JP5008084B2 - Quantitative seismic performance evaluation program for structures - Google Patents

Quantitative seismic performance evaluation program for structures Download PDF

Info

Publication number
JP5008084B2
JP5008084B2 JP2008120799A JP2008120799A JP5008084B2 JP 5008084 B2 JP5008084 B2 JP 5008084B2 JP 2008120799 A JP2008120799 A JP 2008120799A JP 2008120799 A JP2008120799 A JP 2008120799A JP 5008084 B2 JP5008084 B2 JP 5008084B2
Authority
JP
Japan
Prior art keywords
response
earthquake
seismic
acceleration
seismic performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008120799A
Other languages
Japanese (ja)
Other versions
JP2009271684A (en
Inventor
裕樹 中山
寛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008120799A priority Critical patent/JP5008084B2/en
Publication of JP2009271684A publication Critical patent/JP2009271684A/en
Application granted granted Critical
Publication of JP5008084B2 publication Critical patent/JP5008084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は構造物の定量的耐震性能評価プログラムに関し、とくに土木・建築構造物(以下、単に構造物という)の地震動に対する応答値を用いてその構造物の耐震性能を定量的に評価するプログラムに関する。   The present invention relates to a quantitative seismic performance evaluation program for a structure, and more particularly to a program for quantitatively evaluating the seismic performance of a structure using a response value to a ground motion of a civil engineering / building structure (hereinafter simply referred to as a structure). .

最近の構造物の耐震設計は、従来のように関連法令等で規定された部材や設備を採用する仕様規定型の設計から、所定の性能を満たせば多様な部材や設備を採用できる性能規定型の設計へと移行しつつある。性能規定型の耐震設計では、予め設計者が建築主に対し複数の耐震設計案を提示し、目標とすべき耐震性能について建築主と合意したうえで、実際に設計した構造物が目標性能を満足しているか否かを評価することが必要となる。構造物に地震被害が発生する可能性は構造物自体の属性だけでは定まらず、地震動の強さ(構造物の設置サイトの地震活動度や地盤増幅)によっても異なるので、耐震性能は構造物の設置サイトにおける地震活動度や地盤増幅の影響を考慮して提示・評価することが求められる。また、複数の耐震設計案を比較して最適案を選択するため、耐震性能はできるだけ定量的に提示することが望ましい。   Recent seismic design of structures is a performance-definition type that can adopt various members and facilities as long as they meet the specified performance from the conventional specification-based design that employs members and facilities prescribed by related laws and regulations. We are moving to design. In performance-based seismic design, the designer presents multiple seismic design plans to the owner in advance, agrees with the architect about the seismic performance that should be targeted, and the actually designed structure meets the target performance. It is necessary to evaluate whether or not you are satisfied. The possibility of earthquake damage to a structure is not determined only by the attributes of the structure itself, but also depends on the strength of the earthquake motion (seismic activity and ground amplification at the site where the structure is installed), so the seismic performance is It is required to present and evaluate in consideration of the seismic activity at the installation site and the effects of ground amplification. In addition, it is desirable to present the seismic performance as quantitatively as possible in order to select the optimal plan by comparing multiple seismic design plans.

従来から、鉄筋コンクリート造建築物等の多層構造物の耐震性能を定量的に提示・評価するための指標として、地震時に構造物が吸収しうるエネルギー量に基づく構造耐震指標Iが知られている(非特許文献1)。構造耐震指標Iは、主に構造物の躯体情報に基づき、(1)式に示すように保有性能基本指標Eと形状指標Sと経年指標Tとの積として各階毎に算定される。保有性能基本指標Eは、構造物が保有する耐震性能を評価するための基本指標であり、強度指標Cと靭性指標Fと対象階iの高さ方向の耐力分布の補正係数(n+1/n+i)との積として算出される。形状指標Sは鉛直部材の形状が耐震性能に及ぼす影響(形状の複雑さ、剛性のアンバランスな分布等)を工学的に定量化して算出され、経年指標Tは構造的欠陥が耐震性に及ぼす影響(構造物のひび割れ、変形、老朽化等)に基づき算出される。算出した構造耐震指標Iについて、地域指標Zや地盤指標Gに関する情報を含む(2)式の構造耐震判定指標ISOとの大小関係を判断することにより、構造物の設置サイトの影響を考慮した構造物の耐震性能を判定する。 Conventionally, as an index for quantitatively presented and evaluated seismic performance of the multi-layer structure such as reinforced concrete buildings, known structural seismic index I S based on the amount of energy structure can absorb during an earthquake (Non-Patent Document 1). Seismic Index of Structure I S is mainly based on the skeleton information of the structure, is calculated for each floor as the product of the holdings performance summary measure E O and shape index S D and aging index T as shown in equation (1) . The possessed performance basic index E O is a basic index for evaluating the seismic performance possessed by the structure. The strength index C, the toughness index F, and the correction coefficient (n + 1 / n + i) of the strength distribution in the height direction of the target floor i. ) And the product. The shape index SD is calculated by engineering quantification of the influence of the shape of the vertical member on the earthquake resistance (complexity of shape, unbalanced distribution of rigidity, etc.), and the secular index T indicates that structural defects are earthquake resistant. Calculated based on the effect (cracking, deformation, aging, etc. of the structure). The calculated structure seismic index I S, by determining the magnitude relationship between structure seismic determination index I SO, including information about the local index Z and ground index G (2) expression, taking into account the influence of the installation site of the structure Determine the seismic performance of the finished structure.

構造耐震指標I=E・S・T …………………………………………………(1)
:保有性能基本指標(=(n+1/n+i)C・F)、i:対象としている階の階数、C:強度指標、F:靭性指標、S:形状指標、T:経年指標
構造耐震判定指標ISO=E・Z・G・U ………………………………………(2)
:耐震判定基本指標、Z:地域指標、G:地盤指標、U:用途指標
Structural seismic index I S = E O · S D · T ………………………………………………… (1)
E O : possessed performance basic index (= (n + 1 / n + i) C · F), i: floor number of target floor, C: strength index, F: toughness index, S D : shape index, T: secular index determination index I SO = E S · Z · G · U ............................................. (2)
E S: seismic determination basic indicators, Z: Region index, G: ground index, U: application index

また、不動産評価や地震保険等の地震リスク管理分野では、構造物の耐震性能を定量的に評価する他の指標として、地震LCC(Life Cycle Cost;ライフサイクルコスト)や地震PML(Probable Maximum Loss;予想最大損失額)等の経済指標が用いられている。地震LCCは、例えば(3)式に示すように初期投資額と将来の地震による被害額との合計として定義され、地震時に構造物の構成要素(構造部材、非構造部材、建築設備)に生じる損失額の合計として地震による被害額を算出する(非特許文献2)。具体的には、構造物の各構成要素の地震時の損失率Lと地震動強さとの関係を図13(A)に示すような損失率曲線(フラジリティカーブ)にまとめ(非特許文献3参照)、構造物の設置サイトで想定される発生確率pの地震動強さ毎に損失率曲線を用いて各構成要素の損失率Lの期待値(L・p)を求め、各構成要素の再調達価格を損失率の期待値に乗じて損失額を算出し、それらを合計して地震による被害額を算出する。 In the field of earthquake risk management such as real estate evaluation and earthquake insurance, as other indexes for quantitatively evaluating the seismic performance of structures, earthquake LCC (Life Cycle Cost) and earthquake PML (Probable Maximum Loss); Economic indicators such as the maximum expected loss) are used. The earthquake LCC is defined as the sum of the initial investment amount and the amount of damage caused by a future earthquake as shown in, for example, the equation (3), and occurs in structural components (structural members, non-structural members, building equipment) at the time of the earthquake. The amount of damage caused by an earthquake is calculated as the total amount of loss (Non-Patent Document 2). Specifically, summarized in loss rate curve as shown in FIG. 13 (A) the relationship between loss rate during an earthquake L j and ground motion intensity of each component of the structure (fragility curve) (Non-Patent Document 3 reference ) Obtain the expected value (L j · p j ) of the loss rate L j of each component using the loss rate curve for each seismic intensity with the occurrence probability p j assumed at the site where the structure is installed. Multiply the element's replacement price by the expected loss rate to calculate the amount of loss, and add them to calculate the amount of damage caused by the earthquake.

地震LCC=初期費用+Σ(L・p)×再調達価格 …………………………(3)
:地震動強さに対する損失率、p:地震動強さの発生確率
Earthquake LCC = initial cost + Σ (L j · p j ) x replacement cost ………………………… (3)
L j : Loss rate with respect to seismic intensity, p j : Occurrence probability of seismic intensity

地震PMLは、必ずしも定義が統一されていないが、例えば構造物に対し最大の損失をもたらす地震(再現期間475年間相当の地震、又は50年超過確率10%の地震)が発生した場合に、その90%非超過確率に相当する物的損失額の再調達価格に対する割合として定義される(非特許文献3)。具体的には、構造物の設置サイトで想定される地震動強さ毎に図13(A)の損失率曲線を用いて各構成要素(構造部材、非構造部材、建築設備)の損失率を求め、その損失率に各構成要素の再調達価格を乗じて予想損失額を算出し、(4)式に示すように各構成要素の予想損失額を合計して構造物全体の予想損失額を算出する。次いで多数の地震動に対して算出した構造物全体の複数の予想損失額を大きい順に並べ替え、損失額上位から順に地震動の発生確率の累積確率(年超過確率)を計算することにより図13(B)に示すようなイベントカーブ(平均値)及びその90%非超過確率(超過確率10%)のイベントカーブ(90パーセンタイル値)を作成し、それらのイベントカーブから50年超過確率10%(年超過確率=0.0021)の地震時の予測損失額を求める。その後、構造物全体の再調達価格(新築した場合の価格に相当)に対する予測損失額の割合として地震PML(=100×予測損失額/再調達価格(%))を算出する。   The definition of earthquake PML is not necessarily unified. For example, when an earthquake that causes the greatest loss to a structure occurs (an earthquake equivalent to a 475 year recurrence period or an earthquake with a 50-year excess probability of 10%) It is defined as the ratio of the physical loss amount corresponding to the 90% non-excess probability to the replacement cost (Non-patent Document 3). Specifically, the loss rate of each component (structural member, non-structural member, building facility) is obtained using the loss rate curve of FIG. 13A for each seismic intensity estimated at the installation site of the structure. Calculate the expected loss amount by multiplying the loss rate by the replacement cost of each component, and calculate the expected loss amount for the entire structure by summing the expected loss amounts for each component as shown in equation (4) To do. Next, a plurality of predicted loss amounts of the entire structure calculated for a large number of earthquake motions are rearranged in descending order, and the cumulative probability (annual excess probability) of the occurrence probability of the earthquake motion is calculated in order from the top of the loss amount as shown in FIG. ) And an event curve (90th percentile value) of the event curve (average value) and its 90% non-exceed probability (excess probability 10%) as shown in Fig.), And 50-year excess probability 10% (annual excess) from those event curves Estimate the estimated loss at the time of earthquake with probability = 0.0021). Thereafter, earthquake PML (= 100 × expected loss / replacement price (%)) is calculated as a ratio of the predicted loss amount to the replacement cost of the entire structure (corresponding to the price when newly constructed).

構造物の予想損失額=Σ(構成要素の損失率×構成要素の再調達価格) ………(4) Expected loss of structure = Σ (loss rate of component x replacement cost of component) ……… (4)

国土交通省住宅局建築指導課監修「2001年改訂版・既存鉄筋コンクリート造建築物の耐震診断基準・同解説」財団法人日本建築防災協会、平成13年10月25日発行Supervised by Ministry of Land, Infrastructure, Transport and Tourism, Housing Bureau Building Guidance Division "2001 revised edition-Seismic diagnostic criteria for existing reinforced concrete buildings-Commentary", Japan Architecture Disaster Prevention Association, October 25, 2001 高橋雄司「簡易シミュレーションによる建築物の地震リスク分析」第50回構造工学シンポジウム、日本建築学会構造工学論文集、Vol.50B、453〜463頁、2004年3月Yuji Takahashi “Earthquake risk analysis of buildings by simple simulation” 50th Symposium on Structural Engineering, Architectural Institute of Japan, Vol. 50B, pages 453-463, March 2004 損害保険料率算出機構「地震危険度指標に関する調査研究−地震PMLの現状と将来−」2002年12月、インターネット〈URL:http://www.nliro.or.jp/disclosure/q_kenkyu/〉Non-life insurance rate calculation mechanism “Research on earthquake risk index-present state and future of earthquake PML”, December 2002, Internet <URL: http: // www. niliro. or. jp / disclosure / q_kenkyu /> 石田寛ほか「地盤増幅を考慮した一様ハザードスペクトルに基づく建築構造物の地震リスク評価手法」日本建築学会構造系論文集、第583号、23〜30頁、2004年9月Hiroshi Ishida et al. “Earthquake Risk Assessment Method for Building Structures Based on Uniform Hazard Spectrum Considering Ground Amplification”, Architectural Institute of Japan, 583, 23-30, September 2004 山中浩明ほか「地震の揺れを科学する−みえてきた強振動の姿」東京大学出版、2006年7月27日初版、131〜182頁(5章、強振動を予測する)Hiroaki Yamanaka et al. "Science of Earthquake Shaking-The Form of Strong Vibrations Seen" The University of Tokyo Press, July 27, 2006, first edition, pages 131-182 (Chapter 5, predicting strong vibrations) 大野晋ほか「カリフォルニア強震記録に基づく水平動・上下動の距離減衰式と日本の内陸地震への適用」日本建築学会構造系論文集、第544号、39〜46頁、2001年6月Satoshi Ohno et al. “Distance attenuation formula of horizontal and vertical motion based on California strong motion record and application to inland earthquake in Japan” Architectural Institute of Japan, 544, 39-46, June 2001

しかし、上述した構造耐震指標Iは構造物の許容できる最終状態を評価した値であり、最終状態に至る前の構造物の損傷を適切に提示・評価できない問題点がある。例えば、構造耐震指標Iが構造耐震判定指標ISO以上であれば想定地震動に対し安全であると判断できるが、構造耐震判定指標ISO以上であっても構造物が何らかの損傷を受ける場合がある。また、構造耐震指標Iが同じ耐震設計であっても、地震時の損傷の程度は大きく異なる場合がある。更に、構造耐震指標Iは構造物の属性から算出される値であり、構造耐震判定指標ISOとの比較により設置サイトの影響を考慮しているものの、構造耐震判定指標ISOにおける地域指標Zや地盤指標Gでは構造物の損傷度の観点から設置サイトの影響を精度よく評価できるとはいえない問題点もある。性能規定型の耐震設計では、構造耐震指標Iのように想定地震動に対して安全か否かを評価するだけでなく、最終状態に至る前の構造物の損傷や設置サイトの影響等を含めた耐震性能を評価できる耐震性能指標が必要である。 However, the structural seismic index I S described above is a value obtained by evaluating an acceptable final state of the structure, there is a problem that can not be properly presented and evaluated damage before structure to the final state. For example, can be determined to be safe structural seismic index I S is to assume ground motion as long structure seismic determination index I SO or more, if the structure even structure seismic determination index I SO or subjected to any damage is there. Moreover, even if the structural seismic index IS is the same seismic design, the degree of damage during an earthquake may vary greatly. Furthermore, structural seismic index I S is a value calculated from the attribute of the structure, although in consideration of the influence of the installation site by comparison with the structure seismic determination index I SO, regional indicators in structure seismic determination index I SO In Z and the ground index G, there is a problem that the influence of the installation site cannot be accurately evaluated from the viewpoint of the degree of damage of the structure. The seismic design performance specified type, not only to assess whether safe or not with respect to assumed ground motion as structural seismic index I S, including influence of damage or installation site of the previous structure to the final state A seismic performance index that can evaluate seismic performance is necessary.

これに対し、上述した地震LCCや地震PMLを用いれば設置サイトの影響を考慮して最終状態に至る前の損傷を判断することが可能であり、そのような経済指標を用いて構造物の耐震設計を提示・評価することも考えられる。しかし、通常の構造物の耐震設計は構成要素(非構造部材や建築設備)の仕様やコストが最終決定される前に立案しなければならない場合が多いため、地震LCCや地震PMLをそのまま耐震設計の性能指標として用いることは難しいのが現状である。また、構成要素の損失率曲線(フラジリティカーブ)についても、現段階では未だ統計データの蓄積が豊富にあるとはいえず、耐震設計で用いるあらゆる構成要素の損失率曲線を精度良くモデル化することは難しいのが現状である。構成要素の仕様やコストが決まらない段階でも、地震LCCや地震PMLのように最終状態に至る前の構造物の損傷や設置サイトの影響等を含めた耐震性能を精度良く判断できる耐震性能指標の開発が望まれている。   On the other hand, if the earthquake LCC or earthquake PML described above is used, it is possible to determine the damage before reaching the final state in consideration of the influence of the installation site. It may be possible to present and evaluate the design. However, since seismic design of ordinary structures often has to be planned before the specifications and costs of components (non-structural members and building equipment) are finalized, seismic LCC and seismic PML are designed as is. Currently, it is difficult to use as a performance index. In addition, regarding the loss rate curve (fragility curve) of the component, statistical data cannot be said to be abundant at this stage, and the loss rate curve of every component used in seismic design should be accurately modeled. Is currently difficult. A seismic performance index that can accurately determine seismic performance, including damage to structures before the final state, such as seismic LCC and seismic PML, and the effects of installation sites, even when component specifications and costs are not determined Development is desired.

そこで本発明の目的は、構造物の構成要素の仕様やコストが決まらない段階でも地震時の損傷を精度良く判断できる構造物の定量的耐震性能評価プログラムを提供することにある。   Accordingly, an object of the present invention is to provide a quantitative seismic performance evaluation program for a structure that can accurately determine damage during an earthquake even at a stage where the specifications and costs of the structural components of the structure are not determined.

本発明者は、構造物の設置サイトで想定される様々な震源の地震動を入力として算出される構造物の地震応答値Dsに注目した。従来から地震リスクの評価・管理手法として、図3に示すように、構造物B付近の複数の震源E(震源モデル)と地盤特性U(地盤モデル)とから構造物Bの設置位置における確率論的な地震動Vs(発生確率Vp付き地震動Vs)を求め、その地震動Vsと構造物Bの応答特性C(構造物モデル)とから構造物Bの地震動に対する確率論的な地震応答値Ds(発生確率Dp付き地震応答値Ds)を算出し、その地震応答値Dsを大きい順に並べ替えて累積確率(年超過確率)Deを求めることにより地震リスク曲線(超過確率曲線)Pを作成し、その地震リスク曲線Pによって地震環境E・地盤増幅U・構造物特性Cを考慮した構造物Bの地震リスクを評価する方法が知られている(非特許文献4参照)。このような地震応答値Dsは、構造物の構成要素(非構造部材や建築設備)の仕様やコストが決まらない場合でも、応答特性C(構造部材)が決まれば算出することができる。   The inventor has paid attention to the seismic response value Ds of the structure calculated using as input the seismic motions of various epicenters assumed at the installation site of the structure. Conventionally, as a method for evaluating and managing seismic risk, as shown in FIG. 3, probability theory in the installation position of structure B from a plurality of seismic sources E (seismic model) and ground characteristics U (ground model) near structure B Seismic ground motion Vs (earthquake ground motion Vs with occurrence probability Vp) is obtained, and from the ground motion Vs and the response characteristic C (structure model) of the structure B, the probabilistic seismic response value Ds (the probability of occurrence) The earthquake risk curve (excess probability curve) P is calculated by calculating the earthquake response value Ds) with Dp and rearranging the earthquake response values Ds in descending order to obtain the cumulative probability (annual probability of excess) De. A method for evaluating the earthquake risk of the structure B in consideration of the seismic environment E, the ground amplification U, and the structure characteristics C by the curve P is known (see Non-Patent Document 4). Such an earthquake response value Ds can be calculated if the response characteristic C (structural member) is determined even if the specifications and costs of the structural components (non-structural members and building equipment) are not determined.

図3に示す地震リスク曲線Pは地震応答値Dsと超過確率De(発生確率Dp)との関係を示すものであり、図13(B)のような予想損失額と超過確率との関係を示すイベントカーブとは異なる。しかし、地震応答値Dsと予想損失額との間には対応関係が認められるので、地震応答値Dsを用いて地震PMLと同様に耐震性能を評価できる可能性がある。また、図3に示す地震リスク曲線Pの地震応答値Dsを超過確率ΔDeについて積分すると、構造物Bの供用期間における地震応答値Dsの期待値(=Σ(Ds・ΔDe))が得られる。この地震応答値Dsの期待値と上述した地震LCCの損失率の期待値(L・p)とは異なるものの、両者の間にも対応関係が認められるので、地震応答値Dsの期待値を用いて地震LCCと同様に耐震性能を評価できる可能性がある。 The earthquake risk curve P shown in FIG. 3 shows the relationship between the earthquake response value Ds and the excess probability De (occurrence probability Dp), and shows the relationship between the expected loss amount and the excess probability as shown in FIG. It is different from the event curve. However, since there is a correspondence between the earthquake response value Ds and the expected loss amount, there is a possibility that the seismic performance can be evaluated using the earthquake response value Ds in the same manner as the earthquake PML. Further, when the earthquake response value Ds of the earthquake risk curve P shown in FIG. 3 is integrated with respect to the excess probability ΔDe, an expected value (= Σ (Ds · ΔDe)) of the earthquake response value Ds in the service period of the structure B is obtained. Although the expected value of the seismic response value Ds is different from the expected value of the loss rate of the earthquake LCC (L j · p j ) described above, there is a corresponding relationship between them, so the expected value of the seismic response value Ds May be used to evaluate seismic performance in the same way as earthquake LCC.

一般に構造物の構成要素には、地震時の変形応答値(層間変形角等)により損傷を受けやすい変形型要素(構造部材等)と、地震時の加速度応答値により損傷を受けやすい加速度型要素(建築設備等)とがあることが知られている。上述した地震LCCや地震PMLは、地震応答値の影響を受ける変形型要素と加速度型要素との両者についてそれぞれフラジリティカーブ及びコストを考慮して算出した損失額を合算し、加速度応答値の影響と変形応答値の影響とを同等に評価した指標と考えることができる。フラジリティカーブ及びコストを介して損失額に変換せずとも、加速度応答値の影響と変形応答値の影響を同程度に評価した指標を作ることができれば、地震LCCや地震PMLと相関性の高い耐震性能評価を行うことが期待できる。本発明は、この着想に基づき、対象構造物Bの地震応答値Dsを用いた耐震性能指標の研究開発の結果、完成に至ったものである。   In general, structural components include deformation-type elements (such as structural members) that are easily damaged by deformation response values (interlayer deformation angles, etc.) during an earthquake, and acceleration-type elements that are easily damaged by acceleration response values during an earthquake. It is known that there is (building equipment). The above-mentioned earthquake LCC and earthquake PML are calculated by adding the loss amounts calculated considering the fragility curve and cost for both the deformation type element and the acceleration type element that are affected by the earthquake response value. It can be considered as an index that equally evaluates the influence of the deformation response value. If an index that evaluates the effects of acceleration response values and deformation response values to the same extent can be created without converting to loss amounts through fragility curves and costs, the earthquake resistance is highly correlated with earthquake LCC and earthquake PML. It can be expected to perform performance evaluation. Based on this idea, the present invention has been completed as a result of research and development of a seismic performance index using the seismic response value Ds of the target structure B.

図1のブロック図及び図2の流れ図を参照するに、本発明による構造物の定量的耐震性能評価プログラムは、対象構造物Bの耐震性能を評価するためコンピュータ1を、対象構造物Bの設置位置Lと供用期間tと地震動Vsに対する応答特性Cとを記憶する記憶手段7(図2のステップS103参照)、対象構造物Bの設置位置Lで供用期間t内に想定される複数の発生確率Vp付き地震動Vsを入力し且つ応答特性Cに応じて対象構造物Bに生じる加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出する応答値算出手段10(ステップS105参照)、加速度a及び変形dの最大応答値Da、Ddと発生確率Dpとから供用期間t内に対象構造物Bに生じる加速度a及び変形dの地震応答期待値Aa(=Σ(Da・Dp))、Ad(=Σ(Dd・Dp))を算出する期待値算出手段30(ステップS106参照)、並びに加速度a及び変形dの地震応答期待値Aa、Adの積(=Aa・Ad)又はその逆数(=1/Aa・Ad)を耐震性能指標Gとして対象構造物Bの耐震性能を評価する性能評価手段40(ステップS107参照)として機能させるものである。地震応答期待値Aa、Adの積又はその逆数は、地震応答期待値Aa、Adの対数値の和(=lnAa+lnAd)又はそのマイナス値(=−(lnAa+lnAd))としてもよい(後述の(11)式参照)。   Referring to the block diagram of FIG. 1 and the flowchart of FIG. 2, the quantitative earthquake-proof performance evaluation program for a structure according to the present invention installs the computer 1 to evaluate the earthquake-proof performance of the target structure B, and installs the target structure B. Storage means 7 for storing the position L, the service period t, and the response characteristic C to the ground motion Vs (see step S103 in FIG. 2), a plurality of occurrence probabilities assumed within the service period t at the installation position L of the target structure B Response value calculation means 10 for inputting the earthquake motion Vs with Vp and calculating the maximum response values Da and Dd with the occurrence probability Dp of the acceleration a and deformation d generated in the target structure B according to the response characteristic C (see step S105), The expected earthquake response value Aa (= Σ (Da · Dp) of the acceleration a and deformation d generated in the target structure B within the service period t from the maximum response values Da and Dd of the acceleration a and deformation d and the occurrence probability Dp. , Ad (= Σ (Dd · Dp)), the expected value calculation means 30 (see step S106), and the product (= Aa · Ad) of the earthquake response expected values Aa and Ad of acceleration a and deformation d (= Aa · Ad) or their reciprocals. Using (= 1 / Aa · Ad) as the seismic performance index G, it functions as the performance evaluation means 40 (see step S107) for evaluating the seismic performance of the target structure B. The product of the earthquake response expected values Aa and Ad or the reciprocal thereof may be the sum of the logarithmic values of the earthquake response expected values Aa and Ad (= lnAa + lnAd) or a negative value thereof (= − (lnAa + InAd)) (described later (11)) See formula).

好ましくは、記憶手段7に対象構造物Bの構成部材を加速度で損傷しやすい加速度型αaと変形で損傷しやすい変形型αdとに分けた割合比α(=αa/αd)を記憶し、性能評価手段40により加速度a及び変形dの地震応答期待値Aa、Adを割合比αに応じて指数重み付け又は係数重み付けし、且つ、重み付けされた加速度a及び変形dの地震応答期待値Aa、Adにより耐震性能指標Gを求める(後述の(13)式参照)。   Preferably, the storage unit 7 stores a ratio ratio α (= αa / αd) divided into an acceleration type αa that easily damages the components of the target structure B by acceleration and a deformation type αd that is easily damaged by deformation. The evaluation means 40 weights the expected earthquake response values Aa and Ad of the acceleration a and deformation d exponentially or coefficient according to the ratio α, and the predicted earthquake response values Aa and Ad of the weighted acceleration a and deformation d. A seismic performance index G is obtained (see equation (13) below).

対象構造物Bが多層(n層)構造物である場合は、応答値算出手段10により各層i(1≦i≦n)別に加速度a及び変形dの発生確率Dp付き最大応答値Dai、Ddiを算出し、期待値算出手段30により各層i別に加速度a及び変形dの地震応答期待値Aai(=Σ(Dai・Dp))、Adi(=Σ(Ddi・Dp))を算出し、性能評価手段40により各層i別に耐震性能指標Giを求め、且つ、各層i別の耐震性能指標Giの平均値(=Σ(1/n)Gi)により対象構造物Bの耐震性能を評価することができる(後述の(12)式参照)。   When the target structure B is a multilayer (n-layer) structure, the response value calculation means 10 calculates the maximum response values Dai and Ddi with the probability D of occurrence of acceleration a and deformation d for each layer i (1 ≦ i ≦ n). The expected value calculation means 30 calculates the expected earthquake response values Aai (= Σ (Dai · Dp)) and Adi (= Σ (Ddi · Dp)) of the acceleration a and deformation d for each layer i, and the performance evaluation means The seismic performance index Gi for each layer i can be obtained by 40, and the seismic performance of the target structure B can be evaluated by the average value (= Σ (1 / n) Gi) of the seismic performance index Gi for each layer i ( (See equation (12) below).

更に好ましくは、記憶手段7に対象構造物Bの各層iの全体(n層)に対するコスト比ri(Σri=1)を記憶し、性能評価手段40により各層i別の耐震性能指標Giをコスト比riに応じて係数重み付け又は指数重み付けし、且つ、重み付けされた各層i別の耐震性能指標Giの総和(=Σri・Gi)により対象構造物Bの耐震性能を評価する(後述の(13)式参照)。   More preferably, the storage means 7 stores the cost ratio ri (Σri = 1) for the entire layer i (n layers) of the target structure B, and the performance evaluation means 40 calculates the seismic performance index Gi for each layer i by the cost ratio. Coefficient weighting or exponential weighting is performed according to ri, and the seismic performance of the target structure B is evaluated based on the sum of the weighted seismic performance indices Gi for each layer i (= Σri · Gi) (formula (13) described later) reference).

望ましくは、記憶手段7に1以上の震源Eの位置E1・規模E2と発生確率E3と距離減衰式E4とを記憶し(図2のステップS101)、対象構造物Bの設置位置Lと各震源Eの位置E1・規模E2と発生確率E3と距離減衰式E4とから設置位置Lで供用期間t内に想定される複数の地震動の発生確率Vp付き応答スペクトルVsを震源E毎に算出する地震動算出手段20を設け(ステップS104)、震源E毎の発生確率Vp付き応答スペクトルVsを応答値算出手段10に入力して対象構造物Bに生じる加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出する(ステップS105)。更に望ましくは、記憶手段7に対象構造物Bの設置位置Lの地盤特性Uを記憶し(ステップS102)、地震動算出手段20により震源E毎の発生確率Vp付き応答スペクトルVsと地盤特性Uとから設置位置Lの地表面で想定される地震動の発生確率Vp付き応答スペクトルVsを算出する(ステップS104〜S105)。   Desirably, the storage means 7 stores the position E1, the scale E2, the occurrence probability E3, and the distance attenuation equation E4 of one or more seismic sources E (step S101 in FIG. 2), and the installation position L of the target structure B and each seismic source. Earthquake motion calculation that calculates response spectrum Vs with occurrence probability Vp of a plurality of earthquake motions assumed in service period t at installation position L from position E1, magnitude E2, occurrence probability E3, and distance attenuation equation E4 of E for each seismic source E Means 20 is provided (step S104), and the response spectrum Vs with the occurrence probability Vp for each epicenter E is input to the response value calculation means 10, and the maximum response value Da with the occurrence probability Dp of the acceleration a and deformation d generated in the target structure B is provided. , Dd is calculated (step S105). More preferably, the ground characteristic U of the installation position L of the target structure B is stored in the storage means 7 (step S102), and the seismic motion calculation means 20 calculates the response spectrum Vs with the occurrence probability Vp for each epicenter E and the ground characteristics U. A response spectrum Vs with a probability Vp of earthquake motion assumed on the ground surface at the installation position L is calculated (steps S104 to S105).

或いは、記憶手段7に対象構造物Bの設置位置L周辺の1以上の震源Eの断層モデルE5と過去の小・中地震記録波形又は統計的に処理された人工地震波形E6と経験的又は統計的グリーン関数法による時刻歴波形算出式E7とを記憶し(ステップS101)、地震動算出手段20において各震源Eの断層モデルE5と地震波形E6と時刻歴波形算出式E7とから設置位置Lで供用期間t内に想定される複数の地震動の発生確率Vp付き時刻歴波形Vsを震源E毎に算出し(ステップS104)、震源E毎の発生確率Vp付き時刻歴波形Vsを応答値算出手段10に入力して対象構造物Bに生じる加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出してもよい(ステップS105)。この場合も、更に望ましくは、記憶手段7に対象構造物Bの設置位置Lの地盤特性Uを記憶し(ステップS102)、地震動算出手段20により震源E毎の発生確率Vp付き時刻歴波形Vsと地盤特性Uとから設置位置Lの地表面で想定される地震動の発生確率Vp付き応答スペクトルVsを算出することができる(ステップS104〜S105)。   Alternatively, in the storage means 7, the fault model E5 of one or more seismic centers E around the installation position L of the target structure B and the past small / medium earthquake recorded waveform or statistically processed artificial earthquake waveform E6 and empirical or statistical The time history waveform calculation formula E7 by the dynamic Green function method is stored (step S101), and the earthquake motion calculation means 20 is used at the installation position L from the fault model E5, the earthquake waveform E6, and the time history waveform calculation formula E7 of each epicenter E. A time history waveform Vs with occurrence probability Vp of a plurality of ground motions assumed within a period t is calculated for each epicenter E (step S104), and a time history waveform Vs with occurrence probability Vp for each epicenter E is sent to the response value calculation means 10. The maximum response values Da and Dd with the occurrence probability Dp of the acceleration a and the deformation d generated in the target structure B may be calculated (step S105). Also in this case, more preferably, the ground characteristic U of the installation position L of the target structure B is stored in the storage means 7 (step S102), and the time history waveform Vs with the occurrence probability Vp for each epicenter E is obtained by the earthquake motion calculation means 20. The response spectrum Vs with the occurrence probability Vp of the ground motion assumed on the ground surface at the installation position L can be calculated from the ground characteristics U (steps S104 to S105).

本発明による構造物の定量的耐震性能評価プログラムは、対象構造物Bの設置位置Lと供用期間tと地震動Vsに対する応答特性Cとを記憶したうえで供用期間t内に設置位置Lで想定される複数の発生確率Vp付き地震動Vsを入力し、応答特性Cに応じて対象構造物Bに生じる加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出し、加速度a及び変形dの最大応答値Da、Ddと発生確率Dpとから供用期間t内に対象構造物Bに生じる加速度a及び変形dの地震応答期待値Aa、Adを算出し、その地震応答期待値Aa、Adの積又はその逆数を耐震性能指標Gとして対象構造物Bの耐震性能を評価するので、次の有利な効果を奏する。   The quantitative seismic performance evaluation program for a structure according to the present invention is assumed at the installation position L within the service period t after storing the installation position L of the target structure B, the service period t, and the response characteristic C to the ground motion Vs. Input a plurality of earthquake motions Vs with occurrence probability Vp, and calculate maximum response values Da and Dd with occurrence probability Dp of acceleration a and deformation d generated in target structure B according to response characteristic C, and calculate acceleration a and deformation d. The earthquake response expected values Aa and Ad of the acceleration a and deformation d generated in the target structure B within the service period t are calculated from the maximum response values Da and Dd and the occurrence probability Dp, and the earthquake response expected values Aa and Ad are calculated. Since the seismic performance of the target structure B is evaluated using the product or its inverse as the seismic performance index G, the following advantageous effects can be obtained.

(イ)対象構造物Bに生じる加速度及び変形の地震応答期待値Aa、Adの積(又はその逆数)を耐震性能指標Gとして用いることにより、地震LCCや地震PMLと同様に加速度及び変形の応答値の影響を同等に考慮して構造物Bの耐震性能を定量的に評価することができる。
(ロ)また、加速度応答期待値Aa及び変形応答期待値Adは、対象構造物Bの非構造部材や建築設備の詳細な仕様(フラジリティカーブ)やコストが不明であっても、構造部材による応答特性Cが決まれば算出できるので、構成要素の詳細な仕様やコストが最終決定される前の設計段階においても耐震性能を評価することができる。また、既存の構造物Bについても、時期により異なる構成要素の再調達価格(コスト)に左右されずに耐震性能を評価することが可能となる。
(ハ)対象構造物Bの用途(通常の事務所ビル、学校、工場等)に応じて、加速度応答値の影響を受けやすい構成部材αaと変形応答値の影響を受けやすい構成部材αdとの割合比αによって地震応答期待値Aa、Adの重み付けを変えることにより、両応答期待値Aa、Adによる耐震性能指標Gと地震LCCや地震PMLとの相関性を高めることが期待できる。
(A) Acceleration and deformation response similar to earthquake LCC and earthquake PML by using the product (or its inverse) of the expected earthquake response values Aa and Ad of the acceleration and deformation generated in the target structure B as the seismic performance index G The seismic performance of the structure B can be quantitatively evaluated in consideration of the effect of the value.
(B) The acceleration response expectation value Aa and the deformation response expectation value Ad are responses by the structural member even if the non-structural member of the target structure B and the detailed specifications (fragility curve) and cost of the building equipment are unknown. Since the characteristic C can be calculated, the seismic performance can be evaluated even in the design stage before the detailed specifications and costs of the components are finally determined. In addition, it is possible to evaluate the seismic performance of the existing structure B without being influenced by the repurchasing price (cost) of the component that varies depending on the time.
(C) Depending on the application of the target structure B (normal office building, school, factory, etc.), the component member αa that is susceptible to the acceleration response value and the component member αd that is susceptible to the deformation response value By changing the weighting of the expected earthquake response values Aa and Ad according to the ratio ratio α, it can be expected that the correlation between the seismic performance index G based on both expected response values Aa and Ad and the earthquake LCC or earthquake PML is enhanced.

(ニ)対象構造物Bが多層構造物である場合も、各層i別の地震応答期待値Aai、Adiにより各層i別の耐震性能指標Giを求め、その平均値Σ(1/n)Giを耐震性能指標Gとすることにより、地震LCCや地震PMLと相関性の高い耐震性能評価が可能である。また、各層iの全体に対するコスト比ri(Σri=1)に応じて各層i別の耐震性能指標Giの重み付けを変えることにより、その総和Σri・Giと地震LCCや地震PMLとの相関性を一層高めることが期待できる。
(ホ)対象構造物Bの設置位置Lにおける地震環境・地盤増幅を考慮に入れた発生確率Vp付き地震動Vsを入力することにより、設置サイトの影響を考慮した適切な耐震性能を提示・評価することができる。
(ヘ)対象構造物Bの設置位置L、供用期間t、応答特性Cを変えながら耐震性能指標Gの算出を繰り返すことにより、建築主にとって最適な様々な耐震性能の設計案を比較可能に提示すると共に、設計者にとって設計した構造物の耐震性能を定量的に判断・評価するための手段とすることができる。
(D) Even when the target structure B is a multi-layer structure, the seismic performance index Gi for each layer i is obtained from the expected earthquake response values Aai and Adi for each layer i, and the average value Σ (1 / n) G i is calculated. By using the seismic performance index G, it is possible to evaluate seismic performance highly correlated with the earthquake LCC and the earthquake PML. Further, by changing the weighting of the seismic performance index Gi for each layer i according to the cost ratio ri (Σri = 1) to the whole of each layer i, the correlation between the sum Σri · Gi and the earthquake LCC or earthquake PML is further increased. It can be expected to increase.
(E) Presenting and evaluating appropriate seismic performance considering the influence of the installation site by inputting the seismic motion Vs with the occurrence probability Vp taking into account the seismic environment and ground amplification at the installation position L of the target structure B be able to.
(F) By repeatedly calculating the seismic performance index G while changing the installation position L, the service period t, and the response characteristics C of the target structure B, various design plans for seismic performance that are optimal for the owner can be presented for comparison. At the same time, it can be a means for the designer to quantitatively judge and evaluate the seismic performance of the structure designed.

図1は、本発明のプログラムを内蔵したコンピュータ1のブロック図の一例を示す。図示例のコンピュータ1は、キーボード・マウス等の入力装置2とディスプレイ・プリンタ等の出力装置3とが接続され、震源データ(震源モデル)E、地盤特性データ(地盤モデル)U、構造物データ(構造物モデル)C、L、t等を記憶する記憶手段7を有している。記憶手段7に記憶するデータは、入力装置2から入力手段5を介して入力する。また図示例のコンピュータ1は、内蔵プログラムとして、応答値算出手段10と、地震動算出手段20と、期待値算出手段30と、耐震性能評価手段40と、入力手段5及び出力手段6とを有している。出力手段6は、耐震性能評価手段40による評価結果(耐震性能指標G)を出力装置3に出力するプログラムである。   FIG. 1 shows an example of a block diagram of a computer 1 incorporating a program of the present invention. The computer 1 shown in FIG. 1 is connected to an input device 2 such as a keyboard / mouse and an output device 3 such as a display / printer, and has an epicenter data (seismic model) E, ground property data (ground model) U, structure data ( Structure model) It has storage means 7 for storing C, L, t, and the like. Data stored in the storage unit 7 is input from the input device 2 through the input unit 5. The computer 1 in the illustrated example has a response value calculation means 10, an earthquake motion calculation means 20, an expected value calculation means 30, an earthquake resistance evaluation means 40, an input means 5 and an output means 6 as built-in programs. ing. The output unit 6 is a program for outputting the evaluation result (seismic performance index G) by the seismic performance evaluation unit 40 to the output device 3.

図2は、図1の各プログラムによって対象構造物B(図5参照)の耐震性能を評価する方法の流れ図を示す。以下、図2の流れ図を参照して図1の各プログラムを説明する。先ずステップS101において震源データ(震源モデル)Eを記憶手段7に記憶する。本発明では、発生規模・発生場所・発生時期の何れにも不確実性が含まれる震源Eを、例えば震源位置E1と規模(マグニチュード)E2と発生確率E3とにより設定することができる。発生確率E3は、対象構造物Bの供用期間tに応じて算出する。また、過去の地震記録の統計解析に基づき適切な距離減衰式E4を設定し、震源位置E1からの震源距離と震源Eの規模E2と距離減衰式E4とから経験的手法により、対象構造物Bの設置位置Lにおける発生確率Vpが規定された地震動の応答スペクトルVs(発生確率Vp付き応答スペクトルVs)を予想する(図1の応答スペクトル算出手段21参照)。例えばステップS101において、評価対象地域(例えば日本全国又は関東地方等)の1以上の震源Eの位置E1・規模E2・発生確率E3と距離減衰式E4とを記憶手段7に記憶しておき、対象構造物Bの設置位置Lの入力(ステップS103)に応じて設置位置周辺の震源Eを選択する。   FIG. 2 shows a flowchart of a method for evaluating the seismic performance of the target structure B (see FIG. 5) by each program of FIG. Hereinafter, each program of FIG. 1 will be described with reference to the flowchart of FIG. First, in step S101, the epicenter data (seismic source model) E is stored in the storage means 7. In the present invention, the epicenter E that includes uncertainty in any of the occurrence scale, the occurrence location, and the occurrence timing can be set by, for example, the epicenter position E1, the magnitude (magnitude) E2, and the occurrence probability E3. The occurrence probability E3 is calculated according to the service period t of the target structure B. In addition, an appropriate distance attenuation equation E4 is set based on statistical analysis of past earthquake records, and the target structure B is obtained by an empirical method from the epicenter distance from the epicenter position E1, the magnitude E2 of the epicenter E, and the distance attenuation equation E4. A response spectrum Vs of earthquake motion (response spectrum Vs with occurrence probability Vp) in which the occurrence probability Vp at the installation position L is defined is predicted (see response spectrum calculation means 21 in FIG. 1). For example, in step S101, the storage means 7 stores the position E1, the scale E2, the occurrence probability E3, and the distance attenuation equation E4 of one or more epicenters E in the evaluation target area (for example, the whole of Japan or the Kanto region). In response to the input of the installation position L of the structure B (step S103), the epicenter E around the installation position is selected.

或いはステップS101において、距離減衰式E4に代えて、対象構造物Bの設置位置L周辺の1以上の震源Eの断層モデルE5と、過去の小・中地震記録波形又は統計的に処理された人工地震波形E6と、経験的又は統計的グリーン関数法による時刻歴波形算出式E7とを記憶手段7に記憶し、各震源Eの断層モデルE5と地震波形E6と時刻歴波形算出式E7とから半経験的手法により、設置位置Lにおける発生確率Vpが規定された地震動の時刻歴波形Vs(発生確率Vp付き時刻歴波形Vs)を予想してもよい(図1の時刻歴波形算出手段22参照)。   Alternatively, in step S101, instead of the distance attenuation equation E4, the fault model E5 of one or more epicenters E around the installation position L of the target structure B and the past small / medium earthquake recording waveform or the artificially processed artificially The earthquake waveform E6 and the time history waveform calculation formula E7 by the empirical or statistical Green function method are stored in the storage means 7, and the fault model E5, the earthquake waveform E6 and the time history waveform calculation formula E7 of each epicenter E are half An empirical method may be used to predict the time history waveform Vs of the earthquake motion with the occurrence probability Vp at the installation position L (time history waveform Vs with the occurrence probability Vp) (see the time history waveform calculation means 22 in FIG. 1). .

従来から、設置位置Lにおける過去の小・中地震動記録(波形)を経験的グリーン関数とみなして設置位置Lにおける震源Eの大地震動の時刻歴波形を予測する手法や、設置位置Lにおける適切な小・中地震動記録(波形)がない場合に、一般的な地震動の統計的性質を考慮して作成した統計的グリーン関数によって設置位置Lにおける震源Eの大地震動の時刻歴波形を予測する手法が開発されている(例えば非特許文献5参照)。このような経験的又は統計的グリーン関数法による時刻歴波形算出式E7を用いた半経験的手法によれば、距離減衰式E4に基づく経験的手法に比し、地震波の経路特性等を考慮に入れた詳細な地震動Vsの予測が可能となる。更に詳細な地震動Vsを予測する場合は、ステップS101において、震源Eの地震動の時刻歴波形を計算する理論的手法(差分法や有限要素法等)を記憶しておき、例えば周波数帯に応じて経験的又は統計的グリーン関数法による時刻歴波形算出式E7による波形と理論的手法による波形とを相補的に足し合わせて地震動の時刻歴波形Vsを予想することも可能である(広帯域ハイブリッド法)。   Conventionally, a method for predicting a time history waveform of a large ground motion of the epicenter E at the installation position L by regarding the past small / medium ground motion records (waveforms) at the installation position L as an empirical Green function, When there is no small / medium ground motion record (waveform), there is a method to predict the time history waveform of the large ground motion of the epicenter E at the installation position L by the statistical Green function created considering the statistical properties of general ground motion. It has been developed (see non-patent document 5, for example). According to such a semi-empirical method using the time history waveform calculation formula E7 based on the empirical or statistical Green's function method, the path characteristics of the seismic wave are considered in comparison with the empirical method based on the distance attenuation formula E4. The detailed seismic motion Vs can be predicted. In order to predict a more detailed seismic motion Vs, in step S101, a theoretical method (difference method, finite element method, etc.) for calculating the time history waveform of the seismic motion of the epicenter E is stored, for example, according to the frequency band. It is also possible to predict the time history waveform Vs of seismic motion by complementarily adding the waveform by the time history waveform calculation formula E7 by the empirical or statistical Green function method and the waveform by the theoretical method (broadband hybrid method). .

好ましくはステップS102において、対象構造物Bの設置位置Lにおける地盤特性データ(増幅特性)Uを記憶手段7に記憶する。上述した距離減衰式E4及び時刻歴波形算出式E7は工学的基盤を対象としたものであり、設置位置Lの地表面における応答スペクトルVs又は時刻歴波形Vsは地盤の影響によって増幅されうる。対象構造物Bの設置位置の地盤特性データUを記憶しておけば、地盤による増幅を考慮して設置位置Lの地表面で想定される地震動の応答スペクトルVs又は時刻歴波形Vsを予測することができる(図1の地盤増幅算出手段23参照)。なお、地盤による増幅の影響については後述するステップS104の応答スペクトルVs又は時刻歴波形Vsの算出時において考慮されるが、地盤と対象構造物Bとの相互作用の影響については後述するステップS105の構造物Bの応答値Da、Ddの算出時において考慮される。   Preferably, in step S102, the ground characteristic data (amplification characteristic) U at the installation position L of the target structure B is stored in the storage means 7. The distance attenuation formula E4 and the time history waveform calculation formula E7 described above are for an engineering basis, and the response spectrum Vs or the time history waveform Vs on the ground surface at the installation position L can be amplified by the influence of the ground. If the ground characteristic data U of the installation position of the target structure B is stored, the response spectrum Vs or the time history waveform Vs of the ground motion assumed on the ground surface at the installation position L is predicted in consideration of amplification by the ground. (Refer to the ground amplification calculation means 23 in FIG. 1). Note that the influence of amplification by the ground is taken into account when calculating the response spectrum Vs or the time history waveform Vs in step S104 described later. However, the influence of the interaction between the ground and the target structure B is described in step S105 described later. This is taken into account when calculating the response values Da and Dd of the structure B.

ステップS103において、対象構造物Bの構造物データ(構造物モデル)として、設置位置Lと供用期間tと地震動Vsに対する応答特性Cとを記憶手段7に記憶する。対象構造物Bの設置位置Lは、例えば震源位置E1からの震源距離等を算出するために利用される(ステップS104)。対象構造物Bの供用期間tは、例えば構造物Bの通常の耐用期間(10〜50年程度)とすることができ、震源Eの発生確率E3を算出するために利用される。また応答特性Cは、応答スペクトル又は時刻歴波形Vsから対象構造物Bの応答値Da、Ddを算出するために利用される(ステップS105)。例えば、図5(A)のように多層構造物Bの質量・剛性・高さを質点系モデルC1で表すと共に図5(B)のように構造物Bの各部材要素の復元力特性C2を適切にモデル化し、その強度及び靭性に応じた構造物Bの応答特性Cを図5(C)〜(G)に示すような質点モデルC1の各層の荷重−変形関係(キャパシティ曲線)C3として表すことができる。   In step S103, the storage unit 7 stores the installation position L, the service period t, and the response characteristics C with respect to the ground motion Vs as the structure data (structure model) of the target structure B. The installation position L of the target structure B is used, for example, to calculate the epicenter distance from the epicenter position E1 (step S104). The service period t of the target structure B can be, for example, a normal service life (about 10 to 50 years) of the structure B, and is used to calculate the occurrence probability E3 of the epicenter E. The response characteristic C is used to calculate the response values Da and Dd of the target structure B from the response spectrum or the time history waveform Vs (step S105). For example, the mass / rigidity / height of the multilayer structure B is represented by a mass system model C1 as shown in FIG. 5 (A), and the restoring force characteristics C2 of each member element of the structure B as shown in FIG. 5 (B). Appropriately modeled, the response characteristic C of the structure B according to its strength and toughness is expressed as a load-deformation relationship (capacity curve) C3 of each layer of the mass point model C1 as shown in FIGS. Can be represented.

図2のステップS104〜S105は、対象構造物Bの設置位置L周辺の震源データEと地盤特性データUと対象構造物Bの応答特性Cとから、対象構造物Bに生じる加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出する処理を示す。具体的には、図3に示すように、1以上の震源データEと地盤特性データUとから地震動算出手段20によって対象構造物Bの設置位置Lで供用期間t内に想定される発生確率Vp付き地震動Vsを震源E別に算出し(ステップS104)、その確率論的地震動Vsと地盤特性データUと対象構造物Bの応答特性Cとから応答値算出手段10によって対象構造物Bに生じる複数の発生確率Dp付き加速度最大応答値Daと発生確率Dp付き変形最大応答値Ddとを算出する(ステップS105)。   Steps S104 to S105 in FIG. 2 are based on the acceleration a and deformation d generated in the target structure B from the hypocenter data E, the ground characteristic data U and the response characteristic C of the target structure B around the installation position L of the target structure B. The process of calculating the maximum response values Da and Dd with the occurrence probability Dp is shown. Specifically, as shown in FIG. 3, the occurrence probability Vp assumed within the service period t at the installation position L of the target structure B by the seismic motion calculation means 20 from the one or more source data E and the ground characteristic data U. The attached seismic motion Vs is calculated for each seismic source E (step S104), and the response value calculation means 10 generates a plurality of seismic motions Vs generated in the target structure B from the stochastic ground motion Vs, the ground property data U, and the response characteristics C of the target structure B An acceleration maximum response value Da with occurrence probability Dp and a deformation maximum response value Dd with occurrence probability Dp are calculated (step S105).

図4は、図2のステップS104の一例として、例えば非特許文献6に基づいて、地震動算出手段20(とくに応答スペクトル算出手段21)により応答スペクトルで表現された発生確率Vp付き地震動Vsを算出する処理の流れ図の一例を示す。先ず図4のステップS301の距離減衰式E4により、各震源Eの規模E2(モーメントマグニチュードMw)と、各震源Eの位置E1から構造物Bの設置位置Lまでの等価震源距離Xeq(km)とから、構造物Bの設置位置Lの工学的基盤における加速度応答スペクトルSa(cm/s、後述する確率分布の中央値)を震源E毎に算出する。ステップS301の距離減衰式E4におけるδ及びδはそれぞれ地震毎の層別因子及び更新世に対する層別因子、a及びcはそれぞれ距離及び更新世の増幅を補正する係数、bは距離係数、dPは第三紀以前の地盤に対する更新世の増幅係数である。次にステップS302において、各震源Eの発生確率E3に基づき加速度応答スペクトルSaの確率分布を離散化し、震源E毎に複数(N個)の加速度応答スペクトルSa1〜San(一様ハザードスペクトル)を作成する。例えば、各周期の加速度応答スペクトル値Saの確率分布が対数正規分布であるとし、それらが完全相関であるとすると、ステップS301で算出した加速度応答スペクトルSaを、ステップS302に示すように複数の加速度応答スペクトルSa1〜Sanに分解(離散化)することができる。 As an example of step S104 of FIG. 2, FIG. 4 calculates the earthquake motion Vs with the occurrence probability Vp expressed by the response spectrum by the earthquake motion calculation means 20 (particularly the response spectrum calculation means 21) based on Non-Patent Document 6, for example. An example of the flowchart of a process is shown. First, according to the distance attenuation equation E4 in step S301 in FIG. 4, the magnitude E2 (moment magnitude Mw) of each epicenter E and the equivalent epicenter distance Xeq (km) from the position E1 of each epicenter E to the installation position L of the structure B From this, the acceleration response spectrum Sa (cm / s 2 , the median value of a probability distribution described later) in the engineering base at the installation position L of the structure B is calculated for each epicenter E. In the distance attenuation equation E4 in step S301, δ E and δ P are stratification factors for each earthquake and stratification factors for the Pleistocene, a and c are coefficients for correcting distance and Pleistocene amplification, b is a distance coefficient, dP is the Pleistocene amplification factor for pre-Tertiary ground. Next, in step S302, the probability distribution of the acceleration response spectrum Sa is discretized based on the occurrence probability E3 of each epicenter E, and a plurality (N) of acceleration response spectra Sa1 to San (uniform hazard spectra) are created for each epicenter E. To do. For example, assuming that the probability distribution of the acceleration response spectrum value Sa in each cycle is a lognormal distribution and they are completely correlated, the acceleration response spectrum Sa calculated in step S301 is converted into a plurality of accelerations as shown in step S302. The response spectrums Sa1 to San can be decomposed (discretized).

図4のステップS303では、工学的基盤の各加速度応答スペクトルSa1〜Sanと地盤特性データUとから、地表面での加速度応答スペクトルS´a1〜S´anを算出する。またステップS304では、地表面での各加速度応答スペクトルS´a1〜S´anから、地表面での変位応答スペクトルS´d1〜S´dnを算出する。ステップS305において、震源Eによる地震の発生確率E3(例えば定常ポアソン過程による)に基づき、複数(N個)の加速度応答スペクトルSa1〜Sanの各々の発生確率Vp1〜Vpnを算出する。図4の流れ図によれば、応答スペクトルで表現された発生確率Vp付き応答スペクトルVsとして、N個の(地表加速度応答スペクトルS´a、地表変位応答スペクトルS´d、発生確率Vp)の組を震源E毎に算出することができる(ステップS306)。   In step S303 of FIG. 4, acceleration response spectra S′a1 to S′an on the ground surface are calculated from the acceleration response spectra Sa1 to San of the engineering base and the ground characteristic data U. In step S304, displacement response spectra S′d1 to S′dn on the ground surface are calculated from the acceleration response spectra S′a1 to S′an on the ground surface. In step S305, the occurrence probabilities Vp1 to Vpn of a plurality (N) of acceleration response spectra Sa1 to San are calculated based on the occurrence probability E3 (for example, due to the steady Poisson process) of the earthquake source E. According to the flowchart of FIG. 4, a set of N (ground acceleration response spectrum S′a, ground displacement response spectrum S′d, occurrence probability Vp) is set as the response spectrum Vs with the occurrence probability Vp expressed in the response spectrum. It can be calculated for each epicenter E (step S306).

図2のステップS104において、地震動算出手段20(とくに時刻歴波形算出手段22)によって時刻歴波形で表現された発生確率Vp付き地震動Vsを算出することも可能である。その場合は、対象構造物Bの設置位置L周辺の各震源Eの断層モデルE5と、設置位置L周辺の過去の小・中地震記録波形又は統計的に処理された人工地震波形E6と、経験的又は統計的グリーン関数法による時刻歴波形算出式E7と、地盤特性データUとから、構造物Bの設置位置Lの地表面における複数の時刻歴波形Vsとその時刻歴波形Vsの各々の発生確率Vpとを震源E毎に算出する。各震源Eの断層モデルE5は、各震源Eの位置E1から構造物Bの設置位置Lまでの震源距離と、各震源Eの規模E2と、震源Eの発生確率E3とを含めたモデルとすることができる。なお、図2のステップS104(地震動算出手段20による発生確率Vp付き地震動Vsの算出処理)は本発明に必須のものではなく、例えば対象構造物Bの設置位置L近傍で想定される発生確率Vp付き地震動Vs(応答スペクトルや時刻歴波形)が予め求められている場合は、その発生確率Vp付き地震動Vsを用いてもよい。   In step S104 in FIG. 2, the earthquake motion Vs with the occurrence probability Vp expressed by the time history waveform can be calculated by the earthquake motion calculation means 20 (particularly the time history waveform calculation means 22). In that case, the fault model E5 of each epicenter E around the installation position L of the target structure B, the past small / medium earthquake recorded waveform around the installation position L, or the statistically processed artificial earthquake waveform E6, experience Generation of a plurality of time history waveforms Vs on the ground surface of the installation position L of the structure B and each of the time history waveforms Vs from the time history waveform calculation formula E7 by the statistical or statistical Green function method and the ground characteristic data U The probability Vp is calculated for each epicenter E. The fault model E5 of each epicenter E is a model including the epicenter distance from the position E1 of each epicenter E to the installation position L of the structure B, the magnitude E2 of each epicenter E, and the occurrence probability E3 of the epicenter E. be able to. 2 is not indispensable for the present invention, for example, the occurrence probability Vp assumed in the vicinity of the installation position L of the target structure B. When the attached earthquake motion Vs (response spectrum or time history waveform) is obtained in advance, the earthquake motion Vs with the occurrence probability Vp may be used.

図6は、図2のステップS105の一例として、震源E毎に算出された発生確率Vp付き地震動Vs(例えば、図4のステップS306で算出したN個の(加速度応答スペクトルS´a1〜S´an、変位応答スペクトルS´d1〜S´dn、発生確率Vp1〜Vpn)の組)と、対象構造物Bの応答特性C(ステップS103で設定した多質点系モデルC1、復元力特性C2、キャパシティ曲線C3等)とから、応答値算出手段10(とくに応答スペクトルを用いた応答値算出手段11)により、対象構造物Bの加速度a及び変形dの発生確率Dp付き最大応答値Da、Ddを算出する処理の流れ図を示す。   As an example of step S105 in FIG. 2, FIG. 6 shows earthquake motion Vs with an occurrence probability Vp calculated for each epicenter E (for example, N (acceleration response spectra S′a1 to S ′ calculated in step S306 in FIG. 4). an, a set of displacement response spectra S′d1 to S′dn, occurrence probabilities Vp1 to Vpn) and response characteristics C of the target structure B (multi-mass point system model C1, restoring force characteristics C2 set in step S103, capacity From the city curve C3), the response value calculation means 10 (especially the response value calculation means 11 using the response spectrum) calculates the maximum response values Da and Dd with the occurrence probability Dp of the acceleration a and deformation d of the target structure B. The flowchart of the process to calculate is shown.

図6のステップS401では、例えば対象構造物Bとして図5(A)のような階層nの多質点系モデルC1(図示例ではn=3)及び復元力特性C2(図示例では3折れ線モデル)を想定し、その強度及び靭性に応じた構造物Bの応答特性Cとして図5(C)〜(G)のような各層のキャパシティ曲線C3(荷重−変形関係)を作成し、その応答特性Cと発生確率Vp付き地震動Vs(加速度応答スペクトルS´a、変位応答スペクトルS´d)とを用いて、対象構造物Bの各層i別に最大応答加速度Dai、最大層間変形角Ddiを算出する。なお必要に応じて、対象構造物Bのモデル化及び応答特性Cを作成する際に、設置位置Lの地盤との相互作用の影響を考慮してモデル化して応答特性Cを作成してもよい。   In step S401 of FIG. 6, for example, the target structure B is a multi-mass point system model C1 (n = 3 in the illustrated example) and a restoring force characteristic C2 (three broken line model in the illustrated example) of FIG. As a response characteristic C of the structure B according to its strength and toughness, a capacity curve C3 (load-deformation relationship) of each layer as shown in FIGS. The maximum response acceleration Dai and the maximum interlayer deformation angle Ddi are calculated for each layer i of the target structure B using C and the earthquake motion Vs with the occurrence probability Vp (acceleration response spectrum S′a, displacement response spectrum S′d). If necessary, when modeling the target structure B and creating the response characteristic C, the response characteristic C may be created by modeling in consideration of the influence of the interaction with the ground at the installation position L. .

図6のステップS401において、震源E毎に算出された複数の発生確率Vp付き地震動Vs(加速度応答スペクトルS´a、変位応答スペクトルS´d)を順次入力することにより、ステップS402において各層iにおいて発生確率Dpを伴う最大応答加速度Dai及び最大層間変形角Ddiの組を算出することができる。最大応答値Dai、Ddiは、震源Eの数にかかわらず発生確率Vp毎に算出することができ、その発生確率Dpは地震動Vsの発生確率Vpをそのまま用いることができる(Dp=Vp)。なお、図1の時刻歴波形を用いた応答値算出手段12は、震源E毎の発生確率Vp付き時刻歴波形Vsから対象構造物Bの加速度a及び変形dの発生確率Dp付き最大応答値Dai、Ddiを各層i別に算出するプログラムである。図6の流れ図において、応答値算出手段11に代えて、応答値算出手段12を用いて発生確率Dpを伴う最大応答加速度Dai及び最大層間変形角Ddiを各層i別に算出してもよい。   In step S401 of FIG. 6, by sequentially inputting a plurality of earthquake motions Vs with occurrence probability Vp (acceleration response spectrum S′a, displacement response spectrum S′d) calculated for each epicenter E, in each layer i in step S402. A set of the maximum response acceleration Dai with the occurrence probability Dp and the maximum interlayer deformation angle Ddi can be calculated. The maximum response values Dai and Ddi can be calculated for each occurrence probability Vp regardless of the number of seismic centers E, and the occurrence probability Dp can use the occurrence probability Vp of the ground motion Vs as it is (Dp = Vp). The response value calculation means 12 using the time history waveform of FIG. 1 uses the maximum response value Dai with the occurrence probability Dp of the acceleration a and deformation d of the target structure B from the time history waveform Vs with the occurrence probability Vp for each epicenter E. , Ddi for each layer i. In the flowchart of FIG. 6, instead of the response value calculation unit 11, the response value calculation unit 12 may be used to calculate the maximum response acceleration Dai with the occurrence probability Dp and the maximum interlayer deformation angle Ddi for each layer i.

図2のステップS106〜S107は、対象構造物Bについて各層i別に算出した発生確率Dpを伴う最大応答加速度Dai及び最大層間変形角Ddiから、対象構造物Bの耐震性能指標Gを算出する処理を示す。具体的には、ステップS106において期待値算出手段30により、最大応答加速度Daiとその発生確率Dpとから供用期間t内の加速度aの地震応答期待値Aai(=Σ(Dai・Dp))を算出すると共に、最大層間変形角Ddiとその発生確率Dpとから供用期間t内の変形dの地震応答期待値Adi(=Σ(Ddi・Dp))を算出する。次いでステップS107において耐震性能評価手段40により、(11)式に示すように加速度a及び変形dの地震応答期待値Aai、Adiを掛け合わせることで対象構造物Bの各層i別の耐震性能指標Giを算出し、更に(12)式に示すように各層iの耐震性能指標Giの平均値を求めることにより対象構造物Bの全体の耐震性能指標Gを算出する。   Steps S106 to S107 in FIG. 2 are processes for calculating the seismic performance index G of the target structure B from the maximum response acceleration Dai with the occurrence probability Dp calculated for each layer i for the target structure B and the maximum interlayer deformation angle Ddi. Show. Specifically, in step S106, the expected value calculation means 30 calculates the expected earthquake response value Aai (= Σ (Dai · Dp)) of the acceleration a within the service period t from the maximum response acceleration Dai and its occurrence probability Dp. In addition, the expected earthquake response value Adi (= Σ (Ddi · Dp)) of the deformation d within the service period t is calculated from the maximum interlayer deformation angle Ddi and its occurrence probability Dp. Next, in step S107, the seismic performance evaluation means 40 multiplies the expected seismic response values Aai and Adi of the acceleration a and deformation d by the seismic performance evaluation means 40, and the seismic performance index Gi for each layer i of the target structure B is shown in FIG. And the average seismic performance index Gi of each layer i is calculated as shown in equation (12) to calculate the total seismic performance index G of the target structure B.

Gi=−((1/2)lnAai+(1/2)lnAdi)
=(1/2)Gai+(1/2)Gdi ………………………………………(11)
G=Σ(1/n)Gi …………………………………………………………………(12)
Gi =-((1/2) lnAai + (1/2) lnAdi)
= (1/2) Gai + (1/2) Gdi …………………………………… (11)
G = Σ (1 / n) Gi …………………………………………………………………… (12)

耐震性能指標Gにおいて、地震LCCや地震PMLと同様に加速度応答値及び変形応答値の影響を同等に考慮するためには、(11)式のように加速度応答期待値Aaiと変形応答期待値Adiとを掛け合わせることが有効である。地震LCC等では、性質(単位)の異なる加速度応答値及び変形応答値の影響をそれぞれフラジリティカーブ及びコストを介して損失額に変換することで足し合わせて指標としているが、フラジリティカーブ及びコストを介さずに性質(単位)の異なる加速度応答値と変形応答値とを単に足し合わせただけでは、絶対値の大きな応答値の影響が大きくなってしまい、加速度応答値及び変形応答値の影響を同等に考慮した指標とすることは難しい。(11)式のように加速度応答期待値Aaiと変形応答期待値Adiとの積を用いることで、加速度応答値及び変形応答値の影響を同等に考慮することができる。   In order to consider the effects of the acceleration response value and the deformation response value equally in the seismic performance index G as in the case of the earthquake LCC and earthquake PML, the acceleration response expected value Aai and the deformation response expected value Adi as in the equation (11) Multiplication with is effective. In earthquake LCC, etc., the effects of acceleration response values and deformation response values with different properties (units) are converted into loss amounts through fragility curves and costs, respectively. If the acceleration response value and deformation response value with different properties (units) are simply added together, the effect of the response value having a large absolute value will increase, and the effects of the acceleration response value and the deformation response value will be equalized. It is difficult to make an index that takes into account. By using the product of the acceleration response expectation value Aai and the deformation response expectation value Adi as in equation (11), the influence of the acceleration response value and the deformation response value can be considered equally.

なお(11)式は、後述する重み付けを扱い易くするために地震応答期待値Aai、Adiを自然対数値とし、地震応答期待値Aai、Adiの積が小さいほど耐震性能指標Gが大きな値となるように地震性能指標Gをマイナス値(負号)としているが、対数値やマイナス値とすることは本発明に必須の条件ではなく、耐震性能指標Gは地震応答期待値Aa、Adを掛け合わせたものであれば足りる。例えば、地震応答期待値Aa、Adの積(=Aa・Ad)又はその逆数(=1/Aa・Ad)をそのまま地震性能指標Gとしてもよい。また(11)式では、加速度応答値及び変形応答値の影響を均等に考慮するため係数(1/2)を付し、地震応答期待値Aa、Adの相乗平均を地震性能指標Gとしているが、係数(1/2)は本発明に必須の条件ではなく、係数は1としてもよい。なお(11)式において、Gaiは層iにおける加速度応答期待値Aaiに基づく耐震性能指標を表し、Gdiは層iにおける変形応答期待値Adiに基づく耐震性能指標を表す。   In equation (11), the earthquake response expected values Aai and Adi are assumed to be natural logarithmic values so that the weighting described later can be handled easily. The smaller the product of the earthquake response expected values Aai and Adi, the larger the seismic performance index G becomes. As described above, the seismic performance index G has a negative value (negative sign), but it is not an essential condition for the present invention to use a logarithmic value or a negative value. The seismic performance index G is multiplied by the expected earthquake response values Aa and Ad. If it is, it is enough. For example, the product (= Aa · Ad) of the earthquake response expected values Aa and Ad or the reciprocal (= 1 / Aa · Ad) may be used as the earthquake performance index G as it is. In addition, in equation (11), a coefficient (1/2) is added to uniformly consider the effects of the acceleration response value and the deformation response value, and the geometric mean of the earthquake response expected values Aa and Ad is used as the earthquake performance index G. The coefficient (1/2) is not an essential condition for the present invention, and the coefficient may be 1. In equation (11), Gai represents an earthquake resistance performance index based on the expected acceleration response value Aai in the layer i, and Gdi represents an earthquake resistance performance index based on the expected deformation response value Adi in the layer i.

好ましくは、対象構造物Bの各層i別の構成部材を加速度で損傷しやすい加速度型αaiと変形で損傷しやすい変形型αdiとに分けた割合比αi(=αai/αdi)を記憶手段7に記憶しておき、(13)式に示すように、地震応答期待値Aai、Adiをその割合比αiに応じて指数重み付け又は係数重み付けしたうえで、重み付けされた加速度応答期待値Aai及び変形応答期待値Adiを掛け合わせて各層iの耐震性能指標Giを算出する。上述したように構造物Bの構成要素には変形によって損傷を受けやすい変形型αa(構造部材等)と加速度によって損傷を受けやすい加速度型αd(建築設備等)とが存在するが、その両要素の割合比α(αa/αd)は一般的に構造物Bの用途に応じて異なる。従って、対象構造物Bの用途(通常の事務所ビル、学校、工場等)に応じて地震応答期待値Aa、Adの重み付けを変えることにより、耐震性能指標Gと地震LCCや地震PMLとの相関性を更に高めることが期待できる。   Preferably, the storage means 7 has a ratio ratio αi (= αai / αdi) obtained by dividing the component of each layer i of the target structure B into an acceleration type αai that is easily damaged by acceleration and a deformation type αdi that is easily damaged by deformation. As shown in the equation (13), after the earthquake response expected values Aai and Adi are exponentially weighted or coefficient weighted according to the ratio αi, the weighted acceleration response expected value Aai and deformation response expected Multiply the value Adi to calculate the seismic performance index Gi for each layer i. As described above, there are a deformation type αa (structural member or the like) that is easily damaged by deformation and an acceleration type αd (building equipment or the like) that is easily damaged by acceleration. The ratio ratio α (αa / αd) generally varies depending on the application of the structure B. Therefore, the correlation between seismic performance index G and seismic LCC or seismic PML can be achieved by changing the weighting of expected seismic response values Aa and Ad according to the purpose of target structure B (normal office building, school, factory, etc.) It can be expected to further enhance the sex.

Gi=−(αai・lnAai+αdi・lnAdi)
=αai・Gai+αdi・Gdi ……………………………………………(13)
G=Σri・Gi ………………………………………………………………………(14)
Gi =-(αai · lnAai + αdi · lnAdi)
= Αai ・ Gai + αdi ・ Gdi …………………………………………… (13)
G = Σri ・ Gi ………………………………………………………………………… (14)

本発明の耐震性能指標Gで用いる割合比αi(=αai/αdi)は、地震LCC等で用いるフラジリティカーブ及びコストと対応するものであり、対象構造物Bの各層iの構成要素の再調達価格及び損失率を考慮して定めることができる。例えば既存構造物Bについて本発明の耐震性能指標Gと地震LCC等とを算出して比較し、構造物Bの用途に応じた両要素の割合比α(=αa/αd)を予め求めて記憶手段7に記憶しておけば、構造物Bの構成要素の詳細な仕様やコストが決定される前の設計段階においても、その構造物Bの用途に応じた割合比αを考慮して耐震性能指標Gを算出することができる。   The ratio ratio αi (= αai / αdi) used in the seismic performance index G of the present invention corresponds to the fragility curve and cost used in the earthquake LCC and the like, and the repurchasing price of the component of each layer i of the target structure B And the loss rate can be determined. For example, for the existing structure B, the seismic performance index G of the present invention and the earthquake LCC are calculated and compared, and the ratio α (= αa / αd) of both elements corresponding to the use of the structure B is obtained and stored in advance. If memorized in the means 7, even in the design stage before the detailed specifications and costs of the components of the structure B are determined, the earthquake resistance performance in consideration of the ratio α according to the use of the structure B The index G can be calculated.

更に好ましくは、対象構造物Bのn層全体に対する各層iのコスト比ri(Σri=1)を定めて記憶手段7に記憶しておき、(14)式に示すように各層iの耐震性能指標Giをコスト比riにより係数重み付け又は指数重み付けしたうえで、重み付けされた各層iの耐震性能指標Giの合計を求めることにより対象構造物Bの全体の耐震性能指標Gを算出する。(12)式では構造物Bの構成要素(構造部材、非構造部材、建築設備)が各層iに均等に分配されていることを前提としているが、各層iの構成要素のコストが均等でない場合は、(14)式のように各層iの耐震性能指標Giの重み付けを変えることにより、本発明の耐震性能指標Gと地震LCCや地震PMLとの相関性を更に高めることが期待できる。   More preferably, the cost ratio ri (Σri = 1) of each layer i with respect to the entire n layers of the target structure B is determined and stored in the storage means 7, and the seismic performance index of each layer i as shown in the equation (14). The overall seismic performance index G of the target structure B is calculated by calculating the sum of the weighted seismic performance index Gi of each layer i after Gi is weighted with a coefficient or index weighted by the cost ratio ri. In formula (12), it is assumed that the structural elements (structural members, non-structural members, building equipment) of the structure B are evenly distributed to each layer i, but the cost of the structural elements of each layer i is not uniform. Can be expected to further increase the correlation between the seismic performance index G of the present invention and the earthquake LCC or earthquake PML by changing the weighting of the seismic performance index Gi of each layer i as shown in equation (14).

[検証実験]
(11)〜(14)式に示す耐震性能指標Gの有効性を確認するため、地震−地盤−構造物のモデルを用いたパラメトリックスタディにより、地震LCCや地震PMLとの相関性を確認する検証を行った。地震モデルとして、関東地方の特定都市を想定して対象構造物Bの設置位置Lを定め、構造物Bの供用期間tを50年間とし、領域震源及び特定震源を考慮する方法で設置位置Lの工学的基盤における発生確率Vpが規定された20本の加速度応答スペクトルSa1〜San(一様ハザードスペクトル)を作成した(表1参照)。また、一部のケースではスペクトル値を1.5倍にしたものを用いて耐震性能指標Gを算出した(表2のケース13〜15)。また地盤モデルとして、地盤特性データU1(工学的基盤のみの第1種地盤)、U2(弾性周期0.36secの第2種地盤)、U3(弾性周期1.21secの第3種地盤)の3種類を用いた。工学的基盤上、2種地盤U2上、及び3種地盤U3上における加速度応答スペクトルを図7に示す。
[Verification experiment]
In order to confirm the effectiveness of the seismic performance index G shown in equations (11) to (14), verification to confirm the correlation with earthquake LCC and earthquake PML by a parametric study using an earthquake-ground-structure model Went. As an earthquake model, the installation position L of the target structure B is determined assuming a specific city in the Kanto region, the service period t of the structure B is set to 50 years, Twenty acceleration response spectra Sa1 to San (uniform hazard spectra) in which the occurrence probability Vp on the engineering basis was defined were created (see Table 1). In some cases, the seismic performance index G was calculated using a spectrum value multiplied by 1.5 (cases 13 to 15 in Table 2). In addition, as ground models, 3 of ground characteristic data U1 (first type ground with engineering base only), U2 (second type ground with elastic cycle 0.36 sec), U3 (third type ground with elastic cycle 1.21 sec). The type was used. FIG. 7 shows acceleration response spectra on the engineering foundation, on the second kind ground U2, and on the third kind ground U3.

構造物モデルは、3層(n=3)のRCラーメン構造を想定し、図5(A)及び(B)に示すような3質点系モデルC1及び復元力特性C2の構造物モデル(各層質量1t、各層高さ3.5m)を用いた。また、構造耐震指標Iが異なる2種類の構造物(I=0.4、0.6)を想定し、更に構造耐震指標Iが同じ構造物において強度指標Cと靭性指標Fとの組み合わせが異なる場合を考慮して、図5(C)〜(G)に示すように各層の荷重−変形関係(キャパシティ曲線)C3が異なる5種類の応答特性Cを用いた。工学的基盤におけるスペクトルSa1〜Sanの強度と地層モデルUと構造物Bの応答特性Cとの組み合わせを変えることにより表2に示す29ケースを作成し、各ケースについて(11)式及び(12)式を用いて耐震性能指標Gを算出した。 The structure model assumes an RC frame structure of three layers (n = 3), and a structure model (three-layer mass of each mass model C1 and restoring force characteristic C2 as shown in FIGS. 5A and 5B). 1 t, each layer height 3.5 m) was used. The structure seismic index I S are two different types of structures (I S = 0.4, 0.6) assumes the further structural seismic index I S is the strength index C and toughness index F in the same structure In consideration of the case where the combinations are different, five types of response characteristics C having different load-deformation relationships (capacity curves) C3 of the respective layers are used as shown in FIGS. 29 cases shown in Table 2 are created by changing the combination of the strength of the spectra Sa1 to San and the formation model U and the response characteristic C of the structure B in the engineering base, and for each case, the equations (11) and (12) The seismic performance index G was calculated using the formula.

また(11)式及び(12)式を用いた耐震性能指標Gと比較するため、表2に示す29ケースの各々について、図13(C)に示す損失率曲線(フラジリティカーブ)を用いて(3)式により地震LCCを算出した。図13(C)は、低層RCラーメン構造の4種類の破壊モードについて各構成要素の標準的なフラジリティカーブ(High)と、それより損失しやすい構成要素のフラジリティカーブ(Low)とを示すが、ケース21についてはフラジリティカーブ(Low)を用いて地震LCCを算出し、他のケースについてはフラジリティカーブ(High)を用いて地震LCCを算出した。更に、図13(C)のフラジリティカーブ上の超過確率10%(非超過確率90%)の応答値と各破壊モードにおける損失率を組み合わせることにより、図13(D)に示す非超過確率90%の損傷度曲線(ヴァルナラビリティカーブ)を作成し、そのヴァルナラビリティカーブ上の最大応答値に対応する損失率から地震PMLを算出した。   Moreover, in order to compare with the seismic performance index G using Formula (11) and Formula (12), the loss rate curve (fragility curve) shown in FIG. The earthquake LCC was calculated by the formula 3). FIG. 13C shows the standard fragility curve (High) of each component and the fragility curve (Low) of a component that is more easily lost for the four types of fracture modes of the low-rise RC rigid frame structure. For case 21, the earthquake LCC was calculated using the fragility curve (Low), and for the other cases, the earthquake LCC was calculated using the fragility curve (High). Further, by combining the response value of the excess probability of 10% (non-excess probability of 90%) on the fragility curve of FIG. 13C and the loss rate in each failure mode, the non-excess probability of 90% shown in FIG. A damage degree curve (varnarability curve) was created, and the earthquake PML was calculated from the loss rate corresponding to the maximum response value on the Varnarability curve.

地震LCC及び地震PMLを算出する際に、構造物の用途の相違を検討するため、ケース19及び24〜26については構成部材の加速度型αaiと変形型αdiと割合比αi(=αai:αdi)を3:1として工場(factory)用途とし、ケース20及び27〜29については構成部材の加速度型αaiと変形型αdiと割合比αi(=αai:αdi)を1:3として学校(school)用途とした。また、多層構造物における各層における構成要素の不均等分配を検討するため、ケース22及び23については3層構造の各階の再調達価格割合が不均等なものとし、他のケースについては各階の再調達価格が均等に分配されているものとした。   In calculating the earthquake LCC and the earthquake PML, in order to examine the difference in the usage of the structure, the acceleration type αai and the deformation type αdi of the constituent members and the ratio αi (= αai: αdi) are used for the cases 19 and 24-26. Is set to 3: 1 for factory use, and for cases 20 and 27 to 29, the acceleration type αai and deformation type αdi of the constituent members and the ratio αi (= αai: αdi) are set to 1: 3 for school use. It was. In addition, in order to examine the uneven distribution of the components in each layer in the multi-layered structure, the repurchasing price ratio of each floor of the three-layer structure is assumed to be unequal in cases 22 and 23, and The procurement price was assumed to be distributed evenly.

図10(A)は、表2の29ケースについて、構造物の各層i毎に(11)式を用いて算出した耐震性能指標Giと地震LCCとの関係を示し、同図(B)は構造物全体について(12)式を用いて算出した耐震性能指標Gと地震LCCとの関係を示す。同図(A)及び(B)は何れも耐震性能指標Gが大きいほど地震LCCが小さくなる傾向を示しており、本発明による耐震性能指標Gと地震LCCとの間には相関性があることを確認できた。図10においてケース21は他のケースの傾向から外れているが、これは異なるフラジリティーカーブ(Low)を用いたことによるためと考えられる。   FIG. 10A shows the relationship between the seismic performance index Gi calculated using the equation (11) for each layer i of the structure and the earthquake LCC for 29 cases in Table 2, and FIG. The relationship between the seismic performance index G calculated using equation (12) and the earthquake LCC for the entire object is shown. Both (A) and (B) of the figure show that the seismic performance index G tends to decrease as the seismic performance index G increases, and there is a correlation between the seismic performance index G according to the present invention and the seismic LCC. Was confirmed. In FIG. 10, the case 21 deviates from the tendency of the other cases, but this is considered to be due to the use of a different fragility curve (Low).

また図11(A)は、表2の29ケースについて、構造物の各層i毎に(11)式を用いて算出した耐震性能指標Giと地震PMLとの関係を示し、同図(B)は構造物全体について(12)式を用いて算出した耐震性能指標Gと地震PMLとの関係を示す。同図(A)及び(B)も耐震性能指標Gが大きいほど地震PMLが小さくなる傾向を示しており、本発明による耐震性能指標Gと地震PMLとの間にも相関性があることを確認できた。ただし、図10の耐震性能指標Giと地震LCCの相関性に比べるとバラツキが大きい。この理由は、地震LCCが損失率の期待値(平均値)を取っているのに対し、地震PMLはヴァルナラビリティカーブ上の1点を取っているため、応答値のリスクカーブの勾配が急変する箇所でのばらつきが大きいなったためと考えられる。また、図11においてもケース21が他のケースの傾向から外れているが、これは異なるフラジリティーカーブ(Low)を用いたためと考えられる。   FIG. 11A shows the relationship between the seismic performance index Gi calculated using the equation (11) for each layer i of the structure and the earthquake PML for 29 cases in Table 2, and FIG. The relationship between the seismic performance index G calculated using equation (12) and the earthquake PML for the entire structure is shown. FIGS. 6A and 6B also show that the seismic performance index G tends to decrease as the seismic performance index G increases, and it is confirmed that there is a correlation between the seismic performance index G and the earthquake PML according to the present invention. did it. However, the variation is larger than the correlation between the seismic performance index Gi and the earthquake LCC in FIG. The reason is that the earthquake LCC takes the expected value (average value) of the loss rate, while the earthquake PML takes one point on the Varnarability curve, so the slope of the response value risk curve changes suddenly. This is thought to be due to the large variation at each location. Also in FIG. 11, the case 21 deviates from the tendency of the other cases, which is considered to be due to the use of a different fragility curve (Low).

図12(A)は、表2の29ケースの各層iについて、(11)式の加速度応答期待値Aaiに基づく耐震性能指標Gaiと地震LCC(加速度型の構成要素のみについて算出した地震LCC)との関係を示し、同図(B)は(11)式の変形応答期待値Adiに基づく耐震性能指標Gdiと地震LCC(変形型の構成要素のみについて算出した地震LCC)との関係を示す。同図から、各階・各構成要素の地震LCCと耐震性能指標Gai、Gdiとの関係は、フラジリティカーブ及び再調達価格比が同じであれば、ほぼ一定であることが分かる。ただし同図(A)において各層iの耐震性能指標Gaiの取りうる範囲は−1.6〜−0.5程度であるのに対し、同図(B)において各層iの耐震性能指標Gdiの取りうる範囲は4.2〜6.6程度であり、現実的に取りうる値の絶対値が異なることに起因して、耐震性能指標Gaiよりも耐震性能指標Gdiの方が耐震性能指標Gに占める割合が高いことが分かる。   FIG. 12A shows the seismic performance index Gai based on the expected acceleration response value Aai in equation (11) and the earthquake LCC (earthquake LCC calculated only for the acceleration type component) for each layer i in 29 cases of Table 2. (B) shows the relationship between the seismic performance index Gdi based on the deformation response expectation value Adi of equation (11) and the earthquake LCC (earthquake LCC calculated only for the deformation type component). From the figure, it can be seen that the relationship between the seismic LCC of each floor and each component and the seismic performance indexes Gai, Gdi is almost constant if the fragility curve and the replacement price ratio are the same. However, the range that the seismic performance index Gai of each layer i can take in the figure (A) is about -1.6 to -0.5, whereas the seismic performance index Gdi of each layer i in FIG. The possible range is about 4.2 to 6.6, and the seismic performance index Gdi occupies the seismic performance index G rather than the seismic performance index Gai because the absolute values of the values that can be realistically taken are different. It can be seen that the ratio is high.

図12において、構成部材の割合比αiを工場用途(加速度型αai>変形型αdi)としたケース19及び24〜26については他のケースの傾向から外れており、構成部材の割合比αiを学校用途(加速度型αai<変形型αdi)としたケース20及び27〜29についても他のケースの傾向から外れていることが分かる。そこで、地震応答期待値Aai、Adiをその割合比αiに応じて指数重み付けした(13)式を用いて耐震性能指標Giを算出したところ、工場用途のケース19及び24〜26を他のケースの傾向とほぼ一致させ、学校用途のケース20及び27〜29も他のケースの傾向とほぼ一致させることができた。このことから、(13)式のように構造物Bの各層iにおける加速度型αaiと変形型αdiとの割合比αiに応じて地震応答期待値Aai、Adiの重み付けを変えることにより、本発明の耐震性能指標Gと地震LCC等との相関性を高めることができることを確認できた。   In FIG. 12, the cases 19 and 24 to 26 in which the proportion ratio αi of the constituent members is set to the factory use (acceleration type αai> deformation type αdi) are out of the tendency of the other cases. It can be seen that the cases 20 and 27 to 29 that are used (acceleration type αai <deformation type αdi) are also out of the tendency of other cases. Therefore, when the seismic performance index Gi was calculated using the equation (13) in which the earthquake response expected values Aai and Adi were exponentially weighted according to the ratio αi, the factory use cases 19 and 24 to 26 were changed to the other cases. The cases 20 and 27 to 29 for school use can be substantially matched with the tendency of the other cases. From this, by changing the weighting of the expected earthquake response values Aai and Adi according to the ratio ratio αi between the acceleration type αai and the deformation type αdi in each layer i of the structure B as shown in the equation (13), It was confirmed that the correlation between the seismic performance index G and the earthquake LCC can be enhanced.

また図10(B)及び図11(B)において、各層iの再調達価格割合を不均等なものとしたケース22及び23について(12)式を用いて算出した構造物全体の耐震性能指標Gが、他のケースの傾向から若干外れていることが分かる。そこで、各層iの耐震性能指標Giをコスト比riに応じて指数重み付けした(14)式を用いて構造物全体の耐震性能指標Gを算出したところ、ケース22及び23についてを他のケースの傾向とほぼ一致させることができた。このことから、(14)式のように構造物Bの各層iのコスト比riに応じて各層iの耐震性能指標Giの重み付けを変えることにより、本発明の耐震性能指標Gと地震LCC等との相関性を更に高めることができることを確認できた。   10 (B) and 11 (B), the seismic performance index G of the entire structure calculated using the equation (12) for cases 22 and 23 in which the repurchasing price ratio of each layer i is unequal. However, it can be seen that it is slightly different from the tendency of other cases. Therefore, when the seismic performance index G of the entire structure is calculated using the equation (14) in which the seismic performance index Gi of each layer i is exponentially weighted according to the cost ratio ri, the cases 22 and 23 tend to be the trends of the other cases. And almost matched. From this, by changing the weighting of the seismic performance index Gi of each layer i according to the cost ratio ri of each layer i of the structure B as shown in equation (14), the seismic performance index G of the present invention, the earthquake LCC, etc. It was confirmed that the correlation of the can be further improved.

本発明の耐震性能指標Gは、対象構造物Bの非構造部材や建築設備の詳細な仕様やコストが不明であっても、構造部材による応答特性Cが決まれば算出できるので、構造物の構成要素の仕様やコストが決まらない設計段階における耐震性能の評価に有効に利用することができる。また、地震LCCや地震PMLとの相関性が高いので、従来の最終状態における耐震安全性に重きをおいた従来の構造耐震指標Iと異なり、最終状態に至る前の構造物の損傷等が含まれる耐震性能を経済性の観点から精度良く評価することができる。 The seismic performance index G of the present invention can be calculated if the response characteristic C by the structural member is determined even if the detailed specification and cost of the non-structural member and building equipment of the target structure B are unknown. It can be used effectively for the evaluation of seismic performance at the design stage where element specifications and costs are not determined. Moreover, because of the high correlation between the seismic LCC and seismic PML, unlike the seismic conventional emphasizing safety structure seismic index I S in a conventional final state, damage to the front of the structure to the final state The included seismic performance can be accurately evaluated from the economical viewpoint.

こうして本発明の目的である「構造物の構成要素の仕様やコストが決まらない段階でも地震時の損傷を精度良く判断できる構造物の定量的耐震性能評価プログラム」の提供を達成することができる。   Thus, the provision of a “quantitative seismic performance evaluation program for a structure capable of accurately determining damage during an earthquake even at a stage where the specifications and costs of structural components of the structure are not determined” can be achieved.

図2のステップS106では、対象構造物Bの各層i別の最大応答加速度Da及び最大層間変形角Ddと発生確率Dpとから加速度応答期待値Aa及び変形応答期待値Adを算出しているが、発生確率Dpに代えて、最大応答加速度Da及び最大層間変形角Ddの超過確率Deを用いて加速度応答期待値Aa及び変形応答期待値Adを算出してもよい。その場合は、図1に示すように期待値算出手段30に超過確率曲線作成手段31を設け、超過確率曲線作成手段31により対象構造物Bの最大応答加速度Daを降順に並び替えて各々の超過確率Deを求め、応答値軸と超過確率軸とで定まる平面上にプロットして最大応答加速度Daの超過確率曲線Pを作成する。同様にして、対象構造物Bの最大層間変形角Ddを降順に並び替えて各々の超過確率Deを求め、応答値軸と超過確率軸とで定まる平面上にプロットして最大層間変形角Ddの超過確率曲線Pを作成する。   In step S106 of FIG. 2, the acceleration response expectation value Aa and the deformation response expectation value Ad are calculated from the maximum response acceleration Da for each layer i of the target structure B, the maximum interlayer deformation angle Dd, and the occurrence probability Dp. Instead of the occurrence probability Dp, the acceleration response expected value Aa and the deformation response expected value Ad may be calculated using the maximum response acceleration Da and the excess probability De of the maximum interlayer deformation angle Dd. In that case, as shown in FIG. 1, the expected value calculating means 30 is provided with an excess probability curve creating means 31, and the excess probability curve creating means 31 rearranges the maximum response acceleration Da of the target structure B in descending order to each excess. The probability De is obtained and plotted on a plane determined by the response value axis and the excess probability axis to create an excess probability curve P of the maximum response acceleration Da. Similarly, the maximum interlayer deformation angle Dd of the target structure B is rearranged in descending order to obtain each excess probability De, plotted on a plane defined by the response value axis and the excess probability axis, and plotted with the maximum interlayer deformation angle Dd. An excess probability curve P is created.

図8は、発生確率Dpを伴う最大応答加速度Da(又は最大層間変形角Dd)から、超過確率曲線作成手段31により、対象構造物Bの各層i別の地震リスク曲線Pを作成する処理の流れ図を示す。先ずステップS501において特定階層の複数の発生確率Dp付き加速度応答値Da(又は変形応答値Dd)を入力し、ステップS502においてランダムに並べられた発生確率Dp付き応答値Daを応答値Daの降順に並べ替え、ステップS503において並び替えた順番に沿って各応答値Daの累積確率(超過確率)Deを算出する。ステップS504において、各応答値Daと対応する超過確率Deとの組(Da、De)をそれぞれ応答値軸(X軸)と超過確率軸(Y軸)とで定まるXY平面上にプロットすることにより、超過確率曲線Pを作成することができる。この超過確率曲線Pは図3の地震リスク曲線Pと同じものであり、図3を参照して上述したように、超過確率曲線Pの加速度応答値Da(又は変形応答値Dd)を超過確率ΔDeについて積分することにより、加速度応答値Da(又は変形応答値Dd)の地震応答期待値Aa(又はAd)が得られる。ステップS504において、加速度応答値Daと変形応答値Ddとについてそれぞれ超過確率曲線Pa、Pdを作成して地震応答期待値Aa及びAdを求め、その両者を(11)式又は(13)式に代入して耐震性能指標Gを算出する。   FIG. 8 is a flowchart of a process of creating an earthquake risk curve P for each layer i of the target structure B by the excess probability curve creating means 31 from the maximum response acceleration Da (or the maximum interlayer deformation angle Dd) with the occurrence probability Dp. Indicates. First, in step S501, a plurality of acceleration response values Da with occurrence probabilities Dp (or deformation response values Dd) in a specific hierarchy are input, and response values Da with occurrence probabilities Dp arranged at random in step S502 are in descending order of response values Da. Rearrangement, The cumulative probability (excess probability) De of each response value Da is calculated along the order rearranged in step S503. In step S504, by plotting a set (Da, De) of each response value Da and the corresponding excess probability De on the XY plane determined by the response value axis (X axis) and the excess probability axis (Y axis), respectively. The excess probability curve P can be created. This excess probability curve P is the same as the earthquake risk curve P in FIG. 3, and as described above with reference to FIG. 3, the acceleration response value Da (or deformation response value Dd) of the excess probability curve P is used as the excess probability ΔDe. Is integrated to obtain the expected earthquake response value Aa (or Ad) of the acceleration response value Da (or deformation response value Dd). In step S504, excess probability curves Pa and Pd are created for acceleration response value Da and deformation response value Dd, respectively, and earthquake response expectation values Aa and Ad are obtained, and both are substituted into equation (11) or (13). Then, the seismic performance index G is calculated.

或いは、図8のステップS505に示すように、各応答値Daと対応する超過確率Deとの組(Da、De)を、超過確率Deの大きい順番に超過確率軸(X軸)と応答値軸(Y軸)とで定まるXY平面上にそれぞれプロットすることにより、超過確率曲線Pを作成してもよい。この場合も、超過確率曲線Pの加速度応答値Da(又は変形応答値Dd)を超過確率ΔDeについて積分することにより、加速度応答値Da(又は変形応答値Dd)の地震応答期待値Aa(又はAd)を求めることができる。ステップS505の超過確率曲線Pの超過確率軸(X軸)は応答値Da(又はDd)の超過確率を表しており、地震動の再現期間と対応している。また、その超過確率曲線Pの応答値軸(Y軸)は応答値Da(又はDd)の大きさを表しており、地震被害の大きさと対応している。従って、超過確率軸及び応答値軸を再現期間軸及び地震被害軸に変換すると、ステップS505の超過確率曲線Pを地震の再現期間と被害との関係と考えることができる(図9(D)及び(E)を参照)。   Alternatively, as shown in step S505 in FIG. 8, a pair (Da, De) of each response value Da and the corresponding excess probability De is set in the order of the excess probability De in descending order of the excess probability axis (X axis) and the response value axis. The excess probability curve P may be created by plotting on the XY plane determined by (Y axis). Also in this case, by integrating the acceleration response value Da (or deformation response value Dd) of the excess probability curve P with respect to the excess probability ΔDe, the earthquake response expected value Aa (or Ad of the acceleration response value Da (or deformation response value Dd) is obtained. ). The excess probability axis (X axis) of the excess probability curve P in step S505 represents the excess probability of the response value Da (or Dd), and corresponds to the period for reproducing the earthquake motion. The response value axis (Y axis) of the excess probability curve P represents the magnitude of the response value Da (or Dd) and corresponds to the magnitude of earthquake damage. Therefore, when the excess probability axis and the response value axis are converted into the reproduction period axis and the earthquake damage axis, the excess probability curve P in step S505 can be considered as the relationship between the earthquake reproduction period and the damage (FIG. 9D and (See (E)).

従来から、例えば図9(A)に示すように、構造物の耐震性能を異なる発生確率の地震動強さに対する地震被害(損傷)の段階的な変化として定義した耐震性能マトリックスが提案されている(例えば非特許文献3)。同図の耐震性能マトリックスは、縦軸の再現頻度で表した4段階の地震動レベルと横軸の4段階の地震被害(損傷)レベルとの組み合わせの段階的な変化により、構造物の重要度・用途等に応じて3種類の耐震性能(性能グレード)T1、T2、T3を定義したものである。耐震性能マトリクスMの各地震動レベルの境界線はそれぞれ地震動強さの再現期間(例えば50年間の発生超過確率80%、10%、5%)に対応し、各地震被害(損傷)レベルの境界線はそれぞれ構造物の構造形式・種別に応じた応答基準値S(例えば損傷限界値、安全限界値、又はそれらの間に適当な比率で設けた安全限界余裕値であるS1〜S5)に対応している。従って同図(B)に示すように、地震動レベルの境界線と地震被害レベルの境界線との交点R1〜R6の座標を、地震の発生超過確率(80%、10%、5%)と構造物の応答基準値(S1〜S5)との組み合わせ(超過確率、応答基準値)によって定めれば、同図(C)のような地震の再現期間(X軸)と被害(Y軸)とで定まる耐震性能評価平面(XY平面)を生成することができ、その耐震性能評価平面により耐震性能T1、T2、T3を定義することができる。   Conventionally, as shown in FIG. 9 (A), for example, an earthquake resistance matrix is defined in which the earthquake resistance of a structure is defined as a stepwise change in earthquake damage (damage) with respect to seismic intensity with different occurrence probabilities ( For example, Non-Patent Document 3). The seismic performance matrix in the figure shows the importance of the structure by the stepwise change of the combination of the four levels of seismic motion level expressed by the frequency of reproduction on the vertical axis and the four levels of earthquake damage (damage) on the horizontal axis. Three types of seismic performance (performance grades) T1, T2, and T3 are defined depending on the application. Each seismic motion level boundary in the seismic performance matrix M corresponds to each earthquake motion strength reproduction period (for example, 50% occurrence probability over 80%, 10%, 5%), and each seismic damage (damage) level boundary. Corresponds to the response reference value S corresponding to the structure type / type of the structure (for example, damage limit value, safety limit value, or safety margin margin values S1 to S5 provided at an appropriate ratio therebetween). ing. Therefore, as shown in the figure (B), the coordinates of the intersections R1 to R6 between the boundary line of the earthquake motion level and the boundary line of the earthquake damage level are set to the earthquake occurrence excess probability (80%, 10%, 5%) and the structure. If it is determined by the combination of the response reference values (S1 to S5) of objects (excess probability, response reference value), the earthquake recurrence period (X axis) and damage (Y axis) as shown in (C) of the figure A fixed seismic performance evaluation plane (XY plane) can be generated, and the seismic performance T1, T2, T3 can be defined by the seismic performance evaluation plane.

本発明者らは、図9(C)のような耐震性能評価平面上に、図8のステップS505で作成した対象構造物Bの応答加速度Da(又は層間変形角Dd)の超過確率曲線(地震リスク曲線)Pをプロットすることにより、対象構造物Bの耐震性能を評価するプログラムを開発し、特願2007−174927に開示した。図9(D)は、異なる対象構造物A、Bの加速度応答値Da(又は変形応答値Dd)の地震リスク曲線Pa、Pbを耐震性能評価平面上に表したものであり、各地震リスク曲線Pa、Pbと再現頻度軸(X軸)とで囲まれた面積が加速度応答期待値Aa(又は変形応答期待値Ad)と対応している。同図において、応答期待値Aa(又はAd)は地震リスク曲線Paよりも地震リスク曲線Pbの方が小さく、その逆数である耐震性能指標Ga(又はGd)は地震リスク曲線Paよりも地震リスク曲線Pbの方が大きくなっているので、(13)式で算出される耐震性能指標Gは対象構造物Aよりも対象構造物Bの方が大きくなることが分かる。すなわち、図9(D)のような耐震性能評価平面上に表した地震リスク曲線Pa、Pbを用いれば、対象構造物Aと対象構造物Bとの耐震性能指標Gの相違を、面積の大きさの相違として定性的・視覚的に表すことができる。   The inventors of the present invention have an excess probability curve (earthquake) of the response acceleration Da (or interlayer deformation angle Dd) of the target structure B created in step S505 of FIG. 8 on the seismic performance evaluation plane as shown in FIG. By plotting the risk curve (P), a program for evaluating the seismic performance of the target structure B was developed and disclosed in Japanese Patent Application No. 2007-174927. FIG. 9D shows earthquake risk curves Pa and Pb of acceleration response values Da (or deformation response values Dd) of different target structures A and B on the earthquake resistance performance evaluation plane. The area surrounded by Pa and Pb and the reproduction frequency axis (X axis) corresponds to the acceleration response expected value Aa (or the deformation response expected value Ad). In the figure, the expected response value Aa (or Ad) is smaller in the earthquake risk curve Pb than the earthquake risk curve Pa, and the seismic performance index Ga (or Gd), which is the reciprocal thereof, is an earthquake risk curve than the earthquake risk curve Pa. Since Pb is larger, it can be seen that the target structure B is larger than the target structure A in the seismic performance index G calculated by the equation (13). That is, if the seismic risk curves Pa and Pb shown on the seismic performance evaluation plane as shown in FIG. 9D are used, the difference in the seismic performance index G between the target structure A and the target structure B is represented by a large area. It can be expressed qualitatively and visually as a difference in height.

また、図9(E)の地震リスク曲線Pa、Pbは、同図(D)と同様に異なる対象構造物A、Bの加速度応答値Da(又は変形応答値Dd)の超過確率曲線を耐震性能評価平面上に表したものであるが、各地震リスク曲線Pa、Pbと再現頻度軸(X軸)とで囲まれた面積(すなわち加速度応答期待値Aa又は変形応答期待値Ad)が同一である場合を示している。応答期待値Aa(又はAd)が同一であるから、(13)式で算出される耐震性能指標Gは対象構造物Aと対象構造物Bとで同じ値となり、耐震性能指標Gのみでは対象構造物Aと対象構造物Bとの耐震性能の相違を判断することは難しい。しかし、同図のような地震リスク曲線Pa、Pbを用いれば、稀に発生する地震(比較的小さな地震)に対しては対象構造物Bよりも対象構造物Aの方が優れた耐震性能を示しており、極めて稀に発生する地震(比較的大きな地震)に対しては対象構造物Aよりも対象構造物Bの方が優れた耐震性能を示していることが分かる。すなわち、図9のような耐震性能評価平面上に表した地震リスク曲線Pを用いて上述した耐震性能指標Gを算出することにより、耐震性能指標Gの大きさと地震リスク曲線Pの形状との両者を考慮して、構造物の耐震性能を提示・評価することが可能となる。図1の耐震性能評価手段40は、耐震性能指標Gと地震リスク曲線Pと両者を出力手段6に出力して、耐震性能の提示・判断に供することを示している。   In addition, the seismic risk curves Pa and Pb in FIG. 9 (E) represent the excess probability curves of the acceleration response values Da (or deformation response values Dd) of the different target structures A and B as in FIG. Although shown on the evaluation plane, the area (namely, the acceleration response expected value Aa or the deformation response expected value Ad) surrounded by the earthquake risk curves Pa and Pb and the reproduction frequency axis (X axis) is the same. Shows the case. Since the expected response value Aa (or Ad) is the same, the seismic performance index G calculated by the equation (13) is the same value for the target structure A and the target structure B. It is difficult to determine the difference in seismic performance between the object A and the target structure B. However, if the earthquake risk curves Pa and Pb as shown in the figure are used, the target structure A has better seismic performance than the target structure B against rare earthquakes (relatively small earthquakes). It can be seen that the target structure B exhibits better seismic performance than the target structure A against extremely rare earthquakes (relatively large earthquakes). That is, both the magnitude of the seismic performance index G and the shape of the seismic risk curve P are calculated by calculating the seismic performance index G described above using the seismic risk curve P represented on the seismic performance evaluation plane as shown in FIG. It is possible to present and evaluate the seismic performance of a structure. The seismic performance evaluation means 40 of FIG. 1 indicates that the seismic performance index G and the seismic risk curve P and both are output to the output means 6 for presentation and judgment of the seismic performance.

本発明による定量的耐震性能評価プログラムの一実施例の機能ブロック図である。It is a functional block diagram of one Example of the quantitative seismic performance evaluation program by this invention. 本発明による定量的耐震性能評価プログラムの流れ図の一例である。It is an example of the flowchart of the quantitative seismic performance evaluation program by this invention. 確率論的地震動を用いた構造物の応答値及びその超過確率曲線(地震リスク曲線)の説明図である。It is explanatory drawing of the response value of a structure using a stochastic ground motion, and its excess probability curve (earthquake risk curve). 地震動算出手段(プログラム)の流れ図の一例である。It is an example of the flowchart of an earthquake motion calculation means (program). 本発明で用いる構造物の応答特性の一例の説明図である。It is explanatory drawing of an example of the response characteristic of the structure used by this invention. 応答値算出手段(プログラム)の流れ図の一例である。It is an example of the flowchart of a response value calculation means (program). 本発明で用いる発生確率付き地震動の一例の説明図である。It is explanatory drawing of an example of the earthquake motion with an occurrence probability used by this invention. 加速度及び変形の応答値の超過確率曲線の作成方法の流れ図の一例である。It is an example of the flowchart of the preparation method of the excess probability curve of the response value of an acceleration and a deformation | transformation. 図8の超過確率曲線を用いた地震評価方法の説明図である。It is explanatory drawing of the earthquake evaluation method using the excess probability curve of FIG. 本発明による耐震性能指標Gと地震LCCとの相関性を示すグラフである。It is a graph which shows the correlation with the earthquake-resistant performance parameter | index G by this invention, and earthquake LCC. 本発明による耐震性能指標Gと地震PMLとの相関性を示すグラフである。It is a graph which shows the correlation with the earthquake-resistant performance parameter | index G by this invention, and earthquake PML. 本発明による加速度応答期待値及び変形応答期待値と地震PMLとの相関性を示すグラフである。It is a graph which shows the correlation with the acceleration response expectation value by this invention, a deformation response expectation value, and earthquake PML. 従来の損失率曲線(フラジリティ・カーブ)及びイベントカーブの一例の説明図である。It is explanatory drawing of an example of the conventional loss rate curve (fragility curve) and an event curve.

符号の説明Explanation of symbols

1…コンピュータ 2…入力装置
3…出力装置 5…入力手段
6…出力手段 7…記憶手段
10…応答値算出手段 11…スペクトル応答値算出手段
12…時刻歴波形応答値算出手段
20…地震動算出手段 21…応答スペクトル算出手段
22…時刻歴波形算出手段 23…地盤増幅算出手段
30…期待値算出手段 31…超過確率曲線作成手段
40…耐震性能評価手段 41…耐震性能指標算出手段
a…加速度 d…変形
Aa…加速度応答期待値 Ad…変形応答期待値
B…対象構造物 C…応答特性(構造物モデル)
C1…多質点系モデル C2…各部材の復元力特性
C3…各層の荷重−変形関係(キャパシティ曲線)
Ds…地震応答値 Da…加速度の最大応答値(最大応答加速度)
Dd…変形の最大応答値(最大層間変形角)
De…地震応答値の発生超過確率 Dp…地震応答値の発生確率
E…震源データ(震源モデル) G…耐震性能指標
L…設置位置(構造物モデル) P…超過確率曲線(地震リスク曲線)
t…供用期間(構造物モデル) U…地盤特性データ(地盤モデル)
Vs…地震動(応答スペクトル、時刻歴波形)
Vp…地震動の発生確率
DESCRIPTION OF SYMBOLS 1 ... Computer 2 ... Input device 3 ... Output device 5 ... Input means 6 ... Output means 7 ... Storage means 10 ... Response value calculation means 11 ... Spectral response value calculation means 12 ... Time history waveform response value calculation means 20 ... Earthquake motion calculation means DESCRIPTION OF SYMBOLS 21 ... Response spectrum calculation means 22 ... Time history waveform calculation means 23 ... Ground amplification calculation means 30 ... Expected value calculation means 31 ... Excess probability curve creation means 40 ... Earthquake resistance performance evaluation means 41 ... Earthquake resistance performance index calculation means a ... Acceleration d ... Deformation Aa ... Expected acceleration response value Ad ... Expected deformation response value B ... Target structure C ... Response characteristics (structure model)
C1 ... Multi-mass point model C2 ... Restoring force characteristics of each member C3 ... Load-deformation relationship (capacity curve) of each layer
Ds ... Earthquake response value Da ... Maximum response value of acceleration (maximum response acceleration)
Dd ... Maximum response value of deformation (maximum interlayer deformation angle)
De ... Seismic response value occurrence probability Dp ... Seismic response value occurrence probability E ... Earthquake source data (seismic model) G ... Seismic performance index L ... Installation position (structure model) P ... Excess probability curve (earthquake risk curve)
t ... Service period (structure model) U ... Ground property data (ground model)
Vs ... Earthquake motion (response spectrum, time history waveform)
Vp: Probability of earthquake motion

Claims (9)

対象構造物の耐震性能を評価するためコンピュータを、対象構造物の設置位置と供用期間と地震動に対する応答特性とを記憶する記憶手段、前記設置位置で供用期間内に想定される複数の発生確率付き地震動を入力し且つ前記応答特性に応じて対象構造物に生じる加速度及び変形の発生確率付き最大応答値を算出する応答値算出手段、前記加速度及び変形の最大応答値と発生確率とから供用期間内に対象構造物に生じる加速度及び変形の地震応答期待値を算出する期待値算出手段、並びに前記加速度及び変形の地震応答期待値の積又はその逆数を耐震性能指標として対象構造物の耐震性能を評価する性能評価手段として機能させる構造物の定量的耐震性能評価プログラム。 In order to evaluate the seismic performance of the target structure, the storage means for storing the installation position of the target structure, the service period, and the response characteristics to the ground motion, with a plurality of occurrence probabilities assumed within the service period at the installation position Response value calculating means for inputting a seismic motion and calculating a maximum response value with an occurrence probability of acceleration and deformation generated in the target structure according to the response characteristics, and within a service period from the maximum response value and the occurrence probability of the acceleration and deformation The expected value calculation means for calculating the expected earthquake response value of the acceleration and deformation generated in the target structure, and the seismic performance of the target structure is evaluated using the product of the expected acceleration response value of the acceleration and deformation or the inverse thereof as the seismic performance index. Quantitative seismic performance evaluation program for structures that function as performance evaluation means. 請求項1のプログラムにおいて、前記地震応答期待値の積又はその逆数を、前記地震応答期待値の対数値の和又はそのマイナス値としてなる構造物の定量的耐震性能評価プログラム。 The program according to claim 1, wherein the product of the expected earthquake response value or its inverse is a sum of logarithmic values of the expected earthquake response value or a negative value thereof. 請求項1又は2のプログラムにおいて、前記記憶手段に対象構造物の構成部材を加速度で損傷しやすい加速度型と変形で損傷しやすい変形型とに分けた割合比を記憶し、前記性能評価手段により加速度及び変形の地震応答期待値を前記割合比に応じて指数重み付け又は係数重み付けし且つ重み付けされた加速度及び変形の地震応答期待値により耐震性能指標を求めてなる構造物の定量的耐震性能評価プログラム。 In the program according to claim 1 or 2, the storage means stores a ratio of the components of the target structure divided into an acceleration type that is easily damaged by acceleration and a deformation type that is easily damaged by deformation, and the performance evaluation means Quantitative seismic performance evaluation program for structures obtained by exponentially weighting or coefficient weighting the expected seismic response values of acceleration and deformation according to the ratio, and obtaining the seismic performance index by the weighted expected response values of acceleration and deformation . 請求項1から3の何れかのプログラムにおいて、対象構造物が多層構造物である場合に、前記応答値算出手段により各層別に加速度及び変形の発生確率付き最大応答値を算出し、前記期待値算出手段により各層別に加速度及び変形の地震応答期待値を算出し、前記性能評価手段により各層別に耐震性能指標を求め且つ各層別の耐震性能指標の平均値により対象構造物の耐震性能を評価してなる構造物の定量的耐震性能評価プログラム。 4. The program according to claim 1, wherein when the target structure is a multi-layer structure, the response value calculation means calculates a maximum response value with an occurrence probability of acceleration and deformation for each layer, and calculates the expected value. The expected earthquake response value of acceleration and deformation is calculated for each layer by means, the seismic performance index is obtained for each layer by the performance evaluation means, and the seismic performance of the target structure is evaluated by the average value of the seismic performance index for each layer. Quantitative seismic performance evaluation program for structures. 請求項4のプログラムにおいて、前記記憶手段に対象構造物の各層の全体に対するコスト比を記憶し、前記性能評価手段により各層別の耐震性能指標を前記コスト比に応じて係数重み付け又は指数重み付けし且つ重み付けされた各層別の耐震性能指標の総和により対象構造物の耐震性能を評価してなる構造物の定量的耐震性能評価プログラム。 5. The program according to claim 4, wherein the storage means stores a cost ratio for the entire layer of the target structure, and the performance evaluation means weights the seismic performance index for each layer by coefficient weighting or index weighting according to the cost ratio; Quantitative seismic performance evaluation program for structures that evaluates seismic performance of target structures based on the sum of weighted seismic performance indices for each layer. 請求項1から5の何れかのプログラムにおいて、前記記憶手段に1以上の震源の位置・規模と発生確率と距離減衰式とを記憶し、対象構造物の設置位置と各震源の位置・規模と発生確率と距離減衰式とから設置位置で供用期間内に想定される複数の地震動の発生確率付き応答スペクトルを震源毎に算出する地震動算出手段を設け、前記震源毎の発生確率付き応答スペクトルを応答値算出手段に入力してなる構造物の定量的耐震性能評価プログラム。 6. The program according to claim 1, wherein the storage means stores the position / scale, occurrence probability, and distance attenuation formula of one or more hypocenters, the installation position of the target structure, and the position / scale of each seismic source. Based on the probability of occurrence and distance attenuation formula, there is a ground motion calculation means for calculating the response spectrum with the probability of occurrence of multiple ground motions at the installation location within the service period, and responds with the response spectrum with the probability of occurrence for each seismic source. Quantitative seismic performance evaluation program for structures input to value calculation means. 請求項1から5の何れかのプログラムにおいて、前記記憶手段に対象構造物の設置位置周辺の1以上の震源の断層モデルと過去の小・中地震記録波形又は統計的に処理された人工地震波形と経験的又は統計的グリーン関数法による時刻歴波形算出式とを記憶し、前記各震源の断層モデルと地震波形と時刻歴波形算出式とから前記設置位置で供用期間内に想定される複数の地震動の発生確率付き時刻歴波形を震源毎に算出する地震動算出手段を設け、前記震源毎の発生確率付き時刻歴波形を応答値算出手段に入力してなる構造物の定量的耐震性能評価プログラム。 The program according to any one of claims 1 to 5, wherein one or more fault models and past small / medium earthquake recorded waveforms or statistically processed artificial earthquake waveforms around the installation position of the target structure are stored in the storage means. And an empirical or statistical Green's function time history waveform calculation formula, and a plurality of assumed fault models, seismic waveforms and time history waveform calculation formulas within the service period at the installation position A quantitative seismic performance evaluation program for a structure provided with a ground motion calculation means for calculating a time history waveform with a probability of occurrence of ground motion for each hypocenter and inputting the time history waveform with a probability of occurrence for each seismic source into a response value calculation means. 請求項6又は7のプログラムにおいて、前記記憶手段に対象構造物の設置位置の地盤特性を記憶し、前記地震動算出手段により前記震源毎の応答スペクトル又は時刻歴波形と地盤特性とから設置位置表面の応答スペクトル又は時刻歴波形を算出してなる構造物の定量的耐震性能評価プログラム。 The program according to claim 6 or 7, wherein the storage means stores ground characteristics of the installation position of the target structure, and the seismic motion calculation means calculates a response spectrum or time history waveform for each seismic source and the ground characteristics of the installation position surface. A quantitative seismic performance evaluation program for structures obtained by calculating response spectra or time history waveforms. 請求項1から8の何れかのプログラムにおいて、前記応答値算出手段で算出した加速度及び変形の発生確率付き最大応答値を降順に並び替えて各々の超過確率を求め且つ応答値軸と超過確率軸とで定まる平面上にプロットして超過確率曲線を作成する作成手段を設け、前記期待値算出手段により前記超過確率曲線の加速度及び変形の最大応答値と超過確率とから供用期間内に対象構造物に生じる加速度及び変形の地震応答期待値を算出してなる構造物の定量的耐震性能評価プログラム。 The program according to any one of claims 1 to 8, wherein the maximum response values with the acceleration and deformation occurrence probability calculated by the response value calculating means are rearranged in descending order to obtain respective excess probabilities, and the response value axis and the excess probability axis A creation means for creating an excess probability curve by plotting on a plane determined by the following is provided, and the target structure is within the service period from the acceleration and deformation maximum response value of the excess probability curve and the excess probability by the expected value calculation means. Quantitative seismic performance evaluation program for structures by calculating expected earthquake response values for acceleration and deformation.
JP2008120799A 2008-05-03 2008-05-03 Quantitative seismic performance evaluation program for structures Expired - Fee Related JP5008084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120799A JP5008084B2 (en) 2008-05-03 2008-05-03 Quantitative seismic performance evaluation program for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120799A JP5008084B2 (en) 2008-05-03 2008-05-03 Quantitative seismic performance evaluation program for structures

Publications (2)

Publication Number Publication Date
JP2009271684A JP2009271684A (en) 2009-11-19
JP5008084B2 true JP5008084B2 (en) 2012-08-22

Family

ID=41438185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120799A Expired - Fee Related JP5008084B2 (en) 2008-05-03 2008-05-03 Quantitative seismic performance evaluation program for structures

Country Status (1)

Country Link
JP (1) JP5008084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840513B2 (en) * 2012-01-26 2016-01-06 大和ハウス工業株式会社 Evaluation device / evaluation method / evaluation program for earthquake damage loss of buildings
CN117252013B (en) * 2023-09-22 2024-03-19 中国水利水电科学研究院 Method for constructing broadband limited seismic source model

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765007B2 (en) * 2001-11-12 2006-04-12 株式会社竹中工務店 Renovation cost evaluation method based on building seismic performance evaluation value
JP2003296396A (en) * 2002-03-29 2003-10-17 Yuji Takahashi Expected life cycle cost evaluation system of building and recording medium in which expected life cycle cost evaluation program is recorded
JP3952851B2 (en) * 2002-05-24 2007-08-01 独立行政法人建築研究所 Seismic performance evaluation method and apparatus for buildings
JP2004362311A (en) * 2003-06-05 2004-12-24 Building Research Institute Earthquake damage evaluation system, earthquake damage evaluation method, earthquake damage evaluation program and storage medium recorded with earthquake damage evaluation program
JP4005004B2 (en) * 2003-07-29 2007-11-07 株式会社竹中工務店 Earthquake damage prediction apparatus, earthquake damage prediction method, and earthquake damage prediction program
JP4504395B2 (en) * 2005-06-16 2010-07-14 積水化学工業株式会社 Seismic performance presentation system
JP2007109107A (en) * 2005-10-14 2007-04-26 Shimizu Corp Method, program and apparatus for evaluating damage in building in case of earthquake, and recording medium
JP2007133697A (en) * 2005-11-10 2007-05-31 Sekisui House Ltd Dwelling house construction method selection support system and program
JP4771129B2 (en) * 2005-11-24 2011-09-14 清水建設株式会社 Seismic risk assessment system for production facilities
JP4875418B2 (en) * 2006-06-30 2012-02-15 株式会社竹中工務店 Seismic performance evaluation system

Also Published As

Publication number Publication date
JP2009271684A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
Lu et al. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects
Goda et al. Estimation of seismic loss for spatially distributed buildings
Tothong et al. Probabilistic seismic demand analysis using advanced ground motion intensity measures
Taflanidis et al. A simulation‐based framework for risk assessment and probabilistic sensitivity analysis of base‐isolated structures
Kim et al. Pre‐and post‐earthquake regional loss assessment using deep learning
Han et al. Impact of aftershocks and uncertainties on the seismic evaluation of non-ductile reinforced concrete frame buildings
Tesfamariam et al. Loss estimation for non‐ductile reinforced concrete building in Victoria, British Columbia, Canada: effects of mega‐thrust Mw9‐class subduction earthquakes and aftershocks
Lang et al. Deterministic earthquake damage and loss assessment for the city of Bucharest, Romania
Mahmoud et al. Framework for lifecycle cost assessment of steel buildings under seismic and wind hazards
Karimzadeh et al. Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey
Lucchini et al. Uniform hazard floor acceleration spectra for linear structures
Porter et al. Guidelines for component-based analytical vulnerability assessment of buildings and nonstructural elements
Bayraktarli et al. Bayesian probabilistic network approach for managing earthquake risks of cities
JP4916017B2 (en) Seismic performance evaluation program for structures
Atkinson et al. Probabilistic seismic hazard analysis of civil infrastructure
Sani et al. Seismic performance assessment of isolated low-rise steel structures based on loss estimation
Fasan et al. A new design strategy based on a deterministic definition of the seismic input to overcome the limits of design procedures based on probabilistic approaches
Goda et al. Seismic loss estimation of wood-frame houses in south-western British Columbia
Uebayashi et al. Evaluation of the structural damage of high‐rise reinforced concrete buildings using ambient vibrations recorded before and after damage
Han et al. Seismic hazard analysis in low and moderate seismic region-Korean peninsula
Karami et al. Value-based seismic performance optimization of steel frames equipped with viscous dampers
Goda et al. Optimal seismic design for limited planning time horizon with detailed seismic hazard information
JP5008084B2 (en) Quantitative seismic performance evaluation program for structures
Rahman et al. Seismic vulnerability assessment of RC structures: a review
Cook Advancing performance-based earthquake engineering for modern resilience objectives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees