JP3952851B2 - Seismic performance evaluation method and apparatus for buildings - Google Patents

Seismic performance evaluation method and apparatus for buildings Download PDF

Info

Publication number
JP3952851B2
JP3952851B2 JP2002151085A JP2002151085A JP3952851B2 JP 3952851 B2 JP3952851 B2 JP 3952851B2 JP 2002151085 A JP2002151085 A JP 2002151085A JP 2002151085 A JP2002151085 A JP 2002151085A JP 3952851 B2 JP3952851 B2 JP 3952851B2
Authority
JP
Japan
Prior art keywords
building
acceleration
curve
calculated
seismic performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002151085A
Other languages
Japanese (ja)
Other versions
JP2003344213A (en
Inventor
正臣 勅使川原
浩一 楠
徹夫 原
Original Assignee
独立行政法人建築研究所
応用地震計測株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人建築研究所, 応用地震計測株式会社 filed Critical 独立行政法人建築研究所
Priority to JP2002151085A priority Critical patent/JP3952851B2/en
Publication of JP2003344213A publication Critical patent/JP2003344213A/en
Application granted granted Critical
Publication of JP3952851B2 publication Critical patent/JP3952851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地震時における建物の耐震性能を客観的に且つ迅速に評価するための技術に関し、更に詳しく述べると、建物の地震時の挙動を代表する位置での慣性力−水平変位関係を、建物に配置した加速度センサによって計測することにより、地震時に建物が経験した損傷を算出し、更に基礎部の加速度センサで計測された入力地震動から加速度・変位応答スペクトルを算出し、両者を比較することにより建物の被災度及び残余耐震性能を評価・表示可能な建物の耐震性能評価方法及び装置に関するものである。
【0002】
【従来の技術】
巨大地震発生時には、多くの建築物が被災することが予想される。例えば1995年兵庫県南部地震の際には、約31万人が被害を受け、全・半壊建物数は、神戸市内だけでも8万棟を超えた。
【0003】
震災後、建物への立ち入りの可否、居住の安全性などを判断することが必要であり、そのために応急危険度判定が行われる。この応急危険度判定は、専ら技術者・設計者等の目視による調査によってなされている。
【0004】
【発明が解決しようとする課題】
しかし、技術者・設計者等の目視に頼る従来方法では、調査日数がかかり(例えば前記震災の場合、40日程度もかかった)、迅速な判定ができない。また、目視調査では、技術者・設計者等の経験や熟練度などによって判定結果が異なることも多く客観性が乏しい欠点がある。更に、「要注意」という灰色の判定となる件数が、「危険」や「安全」という明確な判定よりも格段に多くなり、これによる詳細調査の必要性が調査日数の増大を招いている。
【0005】
もし、震災後、どの程度の地震にまで耐えうる性能が残っているかを迅速に的確に判定できるような技術が確立されれば、被災建物の選別を適切に且つ迅速に行うことができ、余震に対する2次災害を軽減できると共に、不必要な避難者数を低減することが可能となる。
【0006】
本発明の目的は、地震発生後の建物の残余耐震性能(建物にどの程度の地震まで耐えうる性能が残っているか)を迅速に且つ客観的に判定できるような技術を提供することである。本発明の他の目的は、被災建物の選別を適切に且つ迅速に行うことができるため、余震に対する2次災害を軽減できると共に、不必要な避難者数を低減することが可能となるような建物の耐震性能評価方法及び装置を提供することである。
【0007】
【課題を解決するための手段】
本発明は、建物の少なくとも基礎部と上層階に設置した加速度センサにより計測した加速度計測値を2階積分して計測点での絶対変位を算出し、建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位及び建物の応答加速度を代表する代表加速度を計算して建物の性能曲線を求め、他方、基礎部での加速度計測値を建物に入力した入力地震動として加速度応答スペクトル及び変位応答スペクトルを計算して建物の要求曲線を求め、それら性能曲線と要求曲線の比較から建物の残余耐震性能を判定することを特徴とする建物の耐震性能評価方法である。
【0008】
また本発明は、地震発生時に、建物の少なくとも基礎部と上層階に設置した加速度センサにより計測した加速度計測値を2階積分して計測点での絶対変位を算出し、建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位Sd及び建物の応答加速度を代表する代表加速度Saを計算してSa−Sd曲線を作成し疑似包絡線としての性能曲線を求め、建物の限界変形までの性能曲線を推定し、他方、基礎部での加速度計測値を建物に入力した入力地震動として5%減衰での加速度応答スペクトルRa及び変位応答スペクトルRdを計算してRa−Rd曲線を作成して本震の要求曲線を求め、その要求曲線が建物の限界点を通るように拡大したときの拡大率によって残余耐震性能を評価することを特徴とする建物の耐震性能評価方法である。
【0009】
更に本発明は、加速度センサを建物の少なくとも基礎部と上層階に設置し、A/D変換器とデータ収録部とデータ処理表示部を有するデータ収録・処理装置を設置して、アナログ信号ケーブルで各加速度センサとデータ収録・処理装置を接続し、該データ収録・処理装置に搭載した耐震性能評価プログラムによって上記の方法を実行し判定結果を表示する建物の耐震性能評価装置である。
【0010】
また本発明は、加速度センサとA/D変換器とCPUと記憶手段を有し、地震発生時にトリガ処理により加速度データをデジタルデータとして記憶手段に蓄積するユニット化されたデータ収録装置を、建物の少なくとも基礎部と上層階に設置し、収録したそれらのデジタルデータを有線方式もしくは無線方式で受け取るデータ処理表示装置を設け、該データ処理表示装置に搭載した耐震性能評価プログラムによって上記の方法を実行し判定結果を表示する建物の耐震性能評価装置である。データ収録装置とデータ処理表示装置の間での有線方式もしくは無線方式によるデータの送受は、LAN、電話線や電力線を利用する搬送、無線電話を利用する方式など、任意であってよい。但し、これらの構成では、波形データの収集にあたり時間軸が共通である必要があるため、同期信号用のケーブルを接続するか、あるいは各データ収録装置で正確な時刻を記録するなど、何らかの同期機能を持たせる必要がある。
【0011】
【発明の実施の形態】
基本となる機器配置構成としては、図1に示すように、建物の基礎部(例えば1階)と上層階(好ましくは最上階)にそれぞれ加速度センサ10a、10bを設置する。実際には、3〜4階毎に1個の目安で建物床面の中央部に加速度センサを設けるのが好ましい。そして任意の位置(例えば基礎部)にデータ収録・処理装置12を設置する。このデータ収録・処理装置12によって、地震時の建物応答及び入力地震動を求め、残余耐震性能(どの程度の地震にまで耐えうる性能が残っているか)を求め危険か安全かを表示する。これによって、建物の地震後の安全性についてほぼリアルタイムで判定することが可能となる。
【0012】
データ収録・処理装置12は、次のような機能を有する耐震性能評価プログラムを搭載している。
(1)加速度センサの計測値を2階積分することにより、建物全体の絶対応答変形量を算出する。
(2)建物のモード形を適切に仮定することにより、建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位及び建物の応答加速度を代表する代表加速度を計算して建物の性能曲線を求める。
(3)基礎部の加速度計測値を建物に入力した入力地震動として加速度応答スペクトル及び変位応答スペクトルを計算して建物の要求曲線を求める。
(4)得られた性能曲線と要求曲線の比較から、建物の残余耐震性能を評価し、結果を表示する。
【0013】
このように、実建物の応答に対して詳細な設計情報なしに性能曲線・要求曲線を適切に作成する点、及びそれらの曲線から残余耐震性能を判定する点は、従来技術にはない本発明の大きな特徴である。
【0014】
図2に判定の概要を示す。限界変形まで求めた建物の性能曲線に対して、その限界変形点で交わるよう、本震の5%減衰での要求曲線を拡大する。この拡大率γは耐震性能を意味し、このγが1以上の場合は余震(通常、余震は本震を上回らないとされている)に対して『安全』と判断され、1未満の場合は『危険』と判断される。つまり、限界変形点が、本震の5%減衰での要求曲線に対して、その内側にあれば『危険』であり、外側にあれば『安全』となる。なお、建物が弾性範囲にとどまっている場合は、別途その剛性を確認することにより『弾性』と判断される。
【0015】
【実施例】
例えば、図3のAに示すような3階建ての建物を想定する。この3階建ての建物は、Bに示すように、各階に対応した3質点(質量:M1 ,M2 ,M3 )にモデル化できる。この3質点系モデルに、地震時に慣性によって生じる力を仮定した外力分布に応じて、Cに示すように地震時と同じように水平力(P1 ,P2 ,P3 )を作用させると、Dに示すように変形(X1 ,X2 ,X3 )を生じ、各階は水平力(層せん断力)を負担することになる。各階の層せん断力−層間変形関係は図4に示すようになり、各階とも、保有する耐力に応じて損傷を生じ、非線形を示すことが分かる。各階の層せん断力−層間変形関係は、図3のCに示す外力分布に応じて、それらを代表する性能曲線に置き換えることができる。
【0016】
一方、地震動の加速度応答スペクトルRaを縦軸に、変位応答スペクトルRdを横軸にとったものを要求曲線と呼ぶ。このRa及びRdを計算するためには、減衰定数を仮定する必要があるが、一般的な建物の弾性時の減衰定数は5%とすることができる。なお、建物に損傷が生じた場合、その損傷による非線形性に応じて付加的に減衰力が作用する。地震時の建物の応答は、図5に示す性能曲線とこの付加減衰力を考慮した要求曲線が交わる点となる。従って、性能曲線及び要求曲線が得られると、建物の応答は予測可能である。
【0017】
本発明方法では、この応答スペクトル法を、実建物の実地震応答に対して適用する。実地震動下では、建物に作用する外力は、図3のCに示すような単純なものではなく、3次モードまでの高次モード成分も含む。この実応答を、比較的少ない加速度センサによって計測し、計測していない階は建物のモード形を仮定することによって算出し、実建物の応答から性能曲線を得る。建物の基礎部(例えば1階)に設置した加速度センサにより、建物に入力する地震動を計測することができる。この地震動から要求曲線を得る。
【0018】
応答スペクトル法では、要求曲線から応答値を得る。しかし、本方法では、性能曲線の限界点から、要求曲線がその点を通るように要求曲線を拡大することにより、建物が耐えうる最大の要求曲線を得る(図7参照)。この最大の要求曲線の地震動レベルから、建物の耐震性能を評価する。
【0019】
図6は、本発明による建物の耐震性能評価方法の一実施例を示す処理・判定のフロー図である。以下の括弧内数字は、図6の括弧内数字に対応している。
(1)建物の基礎部と最上階に配置した加速度センサにより、加速度 mαj を計測する。
(2)計測した加速度 mαj を2階積分し、計測点での絶対変位を算出する。各絶対変位から、基礎部での絶対変位を引くことにより、計測点での基礎部に対する相対変位 mj を算出する。
(3)建物の振動モード形を仮定する(ここでは計測点を直線で結んだモード形を採用している)。勿論、モード形自体を計測してもよい。
(4)上記(3)のモード形及び(2)の相対変位 mj から、各階の相対変位 cj を算出する。
(5)上記(3)のモード形及び(1)の計測加速度 mαj から、各階の絶対加速度 cαj を算出する。
(6)高さ方向の各階の質量比mi を入力する。この質量比は、例えば床面積の比とする。各階とも質量が同じならばmi =1.0となる。
(7)上記(4)の cj 及び(6)のmi を用いて、建物の応答変形量を代表する代表変位Sdを次式により計算する。
Sd=(Σmi ci )/(Σmi ci 2
(8)上記(5)の cαj 及び(6)のmi を用いて、建物の応答加速度を代表する代表加速度Saを次式により計算する。
Sa=(Σmi cαi )/(Σmi
(9)上記(7)のSdを横軸、(8)のSaを縦軸にとったSa−Sd曲線(性能曲線)を作成する。
(10)実際の地震時には、(9)の性能曲線はループを描く。そこで、性能曲線のそれまでの時刻の最大値となる点を抽出する(疑似包絡線)。これにより、図7中のaに示す性能曲線が得られる。また、本震の最大応答点a−1は、地震終了時に自動的に得られることとなる。
(11)建物の限界変形Ruを入力する(図7中のa−2)。この限界変形は、現時点では建築基準法が大きく改正された1971年、1981年を境に、建築年に応じて建物を3グループに分け、各グループに対して限界変形量を仮定する方法をとる。その際、耐震診断を行った建物は、その診断結果に応じて限界変形を決めてもよい。あるいは各階の高さに対する水平変形量の比(層間変形角)を用いて、建築年代や構造形式によって数パターンの限界変形角を仮定し(例えば層間変形角1/50を限界変形角とするなど)、限界変形量を仮定する方法もある。また、性能曲線において、変形が進行するにもかかわらず耐力が低下する点(例えば耐力が50%に低下する点)を限界点とする方法もある。将来的には、更にセンサを柱や梁などに埋め込み、限界変形量についての情報を計測する方法を採用することも可能である。
(12)上記(10)で得られた性能曲線を、限界変形まで延ばすことにより、限界変形点までの性能曲線を推定する(図7中のa−3)。
(13)前記(1)で計測した基礎部での加速度 mα0 を建物に入力した入力地震動と考え、 mα0 から加速度応答スペクトルRa及び変位応答スペクトルRdを計算する。この際の減衰定数は5%とする。ある周期に対して角振動数を計算し、減衰定数を仮定すると、地震動の継続時間に対して1質点系の弾性の建物の運動方程式を積分することにより建物の応答時刻歴が計算できる。地震動の継続時間中、最大の絶対加速度応答と最大の応答変形量を選出できる。周期を横軸にとって最大の絶対加速度応答を縦軸にとったものが加速度応答スペクトルRa、最大の応答変形量を縦軸にとったものが変位応答スペクトルRdとなる。
(14)上記(13)のRaを縦軸に、Rdを横軸にとったRa−Rd曲線を作成する。このRa−Rd曲線は、5%減衰での要求曲線となる。実建物では、建物が非線形になると、非線形によってエネルギーが吸収され、それによって5%以上の減衰が作用する。減衰はRa−Rd曲線を低下させる。
(15)将来の地震動に対して、どの程度の大きさまで建物が耐えられるかを、上記(14)の5%減衰でのRa−Rd曲線及び(12)の性能曲線から判断する。具体的には、得られたRa−Rd曲線が、建物の限界点(図7中a−2)を通るようにRa−Rd曲線を拡大する。こうして得られるRa−Rd曲線は建物が耐えうる最大の要求曲線となる(図7中c)。この拡大率をγとすると、本被災建物は本震のγ倍の地震まで耐えうることとなる。この際、γ<1.0の場合は、本震レベルの地震動に対して耐えられないことになり、「危険」と判断される。γ≧1.0の場合は「安全」と判断される。ここで、非線形性により付加減衰が作用するにもかかわらず、判断用の最大の要求曲線(図7中c)では5%減衰を用いているが、これは非線形性による付加減衰を正確に判断することが難しく安全側の評価を行うためである。なお、地震後においても建物の性能曲線が弾性範囲の場合、その直線を限界変位まで延長しても性能曲線とはならないため、この場合は「弾性」という判断が下される。
(16)実際に装置としては、上記(15)で得られた判定結果を分かり易く判定装置で表示する。また、どの程度の残余耐震性能があるかを数値的に表示することもできる。
【0020】
加速度記録から変位を得るための2階積分は、大別して、時間領域で行う方法と周波数領域で行う方法がある。前者には、加速度記録を直接積分する方法と積分回路をシミュレートしたデジタルフィルタを通す方法などがあり、後者は、通常、FFT(高速フーリエ変換)を用いる。本発明では、これらを含めて任意の手法を用いてよい。
【0021】
本発明に係る建物の耐震性能評価装置の基本的な構成は、図1に示すとおりである。加速度センサ10a、10bのみを必要階(図示の例では1階と最上階)に設置し、A/D変換器とデータ収録部とデータ処理表示部などを有するデータ収録・処理装置12を例えば1階に設置して、各加速度センサ10a,10bとデータ収録・処理装置12との間をアナログ信号ケーブルで接続する。データ収録・処理装置12に搭載した耐震性能評価プログラムを実行して判定結果を表示する。加速度センサ10a,10bからの信号はデータ収録・処理装置12で受信され、データ収録・処理装置12側でA/D変換及びデータ収録が行われ、それに基づくデータ処理が行われる。この方式は最も一般的なもので、既存の地震観測システムで用いられているのと同様の方式である。
【0022】
本発明に係る建物の耐震性能評価装置の他の構成例を図8に示す。データ収録装置をユニット化して、建物に所定の位置に容易に設置できるようにした点に特徴がある。ここでは建物を10階建てと想定しており、その場合には例えば最上階(10階)と基礎部(1階)、及び中間階(例えば5階)にそれぞれデータ収録装置20を設置する。そして、各データ収録装置20で収録したそれぞれのデータを受け取るデータ処理表示装置40を1箇所、例えば1階に設置する。ここでは、RS232CあるいはLANなどケーブル42を用いてデータを送受する構成となっている。この構成は、インテリジェントビルなどで、ビル内のLANに直接接続できる利点がある。なお、データ処理表示装置には耐震性能評価のプログラムが搭載されている。
【0023】
この実施例では、各データ収録装置20は、加速度センサ22、A/D変換器24、データ収録部26、I/Oインターフェース28、電源(バッテリ)などを有し、堅牢なケースに収容されたユニット構造とする。加速度センサ22は、X,Y,Zの3成分を検知可能で、加速度の大きさに応じた電圧が出力される構造である。その出力電圧は、A/D変換器24に導かれ、例えばシグマデルタAD変換器によって24ビットデジタル値に変換される。
【0024】
データ収録部26は、時刻校正器30とCPU32と記憶手段(メモリ)34などを有する。常時検知している加速度値が予め設定した閾値を超えた時(地震発生時)、トリガがかかり自動的に加速度データ(波形データ)が記憶手段34に蓄積され、また時刻校正器(GPS時刻校正器や電波時計等)30による時刻情報も記録される。この実施例で時刻校正器30を組み込んでいるのは、波形データの収集に当たり、データ収録される加速度データの時間軸は共通である必要があり、各データ収録装置20相互の時間及び記録開始時刻を同期する必要があるためである。データ収録装置20相互の間、あるいは各データ収録装置20とデータ処理表示装置40との間を同期信号用ケーブルで接続するなどして同期をとる機能を設けるならば、上記の時刻校正器は無くてもよい。地震による揺れが治まると、波形記録も自動的に終了し、耐震性能評価のプログラムが搭載されているデータ処理表示装置40が自動的に立ち上がり、判定処理を行う。
【0025】
判定処理では、加速度データに対してデジタル2階積分によって変位データを計算し、加速度データと変位データを入力として耐震性能評価プログラムを実行し、耐震評価結果を出力表示する。
【0026】
各データ収録装置とデータ処理表示装置との間のデータの送受は、任意の方法を用いてよい。例えば、電力搬送式電話機によって接続する方法でもよく、この方法は、若干精度は低下するものの、新たにケーブル類を敷設する必要が無い。また、PHSや携帯電話、その他の無線式通信手段を利用する方法でもよく、この方法もケーブル類を敷設する必要が無いため、設置の自由度が大きい。
【0027】
従って、これら電話回線や無線通信手段を用いる方式では、必ずしも建物毎にデータ処理表示装置を設置する必要は無く、ある地域内などの複数の建物に対して1台のデータ処理表示装置を設置することで設置コストを削減する手法も可能である。また、リアルタイムで判定する必要が無ければ、判定を必要とする場合にデータ処理表示装置を接続してデータ処理する手法も可能である。
【0028】
【発明の効果】
本発明は上記のように、地震時の建物応答及び入力地震動を加速度センサによって計測し、残余耐震性能を迅速に表示可能な建物の耐震性能評価方法及び装置であるので、建物にどの程度の地震まで耐えうる性能が残っているかを迅速に且つ客観的に判定できる。そのため、被災建物の管理を適切に行うことができ、余震に対する2次災害を軽減できると共に不必要な避難者数を低減することが可能となる。計測目的が限定されているために装置は安価に製造でき、配置の自由度も広がり、容易に設置できるため、普及し易い構成となり、防災上の効果は極めて大である。
【図面の簡単な説明】
【図1】本発明方法を実施するための機器配置構成を示す説明図。
【図2】本発明方法による建物耐震判定の説明図。
【図3】3階建て建物とそのモデル化の説明図。
【図4】(層間)変形量−(層)せん断力の関係を示すグラフ。
【図5】スペクトル法を説明するための水平変形量Sd−せん断力係数及び応答加速度Saの関係図。
【図6】本発明方法の実施手順の一例を示すフロー図。
【図7】実際の計測の手順を説明するためのSd・Rd−Sa・Ra関係図。
【図8】本発明に係る耐震性能評価装置の一実施例を示すブロック図。
【符号の説明】
10a,10b 加速度センサ
12 データ収録・処理装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for objectively and quickly evaluating the seismic performance of a building during an earthquake, and more specifically, the inertial force-horizontal displacement relationship at a position representing the behavior of a building during an earthquake, Calculate the damage experienced by the building during the earthquake by measuring with the acceleration sensor placed in the building, and calculate the acceleration / displacement response spectrum from the input seismic motion measured by the acceleration sensor of the foundation, and compare the two The present invention relates to a method and an apparatus for evaluating seismic performance of a building that can evaluate and display the degree of damage and residual seismic performance of the building.
[0002]
[Prior art]
It is expected that many buildings will be damaged when a huge earthquake occurs. For example, during the 1995 Hyogoken-Nanbu Earthquake, about 310,000 people were damaged, and the number of fully and partially destroyed buildings exceeded 80,000 in Kobe alone.
[0003]
After the earthquake, it is necessary to determine whether it is possible to enter the building, safety of residence, and so on, and emergency risk determination is performed. This emergency risk determination is made exclusively by visual inspection by engineers and designers.
[0004]
[Problems to be solved by the invention]
However, in the conventional method that relies on the visual observation of engineers / designers, it takes many days of investigation (for example, it took about 40 days in the case of the earthquake disaster), and quick judgment cannot be made. In addition, in visual inspections, determination results often vary depending on the experience and skill level of engineers, designers, etc., and there is a disadvantage that objectivity is poor. Furthermore, the number of gray judgments that require “caution” is significantly higher than the clear judgments that are “dangerous” or “safe”, and the necessity of detailed surveys has led to an increase in the number of survey days.
[0005]
If a technology is established that can quickly and accurately determine how much earthquakes can be withstood after the earthquake, the affected buildings can be selected appropriately and quickly. The secondary disaster for aftershocks can be reduced, and the number of unnecessary evacuees can be reduced.
[0006]
An object of the present invention is to provide a technique capable of quickly and objectively determining the remaining seismic performance of a building after the occurrence of an earthquake (how much earthquake remains in the building). Another object of the present invention is that it is possible to appropriately and quickly select damaged buildings, so that secondary disasters against aftershocks can be reduced, and the number of unnecessary evacuees can be reduced. The object is to provide a method and apparatus for evaluating the seismic performance of buildings.
[0007]
[Means for Solving the Problems]
The present invention calculates the absolute displacement at the measurement point by integrating the acceleration measurement values measured by the acceleration sensors installed on at least the foundation and the upper floor of the building into the second floor, and assumes the vibration mode shape of the building to each floor of the building. The relative displacement and absolute acceleration of the building are calculated, and the representative displacement that represents the response deformation of the building and the representative acceleration that represents the response acceleration of the building are calculated from these values to obtain the building performance curve. Acceleration response spectrum and displacement response spectrum are calculated as input seismic motion input to the building, and the required curve of the building is obtained, and the residual seismic performance of the building is judged by comparing the performance curve and the required curve. This is a method for evaluating the seismic performance of buildings.
[0008]
Further, the present invention calculates the absolute displacement at the measurement point by integrating the acceleration measurement values measured by the acceleration sensors installed on at least the foundation and the upper floor of the building at the second floor in the event of an earthquake. Assuming that the relative displacement and absolute acceleration of each floor of the building are calculated, the representative displacement Sd representing the response deformation amount of the building and the representative acceleration Sa representing the response acceleration of the building are calculated from these values, and the Sa-Sd curve is calculated. Create a performance curve as a pseudo-envelope, estimate the performance curve up to the limit deformation of the building, and on the other hand, acceleration response spectrum Ra at 5% attenuation as input seismic motion input acceleration data at the base to the building And the displacement response spectrum Rd is calculated and the Ra-Rd curve is created to obtain the demand curve of the main shock, and the residual resistance is determined by the expansion rate when the demand curve is expanded so as to pass through the limit point of the building. It is a seismic performance evaluation method of the building, characterized in that to evaluate the performance.
[0009]
Further, according to the present invention, an acceleration sensor is installed on at least the base and upper floor of a building, a data recording / processing device having an A / D converter, a data recording unit, and a data processing display unit is installed, and an analog signal cable is used. It is a building seismic performance evaluation device that connects each acceleration sensor to a data recording / processing device, executes the above-described method by a seismic performance evaluation program installed in the data recording / processing device, and displays a determination result.
[0010]
The present invention also provides a unitized data recording apparatus having an acceleration sensor, an A / D converter, a CPU, and storage means, and storing acceleration data as digital data in the storage means by trigger processing when an earthquake occurs. Installed at least on the base and upper floors, provided with a data processing display device that receives the recorded digital data in a wired or wireless manner, and executed the above method by the seismic performance evaluation program installed in the data processing display device It is a seismic performance evaluation device for a building that displays a determination result. Data transmission / reception between the data recording device and the data processing display device by a wired method or a wireless method may be arbitrary, such as a LAN, a carrier using a telephone line or a power line, a method using a wireless telephone, or the like. However, in these configurations, since the time axis needs to be common when collecting waveform data, some synchronization function such as connecting a cable for synchronization signals or recording the exact time with each data recording device It is necessary to have.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a basic equipment arrangement configuration, as shown in FIG. 1, acceleration sensors 10a and 10b are respectively installed on the foundation (for example, the first floor) and the upper floor (preferably the top floor) of the building. In practice, it is preferable to provide an acceleration sensor at the center of the floor of the building, with one guide for every 3rd to 4th floors. Then, the data recording / processing device 12 is installed at an arbitrary position (for example, the base). This data recording / processing device 12 obtains the building response and the input ground motion at the time of the earthquake, obtains the residual seismic performance (how much the earthquake can survive), and displays whether it is dangerous or safe. As a result, it is possible to determine the safety of the building after the earthquake almost in real time.
[0012]
The data recording / processing device 12 is loaded with a seismic performance evaluation program having the following functions.
(1) The absolute response deformation amount of the entire building is calculated by second-order integration of the measured value of the acceleration sensor.
(2) By appropriately assuming the mode shape of the building, the relative displacement and absolute acceleration of each floor of the building are calculated, and from these values, the representative displacement representing the response deformation amount of the building and the representative representing the response acceleration of the building Calculate the acceleration to calculate the building performance curve.
(3) Calculate the acceleration response spectrum and the displacement response spectrum as the input seismic motion obtained by inputting the acceleration measurement value of the foundation to the building to obtain the required curve of the building.
(4) From the comparison of the obtained performance curve and the required curve, evaluate the residual seismic performance of the building and display the result.
[0013]
As described above, the point that the performance curve / required curve is appropriately created without detailed design information with respect to the response of the actual building, and the point that the remaining seismic performance is determined from these curves are not in the prior art. It is a big feature.
[0014]
FIG. 2 shows an outline of the determination. The required curve at 5% attenuation of the mainshock will be expanded so that the building performance curve obtained up to the limit deformation intersects at the limit deformation point. This expansion rate γ means seismic performance. When this γ is 1 or more, it is judged as “safe” for aftershocks (usually aftershocks are not considered to exceed the mainshock). It is judged as “dangerous”. In other words, the critical deformation point is “dangerous” if it is inside the required curve with 5% attenuation of the mainshock, and “safe” if it is outside. If the building stays within the elastic range, it is judged as “elastic” by checking its rigidity separately.
[0015]
【Example】
For example, assume a three-story building as shown in FIG. The three-story building can be modeled as three mass points (mass: M 1 , M 2 , M 3 ) corresponding to each floor, as shown in B. When a horizontal force (P 1 , P 2 , P 3 ) is applied to this three-mass system model in the same way as during an earthquake, as shown in C, according to the external force distribution assuming the force generated by inertia during the earthquake, As shown in D, deformation (X 1 , X 2 , X 3 ) occurs, and each floor bears a horizontal force (layer shear force). The relationship between the layer shear force of each floor and the interlayer deformation is as shown in FIG. 4, and it can be seen that each floor is damaged according to the proof stress possessed and exhibits non-linearity. The relationship between the layer shear force of each floor and the interlayer deformation can be replaced with a performance curve representing them according to the external force distribution shown in FIG.
[0016]
On the other hand, an acceleration response spectrum Ra of seismic motion taken along the vertical axis and a displacement response spectrum Rd taken along the horizontal axis is called a demand curve. In order to calculate Ra and Rd, it is necessary to assume a damping constant, but the damping constant at the time of elasticity of a general building can be 5%. In addition, when damage arises in a building, damping force acts additionally according to the nonlinearity by the damage. The response of the building at the time of an earthquake is the point where the performance curve shown in FIG. 5 intersects with the required curve considering this additional damping force. Thus, once the performance and demand curves are obtained, the building response is predictable.
[0017]
In the method of the present invention, this response spectrum method is applied to an actual earthquake response of an actual building. Under actual earthquake motion, the external force acting on the building is not a simple one as shown in C of FIG. 3 and includes higher-order mode components up to the third-order mode. This actual response is measured by a relatively small number of acceleration sensors, and the floors that are not measured are calculated by assuming a mode shape of the building, and a performance curve is obtained from the response of the actual building. Seismic motion input to the building can be measured by an acceleration sensor installed on the base of the building (for example, the first floor). A demand curve is obtained from this ground motion.
[0018]
In the response spectrum method, a response value is obtained from a demand curve. However, in this method, the maximum required curve that the building can withstand is obtained by expanding the required curve so that the required curve passes through the limit point of the performance curve (see FIG. 7). The seismic performance of the building is evaluated from the ground motion level of this maximum demand curve.
[0019]
FIG. 6 is a flowchart of processing / determination showing one embodiment of the method for evaluating seismic performance of buildings according to the present invention. The numbers in parentheses below correspond to the numbers in parentheses in FIG.
(1) The acceleration m α j is measured by an acceleration sensor arranged on the foundation and the top floor of the building.
(2) The measured acceleration m α j is second-order integrated to calculate the absolute displacement at the measurement point. By subtracting the absolute displacement at the foundation from each absolute displacement, the relative displacement m X j with respect to the foundation at the measurement point is calculated.
(3) Assuming a vibration mode shape of the building (here, a mode shape in which measurement points are connected by straight lines is adopted). Of course, the mode shape itself may be measured.
(4) The relative displacement c X j of each floor is calculated from the mode shape of (3) and the relative displacement m X j of (2).
(5) The absolute acceleration c α j of each floor is calculated from the mode shape of (3) and the measured acceleration m α j of (1).
(6) to enter the floor of the mass ratio m i in the height direction. This mass ratio is, for example, a floor area ratio. If each floor has the same mass, m i = 1.0.
(7) Using c X j in (4) and m i in (6), a representative displacement Sd representing the response deformation amount of the building is calculated by the following equation.
Sd = (Σm i · c X i ) / (Σm i · c X i 2 )
(8) Using c α j in (5) and m i in (6), a representative acceleration Sa representing the response acceleration of the building is calculated by the following equation.
Sa = (Σm i · c α i ) / (Σm i )
(9) Create a Sa-Sd curve (performance curve) with the horizontal axis of Sd in (7) and the vertical axis of Sa in (8).
(10) During an actual earthquake, the performance curve in (9) draws a loop. Therefore, a point that is the maximum value of the performance curve until that time is extracted (pseudo-envelope). As a result, the performance curve indicated by a in FIG. 7 is obtained. In addition, the maximum response point a-1 of the main shock is automatically obtained at the end of the earthquake.
(11) The limit deformation Ru of the building is input (a-2 in FIG. 7). This limit deformation takes the method of assuming the limit deformation amount for each group by dividing the building into three groups according to the building year, since 1971 and 1981 when the Building Standards Law was greatly revised. . At that time, the building subjected to the earthquake-resistant diagnosis may determine the limit deformation according to the diagnosis result. Alternatively, using the ratio of the horizontal deformation amount to the height of each floor (interlayer deformation angle), a limit deformation angle of several patterns is assumed depending on the building age and the structure type (for example, the interlaminar deformation angle 1/50 is used as the limit deformation angle, etc.) ), There is also a method of assuming the critical deformation. In addition, there is also a method in which the limit point is a point where the yield strength is lowered despite the progress of deformation in the performance curve (for example, the point where the yield strength is reduced to 50%). In the future, it is possible to further embed a sensor in a column or beam and measure the information about the amount of limit deformation.
(12) The performance curve up to the limit deformation point is estimated by extending the performance curve obtained in the above (10) to the limit deformation (a-3 in FIG. 7).
(13) Considering the acceleration m α 0 at the foundation measured in (1) above as the input ground motion input to the building, the acceleration response spectrum Ra and the displacement response spectrum Rd are calculated from m α 0 . The attenuation constant at this time is 5%. If the angular frequency is calculated for a certain period and the damping constant is assumed, the response time history of the building can be calculated by integrating the motion equation of the elastic building of one mass system for the duration of the earthquake motion. The maximum absolute acceleration response and maximum response deformation can be selected during the duration of the earthquake motion. The acceleration response spectrum Ra is obtained by taking the maximum absolute acceleration response on the vertical axis with the period as the horizontal axis, and the displacement response spectrum Rd is obtained by taking the maximum response deformation amount on the vertical axis.
(14) Create a Ra-Rd curve with the vertical axis of Ra and the horizontal axis of Rd in (13) above. This Ra-Rd curve is a required curve at 5% attenuation. In a real building, when the building becomes non-linear, energy is absorbed by the non-linearity, thereby causing an attenuation of 5% or more. Attenuation lowers the Ra-Rd curve.
(15) To what extent the building can withstand future earthquake motion is judged from the Ra-Rd curve at 5% attenuation and the performance curve of (12). Specifically, the Ra-Rd curve is expanded so that the obtained Ra-Rd curve passes through a building limit point (a-2 in FIG. 7). The Ra-Rd curve thus obtained is the maximum required curve that the building can withstand (c in FIG. 7). If this enlargement rate is γ, the damaged building can withstand γ times the main shock. At this time, if γ <1.0, it will not be able to withstand the ground motion at the level of the main shock, and is judged as “dangerous”. When γ ≧ 1.0, it is determined as “safe”. Although the maximum required curve for determination (c in FIG. 7) uses 5% attenuation even though additional attenuation acts due to non-linearity, this accurately determines additional attenuation due to non-linearity. This is because it is difficult to do and evaluates on the safe side. Even after the earthquake, if the performance curve of the building is in the elastic range, even if the straight line is extended to the limit displacement, it does not become a performance curve. In this case, the determination of “elasticity” is made.
(16) As a device, the determination result obtained in (15) above is displayed on the determination device in an easy-to-understand manner. It is also possible to numerically display how much residual seismic performance is present.
[0020]
The second order integration for obtaining the displacement from the acceleration recording is roughly divided into a method in the time domain and a method in the frequency domain. The former includes a method of directly integrating acceleration records and a method of passing through a digital filter that simulates an integration circuit. The latter usually uses FFT (Fast Fourier Transform). In the present invention, any method including these may be used.
[0021]
The basic configuration of the building seismic performance evaluation apparatus according to the present invention is as shown in FIG. Only the acceleration sensors 10a and 10b are installed on the required floor (in the example shown, the first floor and the top floor), and a data recording / processing device 12 having an A / D converter, a data recording section, a data processing display section, etc. Installed on the floor, the acceleration sensors 10a, 10b and the data recording / processing device 12 are connected by analog signal cables. The seismic performance evaluation program installed in the data recording / processing device 12 is executed and the determination result is displayed. Signals from the acceleration sensors 10a and 10b are received by the data recording / processing device 12, A / D conversion and data recording are performed on the data recording / processing device 12 side, and data processing based on them is performed. This method is the most common and is the same method used in existing seismic observation systems.
[0022]
FIG. 8 shows another configuration example of the building seismic performance evaluation apparatus according to the present invention. It is characterized in that the data recording device is unitized and can be easily installed at a predetermined position in the building. Here, it is assumed that the building has 10 floors. In this case, for example, the data recording devices 20 are installed on the top floor (10th floor), the base (1st floor), and the intermediate floor (for example, 5th floor). And the data processing display apparatus 40 which receives each data recorded with each data recording device 20 is installed in one place, for example, the 1st floor. Here, data is transmitted and received using a cable 42 such as RS232C or LAN. This configuration has an advantage that an intelligent building or the like can be directly connected to a LAN in the building. The data processing display device has a seismic performance evaluation program.
[0023]
In this embodiment, each data recording device 20 includes an acceleration sensor 22, an A / D converter 24, a data recording unit 26, an I / O interface 28, a power source (battery), and the like, and is housed in a robust case. Unit structure. The acceleration sensor 22 has a structure that can detect three components of X, Y, and Z and outputs a voltage corresponding to the magnitude of the acceleration. The output voltage is guided to the A / D converter 24 and converted into a 24-bit digital value by, for example, a sigma delta AD converter.
[0024]
The data recording unit 26 includes a time calibrator 30, a CPU 32, a storage means (memory) 34, and the like. When the acceleration value that is constantly detected exceeds a preset threshold value (when an earthquake occurs), a trigger is applied and acceleration data (waveform data) is automatically accumulated in the storage means 34, and a time calibrator (GPS time calibration) Time information by a device 30 or a radio clock) is also recorded. In this embodiment, the time calibrator 30 is incorporated in the collection of waveform data, and the time axis of the acceleration data to be recorded needs to be common. The time between each data recording device 20 and the recording start time This is because it is necessary to synchronize. If the synchronization function is established by connecting the data recording devices 20 or between the data recording devices 20 and the data processing display device 40 with a synchronization signal cable, the time calibrator is not provided. May be. When the shaking due to the earthquake subsides, the waveform recording is automatically terminated, and the data processing display device 40 on which the earthquake resistance performance evaluation program is installed automatically starts up and performs determination processing.
[0025]
In the determination process, displacement data is calculated by digital second order integration with respect to the acceleration data, the earthquake resistance evaluation program is executed with the acceleration data and the displacement data as inputs, and the earthquake resistance evaluation result is output and displayed.
[0026]
An arbitrary method may be used for sending and receiving data between each data recording device and the data processing display device. For example, a connection method using a power-carrying telephone may be used. This method is slightly less accurate but does not require new cables. Also, a method using a PHS, a mobile phone, or other wireless communication means may be used, and this method also has a high degree of freedom of installation because there is no need to lay cables.
[0027]
Therefore, in the system using these telephone lines and wireless communication means, it is not always necessary to install a data processing display device for each building, and one data processing display device is installed for a plurality of buildings in a certain area or the like. Therefore, it is possible to reduce the installation cost. Further, if it is not necessary to make a determination in real time, a method of processing data by connecting a data processing display device when a determination is required is possible.
[0028]
【The invention's effect】
As described above, the present invention is a method and an apparatus for evaluating seismic performance of a building that can measure the building response and input seismic motion during an earthquake with an acceleration sensor and quickly display the residual seismic performance. It is possible to quickly and objectively determine whether performance that can withstand up to Therefore, it is possible to appropriately manage the damaged building, reduce the secondary disaster due to the aftershock, and reduce the number of unnecessary evacuees. Since the measurement purpose is limited, the device can be manufactured at low cost, the degree of freedom of arrangement is widened, and the device can be easily installed. Therefore, the configuration is easy to spread and the effect on disaster prevention is extremely great.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a device arrangement configuration for carrying out the method of the present invention.
FIG. 2 is an explanatory diagram of building earthquake resistance determination according to the method of the present invention.
FIG. 3 is an explanatory diagram of a three-story building and its modeling.
FIG. 4 is a graph showing the relationship between (layer) deformation amount- (layer) shear force.
FIG. 5 is a relationship diagram of horizontal deformation amount Sd−shear force coefficient and response acceleration Sa for explaining the spectrum method.
FIG. 6 is a flowchart showing an example of an execution procedure of the method of the present invention.
FIG. 7 is an Sd / Rd-Sa / Ra relationship diagram for explaining an actual measurement procedure;
FIG. 8 is a block diagram showing an embodiment of the seismic performance evaluation apparatus according to the present invention.
[Explanation of symbols]
10a, 10b Acceleration sensor 12 Data recording / processing device

Claims (4)

建物の少なくとも基礎部と上層階に設置した加速度センサにより計測した加速度計測値を2階積分して計測点での絶対変位を算出し、建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位及び建物の応答加速度を代表する代表加速度を計算して建物の性能曲線を求め、他方、基礎部での加速度計測値を建物に入力した入力地震動として加速度応答スペクトル及び変位応答スペクトルを計算して建物の要求曲線を求め、それら性能曲線と要求曲線の比較から建物の残余耐震性能を判定することを特徴とする建物の耐震性能評価方法。The absolute displacement at the measurement point is calculated by integrating the acceleration measurement value measured by the acceleration sensor installed on at least the foundation and the upper floor of the building, and the relative displacement of each floor is calculated assuming the vibration mode shape of the building. The absolute acceleration is calculated, and from these values, the representative displacement that represents the response deformation of the building and the representative acceleration that represents the response acceleration of the building are calculated to obtain the performance curve of the building. On the other hand, the acceleration measurement value at the foundation Acceleration response spectrum and displacement response spectrum are calculated as input seismic motion input to the building to obtain the required curve of the building, and the residual seismic performance of the building is judged from the comparison of the performance curve and the required curve Seismic performance evaluation method. 地震発生時に、建物の少なくとも基礎部と上層階に設置した加速度センサにより計測した加速度計測値を2階積分して計測点での絶対変位を算出し、建物の振動モード形を仮定して建物各階の相対変位と絶対加速度を算出し、それらの値から建物の応答変形量を代表する代表変位Sd及び建物の応答加速度を代表する代表加速度Saを計算してSa−Sd曲線を作成し疑似包絡線としての性能曲線を求め、建物の限界変形までの性能曲線を推定し、他方、基礎部での加速度計測値を建物に入力した入力地震動として5%減衰での加速度応答スペクトルRa及び変位応答スペクトルRdを計算してRa−Rd曲線を作成して本震の要求曲線を求め、その要求曲線が建物の限界点を通るように拡大したときの拡大率によって残余耐震性能を評価することを特徴とする建物の耐震性能評価方法。In the event of an earthquake, at least the basic part of the building and acceleration measurements measured by acceleration sensors installed on the upper floors are integrated into the second floor to calculate the absolute displacement at the measurement point, assuming the vibration mode shape of the building, and Relative displacement and absolute acceleration are calculated, a representative displacement Sd representing the response deformation amount of the building and a representative acceleration Sa representing the response acceleration of the building are calculated from these values, and a Sa-Sd curve is created to create a pseudo envelope As a result, an acceleration response spectrum Ra and a displacement response spectrum Rd at 5% attenuation are input as input seismic motions obtained by inputting acceleration measurement values at the foundation to the building. The Ra-Rd curve is calculated and the required curve of the main shock is obtained, and the residual seismic performance is evaluated by the expansion rate when the required curve is expanded so as to pass through the building limit point. Seismic performance evaluation method of the building, characterized in that. 加速度センサを建物の少なくとも基礎部と上層階に設置し、A/D変換器とデータ収録部とデータ処理表示部を有するデータ収録・処理装置を設置して、アナログ信号ケーブルで各加速度センサとデータ収録・処理装置を接続し、該データ収録・処理装置に搭載した耐震性能評価プログラムによって請求項1又は2記載の方法を実行し判定結果を表示する建物の耐震性能評価装置。Install acceleration sensors on at least the foundation and upper floors of the building, install a data recording / processing device with an A / D converter, a data recording unit, and a data processing display unit. A seismic performance evaluation device for a building, which is connected to a recording / processing device and displays the determination result by executing the method according to claim 1 or 2 by a seismic performance evaluation program installed in the data recording / processing device. 加速度センサとA/D変換器とCPUと記憶手段を有し、地震発生時にトリガ処理により加速度データをデジタルデータとして記憶手段に蓄積するユニット化されたデータ収録装置を、建物の少なくとも基礎部と上層階に設置し、収録したそれらのデジタルデータを有線方式もしくは無線方式で受け取るデータ処理表示装置を設け、該データ処理表示装置に搭載した耐震性能評価プログラムによって請求項1又は2記載の方法を実行し判定結果を表示する建物の耐震性能評価装置。A unitized data recording apparatus having an acceleration sensor, an A / D converter, a CPU, and storage means, and storing acceleration data in the storage means as digital data by trigger processing in the event of an earthquake, at least the base and upper layer of the building A data processing display device is installed on the floor and receives the recorded digital data in a wired or wireless manner, and the method according to claim 1 or 2 is executed by a seismic performance evaluation program installed in the data processing display device. Seismic performance evaluation device for buildings that displays judgment results.
JP2002151085A 2002-05-24 2002-05-24 Seismic performance evaluation method and apparatus for buildings Expired - Lifetime JP3952851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151085A JP3952851B2 (en) 2002-05-24 2002-05-24 Seismic performance evaluation method and apparatus for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151085A JP3952851B2 (en) 2002-05-24 2002-05-24 Seismic performance evaluation method and apparatus for buildings

Publications (2)

Publication Number Publication Date
JP2003344213A JP2003344213A (en) 2003-12-03
JP3952851B2 true JP3952851B2 (en) 2007-08-01

Family

ID=29768772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151085A Expired - Lifetime JP3952851B2 (en) 2002-05-24 2002-05-24 Seismic performance evaluation method and apparatus for buildings

Country Status (1)

Country Link
JP (1) JP3952851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3001225A1 (en) 2014-09-24 2016-03-30 Kabushiki Kaisha TOPCON Safety diagnosis system for structure

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579604B2 (en) * 2004-07-14 2010-11-10 鹿島建設株式会社 Sloshing evaluation system, sloshing evaluation program, and recording medium
JP4702152B2 (en) * 2006-04-11 2011-06-15 パナソニック電工株式会社 Collapse risk assessment system
JP4822337B2 (en) * 2006-08-03 2011-11-24 株式会社山武 Diagnosis method for building structures
JP5197992B2 (en) * 2007-05-10 2013-05-15 株式会社東芝 Earthquake damage measurement system and earthquake damage measurement method
JP5497257B2 (en) * 2007-07-12 2014-05-21 株式会社エー・アンド・デイ Method and apparatus for evaluating earthquake resistance of buildings
JP5112765B2 (en) * 2007-07-13 2013-01-09 国立大学法人 筑波大学 Building damage degree judging device and building damage degree judging method
JP5101327B2 (en) * 2008-02-08 2012-12-19 公益財団法人鉄道総合技術研究所 Real-time seismic damage estimation method and apparatus based on shaking of viaduct
JP5008084B2 (en) * 2008-05-03 2012-08-22 鹿島建設株式会社 Quantitative seismic performance evaluation program for structures
JP5569900B2 (en) * 2009-09-29 2014-08-13 株式会社aLab Seismic performance evaluation method, seismic performance evaluation device, and seismic performance evaluation system
JP5521196B2 (en) * 2010-07-07 2014-06-11 国立大学法人 筑波大学 Building damage degree judging device and building damage degree judging method
JP5462815B2 (en) * 2011-02-17 2014-04-02 大成建設株式会社 Damage location estimation method
JP6082191B2 (en) * 2012-06-05 2017-02-15 戸田建設株式会社 Monitoring system
JP6027797B2 (en) * 2012-07-09 2016-11-16 株式会社Nttファシリティーズ Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP5430786B1 (en) * 2012-11-30 2014-03-05 株式会社aLab Residual seismic performance evaluation system
JP5809174B2 (en) 2013-01-09 2015-11-10 株式会社Nttファシリティーズ Building safety verification system, building safety verification method and program
WO2014112630A1 (en) 2013-01-21 2014-07-24 国立大学法人横浜国立大学 Method for correcting representative displacement waveform, and method for evaluating residual seismic perfromance of building
JP5496385B2 (en) * 2013-03-29 2014-05-21 株式会社メガチップス Communications system
JP2014211397A (en) * 2013-04-19 2014-11-13 清水建設株式会社 Method for confirming earthquake response and soundness of building
KR101490308B1 (en) 2013-04-30 2015-02-16 대한민국 Apparatus of evaluating health of buildings according to earthquake acceleration measured
JP6177100B2 (en) * 2013-11-14 2017-08-09 株式会社aLab Method for determining state change of structure, method for correcting measurement data, and measurement system using those methods
JP6565159B2 (en) * 2014-10-15 2019-08-28 オムロン株式会社 MONITORING DEVICE, MONITORING SYSTEM, AND MONITORING METHOD
JP2016095180A (en) * 2014-11-13 2016-05-26 富士電機株式会社 Structural health monitoring system
JP6438746B2 (en) * 2014-11-14 2018-12-19 株式会社熊谷組 Estimation method for inter-building displacement
JP6438745B2 (en) * 2014-11-14 2018-12-19 株式会社熊谷組 Estimation method for inter-building displacement
JP6473008B2 (en) * 2015-02-10 2019-02-20 国立大学法人東京工業大学 Structure displacement analysis apparatus and structure displacement analysis program
JP6512448B2 (en) * 2015-11-30 2019-05-15 清水建設株式会社 Building response estimation method
JP6512447B2 (en) * 2015-11-30 2019-05-15 清水建設株式会社 Building response estimation method
JP6642232B2 (en) * 2016-04-19 2020-02-05 株式会社大林組 Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
JP6679166B2 (en) * 2016-04-28 2020-04-15 前田建設工業株式会社 Safety diagnostic device, safety diagnostic method, and safety diagnostic program
JP6441869B2 (en) * 2016-10-14 2018-12-19 株式会社Nttファシリティーズ Building earthquake resistance evaluation system and building earthquake resistance evaluation method
JP6956481B2 (en) * 2016-11-08 2021-11-02 株式会社Nttファシリティーズ Building soundness evaluation system and building soundness evaluation method
US11231341B2 (en) 2017-07-07 2022-01-25 The University Of Tokyo Method and system for deciding damage degree category
JP6916752B2 (en) * 2018-02-23 2021-08-11 公益財団法人鉄道総合技術研究所 Structure safety factor calculation method and equipment
JP6944898B2 (en) * 2018-03-15 2021-10-06 戸田建設株式会社 Structure natural period estimation method, structure seismic resistance judgment method, structure natural period estimation system and structure seismic resistance judgment system
JP7007222B2 (en) * 2018-03-15 2022-01-24 戸田建設株式会社 Seismic resistance judgment method for structures and seismic resistance judgment system for structures
CN109143860B (en) * 2018-09-06 2023-05-23 广州大学 Active earthquake-resistant control method for building
JP6684889B2 (en) * 2018-11-21 2020-04-22 株式会社Nttファシリティーズ Building earthquake resistance evaluation system and building earthquake resistance evaluation method
GR20190100049A (en) * 2019-02-01 2020-09-16 Κατασκευες & Αισθητηρες Ιδιωτικη Κεφαλαιουχικη Εταιρεια Acceleration measuring - and -recording instrument practicable for following up the structural integrity of civil engineering buildings
KR102512543B1 (en) * 2021-04-06 2023-03-21 한국전력기술 주식회사 automatic Post-processing method of Massive Seismic Responses from Probabilistic Seismic Analysis for Performance-based Seismic design and Computer program
GB2615191B (en) * 2021-12-17 2024-04-10 Ocado Innovation Ltd Seismic detection system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3001225A1 (en) 2014-09-24 2016-03-30 Kabushiki Kaisha TOPCON Safety diagnosis system for structure
US10670493B2 (en) 2014-09-24 2020-06-02 Kabushiki Kaisha Topcon Safety diagnosis system for structure

Also Published As

Publication number Publication date
JP2003344213A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3952851B2 (en) Seismic performance evaluation method and apparatus for buildings
JP5809174B2 (en) Building safety verification system, building safety verification method and program
Chen et al. Theoretical and experimental modal analysis of the Guangzhou New TV Tower
TWI449883B (en) Method for analyzing structure safety
JP5569900B2 (en) Seismic performance evaluation method, seismic performance evaluation device, and seismic performance evaluation system
KR101951028B1 (en) MEMS Based Seismic Instrument having Seismic Intensity Estimation and Structure, System, and Component Damage Prediction Function
KR100669070B1 (en) Wireless telemetry system for monitoring structure
JP5941998B2 (en) Method for correcting representative displacement waveform and method for evaluating residual seismic performance of buildings
JP2011095237A5 (en)
JP6001740B1 (en) High precision evaluation of structure transfer functions, earthquake response prediction, deterioration diagnosis system and method
Kordestani et al. Localization of damaged cable in a tied‐arch bridge using Arias intensity of seismic acceleration response
Xin et al. Damage detection in initially nonlinear structures based on variational mode decomposition
JP2004093579A (en) Diagnostic method and diagnostic system of structure by jogging observation
KR100512123B1 (en) Monitoring system of infrastructure using smart measurement system
JP5799183B2 (en) Building safety verification system, building safety verification method and program
Pan et al. Correlating measured and simulated dynamic responses of a tall building to long‐distance earthquakes
KR102196534B1 (en) System and Method for Monitoring Realtime Ground Motion and Producing Shake Map using MEMS Network
Brownjohn et al. Experimental modal analysis of civil structures: state of the art
JP7343380B2 (en) Building health monitoring system
JP6642232B2 (en) Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
JP7145646B2 (en) Building damage determination method and building damage determination system
JP7478695B2 (en) Building health monitoring system, method for calculating maximum deformation angle of building
JP6983648B2 (en) Structure natural period estimation method, structure seismic resistance judgment method, structure natural period estimation system and structure seismic resistance judgment system
Brigante et al. Vibration-Based Procedure for the Structural Assessment of Heritage Structures
JP7359747B2 (en) Building health monitoring system and method for determining seismometer installation layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Ref document number: 3952851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term