JP2000328150A - Operating method of self-fluxing furnace - Google Patents

Operating method of self-fluxing furnace

Info

Publication number
JP2000328150A
JP2000328150A JP11129425A JP12942599A JP2000328150A JP 2000328150 A JP2000328150 A JP 2000328150A JP 11129425 A JP11129425 A JP 11129425A JP 12942599 A JP12942599 A JP 12942599A JP 2000328150 A JP2000328150 A JP 2000328150A
Authority
JP
Japan
Prior art keywords
reaction
reaction tower
temperature
temperature distribution
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11129425A
Other languages
Japanese (ja)
Other versions
JP3952112B2 (en
Inventor
Yutaka Yasuda
豊 安田
Mitsumasa Hoshi
光政 星
Takayuki Arakane
孝行 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP12942599A priority Critical patent/JP3952112B2/en
Publication of JP2000328150A publication Critical patent/JP2000328150A/en
Application granted granted Critical
Publication of JP3952112B2 publication Critical patent/JP3952112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an operating method to efficiently perform the reaction inside the reaction tower of a self-fluxing furnace. SOLUTION: In the operating method of the self-fluxing furnace, a probe for measuring the temperature having a consumable thermostat mounted thereon is inserted into measurement holes 4-7 provided on a side wall of a reaction tower, the temperature distribution of dropping objects in the reaction tower is measured by changing the insertion depth at equal intervals, the temperature distribution is set to be a reference to judge the situation of the reaction in the reaction tower, and the reaction in the reaction tower is stabilized by adjusting the operating condition on the basis of the result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非鉄金属製錬に用いられ
るオートクンプ式自溶炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an auto-kump type flash furnace used for smelting non-ferrous metals.

【0002】[0002]

【従来の技術】オートクンプ式自溶炉は、非鉄金属製錬
に用いられる製錬炉の一種である。 この自溶炉では、硫化物精鉱に溶剤としての珪酸鉱等を
加えた微粉の乾燥原料を円筒形の反応塔頂部に設置され
た精鉱バーナーより補助燃料、酸素富化空気と共に反応
塔内に吹き込み、気相中で酸化燃焼反応させる。この酸化
反応の生成物として銅等の有価金属を濃縮したマット
と、鉄と珪酸を主成分とするスラグが融体として得られ、
セトラーに滞留する。
2. Description of the Related Art Auto-kump type flash smelting furnace is a kind of smelting furnace used for smelting non-ferrous metals. In this flash smelting furnace, a dry raw material of fine powder obtained by adding silicate ore as a solvent to a sulfide concentrate is supplied from a concentrate burner installed at the top of a cylindrical reaction tower together with auxiliary fuel and oxygen-enriched air into the reaction tower. To cause an oxidative combustion reaction in the gas phase. As a product of this oxidation reaction, a mat in which valuable metals such as copper are concentrated, and a slag mainly composed of iron and silica are obtained as a melt,
Stay in Settler.

【0003】酸化反応は、乾燥原料が反応塔内を落下す
る極めて短時間のうちに完結するが、反応物の酸化度を
極力平均化させることが自溶炉の操業上の重要な管理ポ
イントである。しかし、反応塔内では、局部的に乾燥原料
が酸素富化空気に対して過剰に供給されるか、あるいは
その逆の不均一な反応状態が生じることがある。前者の
ケースでは酸化が不充分となり未溶解物が溶湯表面上に
堆積するか、あるいは煙灰として飛散し、廃熱回収ボイラ
内で酸化燃焼してガス温度を高め、水管へ付着し、ボイラ
の熱交換率を低下させる場合がある。後者のケースでは、
原料中の鉄が過酸化されて、スラグ性状の悪化を招き、生
成物であるマットとスラグの分離を阻害したり排煙口周
辺に炉内付着物を生成させる。これらは、スラグ中への
有価金属ロスやマット、スラグタップ孔の閉塞トラブル
を惹起させるとともに、溶湯温度、マット中の有価金属品
位の変動などの要因となり後工程への操業にも悪影響を
与える。
[0003] The oxidation reaction is completed within a very short time when the dry raw material falls in the reaction tower, but averaging the degree of oxidation of the reactant as much as possible is an important control point in the operation of the flash smelting furnace. is there. However, in the reaction tower, the dry raw material may be locally supplied in excess to the oxygen-enriched air, or vice versa. In the former case, the oxidation is insufficient and the undissolved matter accumulates on the surface of the molten metal or scatters as smoke, and oxidizes and burns in the waste heat recovery boiler to increase the gas temperature, adhere to the water pipes, and heat The exchange rate may be reduced. In the latter case,
Iron in the raw material is peroxidized to cause deterioration of slag properties, hindering separation of the product mat and slag, and generating in-furnace deposits around the smoke outlet. These cause a loss of valuable metal in the slag, a mat, and a blockage of the slag tap hole, and also cause a change in the temperature of the molten metal, the grade of valuable metal in the mat, and adversely affect the operation to the post-process.

【0004】また、自溶製錬炉の処理量を増やすほど原
料と酸素富化空気の固気比が増大するため、反応空気中
に微粉の原料を均一に分散させることはより困難とな
る。したがって、原料と反応空気の混合、分散性を向上
させ反応物の酸化度を極力平均化させることは、自溶製
錬炉の操業を安定化させるためのみでなく、単一炉への
処理量を増加させ、生産性を向上させる上で極めて重要
な管理点である。
Further, the solid-gas ratio between the raw material and the oxygen-enriched air increases as the throughput of the flash smelting furnace increases, so that it becomes more difficult to uniformly disperse the fine powder raw material in the reaction air. Therefore, improving the mixing and dispersibility of the raw material and the reaction air and averaging the degree of oxidation of the reactants as much as possible not only stabilizes the operation of the flash smelting smelting furnace, but also increases the throughput to a single furnace. Is an extremely important control point in increasing the productivity and improving the productivity.

【0005】この反応塔内の反応状況を推定するため
に、側壁に設けた測定孔からプローブを挿入し、反応搭
中心軸上の落下物の温度、酸素ポテンシャルを測定し、
あるいは落下物をサンプリングする方法は既に広く実施
されている。しかしながら、原料を投入し、かつ反応空
気を供給する精鉱バーナの直下に位置する炉中心軸上の
みを炉全体の代表点として捉えることは危険であり、反
応塔内の反応状況について誤った評価を与えてしまう懸
念があった。
In order to estimate the reaction state in the reaction tower, a probe is inserted through a measurement hole provided in the side wall, and the temperature and oxygen potential of the falling object on the central axis of the reaction tower are measured.
Alternatively, a method of sampling a falling object is already widely practiced. However, it is dangerous to consider only the central axis of the furnace located directly below the concentrate burner that supplies the raw material and supplies the reaction air as the representative point of the entire furnace, and erroneously evaluates the reaction situation in the reaction tower. There was a concern that would give.

【0006】[0006]

【発明が解決しようとする課題】そこで反応塔内の温度
分布を正確に測定することを検討する必要があった。本
発明者らは、反応塔内の反応状況の判定基準として、反応
塔内落下物の温度分布を測定し、そのデータを効率的操
業を行うために使用する方法を検討した。すなわち、過
酸化が生じる場合は、酸化燃焼反応が過剰に進行するた
め、反応塔内落下物の温度は高くなり、逆に酸化燃焼反応
が不充分な場合は低くなるという特性から、落下物の温
度分布を測定することにより酸化度の分布を推定する方
法である。かつ本発明では、この反応塔内落下物の温度分
布測定を1回/日以上のペースで定期的に実施し、日々の
反応状態を把握することで、変化のあった際の対応方法
についてデータを蓄積し、不均一状態の早期解決が図れ
るようにする。
Therefore, it has been necessary to consider accurately measuring the temperature distribution in the reaction tower. The present inventors have studied a method of measuring the temperature distribution of a falling object in a reaction tower and using the data for efficient operation as a criterion for determining the reaction state in the reaction tower. In other words, when peroxidation occurs, the oxidative combustion reaction proceeds excessively, so that the temperature of the falling object in the reaction tower increases, and conversely, if the oxidizing combustion reaction is insufficient, the temperature decreases. This is a method of estimating the distribution of the degree of oxidation by measuring the temperature distribution. In addition, in the present invention, the temperature distribution of the falling object in the reaction tower is periodically measured at a rate of at least once a day, and the daily reaction state is grasped to obtain a data on a method for responding to a change. So that the non-uniform state can be quickly resolved.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、(1)反
応塔の側壁に設けた測定孔より消耗型熱電対を装着した
温度測定用プローブを挿入し、挿入深さを等間隔に変更
することにより、反応塔内落下物の温度分布を測定し、
該温度分布を反応塔内反応の状況を判定する基準とし、
その結果により操業条件を調整することにより、反応塔
内の反応を安定させることを特徴とする自溶炉の操業方
法。
That is, the present invention provides (1) a method of inserting a temperature measuring probe equipped with a consumable thermocouple from a measuring hole provided in a side wall of a reaction tower, and changing an insertion depth at an equal interval. By measuring the temperature distribution of the falling objects in the reaction tower,
The temperature distribution is used as a reference for judging the state of the reaction in the reaction tower,
A method for operating a flash smelting furnace, comprising stabilizing a reaction in a reaction tower by adjusting operating conditions according to the results.

【0008】(2)反応塔内温度分布測定を直交する2
方向から行う上記(1)記載の方法。 (3)先端に消耗型熱電対を装着したプローブをもつ移
動式温度測定装置により反応塔直径線上の測定点を自動
的に移動しながら測定することを特徴とする上記(1)
記載の方法。である。
[0008] (2) The temperature distribution in the reaction tower
The method according to the above (1), which is performed from the direction. (3) The above-mentioned (1), wherein the measurement is performed while automatically moving the measurement point on the diameter line of the reaction tower by a mobile temperature measuring device having a probe equipped with a consumable thermocouple at the tip.
The described method. It is.

【0009】以下本発明に関して、詳細に説明する。図
1はオートクンプ式自溶炉の側面図、図2は平面図であ
る。 頂部中心に精鉱バーナ(20)1本を設置した、内径6.
2m×高さ6mの反応塔の側壁には、高さ、位置を変えて
合計10箇所に点検孔が設置されている。温度分布測定は
頂部から約4.5m下のレベル(図1反応塔の矢印部)であ
り、内径100mmの点検孔4箇所から行うが、これらは図
2のような位置関係になっている。これらをそれぞれA、
B、C、D孔と呼ぶ。尚点検孔は、4つ以上あっても本発
明から除かれる物ではない。
Hereinafter, the present invention will be described in detail. FIG. 1 is a side view of an auto-kump flash furnace, and FIG. 2 is a plan view. One concentrate burner (20) was installed at the top center.
Inspection holes are installed at a total of 10 places on the side wall of the 2m x 6m height reaction tower with different heights and positions. The temperature distribution is measured at a level of about 4.5 m below the top (the arrow in the reaction tower in FIG. 1) and is measured from four inspection holes with an inner diameter of 100 mm, which are in a positional relationship as shown in FIG. These are A,
Called B, C and D holes. Incidentally, even if there are four or more inspection holes, it is not excluded from the present invention.

【0010】精鉱バーナ(20)には乾燥原料と酸素富
化空気が吹き込まれ、反応塔(1)内を反応しながら落
下していく。約4.5m下の位置に達するまでに約0.5〜0.7
秒の時間が経過するが、種々の調査の結果、この位置では
反応が完結しているものと推定できる。 尚測定点は、上記位置には限定されないが、反応がほぼ
終了した位置が望ましい。
A dry raw material and oxygen-enriched air are blown into the concentrate burner (20), and fall while reacting in the reaction tower (1). About 0.5-0.7 to reach the position about 4.5m below
Although the time of seconds elapses, as a result of various investigations, it can be estimated that the reaction is completed at this position. The measurement point is not limited to the above-mentioned position, but is preferably a position where the reaction is almost completed.

【0011】温度の測定は、図3に示す温度測定用プロー
ブの先端に消耗型熱電対(10)を装着し、各点検孔
(4〜7)から反応塔内に挿入して行う。挿入後、15〜25
秒間反応塔内で保持し、消耗型熱電対(10)の上に落
下付着する反応生成物の温度を測定する。温度は消耗型
熱電対(10)からの信号をチャート式記録計(12)
に出力し記録する。この際、各点検孔について、消耗型熱
電対(10)の先端位置を反応塔中心から2.5m→2m→・・
・→0mというように50cm間隔で温度を測定する。尚上記側
定位置は、下記炉内温度分布が的確に把握できる測定点
であれば良い。測定位置は、点検孔炉外面から測定点ま
での長さを逆算して、あらかじめプローブ(9)の後端
側にマーキングしておく。マーキング後、測定点一つにつ
いてプローブ挿入→15〜25秒間保持→プローブ抜出しと
いう行程で温度を測定し消耗型熱電対を交換する。以上
の測定を実施して、図4のような温度分布曲線を作成す
る。
The temperature is measured by attaching a consumable thermocouple (10) to the tip of the temperature measuring probe shown in FIG. 3 and inserting it into the reaction tower through each inspection hole (4-7). 15-25 after insertion
The temperature of the reaction product held in the reaction tower for 2 seconds and dropped onto the consumable thermocouple (10) is measured. As for the temperature, the signal from the consumable thermocouple (10) is chart-recorded (12).
Output to and record. At this time, for each inspection hole, the position of the tip of the consumable thermocouple (10) was set at 2.5m → 2m from the center of the reaction tower →
・ Temperature is measured at 50cm intervals such as 0m. The side fixed position may be any measurement point at which the following furnace temperature distribution can be accurately grasped. The measurement position is marked on the rear end side of the probe (9) in advance by calculating the length from the outer surface of the inspection hole furnace to the measurement point. After marking, the probe is inserted for one measurement point, held for 15 to 25 seconds, and the probe is removed. The temperature is measured and the consumable thermocouple is replaced. By performing the above measurement, a temperature distribution curve as shown in FIG. 4 is created.

【0012】この温度分布曲線をもとに、不均一反応の
有無を推定し、各所の点検結果などを総合的に判断し、操
業条件の変更等の対策を講じ、良好な反応状態を維持す
ることで、原料処理量を減ずることなく安定操業を継続
する。 上記の温度測定は、図3に示すような温度プローブを用
いて人手で実施することが出来るが、これを機械的に行
うことが可能な温度測定装置を図5に示す。
Based on the temperature distribution curve, the presence or absence of a non-uniform reaction is estimated, the results of inspections at various locations are comprehensively determined, measures such as changes in operating conditions are taken, and a favorable reaction state is maintained. As a result, stable operations will be continued without reducing the raw material throughput. The above temperature measurement can be performed manually using a temperature probe as shown in FIG. 3, and FIG. 5 shows a temperature measuring device capable of performing this mechanically.

【0013】ランス(18)は2重管構造となってお
り、圧縮空気あるいは圧縮窒素が内管から外管に流れる
ことによって冷却される。ランス(18)の先端にホル
ダ(20)を設置し、これに消耗型熱電対(10)を取
り付ける。 ランス(18)は支持ローラ(19)に支持され、レー
ル上を、ランス後部のモーター付駆動台車(15)で前
後に移動する。レール上にはチェーン(18)が敷設さ
れており、このチェーン上でピニオンギアが駆動台車の
移動と連動して回転する。このピニオンの回転数を駆動
台車上のアブソコーダ(16)で検出して移動距離に換
算し、バリアブルリミットで設定される移動距離に応じ
て移動する。この際、炉内の高温にさらされる時間を可能
な限り短時間とするため、バリアブルリミットで設定さ
れる炉内定点から任意の測定点の移動と15〜25秒間の測
定後の測定点から炉外までの移動については高速(30
〜50m/min)で行う。
The lance (18) has a double pipe structure, and is cooled by flowing compressed air or compressed nitrogen from the inner pipe to the outer pipe. A holder (20) is installed at the tip of the lance (18), and a consumable thermocouple (10) is attached thereto. The lance (18) is supported by a support roller (19), and moves back and forth on a rail by a motorized driving carriage (15) at the rear of the lance. A chain (18) is laid on the rail, and a pinion gear rotates on the chain in conjunction with the movement of the drive cart. The number of rotations of the pinion is detected by an absocoder (16) on the driving bogie, converted into a moving distance, and moved according to a moving distance set by a variable limit. At this time, in order to minimize the time of exposure to the high temperature inside the furnace, move the measurement point from the fixed point in the furnace set by the variable limit and move the furnace from the measurement point after measurement for 15 to 25 seconds. High speed (30
5050 m / min).

【0014】[0014]

【実施例】自溶炉の反応炉の温度分布の悪化原因につい
て検討した結果、装入する時点で原料に偏りがあること
が判明し、炉修期間中に、精鉱バーナ(20)の原料装入
部分について、原料装入時の偏流を修正する改造を施し
た。上記改造後に測定した温度分布を図4に示す。この
温度測定位置は、前記した図1反応塔(1)の矢印部で
ある。この時の操業条件は原料装入量140t/h、総送風量3
69 Nm3/min、目標のマット中銅品位63%であり、図6のケース
とほぼ同じであるが、温度分布は左右のバランスも良好
で、これを見る限り原料の偏流等は見られない。また、こ
の間炉況は比較的安定し、スラグ中への銅ロスが0.60%
と、比較例において示す図6のケースより約0.2%減少し
た。
EXAMPLE As a result of examining the cause of deterioration of the temperature distribution in the reaction furnace of the flash smelting furnace, it was found that the raw material had a bias at the time of charging, and during the furnace repair period, the raw material of the concentrate burner (20) was The charging part was modified to correct the drift when charging the raw materials. FIG. 4 shows the temperature distribution measured after the remodeling. This temperature measurement position is indicated by the arrow in the reaction tower (1) shown in FIG. At this time, the operating conditions were 140 t / h of raw material charge and 3
69 Nm 3 / min, the target copper grade in the mat is 63%, which is almost the same as the case of FIG. 6, but the temperature distribution is well-balanced between the left and right. . During this period, the furnace condition was relatively stable, and the copper loss in the slag was 0.60%.
Approximately 0.2% less than the case of FIG. 6 shown in the comparative example.

【0015】その後も、この反応塔内の温度分布を反応
状態の一つの指標として利用した。その結果、現在では目
標のマット中銅品位を65%と上げ、原料装入量160t/hと処
理能力を約14%アップしつつも、安定操業を継続すること
が可能となった。
Thereafter, the temperature distribution in the reaction tower was used as one index of the reaction state. As a result, it is now possible to maintain stable operation while raising the target matte copper grade to 65%, increasing the raw material charge to 160t / h and increasing the processing capacity by about 14%.

【0016】[0016]

【比較例】比較例の一つを取り上げ以下詳細に説明す
る。 温度分布測定結果の代表例を図6に示す。 この温度測定
位置も、実施例同様に前記した図1反応塔(1)の矢印
部である。この時の操業条件は原料装入量140t/h、総送
風量374Nm3/min、目標のマット中銅品位63%であった。図
6に示すように、A孔側の温度がおよそ1350℃〜1400℃
の範囲であるのに対し、C孔側は炉中心から1m〜2mの点
が1200℃以下となっており、バランスの悪い温度分布に
なっていることがわかる。この時点の炉況は不安定で、常
時は0.65〜0.70%であったスラグ中への銅ロスが0.82%
と悪化した。
Comparative Example One comparative example will be described below in detail. FIG. 6 shows a representative example of the temperature distribution measurement results. This temperature measurement position is also indicated by the arrow in the reaction tower (1) in FIG. The operating conditions at this time were a raw material charging amount of 140 t / h, a total air blowing amount of 374 Nm 3 / min, and a target matte copper grade of 63%. As shown in FIG. 6, the temperature on the side of the hole A is about 1350 ° C. to 1400 ° C.
On the C hole side, the point 1 m to 2 m from the furnace center is 1200 ° C. or less, which indicates that the temperature distribution is poorly balanced. At this point, the furnace condition was unstable, and the copper loss in the slag, which was normally 0.65 to 0.70%, was 0.82%.
And worse.

【0017】[0017]

【発明の効果】本発明の方法によれば、反応塔内の反応
状況を正確かつ容易に評価することができ、評価結果に
基づく操業条件の調整を迅速に実施することが可能とな
る.これによって安定操業を継続できるばかりでなく、
原料の増処理などによる操業状況の変化にも的確に対応
することができる。 また、機械式の温度測定装置の導入
で、人手で行う場合は、5人で30分〜1時間かかった測定
が、装置の操作者1人で約20分で測定可能となった。
According to the method of the present invention, the reaction condition in the reaction tower can be accurately and easily evaluated, and the operating conditions can be quickly adjusted based on the evaluation result. This not only allows stable operation to continue,
It is possible to accurately respond to changes in operating conditions due to increased processing of raw materials. In addition, when a manual temperature measurement device was introduced and the measurement was performed manually, it took 30 minutes to 1 hour for five persons to measure in about 20 minutes for one operator of the apparatus.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】自溶炉の側面図である。FIG. 1 is a side view of a flash smelting furnace.

【図2】自溶炉の平面図である。FIG. 2 is a plan view of a flash smelting furnace.

【図3】温度測定用プローブFIG. 3 Probe for temperature measurement

【図4】本発明の反応炉の温度分布曲線の一例FIG. 4 shows an example of a temperature distribution curve of the reactor of the present invention.

【図5】反応炉の温度分布測定装置FIG. 5 is a temperature distribution measuring device for a reactor.

【図6】実施例の温度分布曲線FIG. 6 shows a temperature distribution curve of the embodiment.

【符号の説明】[Explanation of symbols]

反応塔 原料装入口 原料装入口 A孔 B孔 C孔 D孔 8 補償導線 プローブ 消耗型熱電対 サブスリーブ チャート式記録計 冷却空気出口 冷却空気入口 駆動台車 アブソコーダ チェーン ランス 支持ローラ 20 精鉱バーナ Reaction tower Raw material loading port Raw material loading port A hole B hole C hole D hole 8 Compensating conductor probe Consumable thermocouple Sub-sleeve Chart recorder Cooling air outlet Cooling air inlet Driving trolley Absocoder Chain lance Support roller 20 Concentrate burner

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K001 AA09 BA06 DA01 EA03 EA04 GA04 GB11 4K056 AA02 BA01 BB01 CA04 CA07 FA12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K001 AA09 BA06 DA01 EA03 EA04 GA04 GB11 4K056 AA02 BA01 BB01 CA04 CA07 FA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応塔の側壁に設けた測定孔より消耗型熱
電対を装着した温度測定用プローブを挿入し、挿入深さ
を等間隔に変更することにより、反応塔内落下物の温度
分布を測定し、該温度分布を反応塔内反応の状況を判定
する基準とし、その結果により操業条件を調整すること
により、反応塔内の反応を安定させることを特徴とする
自溶炉の操業方法。
The temperature distribution of a falling object in a reaction tower is changed by inserting a temperature measurement probe equipped with a consumable thermocouple through a measurement hole provided in a side wall of the reaction tower and changing the insertion depth at equal intervals. And operating the temperature distribution as a reference for judging the state of the reaction in the reaction tower, and adjusting the operation conditions based on the result, thereby stabilizing the reaction in the reaction tower. .
【請求項2】反応塔内温度分布測定を直交する2方向か
ら行う請求項1記載の方法
2. The method according to claim 1, wherein the temperature distribution in the reaction column is measured from two orthogonal directions.
【請求項3】先端に消耗型熱電対を装着したプローブを
もつ移動式温度測定装置により反応塔直径線上の測定点
を自動的に移動しながら測定することを特徴とする請求
項1記載の方法。
3. The method according to claim 1, wherein the measurement is performed while automatically moving the measurement point on the diameter column of the reaction tower by a mobile temperature measuring device having a probe having a consumable thermocouple attached to the tip. .
JP12942599A 1999-05-11 1999-05-11 Operation method of flash furnace Expired - Lifetime JP3952112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942599A JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942599A JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Publications (2)

Publication Number Publication Date
JP2000328150A true JP2000328150A (en) 2000-11-28
JP3952112B2 JP3952112B2 (en) 2007-08-01

Family

ID=15009188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942599A Expired - Lifetime JP3952112B2 (en) 1999-05-11 1999-05-11 Operation method of flash furnace

Country Status (1)

Country Link
JP (1) JP3952112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196679A (en) * 2015-04-03 2016-11-24 住友金属鉱山株式会社 Measurement auxiliary jig
JP2021038446A (en) * 2019-09-05 2021-03-11 住友金属鉱山株式会社 Temperature measurement tool
JP2021038447A (en) * 2019-09-05 2021-03-11 住友金属鉱山株式会社 Mineral concentrate distribution estimation method inside burner cone and operation method of flash-smelting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196679A (en) * 2015-04-03 2016-11-24 住友金属鉱山株式会社 Measurement auxiliary jig
JP2021038446A (en) * 2019-09-05 2021-03-11 住友金属鉱山株式会社 Temperature measurement tool
JP2021038447A (en) * 2019-09-05 2021-03-11 住友金属鉱山株式会社 Mineral concentrate distribution estimation method inside burner cone and operation method of flash-smelting furnace
JP7338335B2 (en) 2019-09-05 2023-09-05 住友金属鉱山株式会社 temperature measuring instrument
JP7343833B2 (en) 2019-09-05 2023-09-13 住友金属鉱山株式会社 How to operate a self-melting smelting furnace

Also Published As

Publication number Publication date
JP3952112B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
KR101742901B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
JP7088439B1 (en) Operation method of converter and blowing control system of converter
EA026227B1 (en) Top submerged lancing
JP2000328150A (en) Operating method of self-fluxing furnace
JP2012062567A (en) Method decarburizing and refining molten iron in converter
US8192521B2 (en) Method of suppressing slag foaming in continuous melting furnace
JP3412756B2 (en) Temperature measuring apparatus and method for flash furnace
AU719966B2 (en) Process for processing of reduction gas in a process for the reduction of ores
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
JP2749599B2 (en) Monitoring device and monitoring method for high heat process
JP6513826B2 (en) Method and apparatus for operating a metallurgical furnace
JP2684209B2 (en) Operation method of smelting reduction furnace
JPS6335716A (en) Method and instrument for measuring secondary combustion rate in smelting reduction
EP3204527B1 (en) System and method for control of a copper melting furnace
WO2023112505A1 (en) Method for producing molten iron
JP7338335B2 (en) temperature measuring instrument
JP2017102040A (en) Operation method for steelmaking furnace
JP3531417B2 (en) Operation method of continuous copper making equipment
Visuri OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
SU711108A1 (en) Method of oxygen convertor process control
JP2012184483A (en) Method and apparatus for reduction treatment
JPH10251769A (en) Method for measuring molten metal temperature in flash-smelting furnace for smelting non-ferrous metal and measuring instrument
JP2021038447A (en) Mineral concentrate distribution estimation method inside burner cone and operation method of flash-smelting furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term