JP4394331B2 - Organic EL device - Google Patents

Organic EL device Download PDF

Info

Publication number
JP4394331B2
JP4394331B2 JP2002027510A JP2002027510A JP4394331B2 JP 4394331 B2 JP4394331 B2 JP 4394331B2 JP 2002027510 A JP2002027510 A JP 2002027510A JP 2002027510 A JP2002027510 A JP 2002027510A JP 4394331 B2 JP4394331 B2 JP 4394331B2
Authority
JP
Japan
Prior art keywords
organic
layer
cathode
oxide
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002027510A
Other languages
Japanese (ja)
Other versions
JP2003229269A (en
Inventor
幹宏 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002027510A priority Critical patent/JP4394331B2/en
Publication of JP2003229269A publication Critical patent/JP2003229269A/en
Application granted granted Critical
Publication of JP4394331B2 publication Critical patent/JP4394331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機EL素子に関し、詳しくは、有機化合物の薄膜に電界を印加して光を放出する素子に用いられる無機/有機接合構造に関する。
【0002】
【従来の技術】
有機発光素子(有機EL素子等、発光ディスプレイやレーザー素子)は、強い蛍光を持つ有機絶縁体薄膜の両面に取り付けた電極に直流電圧を印加すると、陽極及び陰極からそれぞれ正負の電荷が注入され、生じた電場により正負の電荷は薄膜中を移動し、ある確率で再結合する際に放出されるエネルギーを蛍光分子の一重項励起状態(分子励起子)の形成に消費し、その発光量子効率の割合だけ外部に光を放出して基底状態に戻り、この際放出される光を利用するものである。
【0003】
上記の有機絶縁体薄膜は、例えば電子注入層、電子輸送層、発光層、正孔輸送層等からなり、総称して有機EL層と呼ばれる。陰極にはアルミニウムやマグネシウム合金(MgAg、MgCa等)が使われることが多く、陽極にはEL発光を取り出すために、ITO等の透明電極が用いられる事が多い。また陰極、陽極それぞれと有機EL層の間には、バッファ層が形成される場合が多い。
【0004】
有機ELデバイスに用いられる陰極構造は、特開平10−74586に開示されているような2層構造を有するものが知られている。これによると、陰極は有機EL層に接触するフッ化物層と、このフッ化物層に接触する導電層から構成されている。電子注入機能を司る陰極としては、低い仕事関数を有する金属を用いることが望ましい。しかしながら低仕事関数を有する金属は大気による酸化が常に問題となる。そこで、フッ化物などの極薄層を導電層と有機EL層の間に製膜することで、耐酸化性を向上させながら、低い動作電圧及び低い電流密度で高いデバイス効率を示す素子の作成に成功している。
【0005】
【発明が解決しようとする課題】
しかし、現在、更なる視野効率向上の為に、効率の良い電子注入電極と良好な動作安定性を有する有機EL素子が求められおり、従来の有機EL材料における電子輸送性能では、デバイスの高効率化、高信頼性を考えると不十分である。
【0006】
有機ELデバイスにおいて、最も一般的に陽極に用いられる材料はITOであるが、ITOは基本的に多結晶性膜であり、表面凹凸が〜20nm程度存在する。図3に示すように陽極7の表面に凹凸を残したまま、電子輸送層3、発光層4、正孔輸送層5、陽極バッファ層6からなる有機EL層9と陰極1、陰極バッファ層2からなる2層陰極11を製膜すると有機EL層が不連続になったり、実際に素子を動作させた場合には、電界が不均一に印加されたりして、ダークスポットと呼ばれる非発光点(面)が形成され、素子発光特性として深刻な問題となる。有機EL層9全体の厚みを増やすことで有機EL層の不連続箇所を減らしたり、陰極と陽極との空間的距離を離したりすることも可能であるが、有機EL層材料の電子物性を考慮すると信頼性の面では改善が見られても、素子発光特性面での改善は見られない。ITO表面に研磨処理を施して表面ラフネスを下げることで、電界不均一によるダークスポットの形成を防止することも可能であるが、時間的ロス、コストの問題が発生してしまう。
【0007】
また、従来の有機EL素子のフッ化物層は0.5〜1nm程度と極薄層である為、製膜条件によっては膜が不連続となり易い。その結果、図4に示すように有機EL層9と2層陰極11とのコンタクトが不十分なため陰極が浮き上がる現象や、駆動時に発生する熱で有機EL層9が劣化して発生した酸素等の不純物10、あるいは陽極7の表面凹凸に由来して浸入する大気中の水分や酸素等の不純物10が、電界の不均一な印加により拡散し、2層陰極11まで到達した結果、陰極が浮き上がる現象が起きている。陰極の有機EL層からの剥離は、そのままダークスポットとなるため、有機EL素子の発光に関する信頼性を限りなく損なうことになる。
【0008】
本発明では上記課題を解決するために、電子輸送層と陰極バッファ層とを交互に少なくとも2回以上積層するように構成した有機EL素子を提案する。
【0009】
【課題を解決するための手段】
本発明は、陰極と、陰極バッファ層と、電子輸送層、発光層、正孔輸送層、陽極バッファ層からなる有機EL層と、陽極と、基板からなる有機EL素子において、前記電子輸送層と前記陰極バッファ層とが交互に、少なくとも2回以上積層されてなり、前記陰極バッファ層が、アルカリ金属ハロゲン化合物、アルカリ土類金属ハロゲン化合物又は酸化リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリウム、酸化セシウム、酸化ストロンチウム、酸化マグネシウム及び酸化カルシウムから選択される金属酸化物からなることを特徴とする。
【0010】
本発明の有機EL素子は、交互に積層される陰極バッファ層と電子輸送層の各層厚と数により、発光層へ注入される電子数を、任意に制御することを特徴とする。
【0011】
本発明の有機EL素子は、交互に積層される陰極バッファ層の少なくとも1層がフッ化物等のハロゲン化合物であることを特徴とする。
【0012】
本発明の有機EL素子は、交互に積層される陰極バッファ層の少なくとも1層が酸化物であることを特徴とする。
【0013】
本発明の有機EL素子は、交互に積層される陰極バッファ層の各膜厚が0.2〜15nmであることを特徴とする。
【0014】
本発明の有機EL素子は、交互に積層する電子輸送層の各膜厚が10〜1000nmであることを特徴とする。
【0015】
有機EL素子において、発光層における1:1の電子−正孔対の形成が非常に重要であり、余剰のキャリアは素子の発光効率、信頼性を大きく損なう為、各種有機材料から成る電子輸送材料、正孔輸送材料の組み合わせに対応できる構造が必要である。本発明は、特に電子輸送効率を素子構造から正確に制御することが特徴である。具体的には、発光層へ注入される電子の数を、交互に積層する陰極バッファ層と電子輸送層の各層厚と積層回数により、任意に制御するものである。
【0016】
さらに電子輸送層と陰極バッファ層とを交互に少なくとも2回以上積層する構造にすること、すなわち有機/無機界面構造を素子の中に積極的に取り入れることで、電子増幅効果により電子注入効率を高めつつ、陰極と陽極の空間的距離を離したことが特徴である。空間的距離を離したことにより、外圧や陰極、陽極表面の構造上の突起などに起因する素子動作時の電界不均一による電流リーク、ダークスポットの発生を防止し、有機/無機界面の繰り返しにより、大気中に存在する水分や酸素の拡散、更には陰極、陽極成分、あるいは正孔輸送層等の有機EL層構成成分の反応、拡散による陰極剥離及び素子劣化を防止している。
【0017】
【発明の実施の形態】
以下に本発明の有機EL素子について添付図面に従い説明する。図1は本発明による有機EL素子の模式図であり、1は陰極、2は陰極バッファ層、3は電子輸送層、4は発光層、5は正孔輸送層、6は陽極バッファ層、7は陽極、8は基板を各々示す。
【0018】
陰極1に用いられる材料は、一般的に低仕事関数の金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属、あるいは、これらを主成分とする合金が望ましい。また、大気中で比較的安定な金属に低仕事関数の金属を微量ドープした材料を用いることも可能である。陰極の厚さは通常0.1nm〜10μmであり、好ましくは50nm〜1μmである。陰極は、真空蒸着法、スパッタリング法、電子ビーム蒸着法、プラズマCVD法、及び塗布法により形成されることが多い。真空蒸着法では、材料を入れた坩堝を真空容器内に設置して、適当な真空ポンプで10-4Pa程度まで排気後、坩堝を加熱して材料を目的の膜厚だけ昇華または蒸発させることで形成し、塗布法では適当なバインダー樹脂溶液や塗布性改良材に分散した導電性金属微粒子を、スピンコートやインクジェット等で目的とする箇所へ塗布して形成する。
【0019】
陰極バッファ層2は、陰極と有機EL層との密着性を向上させるとともに、陰極材料の有機発光層側への拡散を防止し、さらに陰極からの電子注入効率を向上させる機能を兼ね備える。陰極バッファ層に用いられる材料は、アルカリ金属ハロゲン化合物、アルカリ土類金属ハロゲン化合物や各種酸化物である。ハロゲンとはフッ素、塩素、臭素、ヨウ素、アスタチンの5元素であるが、本発明に用いられるハロゲン化合物としてはフッ化物、塩化物、臭化物、ヨウ化物が好ましい。具体的に好ましいハロゲン化合物を列挙すると、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化カルシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、塩化リチウム、塩化カルシウム、塩化ナトリウム、塩化マグネシウム、塩化ストロンチウム、塩化バリウム、臭化リチウム、臭化カルシウム、臭化マグネシウム、臭化ストロンチウム、臭化バリウム等である。また、本発明に用いられる各種酸化物として具体的に好ましい酸化物を列挙すると、酸化リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリウム、酸化セシウム、酸化ストロンチウム、酸化マグネシウム、及び酸化カルシウム等である。各々の陰極バッファ層は同じ材料を用いても、異種材料を用いても構わない。陰極バッファ層は通常真空蒸着法、スパッタリング法、電子ビーム蒸着法により形成され、各層厚は0.2nm〜30nmであり、好ましくは0.2〜15nmである。
【0020】
電子輸送層3は、電界を与えられた電極間において、陰極からの電子を効率よく正孔輸送層の方向に輸送することができる化合物より形成される。これら化合物には電子親和力が大きく、電子移動度が大きく、安定性に優れ、製造時や使用時に電子のトラップとなる不純物が発生しにくいことが要求される。このような条件を満たす化合物材料としては、テトラフェニルブタジエン等の芳香族化合物、Alq3等の金属錯体、10−ハイドロキシベンゾ〔h〕キノリン金属錯体、混合配位子アルミニウムキレート錯体、シクロペンタジエン誘導体、ぺリノン誘導体、オキサジアゾール誘導体、ビススチリルベンゼン誘導体、ぺリレン誘導体、クマリン化合物、希土類錯体、ジスチリルピラジン誘導体、p−フェニレン化合物、チアジアゾロピリジン誘導体、ピロロピリジン誘導体、ナフチリジン誘導体等が挙げられる。各々の電子輸送層に、上記のような材料を一種、もしくは複数種用いても構わない。電子輸送層は真空蒸着法あるいは塗布法を用いて形成されることが多く、各層厚は通常、5〜1000nmであり、好ましくは10〜100nmである。
【0021】
この陰極バッファ層2と電子輸送層3をナノメートル以下のオーダーで制御し交互に積層することが本発明の最大の特徴である。
【0022】
発光層4は素子の発光効率を向上させることに併せて、発光色を変える目的で作成される。発光色を変える例としては、例えばAlq3をホスト材料とし、クマリン等のレーザー用蛍光色素をドープすること等が知られている。電子輸送層をホスト材料として、蛍光色素をドープすることは、素子の駆動寿命を改善する目的においても重要である。例えばAlq3をホスト材料とし、ルブレンに代表されるナフタセン誘導体、キナクリドン誘導体、ペリレン誘導体等の縮合多環芳香族環を、ホスト材料に対して0.1〜10重量%ドープすることにより、素子の発光特性、特に駆動安定性を大きく向上させることができる。これら発光層は真空蒸着法、塗布法により形成される場合が多く、層厚は通常5〜200nmであり、好ましくは10〜100nmである。
【0023】
正孔輸送層5には、陽極から注入された正孔を効率よく発光層側へ輸送することが要求される。その為にはイオン化ポテンシャルが小さく、可視光に対する透明性が高く、正孔移動度が大きく、安定性が良く、製造時や使用時に正孔のトラップとなる不純物が発生しにくい、ガラス転移温度が70℃以上である耐熱性に優れた材料が望ましい。このような要求を満たす材料は、例えば、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン等の芳香族ジアミン化合物、4,4'−ビス〔(N−1−ナフチル)−N−フェニルアミノ〕ビフェニル等の芳香族アミン、トリフェニルベンゼンの誘導体でスターバースト構造を有する芳香族トリアミン、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)ビフェニル−4,4'−ジアミン等の芳香族ジアミン、N,N,N−トリフェニルアミン誘導体、α,α,α',α'−テトラメチル−α,α'−ビス(4−ジ−p−トリルアミノフェニル)−p−キシレン等が挙げられる。正孔輸送層は真空蒸着法、塗布法により形成される場合が多く、層厚は通常5〜200nmであり、好ましくは10〜100nmである。
【0024】
陽極バッファ層6に使用する材料は、陽極とのコンタクトが良く均一な薄膜が形成できることと、融点が300℃以上、ガラス転移点が100℃以上の熱的安定性が要求される。更にイオン化ポテンシャルが低く、陽極からの正孔注入が容易なこと、正孔移動度が大きいことが望ましい。このような要求を満たす材料として、ポルフィリン誘導体やフタロシアニン化合物等が挙げられる。陽極バッファ層6は真空蒸着法や塗布法にて形成され、層厚は通常3〜100nmであり、好ましくは10〜50nmである。
【0025】
陽極7は発光層への正孔注入を果たす。陽極は通常インジウム及び/またはスズの酸化物などの金属酸化物、アルミニウム、金、銀、ニッケル、パラジウム、白金などの金属、ヨウ化銅等のハロゲン化金属、カーボンブラック、あるいはポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。陽極の厚さは、透明性が要求される場合には、可視光の透過率を60%以上、好ましくは80%以上とすることが望ましく、通常5〜1000nmであり、好ましくは10〜500nmである。透明性が要求されず、不透明で良い場合は基板8と同じ材料を用いても良い。陽極はスパッタリング法、真空蒸着法、電子ビーム蒸着法、プラズマCVD法、及び塗布法により形成されることが多く、中でもスパッタリング法や塗布法は一度に大面積が形成可能であるため、比較的良く用いられる。
【0026】
基板8は有機EL素子の支持体となるもので、ガラスや石英、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板やポリエステル、ポリメタクリレート、ポリカーボネイト、ポリスルホン等の透明な合成樹脂が望ましい。
【0027】
図2に陰極バッファ層2と電子輸送層3を繰り返し4回積層した本発明の有機EL素子において、陰極バッファ層2の厚みを陰極側から陽極側へ順に厚くした場合を示す。このような構造にすることで、各陰極バッファ層/電子輸送層界面で電子がなだれ状に増幅発生し、発光層4側に向けて非常に高効率な電子注入効果を発揮する。必要以上に電子を注入したくない場合や素子の信頼性を第一に考える場合には、図5に示すように陰極側を厚いバッファ層として、陽極側へ順に薄い陰極バッファ層を積層する。基本的に注入電子数と注入正孔数は1:1であることが望ましいが、正孔輸送層5や発光層4の材料自体の電子輸送能力が乏しいために、正孔注入数が電子注入数より低くなる場合も考えられる。このような場合は、過剰に注入された電子が無効キャリアとなるため、有機EL素子発光における量子効率を下げる原因ともなり得る。本発明では、各材料の組み合わせにより、陰極バッファ層と電子輸送層の膜厚及び陰極バッファ層と電子輸送層の繰り返し周期数を、デバイスシミュレーション技術等により予測し、発光特性と素子駆動安定性から優位な点を任意に設定することが可能であるため、無効キャリア発生に起因する量子効率の低下を防ぐことができる。
【0028】
また、図6のように、陰極バッファ層2を一定の厚さで作成し、電子輸送層3の厚さを任意に変化させた結果、有機EL層全体が厚くなった場合でも、無機/有機界面が素子の中に多く取り入れられているため、発光特性及び耐環境性等の信頼性の良好な有機EL素子が得られる。
(実施例)
次に、本発明を実施例によって具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、以下の実施例及び比較例で作製した有機EL素子の層構造の確認にはオージェ電子分光装置、紫外線光電子分光装置、エックス線光電子分光分析装置、原子間力顕微鏡、エネルギーフィルター透過型電子顕微鏡を用いた。
(実施例1)
ガラス基板上にITO透明導電膜を150nmの厚さで積層した。このITO膜付き基板を通常のフォトリソグラフィ技術と塩酸エッチングを用いて2mm幅のストライプパターン(陽極)を形成後、アセトンによる超音波洗浄、純水による超音波洗浄、イソプロピルアルコールによる超音波洗浄を行ない、窒素ブローにて乾燥させた。最後に紫外線オゾン洗浄を行ない、真空蒸着装置へ設置後1×10-4Paになるまで、真空ポンプにて排気した。以下、この装置を用いて蒸着を行なう。まず、陽極バッファ層として、銅フタロシアニン(化1)
【0029】
【化1】

Figure 0004394331
【0030】
を温度150℃、真空度2×10-4Pa、蒸着速度0.1nm/秒の条件で蒸着し、15nmの陽極バッファ層を得た。次に正孔輸送層として、4,4'−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(化2)
【0031】
【化2】
Figure 0004394331
【0032】
を、温度120℃、真空度2×10-4Pa、蒸着速度0.1nm/秒の条件で蒸着し、30nmの正孔輸送層を得た。引き続き発光層として、Alq3(化3)
【0033】
【化3】
Figure 0004394331
【0034】
と、キナクリドン誘導体(化4)
【0035】
【化4】
Figure 0004394331
【0036】
をAlq3に対してキナクリドン誘導体が重量%で2%になるようにそれぞれを別々の膜厚モニターで正確に監視しながら、真空度2×10-4Pa、Alq3を温度160℃、蒸着速度0.2nm/秒、キナクリドン誘導体を温度120℃、蒸着速度0.1nm/秒の条件で蒸着し、30nmの発光層を得た。さらに、電子輸送層として、Alq3を温度160℃、真空度2×10-4Pa、蒸着速度0.2nm/秒にて蒸着し、10nmの電子輸送層を得た。引き続いて陰極バッファ層として、フッ化リチウム(LiF)を温度570℃、真空度2×10-4Pa、蒸着速度0.1nm/秒の条件で蒸着し、膜厚1nmの陰極バッファ層を得た。再度同一条件で電子輸送層Alq3と陰極バッファ層LiFを交互に2回、都合3回作成した。最後に陰極として、アルミニウム製の蒸着用2mm幅シャドーマスクマスクを、素子表面から5μm離れた位置に陽極と直交するように、マニュピレータを用い設置し、100nmの厚さでアルミニウムを蒸着した。このようにして2mm×2mmサイズの発光面積部を有する有機EL素子が得られた。実施例1の素子の断面構造は図1に示す模式図と同じものである。
【0037】
実施例1の素子特性を、陽極を正、陰極を負の極性にして直流電圧を印加して評価した結果、輝度1cd/m2を超えた時の印加電圧は2V、250mA/cm2の電流密度が得られた時の印加電圧は8V、その時の輝度は9,210cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は620cd/m2、初期駆動電圧は2.5V、半減期は25,000時間であった。
(実施例2)
電子輸送層Alq3を10nmとし、交互に積層する陰極バッファ層LiFの膜厚を発光層側から順に5、3、1、0.5nmとして、繰り返し4回積層する以外は実施例1と同様に作製した素子を実施例2とする。実施例2の素子の断面構造は図2に示す模式図と同じものである。
【0038】
実施例2の素子特性を実施例1と同じ条件にて評価したところ、同様にしてこのようにして作製された素子に、陽極を正、陰極を負の極性にして、直流電圧を印加したところ、輝度1cd/m2を超えた時の印加電圧は1.5V、250mA/cm2の電流密度が得られた時の印加電圧は6V、その時の輝度は107,510cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は750cd/m2、初期駆動電圧は2V、半減期は26,000時間であった。
(実施例3)
陰極バッファ層に酸化リチウムを用いた以外は実施例1と同様に作製した素子を実施例3とする。
【0039】
実施例3の素子特性を実施例1と同じ条件で評価した。輝度1cd/m2を超えた時の印加電圧は2.0V、250mA/cm2の電流密度が得られた時の印加電圧は7.7V、その時の輝度は9,098cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は605cd/m2、初期駆動電圧は2.5V、半減期は25,000時間であった。
(実施例4)
陰極バッファ層LiFの膜厚を陰極側から順に5、3、1nmとした以外は実施例1と同様に作製した素子を実施例4とする。実施例4の素子の断面構造は図5に示す模式図と同じものである。
【0040】
実施例4の素子特性を実施例1と同じ条件で評価した。輝度1cd/m2を超えた時の印加電圧は2.8V、250mA/cm2の電流密度が得られた時の印加電圧は8V、その時の輝度は8,820cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は595cd/m2、初期駆動電圧は2.5V、半減期は32,000時間であった。
(実施例5)
電子輸送層Alq3の膜厚を陰極側から順に5、10、30nmとした以外は実施例1と同様に作製した素子を実施例5とする。実施例5の素子の断面構造は図6に示す模式図と同じものである。
【0041】
実施例5の素子特性を実施例1と同じ条件で評価した。輝度1cd/m2を超えた時の印加電圧は3.0V、250mA/cm2の電流密度が得られた時の印加電圧は8.5V、その時の輝度は9,610cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は580cd/m2、初期駆動電圧は2.5V、半減期は31,000時間であった。
(比較例1)
電子輸送層Alq3を30nm、陰極バッファ層LiFを1nmの厚さでそれぞれ一回だけ製膜する以外は、実施例1と同様に作製した素子を比較例1とする。比較例1の素子の断面構造は図3に示す模式図と同じものである。
【0042】
比較例1の素子特性を実施例1と同じ条件で評価した。輝度1cd/m2を超えた時の印加電圧は5.0V、250mA/cm2の電流密度が得られた時の印加電圧は18V、その時の輝度は2,110cd/m2であった。この素子を直流定電流密度15mA/cm2で駆動したときの初期輝度は210cd/m2、初期駆動電圧は7.5V、半減期は115時間であった。
(比較例2)
陰極バッファ層LiFを0.5nmとする以外は、比較例1と同様に作製した素子を比較例2とする。比較例2の素子の断面構造は図4に示す模式図と同じものである。
【0043】
比較例2の素子特性を評価するため、15mA/cm2の電流密度で30分駆動した後、素子を発光させると、発光可能面積に対してダークスポットが40%存在していた。そこで、断面構造を観察すると、陰極と陰極バッファ層の間に空間ができていることが判明した。また同一条件で作った別の素子では、陰極と陰極バッファ層との空間と、更に正孔輸送層4,4'−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニルが水分の混入により結晶化していることも観察された。
【0044】
【発明の効果】
本発明によれば、有機EL素子における効率の高い電子注入能と、良好な動作安定性を有する素子構造を提供できるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態である実施例1の有機EL素子模式断面図
【図2】本発明の別の形態である実施例2の有機EL素子の模式断面図
【図3】従来の有機EL層構造を持つ有機EL素子の動作時の電流リーク発生原因を示す模式断面図
【図4】従来の有機EL層構造を持つ有機EL素子の動作時の不純物発生原因を示す模式断面図
【図5】本発明の別の形態である実施例4の有機EL素子の模式断面図
【図6】本発明の別の形態である実施例5有機EL素子の模式断面図
【符号の説明】
1…陰極
2…陰極バッファ層
3…電子輸送層
4…発光層
5…正孔輸送層
6…陽極バッファ層
7…陽極
8…基板
9…従来の有機EL層
10…有機EL層の不連続箇所、及び酸素や水分など不純物の通り道
11…2層陰極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic EL device, and more particularly to an inorganic / organic junction structure used for a device that emits light by applying an electric field to a thin film of an organic compound.
[0002]
[Prior art]
Organic light-emitting elements (such as organic EL elements, light-emitting displays and laser elements) are charged with positive and negative charges from the anode and cathode, respectively, when a DC voltage is applied to the electrodes attached to both sides of the organic insulator thin film having strong fluorescence. The generated electric field causes positive and negative charges to move in the thin film, and the energy released when recombining with a certain probability is consumed for the formation of singlet excited states (molecular excitons) of the fluorescent molecule. The light is emitted to the outside by a ratio to return to the ground state, and the light emitted at this time is used.
[0003]
The organic insulator thin film includes, for example, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and the like, and is collectively referred to as an organic EL layer. Aluminum and magnesium alloys (MgAg, MgCa, etc.) are often used for the cathode, and a transparent electrode such as ITO is often used for the anode to extract EL emission. In many cases, a buffer layer is formed between each of the cathode and the anode and the organic EL layer.
[0004]
A cathode structure used in an organic EL device has a two-layer structure as disclosed in JP-A-10-74586. According to this, the cathode is composed of a fluoride layer in contact with the organic EL layer and a conductive layer in contact with the fluoride layer. As the cathode that controls the electron injection function, it is desirable to use a metal having a low work function. However, oxidation with the atmosphere is always a problem for metals having a low work function. Therefore, by forming a very thin layer of fluoride or the like between the conductive layer and the organic EL layer, it is possible to create an element that exhibits high device efficiency with low operating voltage and low current density while improving oxidation resistance. Has succeeded.
[0005]
[Problems to be solved by the invention]
However, at present, there is a demand for an efficient electron injection electrode and an organic EL element having good operational stability for further improvement in visual field efficiency. In terms of electron transport performance in conventional organic EL materials, high efficiency of the device is required. It is not enough when considering the high reliability and reliability.
[0006]
In the organic EL device, the most commonly used material for the anode is ITO. However, ITO is basically a polycrystalline film and has surface irregularities of about 20 nm. As shown in FIG. 3, the organic EL layer 9 including the electron transport layer 3, the light emitting layer 4, the hole transport layer 5, and the anode buffer layer 6, the cathode 1, and the cathode buffer layer 2, while leaving the unevenness on the surface of the anode 7. When the two-layer cathode 11 is formed, the organic EL layer becomes discontinuous, or when the device is actually operated, an electric field is applied non-uniformly, and a non-light emitting point called a dark spot ( Surface), which is a serious problem in terms of device light emission characteristics. It is possible to reduce the discontinuity of the organic EL layer by increasing the total thickness of the organic EL layer 9 or to increase the spatial distance between the cathode and the anode, but considering the electronic properties of the organic EL layer material Then, even if improvement is seen in terms of reliability, no improvement is seen in terms of element emission characteristics. Although it is possible to prevent the formation of dark spots due to electric field nonuniformity by polishing the ITO surface to reduce the surface roughness, problems of time loss and cost occur.
[0007]
Moreover, since the fluoride layer of the conventional organic EL element is an extremely thin layer of about 0.5 to 1 nm, the film tends to be discontinuous depending on the film forming conditions. As a result, as shown in FIG. 4, since the contact between the organic EL layer 9 and the two-layer cathode 11 is insufficient, the cathode is lifted, oxygen generated by the deterioration of the organic EL layer 9 due to heat generated during driving, or the like Impurities 10 or impurities 10 such as moisture and oxygen in the atmosphere that enter due to surface irregularities of the anode 7 diffuse due to non-uniform application of the electric field and reach the two-layer cathode 11, resulting in the cathode being lifted The phenomenon is happening. The peeling of the cathode from the organic EL layer becomes a dark spot as it is, and thus the reliability related to the light emission of the organic EL element is impaired as much as possible.
[0008]
In order to solve the above-mentioned problems, the present invention proposes an organic EL element configured such that an electron transport layer and a cathode buffer layer are alternately laminated at least twice.
[0009]
[Means for Solving the Problems]
The present invention relates to an organic EL device comprising a cathode, a cathode buffer layer, an electron transport layer, a light emitting layer, a hole transport layer, and an anode buffer layer, an anode, and a substrate. The cathode buffer layer is alternately laminated at least twice, and the cathode buffer layer is composed of an alkali metal halide, an alkaline earth metal halide , or lithium oxide, rubidium oxide, potassium oxide, sodium oxide, oxide. It consists of a metal oxide selected from cesium, strontium oxide, magnesium oxide and calcium oxide.
[0010]
The organic EL device of the present invention is characterized in that the number of electrons injected into the light emitting layer is arbitrarily controlled by the thickness and number of cathode buffer layers and electron transport layers that are alternately stacked.
[0011]
The organic EL device of the present invention is characterized in that at least one of the cathode buffer layers stacked alternately is a halogen compound such as fluoride.
[0012]
The organic EL device of the present invention is characterized in that at least one of the alternately stacked cathode buffer layers is an oxide.
[0013]
The organic EL element of the present invention is characterized in that each of the cathode buffer layers laminated alternately has a thickness of 0.2 to 15 nm.
[0014]
The organic EL device of the present invention is characterized in that each film thickness of the alternately stacked electron transport layers is 10 to 1000 nm.
[0015]
In organic EL devices, it is very important to form 1: 1 electron-hole pairs in the light-emitting layer, and excess carriers greatly impair the light-emitting efficiency and reliability of the device. Therefore, a structure that can cope with a combination of hole transport materials is required. The present invention is particularly characterized in that the electron transport efficiency is accurately controlled from the device structure. Specifically, the number of electrons injected into the light emitting layer is arbitrarily controlled by the thickness and the number of laminations of the cathode buffer layer and the electron transport layer that are alternately laminated.
[0016]
In addition, the electron transport layer and the cathode buffer layer are alternately stacked at least twice, that is, the organic / inorganic interface structure is actively incorporated into the device, thereby increasing the electron injection efficiency by the electron amplification effect. However, the feature is that the spatial distance between the cathode and the anode is increased. By separating the spatial distance, current leakage and dark spots due to non-uniform electric field during device operation due to external pressure, cathode and anode surface structural protrusions are prevented, and the organic / inorganic interface is repeated. In addition, diffusion of moisture and oxygen present in the atmosphere, reaction of organic EL layer constituents such as a cathode, an anode component, or a hole transport layer, and cathode peeling and device deterioration due to diffusion are prevented.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The organic EL device of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an organic EL device according to the present invention, wherein 1 is a cathode, 2 is a cathode buffer layer, 3 is an electron transport layer, 4 is a light emitting layer, 5 is a hole transport layer, 6 is an anode buffer layer, 7 Denotes an anode, and 8 denotes a substrate.
[0018]
The material used for the cathode 1 is generally preferably a metal having a low work function, and is preferably a metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy containing these as a main component. It is also possible to use a material obtained by doping a metal that is relatively stable in the atmosphere with a small amount of a metal having a low work function. The thickness of the cathode is usually from 0.1 nm to 10 μm, preferably from 50 nm to 1 μm. The cathode is often formed by a vacuum deposition method, a sputtering method, an electron beam deposition method, a plasma CVD method, and a coating method. In the vacuum deposition method, a crucible containing materials is placed in a vacuum vessel, evacuated to about 10 −4 Pa with a suitable vacuum pump, and then heated by the crucible to sublimate or evaporate the material to the desired film thickness. In the coating method, conductive metal fine particles dispersed in a suitable binder resin solution or coating property improving material are coated and formed on a target location by spin coating or ink jet.
[0019]
The cathode buffer layer 2 has functions of improving adhesion between the cathode and the organic EL layer, preventing diffusion of the cathode material to the organic light emitting layer side, and further improving electron injection efficiency from the cathode. Materials used for the cathode buffer layer are alkali metal halides, alkaline earth metal halides, and various oxides. Halogen is five elements of fluorine, chlorine, bromine, iodine, and astatine. As the halogen compound used in the present invention, fluoride, chloride, bromide, and iodide are preferable. Specific examples of preferred halogen compounds include lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, calcium fluoride, magnesium fluoride, strontium fluoride, barium fluoride, lithium chloride, calcium chloride, and sodium chloride. Magnesium chloride, strontium chloride, barium chloride, lithium bromide, calcium bromide, magnesium bromide, strontium bromide, barium bromide and the like. Further, specific examples of preferable oxides used in the present invention include lithium oxide, rubidium oxide, potassium oxide, sodium oxide, cesium oxide, strontium oxide, magnesium oxide, and calcium oxide. Each cathode buffer layer may use the same material or different materials. The cathode buffer layer is usually formed by vacuum vapor deposition, sputtering, or electron beam vapor deposition, and each layer thickness is 0.2 nm to 30 nm, preferably 0.2 to 15 nm.
[0020]
The electron transport layer 3 is formed of a compound that can efficiently transport electrons from the cathode in the direction of the hole transport layer between electrodes to which an electric field is applied. These compounds are required to have a high electron affinity, a high electron mobility, excellent stability, and hardly generate impurities that trap electrons during production and use. Compound materials satisfying such conditions include aromatic compounds such as tetraphenylbutadiene, metal complexes such as Alq 3 , 10-hydroxybenzo [h] quinoline metal complexes, mixed ligand aluminum chelate complexes, cyclopentadiene derivatives, Perinone derivatives, oxadiazole derivatives, bisstyrylbenzene derivatives, perylene derivatives, coumarin compounds, rare earth complexes, distyrylpyrazine derivatives, p-phenylene compounds, thiadiazolopyridine derivatives, pyrrolopyridine derivatives, naphthyridine derivatives, etc. . One or more of the above materials may be used for each electron transport layer. The electron transport layer is often formed using a vacuum deposition method or a coating method, and the thickness of each layer is usually 5 to 1000 nm, preferably 10 to 100 nm.
[0021]
It is the greatest feature of the present invention that the cathode buffer layer 2 and the electron transport layer 3 are controlled and stacked alternately on the order of nanometers or less.
[0022]
The light emitting layer 4 is formed for the purpose of changing the light emission color in addition to improving the light emission efficiency of the device. As an example of changing the emission color, for example, Alq 3 is used as a host material and doping with a fluorescent dye for laser such as coumarin is known. Doping a fluorescent dye using the electron transport layer as a host material is also important for the purpose of improving the driving life of the device. For example, by using Alq 3 as a host material and doping a condensed polycyclic aromatic ring such as a naphthacene derivative typified by rubrene, a quinacridone derivative, and a perylene derivative with respect to the host material in an amount of 0.1 to 10% by weight, The light emission characteristics, particularly drive stability can be greatly improved. These light emitting layers are often formed by a vacuum deposition method or a coating method, and the layer thickness is usually 5 to 200 nm, preferably 10 to 100 nm.
[0023]
The hole transport layer 5 is required to efficiently transport holes injected from the anode to the light emitting layer side. For this purpose, the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is good, impurities that become traps of holes during production and use are less likely to be generated, and the glass transition temperature is low. A material excellent in heat resistance of 70 ° C. or higher is desirable. Examples of the material satisfying such requirements include aromatic diamine compounds such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, 4,4′-bis [(N-1-naphthyl)- N-phenylamino] biphenyl and other aromatic amines, triphenylbenzene derivatives and starburst aromatic triamines, N, N′-diphenyl-N, N′-bis (3-methylphenyl) biphenyl-4, Aromatic diamines such as 4′-diamine, N, N, N-triphenylamine derivatives, α, α, α ′, α′-tetramethyl-α, α′-bis (4-di-p-tolylaminophenyl) ) -P-xylene and the like. The hole transport layer is often formed by a vacuum deposition method or a coating method, and the layer thickness is usually 5 to 200 nm, preferably 10 to 100 nm.
[0024]
The material used for the anode buffer layer 6 is required to have good contact with the anode and form a uniform thin film, and to have thermal stability with a melting point of 300 ° C. or higher and a glass transition point of 100 ° C. or higher. Further, it is desirable that the ionization potential is low, the hole injection from the anode is easy, and the hole mobility is high. Examples of materials that satisfy such requirements include porphyrin derivatives and phthalocyanine compounds. The anode buffer layer 6 is formed by a vacuum evaporation method or a coating method, and the layer thickness is usually 3 to 100 nm, preferably 10 to 50 nm.
[0025]
The anode 7 performs hole injection into the light emitting layer. The anode is usually a metal oxide such as an oxide of indium and / or tin, a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal halide such as copper iodide, carbon black, or poly (3-methyl Thiophene), polypyrrole, polyaniline and other conductive polymers. When transparency is required, the anode has a visible light transmittance of 60% or more, preferably 80% or more, and is usually 5 to 1000 nm, preferably 10 to 500 nm. is there. When transparency is not required and the material may be opaque, the same material as the substrate 8 may be used. The anode is often formed by sputtering, vacuum vapor deposition, electron beam vapor deposition, plasma CVD, and coating methods. Among them, the sputtering method and coating method can form a large area at one time, so they are relatively good. Used.
[0026]
The substrate 8 serves as a support for the organic EL element, and glass, quartz, a metal plate, a metal foil, a plastic film, a sheet, or the like is used. In particular, a transparent synthetic resin such as a glass plate, polyester, polymethacrylate, polycarbonate, polysulfone or the like is desirable.
[0027]
FIG. 2 shows a case where the thickness of the cathode buffer layer 2 is increased in order from the cathode side to the anode side in the organic EL device of the present invention in which the cathode buffer layer 2 and the electron transport layer 3 are repeatedly stacked four times. By adopting such a structure, electrons are amplified in an avalanche form at each cathode buffer layer / electron transport layer interface, and a very efficient electron injection effect toward the light emitting layer 4 side is exhibited. When it is not desired to inject electrons more than necessary or when the reliability of the element is considered first, as shown in FIG. 5, a thin cathode buffer layer is laminated in order toward the anode side with the cathode side as a thick buffer layer. Basically, it is desirable that the number of injected electrons and the number of injected holes is 1: 1. However, since the electron transport ability of the material of the hole transport layer 5 and the light emitting layer 4 is poor, the number of hole injections is electron injection. It may be lower than the number. In such a case, excessively injected electrons become ineffective carriers, which may cause a decrease in quantum efficiency in organic EL element light emission. In the present invention, depending on the combination of materials, the thickness of the cathode buffer layer and the electron transport layer and the number of repetition periods of the cathode buffer layer and the electron transport layer are predicted by device simulation technology, etc., from the light emission characteristics and the element driving stability. Since it is possible to arbitrarily set an advantage, it is possible to prevent a decrease in quantum efficiency due to generation of invalid carriers.
[0028]
Further, as shown in FIG. 6, even when the cathode buffer layer 2 is formed with a constant thickness and the thickness of the electron transport layer 3 is arbitrarily changed, the entire organic EL layer becomes thicker. Since many interfaces are incorporated in the element, an organic EL element having excellent reliability such as light emission characteristics and environmental resistance can be obtained.
(Example)
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to a following example, unless the summary is exceeded. In order to confirm the layer structure of the organic EL elements produced in the following examples and comparative examples, an Auger electron spectrometer, an ultraviolet photoelectron spectrometer, an X-ray photoelectron spectrometer, an atomic force microscope, and an energy filter transmission electron microscope are used. Using.
Example 1
An ITO transparent conductive film was laminated on the glass substrate with a thickness of 150 nm. A 2 mm wide stripe pattern (anode) is formed on this ITO film-coated substrate using ordinary photolithography and hydrochloric acid etching, followed by ultrasonic cleaning with acetone, ultrasonic cleaning with pure water, and ultrasonic cleaning with isopropyl alcohol. And dried with a nitrogen blow. Finally, ultraviolet ozone cleaning was performed, and after evacuation with a vacuum pump until 1 × 10 −4 Pa was obtained after installation in a vacuum deposition apparatus. Hereinafter, vapor deposition is performed using this apparatus. First, as the anode buffer layer, copper phthalocyanine (Chemical Formula 1)
[0029]
[Chemical 1]
Figure 0004394331
[0030]
Was deposited under the conditions of a temperature of 150 ° C., a degree of vacuum of 2 × 10 −4 Pa, and a deposition rate of 0.1 nm / second to obtain a 15 nm anode buffer layer. Next, as a hole transport layer, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
[0031]
[Chemical formula 2]
Figure 0004394331
[0032]
Was deposited under the conditions of a temperature of 120 ° C., a degree of vacuum of 2 × 10 −4 Pa, and a deposition rate of 0.1 nm / second to obtain a 30 nm hole transport layer. Subsequently, Alq 3 (Chemical Formula 3)
[0033]
[Chemical 3]
Figure 0004394331
[0034]
And a quinacridone derivative (Formula 4)
[0035]
[Formula 4]
Figure 0004394331
[0036]
Is accurately monitored with a separate film thickness monitor so that the quinacridone derivative is 2% by weight with respect to Alq 3 , the degree of vacuum is 2 × 10 −4 Pa, the temperature of Alq 3 is 160 ° C., the deposition rate A quinacridone derivative was vapor-deposited at a temperature of 120 ° C. and a vapor deposition rate of 0.1 nm / sec to obtain a light-emitting layer having a thickness of 30 nm. Further, as an electron transport layer, Alq 3 was deposited at a temperature of 160 ° C., a degree of vacuum of 2 × 10 −4 Pa, and a deposition rate of 0.2 nm / second to obtain a 10 nm electron transport layer. Subsequently, lithium fluoride (LiF) was deposited as a cathode buffer layer under conditions of a temperature of 570 ° C., a degree of vacuum of 2 × 10 −4 Pa, and a deposition rate of 0.1 nm / second to obtain a cathode buffer layer having a thickness of 1 nm. . Again, under the same conditions, the electron transport layer Alq 3 and the cathode buffer layer LiF were alternately and twice prepared for convenience. Finally, a 2 mm wide shadow mask for vapor deposition made of aluminum was installed as a cathode using a manipulator so as to be orthogonal to the anode at a position 5 μm away from the element surface, and aluminum was deposited with a thickness of 100 nm. In this way, an organic EL device having a light emitting area of 2 mm × 2 mm size was obtained. The cross-sectional structure of the element of Example 1 is the same as the schematic diagram shown in FIG.
[0037]
The element characteristics of Example 1 were evaluated by applying a DC voltage with the anode being positive and the cathode having a negative polarity. As a result, when the luminance exceeded 1 cd / m 2 , the applied voltage was 2 V and a current of 250 mA / cm 2 . The applied voltage when the density was obtained was 8 V, and the luminance at that time was 9,210 cd / m 2 . When this element was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 620 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 25,000 hours.
(Example 2)
Example 1 except that the electron transport layer Alq 3 is 10 nm and the thickness of the alternately stacked cathode buffer layer LiF is 5, 3, 1, 0.5 nm in order from the light emitting layer side, and is repeatedly stacked four times. The produced element is referred to as Example 2. The cross-sectional structure of the element of Example 2 is the same as the schematic diagram shown in FIG.
[0038]
When the element characteristics of Example 2 were evaluated under the same conditions as in Example 1, a DC voltage was applied to the element manufactured in the same manner with the anode being positive and the cathode having negative polarity. The applied voltage when the luminance exceeded 1 cd / m 2 was 1.5 V, the applied voltage when the current density of 250 mA / cm 2 was obtained was 6 V, and the luminance at that time was 107,510 cd / m 2 . When this element was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 750 cd / m 2 , the initial driving voltage was 2 V, and the half-life was 26,000 hours.
(Example 3)
An element produced in the same manner as in Example 1 except that lithium oxide was used for the cathode buffer layer is referred to as Example 3.
[0039]
The device characteristics of Example 3 were evaluated under the same conditions as in Example 1. The applied voltage when the luminance exceeded 1 cd / m 2 was 2.0 V, the applied voltage when a current density of 250 mA / cm 2 was obtained was 7.7 V, and the luminance at that time was 9,098 cd / m 2 . . When this device was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 605 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 25,000 hours.
Example 4
An element produced in the same manner as in Example 1 except that the thickness of the cathode buffer layer LiF was set to 5, 3, and 1 nm in order from the cathode side is referred to as Example 4. The cross-sectional structure of the element of Example 4 is the same as the schematic diagram shown in FIG.
[0040]
The device characteristics of Example 4 were evaluated under the same conditions as in Example 1. When the luminance exceeded 1 cd / m 2 , the applied voltage was 2.8 V, when the current density of 250 mA / cm 2 was obtained, the applied voltage was 8 V, and the luminance at that time was 8,820 cd / m 2 . When this element was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 595 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 32,000 hours.
(Example 5)
An element produced in the same manner as in Example 1 except that the film thickness of the electron transport layer Alq 3 was changed to 5, 10, and 30 nm in order from the cathode side is referred to as Example 5. The cross-sectional structure of the element of Example 5 is the same as the schematic diagram shown in FIG.
[0041]
The device characteristics of Example 5 were evaluated under the same conditions as in Example 1. The applied voltage when the luminance exceeded 1 cd / m 2 was 3.0 V, the applied voltage when a current density of 250 mA / cm 2 was obtained was 8.5 V, and the luminance at that time was 9,610 cd / m 2 . . When this element was driven at a DC constant current density of 15 mA / cm 2 , the initial luminance was 580 cd / m 2 , the initial driving voltage was 2.5 V, and the half-life was 31,000 hours.
(Comparative Example 1)
A device manufactured in the same manner as in Example 1 is referred to as Comparative Example 1 except that the electron transport layer Alq 3 is formed with a thickness of 30 nm and the cathode buffer layer LiF is formed with a thickness of 1 nm only once. The cross-sectional structure of the element of Comparative Example 1 is the same as the schematic diagram shown in FIG.
[0042]
The device characteristics of Comparative Example 1 were evaluated under the same conditions as in Example 1. The applied voltage when the luminance exceeded 1 cd / m 2 was 5.0 V, the applied voltage when a current density of 250 mA / cm 2 was obtained was 18 V, and the luminance at that time was 2,110 cd / m 2 . When this device was driven at a constant DC current density of 15 mA / cm 2 , the initial luminance was 210 cd / m 2 , the initial driving voltage was 7.5 V, and the half-life was 115 hours.
(Comparative Example 2)
A device manufactured in the same manner as in Comparative Example 1 except that the cathode buffer layer LiF is 0.5 nm is referred to as Comparative Example 2. The cross-sectional structure of the element of Comparative Example 2 is the same as the schematic diagram shown in FIG.
[0043]
In order to evaluate the device characteristics of Comparative Example 2, when the device was made to emit light after being driven at a current density of 15 mA / cm 2 for 30 minutes, 40% of dark spots existed relative to the light-emitting area. Thus, when the cross-sectional structure was observed, it was found that a space was formed between the cathode and the cathode buffer layer. In another device manufactured under the same conditions, the space between the cathode and the cathode buffer layer, and the hole transport layer 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are contained in water. It was also observed that crystallization occurred due to contamination.
[0044]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the advantageous effect that the element structure which has the high electron injection ability in an organic EL element and favorable operation | movement stability can be provided is acquired.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an organic EL element of Example 1 which is an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of an organic EL element of Example 2 which is another embodiment of the present invention. 4 is a schematic cross-sectional view showing the cause of current leakage during operation of an organic EL element having a conventional organic EL layer structure. FIG. 4 is a schematic cross-section showing the cause of impurity generation during operation of an organic EL element having a conventional organic EL layer structure. FIG. 5 is a schematic cross-sectional view of an organic EL element of Example 4 which is another embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of an organic EL element of Example 5 which is another embodiment of the present invention. ]
DESCRIPTION OF SYMBOLS 1 ... Cathode 2 ... Cathode buffer layer 3 ... Electron transport layer 4 ... Light emitting layer 5 ... Hole transport layer 6 ... Anode buffer layer 7 ... Anode 8 ... Substrate 9 ... Conventional organic EL layer 10 ... Discontinuous part of organic EL layer , And the passage of impurities such as oxygen and moisture 11 ... two-layer cathode

Claims (5)

陰極と、陰極バッファ層と、電子輸送層、発光層、正孔輸送層、陽極バッファ層からなる有機EL層と、陽極と、基板からなる有機EL素子において、前記電子輸送層と前記陰極バッファ層とが交互に、少なくとも2回以上積層されてなり、前記陰極バッファ層が、アルカリ金属ハロゲン化合物、アルカリ土類金属ハロゲン化合物又は酸化リチウム、酸化ルビジウム、酸化カリウム、酸化ナトリウム、酸化セシウム、酸化ストロンチウム、酸化マグネシウム及び酸化カルシウムから選択される金属酸化物からなることを特徴とする有機EL素子。An organic EL element comprising a cathode, a cathode buffer layer, an electron transport layer, a light-emitting layer, a hole transport layer, and an anode buffer layer, and an organic EL device comprising an anode and a substrate. The electron transport layer and the cathode buffer layer Are alternately laminated at least twice, and the cathode buffer layer is an alkali metal halogen compound, an alkaline earth metal halogen compound , or lithium oxide, rubidium oxide, potassium oxide, sodium oxide, cesium oxide, strontium oxide. An organic EL device comprising a metal oxide selected from magnesium oxide and calcium oxide. 前記電子輸送層及び前記陰極バッファ層の各層厚と積層回数により、発光層へ注入される電子数を任意に制御する請求項1に記載の有機EL素子。  The organic EL device according to claim 1, wherein the number of electrons injected into the light emitting layer is arbitrarily controlled by the thicknesses and the number of laminations of the electron transport layer and the cathode buffer layer. 前記陰極バッファ層の少なくとも1層が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化ルビジウム、フッ化カルシウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化バリウム、塩化リチウム、塩化カルシウム、塩化ナトリウム、塩化マグネシウム、塩化ストロンチウム、塩化バリウム、臭化リチウム、臭化カルシウム、臭化マグネシウム、臭化ストロンチウム又は臭化バリウムからなる請求項1に記載の有機EL素子。  At least one of the cathode buffer layers is lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, calcium fluoride, magnesium fluoride, strontium fluoride, barium fluoride, lithium chloride, calcium chloride, sodium chloride. The organic EL device according to claim 1, comprising magnesium chloride, strontium chloride, barium chloride, lithium bromide, calcium bromide, magnesium bromide, strontium bromide, or barium bromide. 前記陰極バッファ層の各膜厚が0.2〜30nmである請求項1に記載の有機EL素子。  The organic EL element according to claim 1, wherein each film thickness of the cathode buffer layer is 0.2 to 30 nm. 前記電子輸送層の各膜厚が5〜1000nmである請求項1に記載の有機EL素子。  The organic EL element according to claim 1, wherein each film thickness of the electron transport layer is 5 to 1000 nm.
JP2002027510A 2002-02-05 2002-02-05 Organic EL device Expired - Fee Related JP4394331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002027510A JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002027510A JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Publications (2)

Publication Number Publication Date
JP2003229269A JP2003229269A (en) 2003-08-15
JP4394331B2 true JP4394331B2 (en) 2010-01-06

Family

ID=27748996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002027510A Expired - Fee Related JP4394331B2 (en) 2002-02-05 2002-02-05 Organic EL device

Country Status (1)

Country Link
JP (1) JP4394331B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956339B1 (en) 2003-02-25 2010-05-06 삼성전자주식회사 Crystallization system of silicon and crystallization method of silicon
JP4731893B2 (en) * 2003-12-02 2011-07-27 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP5167571B2 (en) * 2004-02-18 2013-03-21 ソニー株式会社 Display element
WO2006018914A1 (en) * 2004-08-20 2006-02-23 Japan Science And Technology Agency Organic semiconductor laser device and organic electroluminescence device
JP4789598B2 (en) * 2004-12-06 2011-10-12 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT AND ELECTRONIC DEVICE
KR101356094B1 (en) 2005-04-11 2014-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing a light-emitting device
JP5851683B2 (en) * 2009-10-14 2016-02-03 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
KR101097339B1 (en) * 2010-03-08 2011-12-23 삼성모바일디스플레이주식회사 Organic light emitting diode and method for preparing the same
US10103202B2 (en) 2014-06-12 2018-10-16 Sharp Kabushiki Kaisha Organic element
KR102611215B1 (en) * 2018-03-12 2023-12-06 삼성전자주식회사 Electroluminescent device, and display device comprising thereof

Also Published As

Publication number Publication date
JP2003229269A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US6486601B1 (en) Organic luminescence device with reduced leakage current
EP0869701B1 (en) Organic electroluminescent device
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
JP4939284B2 (en) Organic electroluminescent device
JP4790565B2 (en) Organic electroluminescent display element and method for manufacturing the same
JP2004319424A (en) Organic electroluminescent display device
US20060138656A1 (en) Electrode for an electronic device
JP2005183406A (en) Organic light emitting device
JP2002075658A (en) Oled device
WO2001058222A1 (en) Organic electroluminescent element and method of manufacture thereof
JP3963712B2 (en) Organic EL element structure
JP2011522391A (en) Organic electroluminescence device
JP2004014511A (en) Organic light-emitting diode device
JP2001185364A (en) Organic electroluminescent display device and its manufacturing method
JP3903038B2 (en) Organic light emitting device
JP4394331B2 (en) Organic EL device
JP2001237080A (en) Organic electroluminescence element
JPH0696858A (en) Organic thin film el element
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP3492535B2 (en) Organic thin film EL device and method of manufacturing the same
JPH07166160A (en) Organic thin film el element
JPH10208880A (en) Light emitting element
JP3932605B2 (en) Organic electroluminescence device
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080828

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Ref document number: 4394331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees