good contact with the anode and can form a uniform thin film.
Thermal stability with a melting point of 300 ° C or higher and a glass transition point of 100 ° C or higher is required. Further, it is desirable that the ionization potential is low, holes can be easily injected from the anode, and the hole mobility is high. Examples of materials that satisfy such requirements include porphyrin derivatives and phthalocyanine compounds. The anode buffer layer 6 is formed by a vacuum vapor deposition method or a coating method, and the layer thickness is usually 3 to 100 nm, preferably 10 to 50 nm.

【0025】陽極7は発光層への正孔注入を果たす。陽
極は通常インジウム及び/またはスズの酸化物などの金
属酸化物、アルミニウム、金、銀、ニッケル、パラジウ
ム、白金などの金属、ヨウ化銅等のハロゲン化金属、カ
ーボンブラック、あるいはポリ(3−メチルチオフェ
ン)、ポリピロール、ポリアニリン等の導電性高分子等
により構成される。陽極の厚さは、透明性が要求される
場合には、可視光の透過率を60%以上、好ましくは8
0%以上とすることが望ましく、通常5〜1000nm
であり、好ましくは10〜500nmである。透明性が
要求されず、不透明で良い場合は基板8と同じ材料を用
いても良い。陽極はスパッタリング法、真空蒸着法、電
子ビーム蒸着法、プラズマCVD法、及び塗布法により
形成されることが多く、中でもスパッタリング法や塗布
法は一度に大面積が形成可能であるため、比較的良く用
いられる。
The anode 7 serves to inject holes into the light emitting layer. The anode is usually a metal oxide such as indium and / or tin oxide, a metal such as aluminum, gold, silver, nickel, palladium, platinum, a halogenated metal such as copper iodide, carbon black, or poly (3-methyl). (Thiophene), polypyrrole, polyaniline, and other conductive polymers. When transparency is required, the thickness of the anode should be such that the visible light transmittance is 60% or more, preferably 8%.
0% or more is desirable, usually 5 to 1000 nm
And preferably 10 to 500 nm. If transparency is not required and opacity is acceptable, the same material as the substrate 8 may be used. The anode is often formed by a sputtering method, a vacuum vapor deposition method, an electron beam vapor deposition method, a plasma CVD method, and a coating method. Among them, the sputtering method and the coating method can form a large area at a time, and thus are relatively good. Used.

【0026】基板8は有機EL素子の支持体となるもの
で、ガラスや石英、金属板や金属箔、プラスチックフィ
ルムやシート等が用いられる。特にガラス板やポリエス
テル、ポリメタクリレート、ポリカーボネイト、ポリス
ルホン等の透明な合成樹脂が望ましい。
The substrate 8 serves as a support for the organic EL device, and glass, quartz, a metal plate, a metal foil, a plastic film, a sheet, or the like is used. In particular, glass plates and transparent synthetic resins such as polyester, polymethacrylate, polycarbonate, and polysulfone are desirable.

【0027】図2に陰極バッファ層2と電子輸送層3を
繰り返し4回積層した本発明の有機EL素子において、
陰極バッファ層2の厚みを陰極側から陽極側へ順に厚く
した場合を示す。このような構造にすることで、各陰極
バッファ層/電子輸送層界面で電子がなだれ状に増幅発
生し、発光層4側に向けて非常に高効率な電子注入効果
を発揮する。必要以上に電子を注入したくない場合や素
子の信頼性を第一に考える場合には、図5に示すように
陰極側を厚いバッファ層として、陽極側へ順に薄い陰極
バッファ層を積層する。基本的に注入電子数と注入正孔
数は1:1であることが望ましいが、正孔輸送層5や発
光層4の材料自体の電子輸送能力が乏しいために、正孔
注入数が電子注入数より低くなる場合も考えられる。こ
のような場合は、過剰に注入された電子が無効キャリア
となるため、有機EL素子発光における量子効率を下げ
る原因ともなり得る。本発明では、各材料の組み合わせ
により、陰極バッファ層と電子輸送層の膜厚及び陰極バ
ッファ層と電子輸送層の繰り返し周期数を、デバイスシ
ミュレーション技術等により予測し、発光特性と素子駆
動安定性から優位な点を任意に設定することが可能であ
るため、無効キャリア発生に起因する量子効率の低下を
防ぐことができる。
In the organic EL device of the present invention in which the cathode buffer layer 2 and the electron transport layer 3 are repeatedly laminated four times in FIG.
The case where the thickness of the cathode buffer layer 2 is sequentially increased from the cathode side to the anode side is shown. With such a structure, electrons are amplified and generated in an avalanche shape at each cathode buffer layer / electron transport layer interface, and a very highly efficient electron injection effect is exhibited toward the light emitting layer 4 side. When it is desired not to inject more electrons than necessary or when the reliability of the device is to be considered first, as shown in FIG. 5, the cathode side is a thick buffer layer, and the cathode side is thinly laminated in order to the anode side. Basically, it is desirable that the number of injected electrons and the number of injected holes are 1: 1. However, since the electron transporting ability of the material itself of the hole transport layer 5 and the light emitting layer 4 is poor, the number of injected holes is It may be lower than the number. In such a case, the excessively injected electrons serve as ineffective carriers, which may cause a decrease in quantum efficiency in light emission of the organic EL element. In the present invention, the thickness of the cathode buffer layer and the electron transport layer and the number of repetition cycles of the cathode buffer layer and the electron transport layer are predicted by a device simulation technique or the like by the combination of each material, and from the light emission characteristics and the element driving stability. Since the advantage can be arbitrarily set, it is possible to prevent the quantum efficiency from being lowered due to the generation of invalid carriers.

【0028】また、図6のように、陰極バッファ層2を
一定の厚さで作成し、電子輸送層3の厚さを任意に変化
させた結果、有機EL層全体が厚くなった場合でも、無
機/有機界面が素子の中に多く取り入れられているた
め、発光特性及び耐環境性等の信頼性の良好な有機EL
素子が得られる。 (実施例)次に、本発明を実施例によって具体的に説明
するが、本発明はその要旨を越えない限り、以下の実施
例に限定されるものではない。また、以下の実施例及び
比較例で作製した有機EL素子の層構造の確認にはオー
ジェ電子分光装置、紫外線光電子分光装置、エックス線
光電子分光分析装置、原子間力顕微鏡、エネルギーフィ
ルター透過型電子顕微鏡を用いた。 (実施例1)ガラス基板上にITO透明導電膜を150
nmの厚さで積層した。このITO膜付き基板を通常の
フォトリソグラフィ技術と塩酸エッチングを用いて2m
m幅のストライプパターン(陽極)を形成後、アセトン
による超音波洗浄、純水による超音波洗浄、イソプロピ
ルアルコールによる超音波洗浄を行ない、窒素ブローに
て乾燥させた。最後に紫外線オゾン洗浄を行ない、真空
蒸着装置へ設置後1×10-4Paになるまで、真空ポン
プにて排気した。以下、この装置を用いて蒸着を行な
う。まず、陽極バッファ層として、銅フタロシアニン
(化1)
Further, as shown in FIG. 6, even when the cathode buffer layer 2 is formed to have a constant thickness and the thickness of the electron transport layer 3 is arbitrarily changed, the organic EL layer becomes thick as a whole. Since many inorganic / organic interfaces are incorporated in the device, the organic EL has good reliability such as light emission characteristics and environmental resistance.
The device is obtained. (Examples) Next, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. Further, in order to confirm the layer structure of the organic EL elements produced in the following Examples and Comparative Examples, an Auger electron spectrometer, an ultraviolet photoelectron spectrometer, an X-ray photoelectron spectrometer, an atomic force microscope, an energy filter transmission electron microscope are used. Using. (Example 1) 150 transparent ITO conductive films were formed on a glass substrate.
Laminated to a thickness of nm. This ITO film-coated substrate is 2 m by using ordinary photolithography technology and hydrochloric acid etching.
After forming an m-width stripe pattern (anode), ultrasonic cleaning with acetone, ultrasonic cleaning with pure water, ultrasonic cleaning with isopropyl alcohol was performed, and the resultant was dried by nitrogen blow. Finally, ultraviolet ozone cleaning was carried out, and after installation in a vacuum vapor deposition apparatus, it was evacuated by a vacuum pump until it reached 1 × 10 −4 Pa. Hereinafter, vapor deposition is performed using this apparatus. First, as the anode buffer layer, copper phthalocyanine (Chemical formula 1)

【0029】[0029]

【化1】 [Chemical 1]

【0030】を温度150℃、真空度2×10-4Pa、
蒸着速度0.1nm/秒の条件で蒸着し、15nmの陽
極バッファ層を得た。次に正孔輸送層として、4,4'
−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕
ビフェニル(化2)
The temperature is 150 ° C., the degree of vacuum is 2 × 10 -4 Pa,
Vapor deposition was performed at a vapor deposition rate of 0.1 nm / sec to obtain a 15 nm anode buffer layer. Next, as a hole transport layer, 4,4 '
-Bis [N- (1-naphthyl) -N-phenylamino]
Biphenyl

【0031】[0031]

【化2】 [Chemical 2]

【0032】を、温度120℃、真空度2×10-4
a、蒸着速度0.1nm/秒の条件で蒸着し、30nm
の正孔輸送層を得た。引き続き発光層として、Alq3
(化3)
At a temperature of 120 ° C. and a vacuum degree of 2 × 10 -4 P
a, vapor deposition at a vapor deposition rate of 0.1 nm / sec, 30 nm
A hole transport layer of Subsequently, as a light emitting layer, Alq 3
(Chemical formula 3)

【0033】[0033]

【化3】 [Chemical 3]

【0034】と、キナクリドン誘導体(化4)And a quinacridone derivative (Chemical formula 4)

【0035】[0035]

【化4】 [Chemical 4]

【0036】をAlq3に対してキナクリドン誘導体が
重量%で2%になるようにそれぞれを別々の膜厚モニタ
ーで正確に監視しながら、真空度2×10-4Pa、Al
3を温度160℃、蒸着速度0.2nm/秒、キナク
リドン誘導体を温度120℃、蒸着速度0.1nm/秒
の条件で蒸着し、30nmの発光層を得た。さらに、電
子輸送層として、Alq3を温度160℃、真空度2×
10-4Pa、蒸着速度0.2nm/秒にて蒸着し、10
nmの電子輸送層を得た。引き続いて陰極バッファ層と
して、フッ化リチウム(LiF)を温度570℃、真空
度2×10-4Pa、蒸着速度0.1nm/秒の条件で蒸
着し、膜厚1nmの陰極バッファ層を得た。再度同一条
件で電子輸送層Alq3と陰極バッファ層LiFを交互
に2回、都合3回作成した。最後に陰極として、アルミ
ニウム製の蒸着用2mm幅シャドーマスクマスクを、素
子表面から5μm離れた位置に陽極と直交するように、
マニュピレータを用い設置し、100nmの厚さでアル
ミニウムを蒸着した。このようにして2mm×2mmサ
イズの発光面積部を有する有機EL素子が得られた。実
施例1の素子の断面構造は図1に示す模式図と同じもの
である。
While the quinacridone derivative was accurately monitored by a separate film thickness monitor so that the quinacridone derivative was 2% by weight relative to Alq 3 , the vacuum degree was 2 × 10 -4 Pa and the Al
q 3 was vapor-deposited under the conditions of a temperature of 160 ° C., a vapor deposition rate of 0.2 nm / sec, and a quinacridone derivative at a temperature of 120 ° C. and a vapor deposition rate of 0.1 nm / sec to obtain a light-emitting layer having a thickness of 30 nm. Further, Alq 3 is used as an electron transport layer at a temperature of 160 ° C. and a vacuum degree of 2 ×.
10 −4 Pa, vapor deposition rate of 0.2 nm / second
An electron transport layer of nm was obtained. Subsequently, as a cathode buffer layer, lithium fluoride (LiF) was vapor-deposited under the conditions of a temperature of 570 ° C., a vacuum degree of 2 × 10 −4 Pa and a vapor deposition rate of 0.1 nm / sec to obtain a cathode buffer layer having a film thickness of 1 nm. . Again, under the same conditions, the electron transport layer Alq 3 and the cathode buffer layer LiF were alternately formed twice, three times in total. Finally, as a cathode, a 2 mm wide shadow mask mask made of aluminum for vapor deposition is placed at a position 5 μm away from the device surface so as to be orthogonal to the anode.
It was installed using a manipulator, and aluminum was vapor-deposited to a thickness of 100 nm. Thus, an organic EL device having a 2 mm × 2 mm size light emitting area portion was obtained. The cross-sectional structure of the device of Example 1 is the same as the schematic view shown in FIG.

【0037】実施例1の素子特性を、陽極を正、陰極を
負の極性にして直流電圧を印加して評価した結果、輝度
1cd/m2を超えた時の印加電圧は2V、250mA
/cm2の電流密度が得られた時の印加電圧は8V、そ
の時の輝度は9,210cd/m2であった。この素子
を直流定電流密度15mA/cm2で駆動したときの初
期輝度は620cd/m2、初期駆動電圧は2.5V、
半減期は25,000時間であった。 (実施例2)電子輸送層Alq3を10nmとし、交互
に積層する陰極バッファ層LiFの膜厚を発光層側から
順に5、3、1、0.5nmとして、繰り返し4回積層
する以外は実施例1と同様に作製した素子を実施例2と
する。実施例2の素子の断面構造は図2に示す模式図と
同じものである。
The device characteristics of Example 1 were evaluated by applying a DC voltage with the positive polarity of the anode and the negative polarity of the cathode. As a result, when the luminance exceeded 1 cd / m 2 , the applied voltage was 2 V and 250 mA.
The applied voltage was 8 V when the current density of / cm 2 was obtained, and the brightness at that time was 9,210 cd / m 2 . When this element was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 620 cd / m 2 , the initial driving voltage was 2.5 V,
The half-life was 25,000 hours. (Example 2) The electron transport layer Alq3 was set to 10 nm, and the cathode buffer layers LiF to be alternately stacked were set to 5, 3, 1 , and 0.5 nm in order from the light emitting layer side, and stacked repeatedly 4 times. An element manufactured in the same manner as in Example 1 is called Example 2. The cross-sectional structure of the device of Example 2 is the same as the schematic view shown in FIG.

【0038】実施例2の素子特性を実施例1と同じ条件
にて評価したところ、同様にしてこのようにして作製さ
れた素子に、陽極を正、陰極を負の極性にして、直流電
圧を印加したところ、輝度1cd/m2を超えた時の印
加電圧は1.5V、250mA/cm2の電流密度が得
られた時の印加電圧は6V、その時の輝度は107,5
10cd/m2であった。この素子を直流定電流密度1
5mA/cm2で駆動したときの初期輝度は750cd
/m2、初期駆動電圧は2V、半減期は26,000時
間であった。 (実施例3)陰極バッファ層に酸化リチウムを用いた以
外は実施例1と同様に作製した素子を実施例3とする。
The device characteristics of Example 2 were evaluated under the same conditions as in Example 1. As a result, in the device thus manufactured, the anode was positive and the cathode was negative, and a DC voltage was applied. When applied, the applied voltage was 1.5 V when the brightness exceeded 1 cd / m 2 , the applied voltage was 6 V when a current density of 250 mA / cm 2 was obtained, and the brightness at that time was 107,5.
It was 10 cd / m 2 . This element is a DC constant current density 1
Initial brightness is 750 cd when driven at 5 mA / cm 2.
/ M 2 , the initial drive voltage was 2 V, and the half-life was 26,000 hours. (Example 3) An element manufactured in the same manner as in Example 1 except that lithium oxide was used for the cathode buffer layer is referred to as Example 3.

【0039】実施例3の素子特性を実施例1と同じ条件
で評価した。輝度1cd/m2を超えた時の印加電圧は
2.0V、250mA/cm2の電流密度が得られた時
の印加電圧は7.7V、その時の輝度は9,098cd
/m2であった。この素子を直流定電流密度15mA/
cm2で駆動したときの初期輝度は605cd/m2、初
期駆動電圧は2.5V、半減期は25,000時間であ
った。 (実施例4)陰極バッファ層LiFの膜厚を陰極側から
順に5、3、1nmとした以外は実施例1と同様に作製
した素子を実施例4とする。実施例4の素子の断面構造
は図5に示す模式図と同じものである。
The device characteristics of Example 3 were evaluated under the same conditions as in Example 1. The applied voltage is 2.0 V when the brightness exceeds 1 cd / m 2 , the applied voltage is 7.7 V when the current density of 250 mA / cm 2 is obtained, and the brightness at that time is 9,098 cd.
/ M 2 . This element has a DC constant current density of 15 mA /
The initial luminance when driven at cm 2 was 605 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 25,000 hours. (Example 4) An element manufactured in the same manner as in Example 1 except that the film thickness of the cathode buffer layer LiF was 5, 3, and 1 nm in order from the cathode side is set as Example 4. The cross-sectional structure of the device of Example 4 is the same as the schematic diagram shown in FIG.

【0040】実施例4の素子特性を実施例1と同じ条件
で評価した。輝度1cd/m2を超えた時の印加電圧は
2.8V、250mA/cm2の電流密度が得られた時
の印加電圧は8V、その時の輝度は8,820cd/m
2であった。この素子を直流定電流密度15mA/cm2
で駆動したときの初期輝度は595cd/m2、初期駆
動電圧は2.5V、半減期は32,000時間であっ
た。 (実施例5)電子輸送層Alq3の膜厚を陰極側から順
に5、10、30nmとした以外は実施例1と同様に作
製した素子を実施例5とする。実施例5の素子の断面構
造は図6に示す模式図と同じものである。
The device characteristics of Example 4 were evaluated under the same conditions as in Example 1. The applied voltage when the brightness exceeds 1 cd / m 2 is 2.8 V, the applied voltage is 8 V when the current density of 250 mA / cm 2 is obtained, and the brightness at that time is 8,820 cd / m 2.
Was 2 . This element was set to a DC constant current density of 15 mA / cm 2
The initial luminance was 595 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 32,000 hours. (Example 5) as an electron transporting layer in Example 5 the element manufactured in the same manner as in Example 1 except that the film thickness of Alq 3 was 5,10,30nm in order from the cathode side. The sectional structure of the element of Example 5 is the same as the schematic view shown in FIG.

【0041】実施例5の素子特性を実施例1と同じ条件
で評価した。輝度1cd/m2を超えた時の印加電圧は
3.0V、250mA/cm2の電流密度が得られた時
の印加電圧は8.5V、その時の輝度は9,610cd
/m2であった。この素子を直流定電流密度15mA/
cm2で駆動したときの初期輝度は580cd/m2、初
期駆動電圧は2.5V、半減期は31,000時間であ
った。 (比較例1)電子輸送層Alq3を30nm、陰極バッ
ファ層LiFを1nmの厚さでそれぞれ一回だけ製膜す
る以外は、実施例1と同様に作製した素子を比較例1と
する。比較例1の素子の断面構造は図3に示す模式図と
同じものである。
The device characteristics of Example 5 were evaluated under the same conditions as in Example 1. The applied voltage is 3.0 V when the brightness exceeds 1 cd / m 2 , the applied voltage is 8.5 V when a current density of 250 mA / cm 2 is obtained, and the brightness at that time is 9,610 cd.
/ M 2 . This element has a DC constant current density of 15 mA /
The initial luminance when driven at cm 2 was 580 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 31,000 hours. Comparative Example 1 An element manufactured in the same manner as in Example 1 except that the electron transport layer Alq 3 is formed to a thickness of 30 nm and the cathode buffer layer LiF is formed to a thickness of 1 nm only once is set as Comparative example 1. The cross-sectional structure of the element of Comparative Example 1 is the same as the schematic diagram shown in FIG.

【0042】比較例1の素子特性を実施例1と同じ条件
で評価した。輝度1cd/m2を超えた時の印加電圧は
5.0V、250mA/cm2の電流密度が得られた時
の印加電圧は18V、その時の輝度は2,110cd/
2であった。この素子を直流定電流密度15mA/c
2で駆動したときの初期輝度は210cd/m2、初期
駆動電圧は7.5V、半減期は115時間であった。 (比較例2)陰極バッファ層LiFを0.5nmとする
以外は、比較例1と同様に作製した素子を比較例2とす
る。比較例2の素子の断面構造は図4に示す模式図と同
じものである。
The device characteristics of Comparative Example 1 were evaluated under the same conditions as in Example 1. The applied voltage is 5.0 V when the brightness exceeds 1 cd / m 2 , the applied voltage is 18 V when the current density of 250 mA / cm 2 is obtained, and the brightness at that time is 2,110 cd / m 2.
It was m 2 . This element has a DC constant current density of 15 mA / c
When driven at m 2 , initial luminance was 210 cd / m 2 , initial driving voltage was 7.5 V, and half-life was 115 hours. (Comparative Example 2) An element manufactured in the same manner as in Comparative Example 1 except that the cathode buffer layer LiF has a thickness of 0.5 nm is referred to as Comparative Example 2. The cross-sectional structure of the element of Comparative Example 2 is the same as the schematic diagram shown in FIG.

【0043】比較例2の素子特性を評価するため、15
mA/cm2の電流密度で30分駆動した後、素子を発
光させると、発光可能面積に対してダークスポットが4
0%存在していた。そこで、断面構造を観察すると、陰
極と陰極バッファ層の間に空間ができていることが判明
した。また同一条件で作った別の素子では、陰極と陰極
バッファ層との空間と、更に正孔輸送層4,4'−ビス
〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェ
ニルが水分の混入により結晶化していることも観察され
た。
In order to evaluate the device characteristics of Comparative Example 2, 15
When the device was made to emit light after being driven at a current density of mA / cm 2 for 30 minutes, there were 4 dark spots in the light emitting area.
0% was present. Therefore, when the cross-sectional structure was observed, it was found that a space was formed between the cathode and the cathode buffer layer. In another device manufactured under the same conditions, the space between the cathode and the cathode buffer layer, and the hole transport layer 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl is the moisture content. It was also observed that it was crystallized by mixing.

【0044】[0044]

【発明の効果】本発明によれば、有機EL素子における
効率の高い電子注入能と、良好な動作安定性を有する素
子構造を提供できるという有利な効果が得られる。
According to the present invention, it is possible to obtain an advantageous effect that it is possible to provide an element structure having a highly efficient electron injection ability in an organic EL element and good operation stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態である実施例1の有機E
L素子模式断面図
FIG. 1 is an organic E of Example 1, which is an embodiment of the present invention.
L element schematic cross-sectional view

【図2】本発明の別の形態である実施例2の有機EL素
子の模式断面図
FIG. 2 is a schematic cross-sectional view of an organic EL element of Example 2 which is another mode of the present invention.

【図3】従来の有機EL層構造を持つ有機EL素子の動
作時の電流リーク発生原因を示す模式断面図
FIG. 3 is a schematic cross-sectional view showing a cause of current leakage during operation of an organic EL element having a conventional organic EL layer structure.

【図4】従来の有機EL層構造を持つ有機EL素子の動
作時の不純物発生原因を示す模式断面図
FIG. 4 is a schematic cross-sectional view showing a cause of generation of impurities during operation of an organic EL element having a conventional organic EL layer structure.

【図5】本発明の別の形態である実施例4の有機EL素
子の模式断面図
FIG. 5 is a schematic cross-sectional view of an organic EL element of Example 4, which is another mode of the present invention.

【図6】本発明の別の形態である実施例5有機EL素子
の模式断面図
FIG. 6 is a schematic cross-sectional view of an organic EL device of Example 5, which is another mode of the present invention.

【符号の説明】[Explanation of symbols]

1…陰極 2…陰極バッファ層 3…電子輸送層 4…発光層 5…正孔輸送層 6…陽極バッファ層 7…陽極 8…基板 9…従来の有機EL層 10…有機EL層の不連続箇所、及び酸素や水分など不
純物の通り道 11…2層陰極
DESCRIPTION OF SYMBOLS 1 ... Cathode 2 ... Cathode buffer layer 3 ... Electron transport layer 4 ... Emitting layer 5 ... Hole transport layer 6 ... Anode buffer layer 7 ... Anode 8 ... Substrate 9 ... Conventional organic EL layer 10 ... Discontinuous portion of organic EL layer , And passage of impurities such as oxygen and water 11 ... Two-layer cathode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 陰極と、陰極バッファ層と、電子輸送
層、発光層、正孔輸送層、陽極バッファ層からなる有機
EL層と、陽極と、基板からなる有機EL素子におい
て、電子輸送層と陰極バッファ層とを交互に、少なくと
も2回以上積層することを特徴とする有機EL素子。
1. An organic EL layer including a cathode, a cathode buffer layer, an electron transport layer, a light emitting layer, a hole transport layer, and an anode buffer layer, and an electron transport layer in an organic EL device including an anode and a substrate. An organic EL device characterized in that a cathode buffer layer is alternately laminated at least twice or more.
【請求項2】 前記電子輸送層及び陰極バッファ層の各
層厚と積層回数により、発光層へ注入される電子数を任
意に制御することを特徴とする請求項1に記載の有機E
L素子。
2. The organic E according to claim 1, wherein the number of electrons injected into the light emitting layer is arbitrarily controlled by the thickness of each of the electron transport layer and the cathode buffer layer and the number of laminations.
L element.
【請求項3】 前記陰極バッファ層の少なくとも1層が
ハロゲン化合物であることを特徴とする請求項1に記載
の有機EL素子。
3. The organic EL device according to claim 1, wherein at least one of the cathode buffer layers is a halogen compound.
【請求項4】 前記陰極バッファ層の少なくとも1層が
酸化物であることを特徴とする請求項1に記載の有機E
L素子。
4. The organic E according to claim 1, wherein at least one of the cathode buffer layers is an oxide.
L element.
【請求項5】 前記陰極バッファ層の各膜厚が0.2〜
30nmであることを特徴とする請求項1に記載の有機
EL素子。
5. The cathode buffer layers each have a thickness of 0.2 to
It is 30 nm, The organic EL element of Claim 1 characterized by the above-mentioned.
【請求項6】 前記電子輸送層の各膜厚が5〜1000
nmであることを特徴とする請求項1に記載の有機EL
素子。
6. The electron transport layer has a thickness of 5 to 1000.
The organic EL according to claim 1, wherein
element.
JP2002027510A 2002-02-05 2002-02-05 Organic EL device Expired - Fee Related JP4394331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027510A JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027510A JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Publications (2)

Publication Number Publication Date
JP2003229269A true JP2003229269A (en) 2003-08-15
JP4394331B2 JP4394331B2 (en) 2010-01-06

Family

ID=27748996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027510A Expired - Fee Related JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Country Status (1)

Country Link
JP (1) JP4394331B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191000A (en) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd Light-emitting element
WO2006018914A1 (en) * 2004-08-20 2006-02-23 Japan Science And Technology Agency Organic semiconductor laser device and organic electroluminescence device
JP2006173550A (en) * 2004-02-18 2006-06-29 Sony Corp Display element
JP2006190982A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Light emitting device, light emitting equipment and electronic apparatus
JP2006519492A (en) * 2003-02-25 2006-08-24 サムスン エレクトロニクス カンパニー リミテッド Silicon crystallization system and silicon crystallization method
WO2006109878A1 (en) * 2005-04-11 2006-10-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and vapor deposition apparatus
JP2011086935A (en) * 2009-10-14 2011-04-28 Samsung Mobile Display Co Ltd Organic light-emitting device and manufacturing method therefor
JP2011187959A (en) * 2010-03-08 2011-09-22 Samsung Mobile Display Co Ltd Organic light-emitting device, and method of manufacturing the same
WO2015190550A1 (en) * 2014-06-12 2015-12-17 シャープ株式会社 Organic element
JP2019160796A (en) * 2018-03-12 2019-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. Electroluminescent device and display device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519492A (en) * 2003-02-25 2006-08-24 サムスン エレクトロニクス カンパニー リミテッド Silicon crystallization system and silicon crystallization method
US7879700B2 (en) 2003-02-25 2011-02-01 Samsung Electronics Co., Ltd. Crystallization apparatus and method of amorphous silicon
JP4731893B2 (en) * 2003-12-02 2011-07-27 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2005191000A (en) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2006173550A (en) * 2004-02-18 2006-06-29 Sony Corp Display element
WO2006018914A1 (en) * 2004-08-20 2006-02-23 Japan Science And Technology Agency Organic semiconductor laser device and organic electroluminescence device
JP2006190982A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Light emitting device, light emitting equipment and electronic apparatus
US8622780B2 (en) 2005-04-11 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and vapor deposition apparatus
WO2006109878A1 (en) * 2005-04-11 2006-10-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and vapor deposition apparatus
US8125144B2 (en) 2005-04-11 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and vapor deposition apparatus
JP2011086935A (en) * 2009-10-14 2011-04-28 Samsung Mobile Display Co Ltd Organic light-emitting device and manufacturing method therefor
JP2011187959A (en) * 2010-03-08 2011-09-22 Samsung Mobile Display Co Ltd Organic light-emitting device, and method of manufacturing the same
US9472767B2 (en) 2010-03-08 2016-10-18 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
WO2015190550A1 (en) * 2014-06-12 2015-12-17 シャープ株式会社 Organic element
US10103202B2 (en) 2014-06-12 2018-10-16 Sharp Kabushiki Kaisha Organic element
JP2019160796A (en) * 2018-03-12 2019-09-19 三星電子株式会社Samsung Electronics Co.,Ltd. Electroluminescent device and display device
US11581504B2 (en) 2018-03-12 2023-02-14 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising the same
JP7265893B2 (en) 2018-03-12 2023-04-27 三星電子株式会社 Electroluminescence device and display device

Also Published As

Publication number Publication date
JP4394331B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP5540048B2 (en) Light emitting device
JP4939284B2 (en) Organic electroluminescent device
US6121727A (en) Organic electroluminescent device
JP4790565B2 (en) Organic electroluminescent display element and method for manufacturing the same
WO2010013673A1 (en) Organic electroluminescence element and production method of same
US20060138656A1 (en) Electrode for an electronic device
JP6060361B2 (en) Organic light emitting device
JP2004319424A (en) Organic electroluminescent display device
WO2011074633A1 (en) Organic electroluminescent element
JP2004288619A (en) Efficient organic electroluminescent element
JP2003031371A (en) Organic electroluminescent element and blue light emitting element
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP2011522391A (en) Organic electroluminescence device
JP2004014511A (en) Organic light-emitting diode device
JP2001237080A (en) Organic electroluminescence element
JP4394331B2 (en) Organic EL device
TWI473315B (en) Organic light-emitting device
JP2007059783A (en) Organic el device, method for manufacturing the same and application thereof
JPH07166160A (en) Organic thin film el element
JP3910010B2 (en) Organic electroluminescence device
US8102114B2 (en) Method of manufacturing an inverted bottom-emitting OLED device
JP4170812B2 (en) Organic EL device and manufacturing method thereof
JP2000348865A (en) Organic electroluminescent element
JP2007096270A (en) Electroluminescent element
JP2005339893A (en) Organic el element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080828

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees