JP3952112B2 - Operation method of flash furnace - Google Patents

Operation method of flash furnace Download PDF

Info

Publication number
JP3952112B2
JP3952112B2 JP12942599A JP12942599A JP3952112B2 JP 3952112 B2 JP3952112 B2 JP 3952112B2 JP 12942599 A JP12942599 A JP 12942599A JP 12942599 A JP12942599 A JP 12942599A JP 3952112 B2 JP3952112 B2 JP 3952112B2
Authority
JP
Japan
Prior art keywords
reaction tower
reaction
measurement
temperature
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12942599A
Other languages
Japanese (ja)
Other versions
JP2000328150A (en
Inventor
豊 安田
光政 星
孝行 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP12942599A priority Critical patent/JP3952112B2/en
Publication of JP2000328150A publication Critical patent/JP2000328150A/en
Application granted granted Critical
Publication of JP3952112B2 publication Critical patent/JP3952112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は非鉄金属製錬に用いられるオートクンプ式自溶炉の操業方法に関する。
【0002】
【従来の技術】
オートクンプ式自溶炉は、非鉄金属製錬に用いられる製錬炉の一種である。
この自溶炉では、硫化物精鉱に溶剤としての珪酸鉱等を加えた微粉の乾燥原料を円筒形の反応塔頂部に設置された精鉱バーナーより補助燃料、酸素富化空気と共に反応塔内に吹き込み、気相中で酸化燃焼反応させる。この酸化反応の生成物として銅等の有価金属を濃縮したマットと、鉄と珪酸を主成分とするスラグが融体として得られ、セトラーに滞留する。
【0003】
酸化反応は、乾燥原料が反応塔内を落下する極めて短時間のうちに完結するが、反応物の酸化度を極力平均化させることが自溶炉の操業上の重要な管理ポイントである。
しかし、反応塔内では、局部的に乾燥原料が酸素富化空気に対して過剰に供給されるか、あるいはその逆の不均一な反応状態が生じることがある。前者のケースでは酸化が不充分となり未溶解物が溶湯表面上に堆積するか、あるいは煙灰として飛散し、廃熱回収ボイラ内で酸化燃焼してガス温度を高め、水管へ付着し、ボイラの熱交換率を低下させる場合がある。後者のケースでは、原料中の鉄が過酸化されて、スラグ性状の悪化を招き、生成物であるマットとスラグの分離を阻害したり排煙口周辺に炉内付着物を生成させる。これらは、スラグ中への有価金属ロスやマット、スラグタップ孔の閉塞トラブルを惹起させるとともに、溶湯温度、マット中の有価金属品位の変動などの要因となり後工程への操業にも悪影響を与える。
【0004】
また、自溶製錬炉の処理量を増やすほど原料と酸素富化空気の固気比が増大するため、反応空気中に微粉の原料を均一に分散させることはより困難となる。したがって、原料と反応空気の混合、分散性を向上させ反応物の酸化度を極力平均化させることは、自溶製錬炉の操業を安定化させるためのみでなく、単一炉への処理量を増加させ、生産性を向上させる上で極めて重要な管理点である。
【0005】
この反応塔内の反応状況を推定するために、側壁に設けた測定孔からプローブを挿入し、反応搭中心軸上の落下物の温度、酸素ポテンシャルを測定し、あるいは落下物をサンプリングする方法は既に広く実施されている。しかしながら、原料を投入し、かつ反応空気を供給する精鉱バーナの直下に位置する炉中心軸上のみを炉全体の代表点として捉えることは危険であり、反応塔内の反応状況について誤った評価を与えてしまう懸念があった。
【0006】
【発明が解決しようとする課題】
そこで反応塔内の温度分布を正確に測定することを検討する必要があった。本発明者らは、反応塔内の反応状況の判定基準として、反応塔内落下物の温度分布を測定し、そのデータを効率的操業を行うために使用する方法を検討した。すなわち、過酸化が生じる場合は、酸化燃焼反応が過剰に進行するため、反応塔内落下物の温度は高くなり、逆に酸化燃焼反応が不充分な場合は低くなるという特性から、落下物の温度分布を測定することにより酸化度の分布を推定する方法である。かつ本発明では、この反応塔内落下物の温度分布測定を1回/日以上のペースで定期的に実施し、日々の反応状態を把握することで、変化のあった際の対応方法についてデータを蓄積し、不均一状態の早期解決が図れるようにする。
【0007】
即ち本発明は、(1)反応塔の側壁に設けた測定孔より先端に消耗型熱電対を装着した温度測定用プローブをもつ移動式温度測定装置により反応塔の直径線上の測定点を挿入深さを等間隔に変更しながら自動的に移動し、反応塔内落下物の温度分布を測定し、該温度分布を反応塔内の酸化反応状況を判定する基準として酸化反応の状況を判定し、その判定結果により操業条件を調整することにより、反応塔内の酸化反応を平均化させる自溶炉の操業方法。
【0008】
(2)反応塔内温度分布測定を直する2方向から行う上記(1)記載の方法。
である。
【0009】
以下本発明に関して、詳細に説明する。
図1はオートクンプ式自溶炉の側面図、図2は平面図である。
頂部中心に精鉱バーナ(20)1本を設置した、内径6.2m×高さ6mの反応塔の側壁には、高さ、位置を変えて合計10箇所に点検孔が設置されている。温度分布測定は頂部から約4.5m下のレベル(図1反応塔の矢印部)であり、内径100mmの点検孔4箇所から行うが、これらは図2のような位置関係になっている。これらをそれぞれA、B、C、D孔と呼ぶ。尚点検孔は、4つ以上あっても本発明から除かれる物ではない。
【0010】
精鉱バーナ(20)には乾燥原料と酸素富化空気が吹き込まれ、反応塔(1)内を反応しながら落下していく。約4.5m下の位置に達するまでに約0.5〜0.7秒の時間が経過するが、種々の調査の結果、この位置では反応が完結しているものと推定できる。
尚測定点は、上記位置には限定されないが、反応がほぼ終了した位置が望ましい。
【0011】
温度の測定は、図3に示す温度測定用プローブの先端に消耗型熱電対(10)を装着し、各点検孔(4〜7)から反応塔内に挿入して行う。挿入後、15〜25秒間反応塔内で保持し、消耗型熱電対(10)の上に落下付着する反応生成物の温度を測定する。温度は消耗型熱電対(10)からの信号をチャート式記録計(12)に出力し記録する。この際、各点検孔について、消耗型熱電対(10)の先端位置を反応塔中心から2.5m→2m→・・・→0mというように50cm間隔で温度を測定する。尚上記側定位置は、下記炉内温度分布が的確に把握できる測定点であれば良い。測定位置は、点検孔炉外面から測定点までの長さを逆算して、あらかじめプローブ(9)の後端側にマーキングしておく。マーキング後、測定点一つについてプローブ挿入→15〜25秒間保持→プローブ抜出しという行程で温度を測定し消耗型熱電対を交換する。以上の測定を実施して、図4のような温度分布曲線を作成する。
【0012】
この温度分布曲線をもとに、不均一反応の有無を推定し、各所の点検結果などを総合的に判断し、操業条件の変更等の対策を講じ、良好な反応状態を維持することで、原料処理量を減ずることなく安定操業を継続する。
上記の温度測定は、図3に示すような温度プローブを用いて人手で実施することが出来るが、これを機械的に行うことが可能な温度測定装置を図5に示す。
【0013】
ランス(18)は2重管構造となっており、圧縮空気あるいは圧縮窒素が内管から外管に流れることによって冷却される。ランス(18)の先端にホルダ(20)を設置し、これに消耗型熱電対(10)を取り付ける。
ランス(18)は支持ローラ(19)に支持され、レール上を、ランス後部のモーター付駆動台車(15)で前後に移動する。レール上にはチェーン(18)が敷設されており、このチェーン上でピニオンギアが駆動台車の移動と連動して回転する。このピニオンの回転数を駆動台車上のアブソコーダ(16)で検出して移動距離に換算し、バリアブルリミットで設定される移動距離に応じて移動する。この際、炉内の高温にさらされる時間を可能な限り短時間とするため、バリアブルリミットで設定される炉内定点から任意の測定点の移動と15〜25秒間の測定後の測定点から炉外までの移動については高速(30〜50m/min)で行う。
【0014】
【実施例】
自溶炉の反応炉の温度分布の悪化原因について検討した結果、装入する時点で原料に偏りがあることが判明し、炉修期間中に、精鉱バーナ(20)の原料装入部分について、原料装入時の偏流を修正する改造を施した。
上記改造後に測定した温度分布を図4に示す。この温度測定位置は、前記した図1反応塔(1)の矢印部である。この時の操業条件は原料装入量140t/h、総送風量369 Nm3/min、目標のマット中銅品位63%であり、図6のケースとほぼ同じであるが、温度分布は左右のバランスも良好で、これを見る限り原料の偏流等は見られない。また、この間炉況は比較的安定し、スラグ中への銅ロスが0.60%と、比較例において示す図6のケースより約0.2%減少した。
【0015】
その後も、この反応塔内の温度分布を反応状態の一つの指標として利用した。その結果、現在では目標のマット中銅品位を65%と上げ、原料装入量160t/hと処理能力を約14%アップしつつも、安定操業を継続することが可能となった。
【0016】
【比較例】
比較例の一つを取り上げ以下詳細に説明する。
温度分布測定結果の代表例を図6に示す。 この温度測定位置も、実施例同様に前記した図1反応塔(1)の矢印部である。この時の操業条件は原料装入量140t/h、総送風量374Nm3/min、目標のマット中銅品位63%であった。図6に示すように、A孔側の温度がおよそ1350℃〜1400℃の範囲であるのに対し、C孔側は炉中心から1m〜2mの点が1200℃以下となっており、バランスの悪い温度分布になっていることがわかる。この時点の炉況は不安定で、常時は0.65〜0.70%であったスラグ中への銅ロスが0.82%と悪化した。
【0017】
【発明の効果】
本発明の方法によれば、反応塔内の反応状況を正確かつ容易に評価することができ、評価結果に基づく操業条件の調整を迅速に実施することが可能となる.これによって安定操業を継続できるばかりでなく、原料の増処理などによる操業状況の変化にも的確に対応することができる。 また、機械式の温度測定装置の導入で、人手で行う場合は、5人で30分〜1時間かかった測定が、装置の操作者1人で約20分で測定可能となった。
【0018】
【図面の簡単な説明】
【図1】自溶炉の側面図である。
【図2】自溶炉の平面図である。
【図3】温度測定用プローブ
【図4】本発明の反応炉の温度分布曲線の一例
【図5】反応炉の温度分布測定装置
【図6】実施例の温度分布曲線
【符号の説明】
反応塔
原料装入口
原料装入口
A孔
B孔
C孔
D孔
8 補償導線
プローブ
消耗型熱電対
サブスリーブ
チャート式記録計
冷却空気出口
冷却空気入口
駆動台車
アブソコーダ
チェーン
ランス
支持ローラ
20 精鉱バーナ
[0001]
[Industrial application fields]
The present invention relates to a method for operating an auto-cump flash smelting furnace used for non-ferrous metal smelting.
[0002]
[Prior art]
An auto-cump flash smelting furnace is a type of smelting furnace used for non-ferrous metal smelting.
In this flash smelting furnace, fine powdered dry raw material with silicate ore as a solvent added to sulfide concentrate is fed into the reaction tower along with auxiliary fuel and oxygen-enriched air from a concentrate burner installed at the top of the cylindrical reaction tower. And oxidative combustion reaction in the gas phase. As a product of this oxidation reaction, a mat in which valuable metals such as copper are concentrated and a slag mainly composed of iron and silicic acid are obtained as a melt and stay in the settler.
[0003]
Although the oxidation reaction is completed within an extremely short time when the dry raw material falls in the reaction tower, it is an important management point in the operation of the flash furnace to average the oxidation degree of the reactant as much as possible.
However, in the reaction tower, the dry raw material may be locally supplied in excess relative to the oxygen-enriched air, or vice versa. In the former case, oxidation is insufficient and undissolved material accumulates on the surface of the molten metal or scatters as smoke ash, oxidizes and burns in the waste heat recovery boiler to increase the gas temperature, adheres to the water pipe, and heats the boiler. The exchange rate may be reduced. In the latter case, iron in the raw material is peroxidized, leading to deterioration of the slag properties, inhibiting the separation of the product mat and slag and generating deposits in the furnace around the smoke exhaust. These cause loss of valuable metal in the slag, troubles of clogging of the mat and slag tap holes, and cause fluctuations in the molten metal temperature and valuable metal quality in the mat, and adversely affect the operation in the subsequent process.
[0004]
Further, since the solid-gas ratio of the raw material and oxygen-enriched air increases as the processing amount of the flash smelting furnace increases, it becomes more difficult to uniformly disperse the fine raw material in the reaction air. Therefore, improving the mixing and dispersibility of raw materials and reaction air and averaging the degree of oxidation of the reactants as much as possible is not only to stabilize the operation of the flash smelting furnace, but also to the throughput to a single furnace. This is an extremely important management point for increasing productivity and improving productivity.
[0005]
In order to estimate the reaction situation in this reaction tower, a method of inserting a probe from a measurement hole provided in the side wall and measuring the temperature and oxygen potential of the falling object on the reaction tower central axis, or sampling the falling object is Already widely implemented. However, it is dangerous to capture only the central axis of the furnace located directly under the concentrate burner that feeds the raw material and supplies the reaction air as the representative point of the entire furnace, and erroneously evaluates the reaction status in the reaction tower. There was a concern that would give.
[0006]
[Problems to be solved by the invention]
Therefore, it was necessary to consider measuring the temperature distribution in the reaction tower accurately. The present inventors examined a method of measuring the temperature distribution of fallen objects in the reaction tower as a criterion for determining the reaction state in the reaction tower and using the data for efficient operation. That is, when peroxidation occurs, the oxidative combustion reaction proceeds excessively, so that the temperature of the fallen object in the reaction tower increases, and conversely, when the oxidative combustion reaction is insufficient, the temperature of the fallen object decreases. In this method, the distribution of the degree of oxidation is estimated by measuring the temperature distribution. In addition, in the present invention, the temperature distribution measurement of falling objects in the reaction tower is periodically performed at a rate of once / day or more, and the daily reaction state is grasped, so that data on how to deal with changes is obtained. So that early resolution of uneven conditions can be achieved.
[0007]
That is, the present invention is (1) a measurement point on the diameter line of the reaction tower is inserted by a mobile temperature measurement device having a temperature measurement probe having a consumable thermocouple attached to the tip of the measurement hole provided on the side wall of the reaction tower. automatically moves while changing at regular intervals of the temperature distribution in the reaction tower falling objects is measured, the temperature distribution as a criteria for determining the oxidation reaction conditions of the reaction tower to determine the status of the oxidation reaction The operation method of the flash smelting furnace which averages the oxidation reaction in the reaction tower by adjusting the operation conditions according to the determination result.
[0008]
(2) The method of above (1), wherein performing the temperature distribution measurement reactor from two directions Cartesian.
It is.
[0009]
Hereinafter, the present invention will be described in detail.
FIG. 1 is a side view of an auto-cump flash smelting furnace, and FIG. 2 is a plan view.
On the side wall of the reaction tower having an inner diameter of 6.2 m × height of 6 m, in which one concentrate burner (20) is installed at the center of the top, inspection holes are installed at a total of 10 locations with different heights and positions. The temperature distribution measurement is at a level about 4.5 m below the top (arrow part of the reaction tower in FIG. 1), and is performed from four inspection holes with an inner diameter of 100 mm, which are in a positional relationship as shown in FIG. These are called A, B, C, and D holes, respectively. Even if there are four or more inspection holes, they are not excluded from the present invention.
[0010]
The concentrate burner (20) is blown with dry raw material and oxygen-enriched air, and falls while reacting in the reaction tower (1). A time of about 0.5 to 0.7 seconds elapses until reaching the position about 4.5 m below. As a result of various investigations, it can be estimated that the reaction is completed at this position.
The measurement point is not limited to the above position, but a position where the reaction is almost completed is desirable.
[0011]
The temperature is measured by attaching a consumable thermocouple (10) to the tip of the temperature measurement probe shown in FIG. 3 and inserting it into the reaction tower through each inspection hole (4-7). After insertion, hold in the reaction tower for 15 to 25 seconds, and measure the temperature of the reaction product that drops and adheres on the consumable thermocouple (10). The temperature is recorded by outputting a signal from the consumable thermocouple (10) to the chart recorder (12). At this time, for each inspection hole, the temperature of the tip position of the consumable thermocouple (10) is measured at intervals of 50 cm such that 2.5 m → 2 m →. The side fixed position may be a measurement point at which the following furnace temperature distribution can be accurately grasped. The measurement position is previously marked on the rear end side of the probe (9) by calculating back the length from the outer surface of the inspection hole furnace to the measurement point. After marking, measure the temperature and replace the consumable thermocouple in the process of inserting the probe at one measurement point → holding for 15 to 25 seconds → removing the probe. The above measurement is performed to create a temperature distribution curve as shown in FIG.
[0012]
By estimating the presence or absence of heterogeneous reaction based on this temperature distribution curve, comprehensively judging the inspection results of each place, taking measures such as changing operating conditions, etc., and maintaining a good reaction state, Continue stable operation without reducing raw material throughput.
The above temperature measurement can be performed manually using a temperature probe as shown in FIG. 3, and FIG. 5 shows a temperature measurement apparatus capable of performing this mechanically.
[0013]
The lance (18) has a double pipe structure, and is cooled when compressed air or compressed nitrogen flows from the inner pipe to the outer pipe. A holder (20) is installed at the tip of the lance (18), and a consumable thermocouple (10) is attached thereto.
The lance (18) is supported by the support roller (19), and moves on the rail back and forth by the motorized drive carriage (15) at the rear of the lance. A chain (18) is laid on the rail, and the pinion gear rotates on the chain in conjunction with the movement of the drive carriage. The number of rotations of the pinion is detected by the absolute coder (16) on the drive carriage and converted into a moving distance, and the pinion moves according to the moving distance set by the variable limit. At this time, in order to make the time of exposure to the high temperature in the furnace as short as possible, it is possible to move any measurement point from the fixed point in the furnace set by the variable limit and from the measurement point after measurement for 15 to 25 seconds. The movement to the outside is performed at a high speed (30 to 50 m / min).
[0014]
【Example】
As a result of examining the cause of deterioration in temperature distribution of the flash furnace, it became clear that the raw material was biased at the time of charging, and during the furnace repair period, the raw material charging portion of the concentrate burner (20) A modification was made to correct the drift during raw material charging.
The temperature distribution measured after the modification is shown in FIG. This temperature measurement position is the arrow portion of the reaction tower (1) shown in FIG. The operating conditions at this time were a raw material charge of 140 t / h, a total air flow of 369 Nm 3 / min, and a target mat copper content of 63%, which is almost the same as in the case of FIG. The balance is also good, and as far as this is seen, there is no drift of raw materials. During this time, the furnace condition was relatively stable, and the copper loss into the slag was 0.60%, a decrease of about 0.2% from the case of FIG. 6 shown in the comparative example.
[0015]
Thereafter, the temperature distribution in the reaction tower was used as an index of the reaction state. As a result, it is now possible to continue stable operation while raising the target copper grade of the mat to 65%, increasing the raw material charge 160 t / h and the processing capacity by about 14%.
[0016]
[Comparative example]
One of the comparative examples will be taken and described in detail below.
A typical example of the temperature distribution measurement result is shown in FIG. This temperature measurement position is also the arrow portion of the reaction tower (1) shown in FIG. The operating conditions at this time were a raw material charge of 140 t / h, a total air flow of 374 Nm 3 / min, and a target copper grade of 63% in the mat. As shown in Fig. 6, the temperature on the hole A side is in the range of approximately 1350 ° C to 1400 ° C, while on the hole C side, the point 1m to 2m from the furnace center is 1200 ° C or less. It can be seen that the temperature distribution is bad. The furnace conditions at this point were unstable, and the copper loss into the slag, which was normally 0.65 to 0.70%, deteriorated to 0.82%.
[0017]
【The invention's effect】
According to the method of the present invention, the reaction state in the reaction tower can be accurately and easily evaluated, and it becomes possible to quickly adjust the operating conditions based on the evaluation result. As a result, not only can stable operation be continued, but it is also possible to accurately cope with changes in the operation status due to the increase of raw materials. In addition, with the introduction of a mechanical temperature measuring device, when it is performed manually, measurement that takes 30 minutes to 1 hour by five people can be measured in about 20 minutes by one operator of the device.
[0018]
[Brief description of the drawings]
FIG. 1 is a side view of a flash smelting furnace.
FIG. 2 is a plan view of the flash smelting furnace.
[Fig. 3] Probe for temperature measurement [Fig. 4] Example of temperature distribution curve of reactor of the present invention [Fig. 5] Temperature distribution measuring device of reactor [Fig. 6] Temperature distribution curve of Example [Explanation of symbols]
Reaction tower raw material inlet Raw material inlet A hole B hole C hole D hole 8 Compensating lead probe consumable thermocouple sub-sleeve chart type recorder Cooling air outlet Cooling air inlet drive carriage ABSOCODER chain lance support roller 20 Concentrate burner

Claims (2)

反応塔の側壁に設けた測定孔より先端に消耗型熱電対を装着した温度測定用プローブをもつ移動式温度測定装置により反応塔の直径線上の測定点を挿入深さを等間隔に変更しながら自動的に移動し、反応塔内落下物の温度分布を測定し、該温度分布を反応塔内の酸化反応状況を判定する基準として、酸化反応の状況を判定し、その判定結果により操業条件を調整することにより、反応塔内の酸化反応を平均化させることを特徴とする自溶炉の操業方法。While changing the insertion depth of the measurement points on the diameter line of the reaction tower at equal intervals by a mobile temperature measurement device with a temperature measurement probe fitted with a consumable thermocouple at the tip from the measurement hole provided on the side wall of the reaction tower automatically moves, the temperature distribution in the reaction tower falling objects is measured, the temperature distribution as a criterion for distinguishing oxidation reaction conditions of the reaction tower, to determine the status of the oxidation reaction, operation conditions by the determination result A method of operating a flash smelting furnace characterized in that the oxidation reaction in the reaction tower is averaged by adjusting 反応塔内温度分布測定を直する2方向から行う請求項1の方法。The method of claim 1 for the temperature distribution measurement reactor from two directions Cartesian.
JP12942599A 1999-05-11 1999-05-11 Operation method of flash furnace Expired - Lifetime JP3952112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942599A JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942599A JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Publications (2)

Publication Number Publication Date
JP2000328150A JP2000328150A (en) 2000-11-28
JP3952112B2 true JP3952112B2 (en) 2007-08-01

Family

ID=15009188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942599A Expired - Lifetime JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Country Status (1)

Country Link
JP (1) JP3952112B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531475B2 (en) * 2015-04-03 2019-06-19 住友金属鉱山株式会社 Measurement aid jig
JP7338335B2 (en) * 2019-09-05 2023-09-05 住友金属鉱山株式会社 temperature measuring instrument
JP7343833B2 (en) * 2019-09-05 2023-09-13 住友金属鉱山株式会社 How to operate a self-melting smelting furnace

Also Published As

Publication number Publication date
JP2000328150A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
AU748255B2 (en) Continuous charge preheating, melting, refining and casting
EP1059501B1 (en) Direct smelting vessel
JP2005513272A (en) Aluminum melting method using analysis of flue gas exiting furnace
JP7088439B1 (en) Operation method of converter and blowing control system of converter
JP3952112B2 (en) Operation method of flash furnace
US3820768A (en) Steel conversion method and apparatus
JPH09316562A (en) Dry type smelting method of copper
US8192521B2 (en) Method of suppressing slag foaming in continuous melting furnace
JP3412756B2 (en) Temperature measuring apparatus and method for flash furnace
SU1695828A3 (en) Method of blowing melt in furnace
JP4032582B2 (en) Lance management method and management device for smelting furnace
JPS5952697B2 (en) How to operate a copper refining furnace
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace
WO2023112505A1 (en) Method for producing molten iron
JP2017102040A (en) Operation method for steelmaking furnace
JPH0635612B2 (en) Method and apparatus for measuring secondary combustion rate in smelting reduction
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
JP2684209B2 (en) Operation method of smelting reduction furnace
RU2309182C1 (en) Method of making steel in electric arc steel melting furnace and device for realization of this method
JP4217849B2 (en) Reduction treatment method in dry purification of crude copper
CN112798364A (en) Accurate detection of furnace top CO and CO2Method for increasing blast furnace capacity by ratio
KR940009665B1 (en) Checking method of abrasion and breakage
JPH059616A (en) Method for melting and desulfurizing zinc concentrate
JP3722059B2 (en) Operation method of smelting reduction furnace
JPH0798968B2 (en) Operation method of smelting reduction furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term