JP4875418B2 - Seismic performance evaluation system - Google Patents

Seismic performance evaluation system Download PDF

Info

Publication number
JP4875418B2
JP4875418B2 JP2006181182A JP2006181182A JP4875418B2 JP 4875418 B2 JP4875418 B2 JP 4875418B2 JP 2006181182 A JP2006181182 A JP 2006181182A JP 2006181182 A JP2006181182 A JP 2006181182A JP 4875418 B2 JP4875418 B2 JP 4875418B2
Authority
JP
Japan
Prior art keywords
building
damage
seismic performance
performance evaluation
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006181182A
Other languages
Japanese (ja)
Other versions
JP2008009837A (en
Inventor
恭章 平川
高志 大西
均 瀬谷
睦博 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2006181182A priority Critical patent/JP4875418B2/en
Publication of JP2008009837A publication Critical patent/JP2008009837A/en
Application granted granted Critical
Publication of JP4875418B2 publication Critical patent/JP4875418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、一例として、インターネット等のネットワークを介して建物所有者や建設業者等が各種情報を送受信自在な状態につながり、そのネットワークの中で、建物所有者の所有する建物に関する建物情報(例えば、建物構造や建物規模や建設年、更には、設計図情報等の詳細なもの)を基にして、建設業者から、その建物の耐震性能や改修費用等を含む評価情報の提供を行うサービスに使用することができる耐震性能評価技術に関し、更に詳しく説明すると、評価対象建物の耐震性能評価値を割り出す為の建物情報を入力手段によって入力することで記録自在な建物情報データベースが設けられ、前記建物情報データベースの建物情報を基に前記評価対象建物の耐震性能評価値(例えば、Is値やPML値等)を割り出す第1演算手段が設けられている耐震性能評価システムに関する。 As an example, the present invention is linked to a state in which various information can be freely transmitted and received by a building owner, a builder, or the like via a network such as the Internet. In the network, for example, building information (for example, building information owned by the building owner) Based on the building structure, building size, construction year, and detailed information such as blueprint information, etc., it is a service that provides evaluation information including the seismic performance and repair costs of the building from the construction company The seismic performance evaluation technology that can be used will be described in more detail. A building information database that can be recorded by inputting the building information for calculating the seismic performance evaluation value of the building to be evaluated by an input means is provided. A first calculation means for calculating an evaluation value (for example, an Is value or a PML value) of the evaluation object building based on the building information in the information database; Related to have been kicked seismic performance evaluation system.

従来、この種の耐震性能評価技術としては、上述のように耐震性能評価値を求めた後、その耐震性能評価値をもとにして耐震改修費用を算出するように構成されているものがあった(例えば、特許文献1参照)。   Conventionally, this type of seismic performance evaluation technology is configured to calculate the seismic retrofit cost based on the seismic performance evaluation value after obtaining the seismic performance evaluation value as described above. (For example, see Patent Document 1).

特開2003−147970号公報JP 2003-147970 A

Is値等の耐震性能評価値は、建物の強度と靱性との積によって求められる値で、地震の震動及び衝撃に対する建物の倒壊危険性を表す所謂『構造耐震指標』であり、耐震診断における判断基準の一つになる。
一般的に言われているIs値の目安は、平成7年12月25日の建設省の告示によれば、『Is値0.3未満では、地震の震動及び衝撃に対して「倒壊し又は崩壊する」危険性が高く、Is値0.3以上0.6未満では、地震の震動及び衝撃に対して「倒壊し又は崩壊する」危険性があり、Is値0.6以上では、地震の震動及び衝撃に対して「倒壊し又は崩壊する」危険性が低い』とされている。
そして、これらの指標は、上述のように建物の強度と靱性との積によって求められるから、図7に示すように、横軸に靱性F、縦軸に強度Cとしたグラフ上の実線Lで示すことができる。即ち、同じIs値で評価される実線L上には、高強度低靱性の建物から、低強度高靱性の建物までさまざまなものが存在し、現実的には、地震時の揺れ量が異なる建物であっても同一のIs値で評価されるものである。
上述した従来の耐震性能評価技術によれば、計算で求められた耐震性能評価値をもとにして耐震改修費用を算出するものであるから、同じIs値で評価される建物の場合、高強度低靱性の建物でも、低強度高靱性の建物でも、同様の被害状況が設定されることとなり、復旧費用の算出も同じ扱いで実施される。
しかしながら、同じIs値で評価される建物であっても、高強度低靱性の建物は、低強度高靱性の建物に比べて揺れ角が小さくなり易く、両建物での被害状況には相当の差がある。特に、外壁部カーテンウォール部材や開口部サッシ部材や、内壁部間仕切りボードや、天井部材等の非構造部材の被害状況は大きく異なる結果となる。従って、復旧費用に関しても、これら両建物では大きな差があり、従来の耐震性能評価技術では求められた復旧費用が現状に合致し難く、建物評価の算定精度が低いという問題点があった。
The seismic performance evaluation value such as Is value is a value obtained by the product of the strength and toughness of the building, and is a so-called “structural seismic index” that represents the risk of the building collapsing against earthquake vibration and impact. Become one of the standards.
According to the notification of the Ministry of Construction on December 25, 1995, the general standard for Is value is as follows: “If the Is value is less than 0.3,“ There is a high risk of “collapse”, with an Is value of 0.3 or more and less than 0.6, there is a risk of “collapse or collapse” with respect to earthquake vibration and shock. "The risk of collapsing or collapsing" is low with respect to vibration and shock.
Since these indices are obtained by the product of the strength and toughness of the building as described above, as shown in FIG. 7, the solid line L on the graph has toughness F on the horizontal axis and strength C on the vertical axis. Can show. That is, on the solid line L evaluated with the same Is value, there are various types of buildings ranging from high strength and low toughness buildings to low strength and high toughness buildings. Even in this case, the evaluation is performed with the same Is value.
According to the conventional seismic performance evaluation technology described above, the seismic retrofit cost is calculated based on the calculated seismic performance evaluation value. The same damage situation will be set for low-toughness buildings and low-strength, high-toughness buildings, and restoration costs will be calculated in the same way.
However, even if the buildings are evaluated with the same Is value, the high-strength and low-toughness buildings tend to have smaller swing angles than the low-strength and high-toughness buildings, and there is a considerable difference in the damage situation between the two buildings. There is. In particular, the damage situation of the non-structural members such as the outer wall curtain wall member, the opening sash member, the inner wall partition board, and the ceiling member is greatly different. Therefore, there is a big difference between the two buildings in terms of restoration costs. The restoration costs required by the conventional seismic performance evaluation technology are difficult to match the current situation, and there is a problem that the calculation accuracy of building assessment is low.

従って、本発明の目的は、上記問題点を解消し、より高い精度で耐震性能評価を行うことが可能な耐震性能評価システムを提供するところにある。 Accordingly, an object of the present invention is to solve the above problems, is to provide a seismic performance evaluation system capable of performing a seismic performance evaluation with higher accuracy.

本発明の第1の特徴構成は、評価対象建物の耐震性能評価値を割り出す為の建物情報を入力手段によって入力することで記録自在な建物情報データベースが設けられ、前記建物情報データベースの建物情報を基に前記評価対象建物の耐震性能評価値を割り出す第1演算手段が設けられている耐震性能評価システムにおいて、建物に使用される各非構造部材について地震時の層間変形角に対応した被害状況を予め設定して記録されている非構造部材被害予想用データベースが設けられ、評価対象の地震の強さを入力することで、前記評価対象建物の地震時の層間変形角を演算する第2演算手段が設けられ、前記第2演算手段で割り出された層間変形角を基にして、前記評価対象建物に使用されている非構造部材それぞれについて前記非構造部材被害予想用データベースから被害状況を割り当てて、それら各非構造部材の復旧費用を各別に算出して集計する第3演算手段が設けられ、前記評価対象建物に使用されている前記非構造部材毎に、被害状況を書き込み自在な被害状況リストを作成自在なリスト作成手段が設けられているところにある。 According to a first characteristic configuration of the present invention, a recordable building information database is provided by inputting building information for determining an earthquake resistance evaluation value of a building to be evaluated by an input means, and the building information in the building information database is stored in the building information database. In the seismic performance evaluation system provided with the first calculation means for determining the seismic performance evaluation value of the building to be evaluated based on the damage status corresponding to the interlayer deformation angle at the time of earthquake for each non-structural member used in the building Second calculation means for calculating an interlayer deformation angle at the time of the earthquake of the evaluation target building by providing a database for predicting non-structural member damage that is set and recorded in advance and inputting the strength of the evaluation target earthquake The non-structural member is provided for each non-structural member used in the building to be evaluated based on the interlayer deformation angle determined by the second calculating means. Assign a damage situation from harm expected database, they third arithmetic means for the restoration costs for each non-structural members to aggregate and calculated separately is provided, on the respective non-structural member used in the evaluation target building There is provided a list creation means for freely creating a damage status list in which the damage status can be written freely .

本発明の第1の特徴構成によれば、建物に使用される各非構造部材について地震時の層間変形角に対応した被害状況を予め設定して記録されている非構造部材被害予想用データベースが設けられ、評価対象の地震の強さを入力することで、前記評価対象建物の地震時の層間変形角を演算する第2演算手段が設けられ、前記第2演算手段で割り出された層間変形角を基にして、前記評価対象建物に使用されている非構造部材それぞれについて前記非構造部材被害予想用データベースから被害状況を割り当てて、それら各非構造部材の復旧費用を各別に算出して集計する第3演算手段が設けられているから、より精度の高い耐震性能評価を行うことが可能となる。
前記第2演算手段によって地震に伴う建物の層間変形角を演算することができると共に、その層間変形角に対応した各非構造部材毎の被害状況を、第3演算手段によって非構造部材被害予想用データベースからそれぞれ割り当てて各別に非構造部材の復旧費用を算出することができる。
即ち、評価対象建物が地震にあった際の非構造部材の被害状況設定を、地震時の層間変形角を基にして実施されるから、実際の建物変形に近い状態での評価を行うことが可能となる。従って、従来のように、同じIs値の建物であれば、揺れ易さに無関係に非構造部材の被害状況が同じとなる問題を解消することができ、揺れ易い建物においては、揺れにくい建物に比べて非構造部材の被害状況が大きくなるとした評価を行うことが可能となり、より現実に近い耐震性能評価を行うことが可能となる。
According to the first characteristic configuration of the present invention, the nonstructural member damage prediction database in which the damage situation corresponding to the interlayer deformation angle at the time of the earthquake is preset and recorded for each nonstructural member used in the building is recorded. A second calculation means is provided for calculating an interlayer deformation angle at the time of the earthquake of the evaluation target building by inputting the strength of the earthquake to be evaluated, and the interlayer deformation determined by the second calculation means Based on the corners, assign damage status from the database for damage prediction of non-structural members for each non-structural member used in the building to be evaluated, and calculate and aggregate the restoration costs for each non-structural member separately. Since the 3rd calculating means to be provided is provided, it becomes possible to perform a more accurate earthquake-resistant performance evaluation.
The second calculation means can calculate the interlayer deformation angle of the building accompanying the earthquake, and the third calculation means can calculate the damage status of each non-structural member corresponding to the interlayer deformation angle for non-structural member damage prediction. It is possible to calculate the restoration cost of the non-structural member by assigning each from the database.
In other words, since the damage status setting of non-structural members when the evaluation target building is in an earthquake is performed based on the interlayer deformation angle at the time of the earthquake, evaluation in a state close to actual building deformation can be performed. It becomes possible. Therefore, as in the past, if the buildings have the same Is value, the problem that the damage situation of the non-structural members is the same regardless of the ease of shaking can be solved. It is possible to evaluate that the damage situation of the non-structural member becomes larger than that, and it is possible to perform a more realistic seismic performance evaluation.

また、前記リスト作成手段によって前記被害状況リストを作成することが可能となる。このリストは、単なる書き込みリストとして使用できる他、例えば、現実に地震が発生し、評価対象建物に被害が発生した際、この被害状況リストを被災地に持ち込んで、次々に各欄に被害状況を書き込んで現実の被害状況の把握資料を迅速に効率よく作成することが可能となる。
また、被害状況リストの各非構造部材欄に、被害状況を書き込むスペース(実測欄)の他に、前記層間変形角から求められた被害予想状況を予め記載したスペース(予測欄)を設けておけば(図6参照)、現状の被害状況を書き込む際に印刷内容と対比して現状が同じ場合には、細かく記載する必要が無くなり、より迅速に状況把握資料を収集することが可能となる。従って、混乱した被災地の環境下でも、正確に迅速に各非構造部材の被害状況を記録することができ、そのデータを基に、復旧費用を精度良く求めることが可能となる。
In addition, by pre-Symbol list means it is possible to create the damage situation list. In addition to being able to use this list as a simple writing list, for example, when an earthquake actually occurs and damage is caused to the building to be evaluated, bring this damage status list to the affected area and list the damage status in each column one after another. It is possible to quickly and efficiently create a document for understanding the actual damage situation by writing.
In addition, in each non-structural member column of the damage status list, in addition to a space for writing the damage status (actual measurement column), a space (prediction column) in which the damage expected status obtained from the interlayer deformation angle is described in advance can be provided. If the current situation is the same as the print contents when writing the current damage situation (see FIG. 6), there is no need to describe it in detail, and it becomes possible to collect situation grasping materials more quickly. Therefore, it is possible to accurately and quickly record the damage status of each non-structural member even in a confused disaster-stricken environment, and it is possible to accurately determine the restoration cost based on the data.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の耐震性能評価技術を使用するネットワーク状況を示している。
当該ネットワークNは、例えば、インターネットで構成され、耐震性能評価の対象となりうる評価対象建物を所有(又は管理)する複数の顧客1や、前記各顧客1に対して耐震性能評価のサービスを提供する建設業者2が、データ送受信自在に繋がっている。
また、他の防災情報等を提供自在な地震防災情報データベース3も、当該ネットワークNに繋がっている。
更に、現実に地震が発生した場合、その被災地から各種被害状況等を前記建設業者2に送信するための被災地担当者4も、当該ネットワークNに繋がることもある。
因みに、ネットワークNに直接的に接続されるのは、前記顧客1、建設業者2、地震防災情報データベース3、被災地担当者4の何れの場合も、インターフェースを介したコンピュータである。
FIG. 1 shows a network situation using the seismic performance evaluation technique of the present invention.
The network N is constituted by, for example, the Internet, and provides a service for evaluating seismic performance to a plurality of customers 1 who own (or manage) an evaluation target building that can be an object of seismic performance evaluation, and the respective customers 1. The construction company 2 is connected so that data can be transmitted and received.
In addition, an earthquake disaster prevention information database 3 that can provide other disaster prevention information and the like is also connected to the network N.
Further, when an earthquake actually occurs, the disaster area person in charge 4 for transmitting various damage situations and the like from the disaster area to the construction company 2 may be connected to the network N.
Incidentally, what is directly connected to the network N is a computer via an interface in any of the customer 1, the construction company 2, the earthquake disaster prevention information database 3, and the disaster area manager 4.

当該実施形態において説明する耐震性能評価システムSは、建設業者2によって管理され、図2に示すように、データベース部5と、演算部6と、入力表示部7とを備えて構成されている。   The seismic performance evaluation system S described in the present embodiment is managed by the contractor 2 and includes a database unit 5, a calculation unit 6, and an input display unit 7, as shown in FIG.

前記データベース部5には、評価対象建物の耐震性能評価値(例えば、Is値やPML値)Hを割り出す為の建物情報8を記録自在な建物情報データベース5Aや、建物に使用される各非構造部材について地震時の各層間変形角θに対応した被害状況を予め設定して記録されている非構造部材被害予想用データベース5B等が備えられている。
尚、建物情報8とは、例えば、鉄筋コンクリート造や鉄骨造や鉄骨鉄筋コンクリート造等の建物構造の情報や、建築面積や階層等の建物規模情報や、建設年情報や、更には、設計図等に示される各部材量の積算根拠となるような設計データや設備データや構造データ等の情報が例として挙げられる。
一方、前記非構造部材とは、評価対象建物を構成する各部材の内、構造躯体を構成する構造部材に対する呼び方であり、構造部材以外の部材を指す。例えば、カーテンウォールやALC部材やブロック材や石張り材やサッシやボード張りの内壁や天井や垂れ壁等、他にも多数存在する。
また、前記層間変形角θとは、図3に示すように、各階に生じる水平方向の層間変位δの当該階の高さhに対する割合で定義される。
そして、前記非構造部材被害予想用データベース5Bに記録されている各非構造部材の被害状況の設定内容を解りやすく説明すると、図5に示すようになる。この図から見られるように、各種非構造部材毎に、層間変形角に応じて、予想される被害状況が設定されている。
The database unit 5 includes a building information database 5A in which building information 8 for determining the seismic performance evaluation value (for example, Is value or PML value) H of the building to be evaluated can be recorded, and each non-structure used in the building. A nonstructural member damage prediction database 5B and the like in which damage states corresponding to respective interlayer deformation angles θ at the time of an earthquake are set and recorded in advance are provided for the members.
The building information 8 includes, for example, information on building structures such as reinforced concrete structures, steel structures, and steel reinforced concrete structures, building size information such as building areas and levels, construction year information, and design drawings. Examples include information such as design data, facility data, and structure data that serve as a basis for integrating the amount of each member shown.
On the other hand, the non-structural member is a name for the structural member constituting the structural enclosure among the members constituting the evaluation target building, and refers to a member other than the structural member. For example, there are many others such as curtain walls, ALC members, block materials, stone-clad materials, sashes, board-clad inner walls, ceilings, and hanging walls.
Further, as shown in FIG. 3, the interlayer deformation angle θ is defined by the ratio of the horizontal interlayer displacement δ generated on each floor to the height h of the floor.
FIG. 5 shows the contents of setting of the damage status of each non-structural member recorded in the non-structural member damage prediction database 5B in an easy-to-understand manner. As can be seen from this figure, the expected damage situation is set for each non-structural member according to the interlayer deformation angle.

前記演算部6には、図2に示すように、前記建物情報データベース5Aの建物情報8を基に前記評価対象建物の耐震性能評価値Hを割り出す第1演算手段6Aや、評価対象の地震の強さを入力することで、前記評価対象建物の地震時の層間変形角θを演算する第2演算手段6Bや、前記第2演算手段6Bで割り出された層間変形角θを基にして、前記評価対象建物に使用されている非構造部材それぞれについて前記非構造部材被害予想用データベース5Bから被害状況を割り当てて、それら各非構造部材の復旧費用を各別に算出して集計する第3演算手段6Cや、前記耐震性能評価値Hを基にして構造部材の復旧費用を算出する構造部演算手段6D等が備えられている。   As shown in FIG. 2, the calculation unit 6 includes a first calculation means 6A for calculating an earthquake resistance evaluation value H of the evaluation object building based on the building information 8 of the building information database 5A, and an earthquake of the evaluation object earthquake. By inputting the strength, based on the second deformation means 6B for calculating the interlayer deformation angle θ during the earthquake of the building to be evaluated, or the interlayer deformation angle θ calculated by the second calculation means 6B, Third computing means for allocating damage status from the nonstructural member damage prediction database 5B for each nonstructural member used in the building to be evaluated, and calculating and totaling the recovery costs of each nonstructural member 6C, and structural part calculation means 6D for calculating the restoration cost of the structural member based on the seismic performance evaluation value H are provided.

前記入力表示部7には、例えば、キーボードやマウスやスキャナ等の入力手段7Aや、ディスプレーやプリンター等の表示手段7Bや、評価対象建物に使用されている非構造部材それぞれの被害状況(前記層間変形角θに対応した状況)を記載した予測欄と、自由に被害状況を書き込み自在な実測欄とを備えた被害状況リストDを作成するリスト作成手段7Cが備えられている。
そして、前記入力手段7Aからは、前記建物情報8の入力や、解析対象の地震の強さの入力が行われる一方、前記表示手段7Bには、耐震性能評価値Hや層間変形角θや復旧費用等が表示される。
また、前記被害状況リストDは、その一例を示すと、図6に示すとおりである。この被害状況リストDは、予測のみとして使用することもできることに加えて、現実に地震が発生した場合は、被災地での記入用として使用することもできる。
但し、この被害状況リストDは、紙の上に印刷されたものに限らず、例えば、図1に示したとおり、被災地担当者4が携帯するモバイルコンピュータのディスプレー上に表示できるように構成されているものでもよく、この場合は、すべて電子データとして送受信することが可能となり、地震の後の迅速な復旧対応が叶え易くなる。
The input display unit 7 includes, for example, input means 7A such as a keyboard, mouse, and scanner, display means 7B such as a display and printer, and the damage status of each non-structural member used in the building to be evaluated (the interlayer List creation means 7C is provided for creating a damage situation list D having a prediction field describing a situation corresponding to the deformation angle θ and an actual measurement field in which the damage situation can be freely written.
The input means 7A inputs the building information 8 and the intensity of the earthquake to be analyzed, while the display means 7B has the seismic performance evaluation value H, the interlayer deformation angle θ, and the restoration. Costs etc. are displayed.
An example of the damage status list D is as shown in FIG. This damage status list D can be used not only for prediction, but can also be used for entry in a disaster area when an earthquake actually occurs.
However, the damage status list D is not limited to the one printed on paper. For example, as shown in FIG. 1, the damage status list D can be displayed on the display of a mobile computer carried by the person in charge of the disaster area 4. In this case, all can be transmitted and received as electronic data, and it is easy to achieve quick recovery after an earthquake.

次に、当該耐震性能評価システムSを使用した業務の流れについて、図4を用いて説明する。
[1]前記各顧客1、建設業者2、及び、地震防災情報データベース3、被災地担当者4を繋ぐことが可能な会員ネットワークを形成する(#1)と共に、ネット上で会員の入会を受け付ける(#2)。
[2]入会した顧客1から、顧客情報、並びに、評価対象建物の建物情報8を入手する。入手した建物情報8は、前記入力手段7Aによって前記建物情報データベース5Aに入力記録する(#3)。
[3]顧客1からの建物診断の希望がある場合は(#4)、建物情報8を基に第1演算手段6Aによって前記評価対象建物の耐震性能評価値(例えば、Is値)Hを割り出す( #5)。
[4]顧客1から地震が発生した場合の被害予測の希望がある場合は(#6)、前記入力手段7Aから評価対象の地震の強さを指定し(#7)、その強さの地震による前記評価対象建物の層間変形角θを第2演算手段6Bによって演算する(#8)。
[5]第3演算手段6Cによって、非構造部材被害予想用データベース5Bの中から、評価対象建物に使用されている非構造部材それぞれについて、前記層間変形角θに対応させて記録されている被害状況を基にして、それら各非構造部材の復旧費用を各別に算出すると共に、前記構造部演算手段6Dによって、構造部材それぞれの復旧費用を算出し(#9)、評価対象建物全体として復旧費用を前記顧客1に提供する(#10)。
[6]顧客1から、建物改修の希望がある場合(#11)、建設業者2は前記評価対象建物に然るべき建物改修を実施する(#12)。
Next, the flow of work using the seismic performance evaluation system S will be described with reference to FIG.
[1] A member network capable of connecting each customer 1, the construction contractor 2, the earthquake disaster prevention information database 3, and the stricken area person in charge 4 is formed (# 1), and member membership is accepted on the net. (# 2).
[2] Obtain customer information and building information 8 of the evaluation target building from the customer 1 who joined. The acquired building information 8 is input and recorded in the building information database 5A by the input means 7A (# 3).
[3] When there is a request for building diagnosis from the customer 1 (# 4), the seismic performance evaluation value (for example, Is value) H of the building to be evaluated is calculated by the first calculation means 6A based on the building information 8. (# 5).
[4] When the customer 1 wishes to predict damage when an earthquake occurs (# 6), the intensity of the earthquake to be evaluated is designated from the input means 7A (# 7), and the earthquake of that intensity Is calculated by the second calculating means 6B (# 8).
[5] Damage recorded in correspondence with the interlayer deformation angle θ for each non-structural member used in the building to be evaluated from the non-structural member damage prediction database 5B by the third computing means 6C. Based on the situation, the recovery cost of each non-structural member is calculated separately, and the recovery cost of each structural member is calculated by the structural part calculation means 6D (# 9), and the recovery cost as a whole evaluation target building is calculated. Is provided to the customer 1 (# 10).
[6] When there is a request for building renovation from the customer 1 (# 11), the construction contractor 2 carries out building renovation appropriate for the evaluation target building (# 12).

本実施形態の耐震性能評価技術によれば、実際の建物変形に近い状態を評価に反映させることができ、より精度の高い耐震性能評価を行うことが可能となる。
また、被害状況リストを有効に利用して、現実の被害状況の把握資料を迅速に効率よく得ることが可能となる。
According to the seismic performance evaluation technology of this embodiment, a state close to actual building deformation can be reflected in the evaluation, and it becomes possible to perform a more accurate seismic performance evaluation.
In addition, the damage status list can be effectively used to quickly and efficiently obtain information on the actual damage status.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

ネットワークを示す説明図Explanatory diagram showing the network 耐震性能評価システムを示すブロック図Block diagram showing the seismic performance evaluation system 層間変形角を示す説明図Explanatory diagram showing the interlayer deformation angle 耐震性能評価の業務を示す流れ図Flow chart showing seismic performance evaluation work 非構造部材被害予想用データベースの記録内容を説明する概念図Conceptual diagram explaining the contents recorded in the database for nonstructural damage prediction 被害状況リストを示す模式図Schematic diagram showing damage list 耐震性能評価値を示す説明図Explanatory diagram showing seismic performance evaluation values

符号の説明Explanation of symbols

5A 建物情報データベース
5B 非構造部材被害予想用データベース
6A 第1演算手段
6B 第2演算手段
6C 第3演算手段
7A 入力手段
7C リスト作成手段
8 建物情報
D 被害状況リスト
H 耐震性能評価値(例えば、Is値やPML値)
θ 層間変形角
5A Building information database 5B Nonstructural member damage prediction database 6A First computing means 6B Second computing means 6C Third computing means 7A Input means 7C List creating means 8 Building information D Damage situation list H Seismic performance evaluation value (for example, Is Value and PML value)
θ Interlayer deformation angle

Claims (1)

評価対象建物の耐震性能評価値を割り出す為の建物情報を入力手段によって入力することで記録自在な建物情報データベースが設けられ、前記建物情報データベースの建物情報を基に前記評価対象建物の耐震性能評価値を割り出す第1演算手段が設けられている耐震性能評価システムであって、
建物に使用される各非構造部材について地震時の層間変形角に対応した被害状況を予め設定して記録されている非構造部材被害予想用データベースが設けられ、評価対象の地震の強さを入力することで、前記評価対象建物の地震時の層間変形角を演算する第2演算手段が設けられ、前記第2演算手段で割り出された層間変形角を基にして、前記評価対象建物に使用されている非構造部材それぞれについて前記非構造部材被害予想用データベースから被害状況を割り当てて、それら各非構造部材の復旧費用を各別に算出して集計する第3演算手段が設けられ、前記評価対象建物に使用されている前記非構造部材毎に、被害状況を書き込み自在な被害状況リストを作成自在なリスト作成手段が設けられている耐震性能評価システム。
A recordable building information database is provided by inputting the building information for calculating the seismic performance evaluation value of the building to be evaluated using the input means, and the seismic performance evaluation of the building to be evaluated is based on the building information in the building information database. A seismic performance evaluation system provided with a first calculation means for determining a value,
For each non-structural member used in the building, a non-structural member damage prediction database is set in which the damage situation corresponding to the interlayer deformation angle at the time of the earthquake is set and recorded, and the strength of the earthquake to be evaluated is entered Thus, second calculation means for calculating an interlayer deformation angle at the time of the earthquake of the evaluation target building is provided, and used for the evaluation target building based on the interlayer deformation angle determined by the second calculation means. are each non-structural members that assign the damage situation from the non-structural member damage expected database is, third arithmetic means for aggregated by calculating the restoration costs for each of these non-structural members to each other is provided, the evaluation object A seismic performance evaluation system provided with a list creation means for freely creating a damage status list for each non-structural member used in a building .
JP2006181182A 2006-06-30 2006-06-30 Seismic performance evaluation system Expired - Fee Related JP4875418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181182A JP4875418B2 (en) 2006-06-30 2006-06-30 Seismic performance evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181182A JP4875418B2 (en) 2006-06-30 2006-06-30 Seismic performance evaluation system

Publications (2)

Publication Number Publication Date
JP2008009837A JP2008009837A (en) 2008-01-17
JP4875418B2 true JP4875418B2 (en) 2012-02-15

Family

ID=39067965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181182A Expired - Fee Related JP4875418B2 (en) 2006-06-30 2006-06-30 Seismic performance evaluation system

Country Status (1)

Country Link
JP (1) JP4875418B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008084B2 (en) * 2008-05-03 2012-08-22 鹿島建設株式会社 Quantitative seismic performance evaluation program for structures
JP5653765B2 (en) * 2011-01-13 2015-01-14 旭化成ホームズ株式会社 Seismic design method and seismic design support device
KR102272211B1 (en) * 2018-12-27 2021-07-01 연세대학교 산학협력단 Evaluation Method and System of Seismic Performance using Loss-based Analysis Procedure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149448A (en) * 1997-08-05 1999-02-23 Hitachi Ltd Earthquake damage estimation system
JP2001182149A (en) * 1999-12-28 2001-07-03 Ibiden Co Ltd Structure design method for building
JP3765007B2 (en) * 2001-11-12 2006-04-12 株式会社竹中工務店 Renovation cost evaluation method based on building seismic performance evaluation value
JP4087136B2 (en) * 2002-03-28 2008-05-21 株式会社竹中工務店 How to display seismic performance in buildings
JP2003296396A (en) * 2002-03-29 2003-10-17 Yuji Takahashi Expected life cycle cost evaluation system of building and recording medium in which expected life cycle cost evaluation program is recorded
JP4005004B2 (en) * 2003-07-29 2007-11-07 株式会社竹中工務店 Earthquake damage prediction apparatus, earthquake damage prediction method, and earthquake damage prediction program
JP2006031068A (en) * 2004-07-12 2006-02-02 Hironori Nagai Structure design method for architectural structure, its program, and recording medium with program stored therein
JP2006299783A (en) * 2004-11-29 2006-11-02 Sekisui Chem Co Ltd Seismic response analytical model and seismic response analytical system

Also Published As

Publication number Publication date
JP2008009837A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
Leite et al. Analysis of modeling effort and impact of different levels of detail in building information models
Krawinkler Challenges and progress in performance-based earthquake engineering
Žižmond et al. Formulation of risk‐targeted seismic action for the force‐based seismic design of structures
Sullivan et al. Simplified seismic performance assessment and implications for seismic design
Applied Technology Council et al. Seismic performance assessment of buildings
Della Corte et al. Seismic analysis of MR steel frames based on refined hysteretic models of connections
JP5424999B2 (en) Earthquake damage prediction apparatus and program
Anil et al. Building-information-modeling–based earthquake damage assessment for reinforced concrete walls
JP4005004B2 (en) Earthquake damage prediction apparatus, earthquake damage prediction method, and earthquake damage prediction program
Romano et al. Seismic demand model class uncertainty in seismic loss analysis for a code-designed URM infilled RC frame building
JP4875418B2 (en) Seismic performance evaluation system
JP4533369B2 (en) Earthquake damage prediction device and earthquake damage prediction program
Arifin et al. Lessons for loss assessment from the Canterbury earthquakes: a 22-storey building
JP2008276474A (en) Earthquake-proof performance diagnostic method and earthquake-proof performance diagnostic program for building
Ruggieri et al. The influence of torsion on acceleration demands in low-rise RC buildings
Magliulo et al. Nonstructural seismic loss analysis of traditional and innovative partition systems housed in code-conforming RC frame buildings
Mitrani-Reiser et al. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building-Part II: Loss estimation
Nigro et al. Assessment of alternative design approaches for seismic upgrading of RC frame structures with steel exoskeletons
JP4839246B2 (en) Building structural design support system
Elkady et al. EaRL: Toolbox for earthquake risk and loss assessment of building assets
JP3852871B2 (en) Floor vibration analysis method and apparatus
Oh et al. Development of seismic design software for firefighting pump systems
Hanson How structural engineers find errors in analysis and design results
Nassirpour Performance based seismic assessment of masonry infilled steel frame structures
Stanway et al. Design, construction and seismic performance of non-structural elements in New Zealand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees