JP3951890B2 - 火災検知装置 - Google Patents

火災検知装置 Download PDF

Info

Publication number
JP3951890B2
JP3951890B2 JP2002318358A JP2002318358A JP3951890B2 JP 3951890 B2 JP3951890 B2 JP 3951890B2 JP 2002318358 A JP2002318358 A JP 2002318358A JP 2002318358 A JP2002318358 A JP 2002318358A JP 3951890 B2 JP3951890 B2 JP 3951890B2
Authority
JP
Japan
Prior art keywords
fire
tunnel
temperature
optical fiber
fire detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318358A
Other languages
English (en)
Other versions
JP2004152134A (ja
Inventor
肇 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002318358A priority Critical patent/JP3951890B2/ja
Publication of JP2004152134A publication Critical patent/JP2004152134A/ja
Application granted granted Critical
Publication of JP3951890B2 publication Critical patent/JP3951890B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル内の火災を検知する火災検知装置に関する。
【0002】
【従来の技術】
自動車用トンネルには、火災が発生した場合にその火災を迅速に検知するために、火災検知器が配備されている。火災検知器は、トンネルの側壁面等に所定間隔毎(例えば、25m毎)に設置され、火災を検知した場合には自動車用トンネルを管理する管理センタ等に通報する。火災検知器は、例えば、火災から放射される放射光を受光素子によって検出し、受光素子で基準値以上の光を検出した場合に火災と検知する。また、スポットタイプの温度センサによって温度を検出し、その検出した温度が基準値以上の場合に火災と検知する。
【0003】
また、自動車用トンネルに配備されている監視カメラを利用した火災検出装置も開発されている(特許文献1参照)。この火災検出装置は、監視カメラによりトンネル内を撮像し、その画像データに基づいて火災を検出する。
【0004】
【特許文献1】
特開2001−14571号公報
【0005】
【発明が解決しようとする課題】
しかしながら、火災の初期段階では、炎を発しない煙火災となる場合もある。従来の火災検知器では、火災による放射光を検出するため、煙火災を検知することができないし、さらに、トンネル内への黒煙の充満等によってトンネル内が視界不良となった場合には炎を発していてもその火災を検知することができない。また、従来の監視カメラを利用した火災検出装置では、急激な視界不良の場合には火災と検知できるが、徐々に視界不良となった場合等には火災と検知できない場合がある。
【0006】
また、従来の火災検知器では、火災の規模や煙の状態及びトンネル内の被災者の避難状況等の現場の状況を把握することはできない。さらに、従来の火災検知器は、所定間隔毎に設置されているため、火点の特定精度がその所定間隔に依存し、火点を正確に特定できない。また、大規模な自動車用トンネルには排煙や空気の流れを制御するジェットファンが配備されており、そのジェットファンの影響等によって火点から熱が一定方向に流動する。トンネル内の火災ではこの熱流動を把握していないと、避難誘導や消化活動を適切に行えない。しかし、従来の火災検知器では、温度(熱)をポイントでしか検知することはできないので、熱流動を把握することはできなかった。また、従来の監視カメラを利用した火災検出装置でも、画像データから温度を検出できなので、熱流動を把握することができない。
【0007】
そこで、本発明は、トンネル内で発生した火災を確実かつ高精度に検知できる火災検知装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明に係る火災検知装置は、トンネル内の火災を検知する火災検知装置であって、トンネルの内壁に長手方向に沿って敷設され、トンネル内の温度を検出する光ファイバ温度検出手段と、トンネル内に所定間隔毎に設けられ、トンネル内を撮像する撮像手段と、光ファイバ温度検出手段からの温度データと撮像手段からの画像データとに基づいて、トンネル内の火災を検知する処理手段と、トンネルに繋がる避難通路の内壁に長手方向に沿って敷設され、避難通路内の温度を検出する避難通路用光ファイバ温度検出手段とを備えることを特徴とする。
【0009】
この火災検知装置によれば、光ファイバ温度検出手段によりトンネルの長手方向全域にわたって温度変化(熱の状態)を検出できるとともに、撮像手段によりトンネル内の視的な状況(炎の状態、煙の状態、被災者の状況等)を検出することができる。そして、この火災検知装置では、処理装置により火災の現象である熱、炎、煙の状態から総合的に火災を検知でき、火点を高精度に特定できる。さらに、この火災検知装置によれば、避難通路用光ファイバ温度検出手段によりそのトンネルに繋がる避難通路の温度変化も検出できるので、火災が発生した場合に被災者の避難先の安全性も把握することができる。
【0010】
なお、所定間隔は、トンネルの長さや形状、撮像手段の撮像範囲等を考慮して設定され、撮像手段におけるトンネルの長手方向への撮像範囲より短い長さに設定され、例えば、100m、200mである。というのは、任意の撮像手段の撮像範囲が隣接する撮像手段の撮像範囲と部分的に重複するようにし、トンネル内で撮像されていない箇所を無くすためである。ちなみに、所定間隔は、トンネル全域にわたって一定の間隔の場合、あるいは、トンネルのカーブ等によって不定の間隔の場合もある。本発明は、基本的には撮像手段が複数個有ることを想定しているが、トンネル長が短い等の理由により撮像手段が1個の場合も本発明に含むものとし、その場合には所定間隔は0とする。
【0011】
本発明の上記火災検知装置は、撮像手段をトンネル内に設置される監視用カメラで構成してもよい。
【0012】
この火災検知装置によれば、撮像手段として既に配備されている監視用カメラを利用するので、低コスト化が図れるとともに、トンネルの上部に配置されている監視用カメラによりトンネル内の状況を確実に撮像することができる。
【0015】
本発明の上記火災検知装置は、トンネル内には、複数の車線を有する道路が含まれ、光ファイバ温度検出手段は、一本の光ファイバをトンネル内で1回又は複数回折り返して敷設することにより複数の車線のうち少なくともニ本の車線に対応付けるように構成してもよい。
【0016】
この火災検知装置によれば、光ファイバ温度検出手段によりトンネル内の道路の各車線に沿った温度変化を検出できるので、火点としてトンネルの長手方向での位置だけでなく、いずれの車線かを特定でき、火点の特定精度が向上する。さらに、この火災検知装置では、複数の車線のうちの少なくともニ本の車線を一本の光ファイバで光ファイバ温度検出手段を構成しているので、光ファイバ温度検出手段への光の発光手段や受光手段も1台で構成でき、低コスト化が図れる。
【0017】
【発明の実施の形態】
以下、図面を参照して、本発明に係る火災検知装置の実施の形態を説明する。
【0018】
本発明は、トンネル内の火災によって発生する様々な現象に基づいて火災を検知するために、火災検知装置の検出手段としてトンネル内の温度を検出する光ファイバ温度検出手段及びトンネル内の状況を画像として検出する撮像手段を備える構成とした。そして、本発明に係る火災検知装置では、この光ファイバ温度検出手段からの温度データと撮像手段からの画像データとによる複合方式により、火災によって発生する熱、炎、煙の現象から総合的に火災を検知するとともにその火災の動きや規模等の状況も把握する。
【0019】
本実施の形態では、本発明に係る火災検知装置を、監視用カメラが既に配備されている2車線の自動車用トンネルに適用する。本発明に係る火災検知装置は、光ファイバ温度センサ(光ファイバ温度検出手段)を備えるとともに監視用カメラ(撮像手段)を流用し、光ファイバ温度センサからの温度データと監視用カメラからの画像データを取り込んで火災を検知する処理装置(処理手段)を備える。なお、本実施の形態では、自動車用トンネル(一方通行)において自動車の走行する方向を前方側、その逆方向を後方側とする。また、本実施の形態では一方通行で片側2車線の自動車用トンネルに適用するが、対面通行の自動車用トンネルや片側1車線又は3車線の自動車用トンネル等の様々な形態の自動車用トンネルに適用可能である。
【0020】
図1、図5及び図7を参照して、火災検知装置1が設置される自動車用トンネルATについて説明しておく。なお、火災検知装置1の構成、自動車用トンネルATの構成、火災の状況等の説明を判りやすくするために、図1等の自動車用トンネルは実際よりも非常に短く描かれている。
【0021】
自動車用トンネルATは、一方通行の走行車線TLと追越車線PLからなる高速道路に設けられた自動車用トンネルである。自動車用トンネルATは、高速道路の道路状況を管理する管理センタによって管理されており、トンネル内に各種設備が配備されている。自動車用トンネルATには、トンネル内の自動車の流れ等を監視するための監視用カメラ3,3が配備されている。また、自動車用トンネルATには、トンネル内の排煙や空気の流れをコントロールするジェットファンJF(図5参照)、数10m毎に消火栓(図示せず)、数m毎に火災時にシャワー状の水を噴射するスプリンクラ(図示せず)等が配備されている。
【0022】
また、自動車用トンネルATには、図7に示すように、避難通路として避難坑RM及び避難連絡坑CMが設けられている。避難坑RMは、火災等の災害時に自動車の乗員(被災者)を避難させるためのトンネルであり、自動車用トンネルATに併設されている。避難連絡坑CMは、自動車用トンネルATと避難坑RMとを接続するトンネルである。なお、避難坑RMの代わりに反対車線に設けられている自動車用トンネルが避難坑として利用される場合があり、その場合には避難連絡坑CMは自動車用トンネルATと反対車線の自動車用トンネルとを接続する。また、図7には避難連絡坑CMが1つしか描かれていないが、実際には、トンネル長に応じて所定間隔毎に複数設けられている。
【0023】
それでは、図1を参照して、火災検知装置1の構成について説明する。図1は、火災検知装置の構成図である。
【0024】
火災検知装置1は、自動車用トンネルATの火災を検知するために、光ファイバ温度センサ2、監視用カメラ3,3及び処理装置4を備えている。光ファイバ温度センサ2及び監視用カメラ3,3は自動車用トンネルAT内に配備されるが、監視用カメラ3,3は予め交通流の監視用として配備されていたものを利用する。処理装置4は、自動車用トンネルAT外に設けられる。さらに、図7に示すような避難坑RM及び避難連絡坑CMが設けられている場合、火災検知装置1は、避難通路用光ファイバ温度センサ5を備える。
【0025】
光ファイバ温度センサ2は、一本のGI型石英ファイバからなり、温度を検出するために入射光に対するラマン散乱光が利用される。光ファイバ温度センサ2は、自動車用トンネルATの走行車線TL側の側壁上方の前方側端部FEから後方側端部BEに、そして、その走行車線TL側の側壁上方から天井壁を通って追越車線PL側の側壁上方に、さらに、その追越車線PL側の側壁上方の後方側端部BEから前方側端部FEまで敷設され、最終的に、処理装置4の温度計測部40に接続される。したがって、光ファイバ温度センサ2は、一本の光ファイバにより自動車用トンネルAT内の追越車線PL側及び走行車線TL側の全範囲の温度を検出できるように配備されている。
【0026】
図7に示すように、避難通路用光ファイバ温度センサ5も、一本のGI型石英ファイバからなり、温度を検出するために入射光に対するラマン散乱光が利用される。避難通路用光ファイバ温度センサ5は、避難坑RMの避難連絡坑CMが接続されている側壁上方の後方側端部BEから避難連絡坑CMの一側壁上方の一端部に、その避難連絡坑CMの一側壁上方の一端部から他端部に、その避難連絡坑CMの他端部の一側壁上方から天井壁を通って他側壁上方に、その避難連絡坑CMの他側壁上方の他端部から一端部に、その避難連絡坑CMの側壁上方の一端部から避難坑BEの側壁上方の前方側端部FEまで敷設され、最終的に、処理装置4の温度計測部40に接続される。したがって、避難通路用光ファイバ温度センサ5は、一本のファイバにより避難坑BE及び避難連絡坑CMの全範囲の温度を検出できるように配備されている。
【0027】
このように光ファイバを温度センサとして利用することにより、細径、軽量で施工性に優れ、メンテナンスフリーで半永久的に使用することができる。また、塵埃の多い場所、強電磁界や火気の使用できない防爆環境でも使用できる。さらに、光ファイバの敷設経路を工夫することにより、1本の光ファイバ当たりの検出範囲、場所を多様化できる。
【0028】
監視用カメラ3は、自動車用トンネル等に一般的に配備されるITV[Instructional Television]カメラであり、常時、撮像した画像データを処理装置4の画像処理部41に送信する。監視用カメラ3は、隣接する監視用カメラ3と所定間隔をあけて自動車用トンネルATの天井壁に取り付けられ、処理装置4の画像処理部41に通信ケーブルを介して接続される。所定間隔は、監視用カメラ3の撮像範囲の前方側の一部が前方側に隣接する監視用カメラ3の撮像範囲の後方側の一部と重なる間隔であり、例えば、100m、200m等に設定される。そこで、監視用カメラ3は、撮像方向を前方側下方に向けて、前方側の監視用カメラ3の撮像範囲と少なくとも道路面上で重なるように撮像角度が調整されている。また、監視用カメラ3は、幅方向の撮像範囲としては、走行車線TL及び追越車線PLのみならず、その路肩部分も含めた領域を撮像する範囲である。なお、図1等には、監視用カメラ3が2台しか描かれていないが、実際にはトンネル長に応じて多数配備される。また、監視用カメラ3は、画像データとしてアナログデータを出力するアナログカメラでもよいし、あるいは、デジタルデータを出力するデジタルカメラでもよい。
【0029】
処理装置4は、温度計測部40、画像処理部41,41及び火災検知部42から構成される。処理装置4は、各部40,41,41,42が上記した管理センターに一体で設けられてもよいし、火災検知部42のみが管理センターに設置され、温度計測部40、画像処理部41,41が自動車用トンネルATの近傍に設けられてもよい。
【0030】
図2及び図3も参照して、温度計測部40について説明する。図2は、光ファイバ温度検出センサによる温度計測の原理を説明する図である。図3は、図2のストークス光及び反ストークス光の光強度と温度との関係を示す図である。
【0031】
温度計測部40は、半導体レーザ(LD)40a、ハーフミラー40b、検出器40c,40d及び信号処理回路40eを備える。半導体レーザ40aは、ハーフミラー40bを介して光ファイバ温度センサ2にレーザ光(パルス光)を入射する。ハーフミラー40bは、半導体レーザ40aからのレーサ光を透過して光ファイバ温度センサ2に入射させるとともに、光ファイバ温度センサ2からの後方散乱光を反射して検出器40c,40cに入射させる。
【0032】
ここで、光ファイバ温度センサ2での散乱光について説明する。光ファイバ温度センサ2では、パルス光IL(波長:λ0)が入射すると、そのパルス光ILがファイバ中の各地点で極僅かに散乱を起しながら減衰し、その大部分が終端より放射する。散乱光は、分子の格子振動により光の一部が四方八方に散らされる光であり、その一部が後方散乱光BSとして入射側に戻ってくる。温度検出では、この後方散乱光BSを利用する。
【0033】
散乱光としては、レーリ散乱光RS(波長:λ0)とラマン散乱光の2成分がある。ラマン散乱光には、ストークス光ST(波長:λst=λ0+Δλ’)と反ストークス光AS(波長:λas=λ0−Δλ)がある。ストークス光ST及び反ストークス光ASは、微弱であるがその光の強度(明るさ)が温度に依存しており、その光の強度が散乱を起した場所の温度により変化する。したがって、後方散乱光BS中のストークス光ST及び/又は反ストークス光ASの強度とを測定することにより、光ファイバの温度を検出できる。また、光ファイバ中の光の伝搬速度は予め判っているので、パルス光ILを入射してからストークス光ST、反ストークス光ASが戻ってくるまでの往復時間を測定することにより、どの地点で起こった散乱であるかが判る。したがって、光ファイバ温度センサ2での各地点での温度を検出することができる。
【0034】
検出器40cは、後方散乱光BSのうちストークス光STを検出し、その光の強度を電気量に変換して信号処理回路40eに送信する。一方、検出器40dは、後方散乱光BSのうち反ストークス光ASを検出し、その光の強度を電気量に変換して信号処理回路40eに送信する。ちなみに、温度を検出する場合、ストークス光ST又は反ストークス光ASのいずれか一方からでも温度を検出することはできる。しかし、ストークス光ST及び反ストークス光ASの光強度は、光ファイバの伝送ロス等の影響により、入射端近傍(追越車線PL側の前方側端部FE近傍)から戻ってくる光よりも遠方(例えば、走行車線TL側の前方側端部FE)から戻ってくる光の方が弱くなる。したがって、図3に示すように、ストークス光ST、反ストークス光AS共に、光ファイバの距離が長くなるに従って光強度が低下する。しかし、ストークス光STと反ストークス光ASとは、光ファイバの温度変化(加熱や冷却)に応じて、同じタイミングで光強度が増減する。そこで、温度計測部40では、ストークス光ST及び反ストークス光ASの両方を検出し、ストークス光STと反ストークス光ASとの強度比を求めることにより(図3参照)、より安定した温度測定を行っている。
【0035】
信号処理回路40eでは、検出器40cからのストークス光STの光強度(電気量)及び検出器40dからの反ストークス光ASの光強度(電気量)を連続的に取り入れてその強度比を算出し、さらに、温度関数である強度比から温度を算出する。また、信号処理回路40eでは、半導体レーザ40aでのパルス光の出射時間と検出器40cでのストークス光ST及び検出器40dでの反ストークス光ASの検出時間とを監視してストークス光ST及び反ストークス光ASの往復時間を算出し、さらに、光ファイバ温度センサ2の入射端からのファイバ距離を算出する。そして、信号処理回路40eでは、算出したファイバ距離に算出した温度を各々対応付け、ファイバ距離に対する温度データを生成する。
【0036】
このように、温度計測部40では、光ファイバそのものをセンサとして、光ファイバに沿った連続的な温度分布をリアルタイムで測定している。そして、温度計測部40では、光ファイバ温度センサ2のファイバ距離に対する検出温度を数秒〜数10秒毎に火災検知部42に送信する。温度検出距離としては数10km程度まで可能であり、温度のサンプリング間隔としては数十cm〜数m(例えば、1m)間隔であり、検出温度範囲としてはマイナス数100℃〜数100℃まで可能である。
【0037】
なお、避難連絡用光ファイバ温度センサ5が配備されている場合(図7参照)、温度計測部40と同様の温度計測部が別に備えられる。
【0038】
画像処理部41は、監視用カメラ3から送信されてくる画像データに対して、背景差分処理、時間差分処理等の画像処理を行う。そして、画像処理部41では、この各種画像処理を施した画像データを一定時間毎に火災検知部42に送信する。ちなみに、画像処理部41では、画像データがアナログデータの場合、そのアナログデータをデジタルデータに変換してから上記処理を行う。画像処理部41も交通流の監視用として配備されている画像処理部を利用できる場合には火災検知装置1用として別体で用意する必要はない。
【0039】
火災検知部42は、パーソナルコンピュータ等のコンピュータで専用のソフトウエアを動作させることによって、コンピュータ上に構成される。したがって、このコンピュータと温度計測部40及び画像処理部41,41とが通信ケーブルで接続され、このコンピュータにより火災検知部42にファイバ距離に対する温度のデータや監視用カメラ3毎の各種画像処理が施された画像データが入力される。そして、火災検知部42では、ファイバ距離に対する温度のデータにより熱に基づいて火災検知を行うとともに、画像データにより炎及び煙に基づいて火災検知を行う。この際、火災検知部42では、両方のデータにより検知が可能な火点の特定等については、検知精度を向上させるために、温度データと画像データとを共に利用して検知を行う。さらに、火災検知部42では、検知した火災に対する様々な情報に基いて、避難誘導路の指示等の避難活動のサポート及びスプリンクラの作動指令等の消化活動のサポートも行う。
【0040】
火災検知部42で行っている主な処理について説明する。火災検知部42では、火災発生後の熱流動の把握、視界不良時の温度分布の把握、避難通路における温度分布の把握等の処理については主にファイバ距離に対する温度データを利用し、炎の検知、煙の検知、火災現場の状況把握等の処理については主に画像データを利用し、火点の特定の処理については温度データ及び画像データを利用する。
【0041】
図4を参照して、火災検知部42における火点の特定について説明する。図4は、図1の火災検知装置による火点の特定の説明図である。
【0042】
火災検知部42では、光ファイバ温度センサ2によるファイバ距離に対する温度データにより自動車用トンネルAT内の各地点間の温度変化を監視し、他の地点から所定温度(例えば、数℃〜数10℃)以上温度が上昇した地点あるいは所定温度変化率以上の変化率で温度が上昇している地点を火点と判定する。火点では追越車線PL側でも走行車線TL側でも温度が上昇するが、火災が発生している車線側の方が温度上昇の度合いが大きいと予想される。そこで、火災検知部42では、その温度上昇の度合いが走行車線TL側で大きいかあるいは追越車線PL側で大きいかを判定し、火災が発生している車線も特定する。図4には、自動車用トンネルATの走行車線TL上の中間で自動車AMから火災が発生した場合を示している。この場合、光ファイバ温度センサ2による温度検出では、ファイバ端点(走行車線TLの前方側端部FE)とファイバ折り返し点(後方側端部BE)との中間に他の地点に比べて非常に高温の温度変化点APを示し、ファイバ折り返し点とファイバ入射端点(追越車線PLの前方側端部FE)との中間に温度変化点APより低温の温度変化点BPを示す。この温度データにより、火災検知部42では、自動車用トンネルATの中間で走行車線TL側に火点があることを特定する。この際、自動車用トンネルATでの長手方向の位置精度としては、上記したサンプリング間隔の精度であり、例えば、1m単位で位置が特定される。
【0043】
上記の温度(熱)による火点の特定では、殆どの火災の火点を特定することができる。しかし、炎を伴わない煙火災等の低温火災や温度上昇規模の小さい小規模火災では、上記の所定温度や所定温度変化率のしきい値を越えないために、早期に火点を特定できない場合がある。
【0044】
そこで、火災検知部42では、各監視用カメラ3による画像データにより炎の検知及び煙の検知を行っており、炎を検知した地点あるいは煙を検知したときには火災が発生していると判定し、火点を特定する。この場合、2次元画像に基づいて火点を特定しているため、火災が発生している高さが高い場合(例えば、2階建てバスの2階で火災が発生している場合)、実際に火災が発生している地点より画像の奥向き方向の地点(自動車トンネルATの前方側の地点)を火点と特定してしまう場合がある。また、自動車用トンネルATが鏡面等でできた壁面の場合にはその壁面に写っている炎を火災と判定してしまう場合がある。そこで、火災検知部42では、炎や煙によって火災を検知した場合かつ各地点の温度変化が所定温度や所定温度変化率のしきい値を越えない場合、その炎や煙によって検知した火災が発生している地点の近傍において各地点の温度変化が最も変化している地点を火点と特定する。
【0045】
このように、火災検知装置1では、通常火災、煙火災(低温火災)、小規模火災等の様々な種類の火災の火点を高精度に特定できる。また、火災検知装置1では、追越車線PL及び走行車線TKの両側に光ファイバ温度センサ2を敷設しているので、火点の近くで温度を検出できる確率が高く、火災検知の遅れる傾向にある小規模火災の段階でも熱によっても火点を特定できる場合がある。なお、火災検知装置1では、上記したうように、低温火災、小規模火災や光ファイバ温度センサ2から高さ方向で離れた位置の火災を画像データに基づいて検知することが可能なので、上記所定温度や所定温度変化率を比較的高い値に設定して火点を確実に特定するようにしてもよい。
【0046】
図5を参照して、火災検知部42における熱流動の把握について説明する。図5は、図1の火災検知装置による熱流動の把握の説明図である。
【0047】
自動車用トンネルATには、上記したように、ジェットファンJFが配備されている。そのため、火災が発生した場合、ジェットファンJFの影響等によって火災による熱が一方向に流動する。この熱流動を把握しておくことが、被災者の避難誘導、消化活動や救助活動の際の安全の確保等に重要となる。
【0048】
そこで、火災検知部42では、光ファイバ温度センサ2によるファイバ距離に対する温度データにより自動車用トンネルAT内の各地点の温度を監視し、他の地点より所定温度(例えば、数℃〜数10℃)以上温度が上昇している熱流動領域(火災の規模)を検出する。さらに、火災検知部42では、時間経過に伴う熱流動領域の変化を監視し、熱流動領域が延びていく方向(火災の動き)等も検出する。そして、火災検知部42では、熱流動領域を検出すると、避難連絡坑CMの位置(図7参照)や自動車用トンネルATの出入口等を考慮して、被災者がどこから避難すればよいかを判断するとともに、消防隊員等がどこから消化活動や救助活動をすればよいか判断する。さらに、火災検知部42では、熱流動領域に基づいて、スプリンクラ制御、換気制御、照明制御等を行う。図5には、自動車用トンネルATの走行車線TL上の中間で自動車AMから火災が発生した場合かつジェットファンJFが前方側に向かって風を噴射している場合を示している。この場合、光ファイバ温度センサ2による温度検出では、ファイバ端点(走行車線TLの前方側端部FE)とファイバ折り返し点(後方側端部BE)との中間に他の地点に比べて非常に高温の熱流動領域AAを示し、ファイバ折り返し点とファイバ入射端点(追越車線PLの前方側端部FE)との中間に熱流動領域AAより低温の熱流動領域BAを示す。図5から判るように、熱流動領域AA、熱流動領域BA共に火点から前方側に熱が流動している。この場合、被災者のトンネル内での位置にもよるが自動車用トンネルATの後方側に被災者を避難誘導する必要があり、消防隊員による消化活動も自動車用トンネルATの後方側から行う方がよいし、また、スプリンクラの作動は熱流動領域のみならず、その前方側も作動させる必要がある。火災検知部42では、このような判断も行う。
【0049】
このように、火災検知装置1では、熱流動領域を検出することによって、火災の規模や動きを正確に把握し、避難活動や消化活動を行う際の安全性を確保することができる。
【0050】
図6を参照して、火災検知部42における視界不良時の温度分布の把握について説明する。図6は、図1の火災検知装置による視界不良時の温度分布の把握の説明図である。
【0051】
火災が発生した場合、燃えている物質によっては黒煙等が発生し、その黒煙がジェットファンJFの影響等によってトンネル内に広がり、視界不良となる場合がある。このような場合、監視用カメラ3の画像データによる火災検知が困難となる。ちなみに、視界不良になる要因としては、黒煙等の他に、トンネル内の照明設備の故障等もある。
【0052】
しかし、火災検検知部42では、上記したように、光ファイバ温度センサ2によるファイバ距離に対する温度データにより自動車用トンネルAT内の各地点の温度変化や熱流動領域を検出しており、トンネル内の温度分布を把握している。したがって、火災検知部42では、監視用カメラ3,3による火災検知が困難な状況でも、火災検知を行うことができる。図6には、自動車用トンネルATの走行車線TL上の中間で自動車AMでの火災によって黒煙BM(図中の点々)が発生し、その黒煙BMがトンネル内に充満している場合を示している。この場合、光ファイバ温度センサ2による温度検出では、黒煙BMに関係なく、ファイバ端点(走行車線TLの前方側端部FE)とファイバ折り返し点(後方側端部BE)との中間に他の地点に比べて非常に高温の熱流動領域AAを示し、ファイバ折り返し点とファイバ入射端点(追越車線PLの前方側端部FE)との中間に熱流動領域AAより低温の熱流動領域BAを示す。
【0053】
このように、火災検知装置1では、視界不良時でも、光ファイバ温度センサ2によってトンネル内の温度を検出することができるので、火災の規模や動きを正確に把握し、避難活動や消化活動を行う際の安全性を確保することができる。
【0054】
図7を参照して、避難坑CMが配備されている場合の火災検知部42における避難坑RM及び避難連絡坑CM内の温度分布の把握について説明する。図7は、図1の自動車用トンネルに避難坑が併設されている場合の火災検知装置による避難坑等の温度分布の把握の説明図である。
【0055】
上記したように、自動車用トンネルATには災害時の避難用として避難坑RMが併設されており、避難連絡坑CMによって接続されている。火災が発生した場合、避難坑RM内でも火災が発生していたりあるいは自動車用トンネルAT内の火災による熱が流動している場合があり、避難には適さない場合がある。また、避難連絡坑CMへ火災の熱が流動している場合があり。避難する際にどの避難連絡坑CM(避難連絡坑は、図7には1つしか描いていないが、実際には多数存在する)を利用できるのかを識別する必要がある。
【0056】
そこで、火災検知部42では、避難通路用光ファイバ温度センサ5によるファイバ距離に対する温度データにより避難坑RM及び避難連絡坑CM内の各地点の温度変化や熱流動を検出しており、避難坑RM及び避難連絡坑CM内の温度分布を把握している。そして、火災検知部42では、避難坑RM全域にわたって避難可能な温度か否かを判定し、避難が不可能な温度まで上昇していると判定した場合には避難坑RMの使用を禁止かあるいは使用範囲を限定する。また、火災検知部42では、全ての避難連絡坑CMについて火災による熱が流動しているか否かを判定し、熱の流動がある避難連絡坑CMと熱の流動がない避難連絡坑CMとを識別する。
【0057】
このように、火災検知装置1では、避難坑RM及び避難連絡坑CMの温度分布も把握しているので、被災者の避難先の安全性も確保することできる。
【0058】
火災検知部42における炎検知について説明する。火災検知部42では、監視用カメラ3による画像データ(画像処理済)から炎の特徴を示す画像を抽出し、抽出した画像(炎である確率が高い画像)のゆらぎを周波数解析する。そして、火災検知部42では、そのゆらぎの周波数特性が実験等で求めた実際の炎のゆらぎの周波数特性とマッチングする場合には火災と検知し、その画像を抽出した自動車用トンネルAT内の位置を特定する。なお、炎である確率が高い画像を抽出する際、炎の特徴を示すものとしては、例えば、炎の三原色の階調特性や輝度特性等がある。
【0059】
このように、火災検知装置1では、火災が発生したときの現象の一つとして炎も検出しているので、火災の検知精度が向上する。
【0060】
図8も参照して、火災検知部42における煙検知につい説明する。図8は、図1の火災検知装置による煙検知の説明図である。
【0061】
火災検知部42では、監視用カメラ3による画像データ(画像処理済)を小区画毎に分割し、その小区画毎にVI[Visibility Instrument]値(煙霧透過率)を導き出す。この小区間は、火災が発生した地点を特定できる程度の区画とする。そして、火災検知部42では、小区画毎のVI値の変化を監視し、小区画毎のVI値が所定のVI値以下かつ所定のVI値低下率以上で低下した場合には火災による煙と判定し、判定した小区画から自動車用トンネルAT内の火災の位置を特定する。所定のVI値及び所定のVI値低下率は、火災による煙によってVI値が低下していると予測できる値であり、実験等によって設定される。図8には、ある小区画におけるVI値(%)の時間変化のグラフを示す。図8に示す例では、VI値の急激な低下を開始したFOが火災が発生した時であり、この火災発生時点FOから急激に煙の濃度が増加し、1分間程度でVI値が20%まで低下している。火災検知部42では、この1分間の間に煙を検知し、この煙から火災と判定する。
【0062】
このように、火災検知装置1では、火災が発生したときの現象の一つとして煙も検出しているので、炎が発生せずかつ低温の煙火災も検知することができ、火災の検知精度が向上する。
【0063】
火災検知部42における火災現場の状況把握について説明する。火災検知部42では、火災を検知した場合、火災現場を撮像している監視用カメラ3を抽出し、その監視用カメラ3による画像を管理センタ内のモニタ(図示せず)に表示させるとともに、録画する。火災検知部42では、このように、火災検知装置1では、火災現場を迅速に画像表示させることによって、現場の状況を視覚情報として提供し、避難活動や消化活動を行う上で有益な情報となる。管理センタでは、映像によって被災者の数や火災の規模等の現場の状況を瞬時に把握できるので、避難活動や消化活動にあたる消防隊員等に適切な指示を与えることができる。
【0064】
以上のように、火災検知装置1では、温度データと画像データの二種類の検出データを利用して火災発生時の現象である熱、炎、煙の3つの観点から火災の状況を把握し、様々な種類の火災や様々な状況下での火災を検知できる。そのため、火災検知装置1では、従来の火災検知器や光ファイバ温度センサ単独処理での火災検知ありは監視用カメラ単独処理での火災検知と比較して、これらの手段では検知不可能な火災でも検知することができ、火点の特定精度も高い。
【0065】
次に、図1及び図9を参照して、火災が発生した場合の火災検知装置1の動作を説明する。図9は、図1の火災検知装置における火災が発生した場合の動作を示す図である。
【0066】
火災が発生すると、火災検知装置1では、光ファイバ温度センサ2からの温度データにより熱に基づいて火災を検知するとともに、監視用カメラ3からの画像データにより煙と炎に基づいて火災を検知する。この際、火災検知装置1では、光ファイバ温度センサ2による温度データあるいは監視用カメラ3による画像データの一方で検知できない場合でも、他方のデータで確実に火災を検知している。
【0067】
続いて、火災検知装置1では、光ファイバ温度センサ2からの温度データにより熱に基づいて火点を特定するとともに、監視用カメラ3からの画像データにより煙と炎に基づいて火点を特定する。この際、火点の特定の精度を向上させるために、火災検知装置1では、両方のデータを利用して火点の特定も行う。
【0068】
火点が特定すると、火災検知装置1では、火点の近傍のスプリンクラを制御して消化活動を開始するとともに、煙をできるだけ排出するために換気制御を開始する。また、火災検知装置1では、火点の情報等を消防施設等の関係機関に送信する。さらに、火災検知装置1では、避難連絡坑CMや避難坑RM等の避難誘導先の照明を点灯するために照明制御を行う。
【0069】
さらに、火災検知装置1では、光ファイバ温度センサ2からの温度データにより熱に基づいて火災による熱の流動を監視するとともに温度分布も監視し、視界不良等の周辺状況に関係なく、火災の規模や動きを把握する。また、火災検知装置1では、特定した火点から火災現場の状況を映像表示するとともにその現場の状況を録画しておく。
【0070】
火災の規模や動き、現場の状況を把握すると本格的な避難活動及び消化活動に移り、火災検知装置1では、被災者の避難誘導路を決定するとともに、現場状況の映像等の消化活動や救出活動をために必要な情報を提供する。また、火災検知装置1では、火災の規模や動きに応じて換気制御や照明制御を継続して行う。
【0071】
そして、火災の消化及び被災者の避難が完了するまで、火災検知装置1では、迅速かつ的確な避難活動及び消化活動を行う上で有用な情報を提供するとともに、自動車用トンネルAT内の各種施設を制御する。やがて、消化及び避難が完了すると、火災検知装置1では、通常時の動作状態に戻る。
【0072】
最後に、図1及び図10を参照して、火災検知装置1の効果を明確にするために、火災検知装置1による火災検知を、光ファイバ温度センサ2単独処理による火災検知、監視用カメラ3単独処理による火災検知及び従来の火災検知器による火災検知と比較する。図10は、図1の火災検知装置、光ファイバ温度センサ単独処理、監視用カメラ単独処理並びに従来の火災検知器による火災検知の比較図である。
【0073】
通常の火災の検知について比較する。通常の火災の検知については、光ファイバ温度センサ2単独処理、監視用カメラ3単独処理、火災検知装置1、従来の火災検知器全てで検知可能である。
【0074】
小規模火災の検知について比較する。光ファイバ温度センサ2単独処理では、小規模火災では温度上昇規模が小さいので、センサから火点が離れていると火災の検知が遅れる場合がある。しかし、小規模火災でも炎や煙を発生するので、監視用カメラ3単独処理及び火災検知装置1では、迅速な検知可能である。また、従来の火災検知器でも、検知可能である。
【0075】
遮蔽火災の検知について比較する。監視用カメラ3単独処理では、火災が何かで遮蔽されているとその火災を撮像できないので、検知することができない。また、従来の火災検知器では、火災の放射光が何かで遮蔽されていると、検知できない場合がある。しかし、火災が何かで遮蔽されていても熱は伝わるので、光ファイバ温度センサ2単独処理及び火災検知装置1では、検知可能である。
【0076】
熱流動把握について比較する。監視用カメラ3単独処理では、火災の熱を検知できないので、把握することはできない。従来の火災検知器では、火災の熱を検知していないので、把握することはできない。しかし、光ファイバ温度センサ2では熱を連続的に検知できるので、光ファイ名温度センサ2単独処理及び火災検知装置1では、把握可能である。
【0077】
視界不良時の火災検知について比較する。監視用カメラ3単独処理では、黒煙等で視界が遮られると火災自体を撮像できなので、火災を検知することはできない。従来の火災検知器では、黒煙等で視界が遮られると火災の放射光がとどかないので、火災を検知することができない。しかし、光ファイバ温度センサ2では視界不良でも熱を連続的に検知できるので、光ファイバ温度センサ2単独処理及び火災検知装置1では、把握可能である。
【0078】
火点精度について比較する。監視用カメラ3単独処理では、上記したように、特定した火点が実際の火点とずれる場合がある。また、従来の火災検知器では、設置されている間隔に特定した火点の位置が依存するので、設置間隔が長くなるほど精度が低下する。しかし、光ファイバ温度センサ2では自動車用トンネルAT内の長手方向を連続的に検出することができるので、光ファイバ温度センサ2単独処理では、火点の精度は良い。しかし、光ファイバ温度センサ2単独処理では、低温の煙火災や小規模火災の場合には火災自体を検知できないときがある。火災検知装置1では、低温の煙火災や小規模火災の場合には監視用カメラ3での処理によって火点を特定でき、それ以外では光ファイバ温度センサ2での処理で高精度に火点を特定できるので、火点の特定の精度は非常に優れている。
【0079】
煙検知について比較する。光ファイバ温度センサ2単独処理及び従来の火災検知器では、火災の煙を検知することはできない。しかし、監視用カメラ3では煙を撮像できるので、監視用カメラ3単独処理及び火災検知装置1では、煙検知が可能である。
【0080】
現場状況把握について比較する。光ファイバ温度センサ2単独処理及び従来の火災検知器では、現場の状況を撮像できないので、現場状況を把握できない。しかし、監視用カメラ3では現場の状況を撮像できるので、監視用カメラ3単独処理及び火災検知装置1では、現場状況の把握が可能である。
【0081】
以上のように、火災検知装置1は、光ファイバ温度センサ2による処理と監視用カメラ3による処理を複合させた方式なので、火災を熱、炎、煙の面から検知することができるので、小規模火災、煙火災等の様々な種類の火災を検知することができるとともに、視界不良時や火災が遮蔽されている時等の様々な状況下の火災を検知することができる。つまり、火災検知装置1では、検出手段として最適な組み合わせである光ファイバ温度センサ2と監視用カメラ3とを用いているので、光ファイバ温度センサ2による処理で検知できない火災を監視用カメラ3による処理で確実に検知でき、監視用カメラ3による処理で検知できない火災を光ファイバ温度センサ2による処理で確実に検知できる。さらに、火災検知装置1は、火点の特定精度が良く、火災の規模や動きも把握することできるので、被災者の避難誘導や消化活動に有用な情報を提供できる。また、火災検知装置1は、避難坑RMや避難連絡CM内の温度分布を把握したり、火災現場の状況を映像で提供するので、避難や消化の際の安全性を確保することができる。
【0082】
以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
例えば、本実施の形態では光ファイバ温度センサが一本の光ファイバからなり、その一本の光ファイバにより自動車用トンネル内の走行車線側及び追越車線側の全範囲をカバーするように構成したが、二本の光ファイバにより走行車線側と追越車線側を別々にカバーしてもよいし、検出精度が多少落ちるが片方の車線側のみをカバーしてもよい。また、上下方向の温度検出精度を上げるために側壁の上方側と下方側等の側壁の上下方向に複数段に光ファイバを配してもよいし、側壁に上下方向及び水平方向に光ファイバを面的に配してもよい。この場合、火災が発生している近傍で熱を検知できる確率が高くなるので、小規模火災等を早期に検知できる。
また、本実施の形態では交通流用の監視用カメラを流用したが、火災検知装置の専用のカメラを構成してもよく、この場合には煙や炎のみを撮像する特殊なカメラを適用してもよい。
また、本実施の形態では自動車用トンネルに適用したが、列車用トンネル等の他の用途のトンネルへの適用も可能である。
【0083】
【発明の効果】
本発明に係る火災検知装置によれば、光ファイバ温度検出手段及び撮像手段の2つの検出手段により火災の現象である熱、炎、煙の状態を全て把握できるので、トンネル内の様々の状況下で様々な種類の火災を確実に検知でき、その検知精度も高い。そのため、この火災検知装置は、避難活動や消化活動に対して有益な情報を提供できる。さらに、本発明に係る火災検知装置によれば、上記したようにトンネル内の火災を検知できるとともに、避難通路用光ファイバ温度検出手段によりそのトンネルに繋がる避難通路の温度分布も把握できるので、避難誘導先の安全性も検知することができる。
【0084】
また、本発明に係る火災検知装置によれば、撮像手段としてトンネル内に設置されている監視用カメラを利用することにより、低コストでシステムを構成できるとともに、トンネル内の状況を確実に撮像できる。
【0086】
また、本発明に係る火災検知装置によれば、一本の光ファイバをトンネル内で折り返して敷設することにより自動車用トンネルの各車線の温度変化を検出できるので、火点の特定精度が向上するとともに、低コストでシステムを構成できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る火災検知装置の構成図である。
【図2】図1の光ファイバ温度検出センサによる温度計測の原理を説明する図である。
【図3】図2のストークス光及び反ストークス光の光強度と温度との関係を示す図である。
【図4】図1の火災検知装置による火点の特定の説明図である。
【図5】図1の火災検知装置による熱流動の把握の説明図である。
【図6】図1の火災検知装置による視界不良時の温度分布の把握の説明図である。
【図7】図1の自動車用トンネルに避難坑が併設されている場合の火災検知装置による避難坑等の温度分布の把握の説明図である。
【図8】図1の火災検知装置による煙検知の説明図である。
【図9】図1の火災検知装置における火災が発生した場合の動作を示す図である。
【図10】図1の火災検知装置、光ファイバ温度センサ単独処理、監視用カメラ単独処理並びに従来の火災検知器による火災検知の比較図である。
【符号の説明】
1…火災検知装置、2…光ファイバ温度センサ、3…監視用カメラ、4…処理装置、5…避難通路用光ファイバ温度センサ、40…温度計測部、40a…半導体レーザ、40b…ハーフミラー、40c,40d…検出器、40e…信号処理回路、41…画像処理部、42…火災検知部、AA,BA…熱流動領域、AM…自動車、AP,BP…温度変化点、AS…反ストークス光、AT…自動車用トンネル、BE…後方側端部、BM…黒煙、BS…後方散乱光、CA,EA…温度上昇領域、CM…避難連絡坑、FE…前方側端部、FO…火災発生時点、JF…ジェットファン、IL…パルス光(入射光)、PL…追越車線、RM…避難坑、RS…レーリ散乱光、ST…ストークス光、TL…走行車線

Claims (3)

  1. トンネル内の火災を検知する火災検知装置であって、
    前記トンネルの内壁に長手方向に沿って敷設され、前記トンネル内の温度を検出する光ファイバ温度検出手段と、
    前記トンネル内に所定間隔毎に設けられ、前記トンネル内を撮像する撮像手段と、
    前記光ファイバ温度検出手段からの温度データと前記撮像手段からの画像データとに基づいて、前記トンネル内の火災を検知する処理手段と
    前記トンネルに繋がる避難通路の内壁に長手方向に沿って敷設され、前記避難通路内の温度を検出する避難通路用光ファイバ温度検出手段と
    を備えることを特徴とする火災検知装置。
  2. 前記撮像手段は、前記トンネル内に設置される監視用カメラであることを特徴とする請求項1に記載する火災検知装置。
  3. 前記トンネル内には、複数の車線を有する道路が含まれ、
    前記光ファイバ温度検出手段は、一本の光ファイバを前記トンネル内で1回又は複数回折り返して敷設することにより前記複数の車線のうち少なくともニ本の車線に対応付けること特徴とする請求項1又は請求項2に記載する火災検知装置。
JP2002318358A 2002-10-31 2002-10-31 火災検知装置 Expired - Fee Related JP3951890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318358A JP3951890B2 (ja) 2002-10-31 2002-10-31 火災検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318358A JP3951890B2 (ja) 2002-10-31 2002-10-31 火災検知装置

Publications (2)

Publication Number Publication Date
JP2004152134A JP2004152134A (ja) 2004-05-27
JP3951890B2 true JP3951890B2 (ja) 2007-08-01

Family

ID=32461509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318358A Expired - Fee Related JP3951890B2 (ja) 2002-10-31 2002-10-31 火災検知装置

Country Status (1)

Country Link
JP (1) JP3951890B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938593B1 (ko) * 2007-11-20 2010-01-26 지멘스 주식회사 광센서감지기를 이용한 화재 감시 시스템용 광센서중계기
CN102022136A (zh) * 2010-11-19 2011-04-20 贾建军 矿用救生舱温度调节装置
JP5697587B2 (ja) * 2011-12-09 2015-04-08 三菱電機株式会社 車両火災検出装置
CN102590214A (zh) * 2012-02-17 2012-07-18 辽宁万泓激光科技股份有限公司 一种隧道防火保护材料耐火极限在线无损检测系统
JP6954373B2 (ja) * 2017-12-12 2021-10-27 日本電気株式会社 トンネル内火災時制御システム
JPWO2023053184A1 (ja) * 2021-09-28 2023-04-06
CN114399899B (zh) * 2021-12-01 2022-12-30 武汉微创光电股份有限公司 一种在隧道运营中实现高温车辆轨迹跟踪的方法及系统

Also Published As

Publication number Publication date
JP2004152134A (ja) 2004-05-27

Similar Documents

Publication Publication Date Title
CN101925934B (zh) 撤离系统及其逃生线路指示器
Starr et al. Evaluation of navigation sensors in fire smoke environments
US20130120137A1 (en) Person-guiding system for evacuating a building or a building section
JP3951890B2 (ja) 火災検知装置
JP7132714B2 (ja) 火災報知設備
JP7000195B2 (ja) トンネル内部状況検知装置およびこれを装備したトンネル並びにトンネル内部状況監視システム
CN107808534A (zh) 一种隧道安全防护装置以及系统
CN112085267A (zh) 一种智慧消防疏散指示方法、系统、装置及存储介质
CN105547518A (zh) 一种煤矿采空区分布式光纤温度监测预警系统及方法
JP2011203159A (ja) 赤外線撮像装置及び赤外線画像の表示方法
CN108828892A (zh) 一种用于城市地下道路的全自动水幕投影交通指示系统
CN108922245A (zh) 一种公路视距不良路段预警方法及系统
JP6954373B2 (ja) トンネル内火災時制御システム
JPH1062212A (ja) トンネル危険予知システム
JP2003529169A (ja) 危険な状況における位置を計測するためのシステム並びに装置
CN106643517A (zh) 一种车辆高度超限的测量及警告方法
CN109269669A (zh) 分布式光纤采空区测温及高温预警系统
JPH11120457A (ja) トンネル防災システム
CN207458346U (zh) 一种隧道安全防护装置以及系统
JP6598385B2 (ja) 早期火災検知システムおよび早期火災検知方法
CN101401138B (zh) 改进的飞机对接系统
JPH0731753B2 (ja) トンネル内異常通報装置
KR20180001607A (ko) 스마트 교통 제어 시스템
JPH07275392A (ja) 防災システム
KR102017307B1 (ko) 낙석 감시 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees