JP3951567B2 - Porous carbon material and method for producing the same - Google Patents

Porous carbon material and method for producing the same Download PDF

Info

Publication number
JP3951567B2
JP3951567B2 JP2000213398A JP2000213398A JP3951567B2 JP 3951567 B2 JP3951567 B2 JP 3951567B2 JP 2000213398 A JP2000213398 A JP 2000213398A JP 2000213398 A JP2000213398 A JP 2000213398A JP 3951567 B2 JP3951567 B2 JP 3951567B2
Authority
JP
Japan
Prior art keywords
pores
carbon material
zeolite
porous carbon
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000213398A
Other languages
Japanese (ja)
Other versions
JP2002029860A (en
Inventor
彰 富田
隆 京谷
志新 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000213398A priority Critical patent/JP3951567B2/en
Publication of JP2002029860A publication Critical patent/JP2002029860A/en
Application granted granted Critical
Publication of JP3951567B2 publication Critical patent/JP3951567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は新規な多孔質炭素材料に関するものであって、詳しくは、内部に空孔を有し、分子レベルの構造規則性を持った炭素材料とその合成方法、さらに詳しくは0.5nmから100nmの長周期規則構造を有する多孔質炭素材料とその製造方法に関するものである。
【0002】
【従来の技術】
炭素は、耐熱性が高く、電気や熱も良く伝え、しかも薬品などにも侵されにくいなど、単一の元素からできているとは思えないほど多様な性質を持つ魅力的な材料である。
【0003】
最近では、これまで使われてきた用途以外にも、電気エネルギーを化学エネルギーに変換して貯蔵するデバイスであるキャパシタやリチウムイオン電池の電極材料への適用や、水素やメタンなどに代表される付加価値の高いガスを貯蔵する材料への適用などが提案されている。
【0004】
【発明が解決しようとする課題】
古くから種々の炭素材料が製造されてきたが、これまで提案されている炭素材料は、石油や石炭から取れる重質芳香族化合物であるピッチや汎用高分子類など既存の材料をいかに巧みに炭素化して目的の構造や特性に近づけるかという点にポイントを置いて調製されたものであった。
【0005】
新しい機能を備えた炭素材料を調製するためには、分子レベルで炭素材料を設計、合成することが必要と考えられるが、これまでの調製方法ではそのような炭素材料を合成することは困難であった。
【0006】
【課題を解決するための手段】
本発明者らは上記状況を鑑み鋭意検討を行った結果、ゼオライトからなる多孔質材料を鋳型に使用して、第1の処理として多孔質材料の表面および空孔内部に有機物を導入し、これを加熱することによって該有機物を炭化し、その後、第2の処理としてさらに有機物を導入して炭化させた後に多孔質材料を除去することで、鋳型に用いる多孔質材料の空孔の形状を反映したナノレベルの構造規則性と多孔質材料の形状を反映した空孔を持った、新規な多孔質炭素材料を製造できることを見出し、本発明を完成するに至った。
【0007】
【作用】
以下、本発明を具体的に説明する。
【0008】
本発明の炭素材料は、0.5nmから100nmの長周期規則構造を有すると共に、内部に空孔を持つ多孔質炭素材料である。
【0009】
具体的には、炭素鎖と炭素鎖が0.5nmから100nmの任意のある間隔で2次元的または3次元的に長周期にわたって規則的に繰り返した構造の炭素材料である。
【0010】
本発明の炭素材料は、構造内部に空孔を持つ多孔質な炭素材料であるが、内部の空孔において、直径が2nm以下の空孔、いわゆるミクロ孔の容量が0.5cm3・g-1以上であることが好ましい。
【0011】
また、直径が2〜50nmの空孔、いわゆるメソ孔の容量が1cm3・g-1以下であることが好ましく、ゼロであることがさらに好ましい。
【0012】
詳細については不明だが、前述したキャパシタやリチウムイオン電池用の電極材料や、水素やメタンなどに代表される付加価値の高いガスの貯蔵材料への適用に関しては、ミクロ孔が存在することが重要であると考えられる。これに対して、メソ孔は前記用途などへの適用に際してはあまり効果がなく、従って、高い機能を発現させるためには、相対的にミクロ孔が多く存在することが重要で、なるべくメソ孔は少ない方が良いと考えられる。
【0013】
本発明の多孔質炭素材料は、構造内部に空孔を有し、該空孔が網目状に連結した構造を有する多孔質材料を鋳型に用いて、第1の処理として多孔質材料の表面および空孔内部に有機物を導入し、これを加熱することによって該有機物を炭化し、その後、第2の処理としてさらに有機物を導入して炭化させた後に多孔質材料を除去することで容易に製造できる。
【0014】
詳細については不明だが、上記の連続する2つの処理によって、多孔質材料の内部に均一に炭素を生成させることが可能となり、長周期にわたって規則的に繰り返した構造の炭素材料が生成し易くなると考えられる。特に、長周期規則構造を発達させるためには、第2の処理において、気体状の有機物を導入して気相炭化させることが好ましい。
【0015】
本発明の多孔質炭素材料の製造において用いることができる有機物としては、何らかの方法によって液化または気化できることが必要である。液化の方法としては融点以上に熱することや溶媒に溶解させることが、気化の方法としては沸点以上に熱することや雰囲気を減圧にすることが挙げられる。有機物の具体例としては、フルフリルアルコール、アクリロニトリル、酢酸ビニルなどが例示される。
【0016】
有機物を多孔質材料の空孔内部へ導入する際には、多孔質材料を予め減圧にしておくことが好ましい。
【0017】
有機物を炭化させる際には、鋳型の多孔質材料は安定であって、有機物の炭化反応のみが起こる方法であれば如何なる方法を用いても良い。
【0018】
第2の処理で気体状の有機物を使用する際には、メタン、エタン、プロパン、プロピレン、ベンゼン、エチレンなどの常温で気体の化合物を用いることが好ましい。これらの気体状の有機物は、キャリアガスとともに多孔質材料に接触させるように流通させながら加熱することで、容易に気相で炭化することができる。なお、キャリアガスの種類、流速および流量および加熱温度は、使用する有機物や多孔質材料の種類によって適宜調節することが必要である。
【0019】
本発明の多孔質炭素材料の合成の際の鋳型に用いる多孔質材料としては、空孔内部に有機物が導入できること、該有機物を炭化させる際に元の構造を安定に保つこと、生成した多孔質炭素材料と分離できることが必要である。このため、耐熱性が優れ、酸やアルカリに溶解するものが好ましく、多孔質な酸化物が例示される。
【0020】
得られる多孔質炭素材料は、鋳型の空孔の形状と該空孔の連結様式を反映した構造と、鋳型自身の形状を反映した空孔を有する炭素材料が生成する。言い換えれば、鋳型の形態を転写した状態で炭素材料が合成される。このため、鋳型の多孔質材料としては、結晶が十分に発達した、粒子サイズのそろった、構造および組成が均一な材料であることが望ましい。
【0021】
以上のように、鋳型の多孔質材料の備えるべき材料物性と、得られる多孔質炭素材料物性を考慮すると、鋳型となる多孔質材料としては、ゼオライトが用いられる
【0022】
ゼオライトは、シリカ構造のケイ素(Si)の一部がアルミニウム(Al)で置換されたアルミノケイ酸塩であって、骨格自体が負電荷を持つことから構造内にカチオンが分布した構造を持つ。
【0023】
Si/Alモル比およびカチオンの種類や量、およびカチオンに水和した水分子の数によって多様な結晶構造、例えば空孔が2次元的に連結したものや3次元的に連結したもの、多様なサイズの空孔を持つ多孔質材料である。
【0024】
ゼオライトのなかでもFAU型ゼオライトが好ましく、その中でもY型ゼオライトがより好ましい。
【0025】
ゼオライトからなる多孔質材料の除去は、生成した多孔質炭素材料を分離できる方法であれば如何なる方法を用いても良いが、ゼオライトは酸で溶解することが可能であり、具体的には、塩酸やフッ化水素酸を用いることで容易に溶解することができる。
【0026】
【実施例】
以下に、本発明の具体例として実施例を示すが、本発明は実施例により制限されるものではない。
【0027】
実施例1
Na−Y型ゼオライト(SiO2/Al23=5.6)を用いて、ナノオーダーの長周期構造規則性を有する多孔質炭素材料を合成した。なお、Y型ゼオライトは3次元的に網目状に連結した空孔を持つ多孔質材料である。
【0028】
予め150℃で乾燥したNa−Y型ゼオライトの粉末をガラス容器に入れ、容器ごと減圧状態にした後、ゼオライトが浸る程度にフルフリルアルコールを加え、攪拌しながら含浸させた。
【0029】
余分なフルフリルアルコールを取り除いた後に150℃で熱処理を行い、空孔中に含浸させたフルフリルアルコールを重合させ、さらに700℃で熱処理することによって炭化させ、炭素−ゼオライト複合体を合成した。つぎに、この炭素−ゼオライト複合体を石英製反応管に入れて、キャリアガスにN2ガスを使用してプロピレン(N2中2%)を反応管に流し、800℃で4時間気相炭化を行い、炭素−ゼオライト複合体の空孔中にさらに炭素を堆積させた。
【0030】
生成した炭素−ゼオライト複合体をフッ化水素酸および塩酸で処理してゼオライトを溶解除去し、炭素のみ取出した。
【0031】
得られた炭素の構造を粉末X線回折装置で調べたところ、炭素に特有の002面からの回折がほとんど認められず、代わりに6°付近に鋭いピークが観察された。回折パターンを図1(a)に示した。
【0032】
合成に使用したゼオライトの構造を粉末X線回折装置で調べたところ、得られた炭素と同様に6°付近に鋭いピークが観察された。回折パターンを図1(b)に示した。
【0033】
6°付近の回折ピークは、Y型ゼオライトのスーパーケージの規則性に由来する1.4nmのピークであり、従って、合成した炭素材料は、ゼオライトの空孔の規則性を反映した、1.4nmの長周期の規則構造が3次元的に発達していることが分かった。
【0034】
次に、得られた炭素材料の空孔を調べた。結果を表1に示した。得られた化合物はBET比表面積1910m2・g-1、ミクロ孔の占める体積が1.1cm3・g-1でメソ孔のない多孔質炭素材料であることが分かった。
【0035】
比較例1
比較例1として、ゼオライトを使用しないこと以外は実施例と同様にして炭素の合成を行った。
【0036】
得られた炭素の構造を実施例と同様に粉末X線回折装置で調べたところ、回折ピークが認められず、非晶質な炭素であることが分かった。
【0037】
次に、得られた炭素材料の空孔を実施例と同様に調べた。結果を表1に示した。得られた化合物はBET比表面積0m2・g-1、ミクロ孔およびメソ孔とも0cm3・g-1で空孔を持たない炭素材料であることが分かった。
【0038】
【表1】

Figure 0003951567
【0039】
【発明の効果】
以上述べてきたとおり、本発明者らの検討によって、多孔質材料を鋳型に使用して、第1の処理として多孔質材料の表面および空孔内部に有機物を導入し、これを加熱することによって該有機物を炭化し、その後、第2の処理としてさらに有機物を導入して炭化させた後に多孔質材料を除去することで、鋳型に用いる多孔質材料の空孔の形状を反映したナノレベルの構造規則性と多孔質材料の形状を反映した空孔を持った、新規な多孔質炭素材料を製造できることを見出した。
【0040】
ナノレベルの構造規則性と多孔性を兼ね備えた炭素材料は、電気エネルギーを化学エネルギーに変換して貯蔵するデバイスであるキャパシタやリチウムイオン電池の電極材料への適用、水素やメタンなどに代表される付加価値の高いガスを貯蔵する材料への適用、さらには新規複合材料のマトリックス、電気伝導性材料および炭素膜などへの適用が期待され、このような炭素材料が合成できることを見出したことは、産業上有益な知見である。
【図面の簡単な説明】
【図1】実施例で使用しゼオライトと合成した炭素材料のX線回折パターンを示す図である。
【符号の説明】
(a)実施例1で合成した炭素の粉末X線回折パターンを示す。
(b)実施例1で使用したゼオライトの粉末X線回折パターンを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel porous carbon material, and more specifically, a carbon material having pores inside and having a structural regularity at a molecular level, and a method for synthesizing the same, more specifically 0.5 nm to 100 nm. The present invention relates to a porous carbon material having a long-period ordered structure and a method for producing the same.
[0002]
[Prior art]
Carbon is an attractive material with a variety of properties that do not seem to be made of a single element, such as high heat resistance, good transmission of electricity and heat, and resistance to chemicals.
[0003]
Recently, in addition to the applications that have been used so far, it can be applied to electrode materials for capacitors and lithium-ion batteries, which are devices that convert electrical energy into chemical energy for storage, and additions such as hydrogen and methane. Application to materials that store high-value gas has been proposed.
[0004]
[Problems to be solved by the invention]
Various carbon materials have been manufactured for a long time, but the carbon materials that have been proposed so far are skillfully carbon-based on existing materials such as pitch and general-purpose polymers that are heavy aromatic compounds obtained from petroleum and coal. It was prepared with the point of whether to make it closer to the target structure and characteristics.
[0005]
In order to prepare carbon materials with new functions, it is considered necessary to design and synthesize carbon materials at the molecular level, but it is difficult to synthesize such carbon materials with the conventional preparation methods. there were.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in view of the above situation, the present inventors have used a porous material made of zeolite as a mold, and introduced an organic substance on the surface of the porous material and inside the pores as a first treatment. The organic material is carbonized by heating, and then the porous material is removed as a second treatment after introducing and further carbonizing the organic material, thereby reflecting the pore shape of the porous material used for the mold The inventors have found that a novel porous carbon material having pores reflecting the nano-level structural regularity and the shape of the porous material can be produced, and the present invention has been completed.
[0007]
[Action]
The present invention will be specifically described below.
[0008]
The carbon material of the present invention is a porous carbon material having a long periodic regular structure of 0.5 nm to 100 nm and having pores therein.
[0009]
Specifically, it is a carbon material having a structure in which a carbon chain and a carbon chain are regularly repeated over a long period two-dimensionally or three-dimensionally at an arbitrary interval of 0.5 nm to 100 nm.
[0010]
The carbon material of the present invention is a porous carbon material having pores inside the structure. In the internal pores, the pores having a diameter of 2 nm or less, that is, the so-called micropore capacity is 0.5 cm 3 · g −. It is preferably 1 or more.
[0011]
Moreover, it is preferable that the capacity | capacitance of the hole with a diameter of 2-50 nm, and what is called a mesopore is 1 cm < 3 > * g <-1> or less, and it is still more preferable that it is zero.
[0012]
Although details are unknown, the presence of micropores is important for application to the electrode materials for capacitors and lithium ion batteries described above, and storage materials for high-value-added gases such as hydrogen and methane. It is believed that there is. On the other hand, mesopores are not very effective when applied to the above-mentioned uses. Therefore, in order to develop a high function, it is important that relatively many micropores exist. Less is considered better.
[0013]
The porous carbon material of the present invention has pores inside the structure, and a porous material having a structure in which the pores are connected in a mesh shape is used as a mold. It can be easily manufactured by introducing an organic substance into the pores and carbonizing the organic substance by heating, and then removing the porous material after introducing and carbonizing the organic substance as a second treatment. .
[0014]
Although the details are unknown, it is considered that the above two continuous treatments can generate carbon uniformly in the porous material, and it is easy to generate a carbon material having a structure that is regularly repeated over a long period. It is done. In particular, in order to develop a long-period ordered structure, it is preferable to introduce a gaseous organic substance and vapor-phase carbonize in the second treatment.
[0015]
The organic substance that can be used in the production of the porous carbon material of the present invention needs to be liquefied or vaporized by some method. Examples of the liquefaction method include heating to a temperature higher than the melting point and dissolution in a solvent, and examples of the vaporization method include heating to a temperature higher than the boiling point and reducing the atmosphere. Specific examples of the organic substance include furfuryl alcohol, acrylonitrile, vinyl acetate and the like.
[0016]
When the organic material is introduced into the pores of the porous material, it is preferable to reduce the pressure of the porous material in advance.
[0017]
When carbonizing the organic substance, any method may be used as long as the porous material of the template is stable and only the carbonization reaction of the organic substance occurs.
[0018]
When a gaseous organic substance is used in the second treatment, it is preferable to use a gaseous compound at room temperature such as methane, ethane, propane, propylene, benzene, and ethylene. These gaseous organic substances can be easily carbonized in the gas phase by heating them while being distributed so as to be in contact with the porous material together with the carrier gas. Note that the type, flow rate, flow rate, and heating temperature of the carrier gas need to be adjusted as appropriate depending on the type of organic substance or porous material used.
[0019]
As a porous material used as a template in the synthesis of the porous carbon material of the present invention, the organic material can be introduced into the pores, the original structure can be kept stable when carbonizing the organic material, and the generated porous material It must be separable from the carbon material. For this reason, what is excellent in heat resistance and melt | dissolves in an acid and an alkali is preferable, and a porous oxide is illustrated.
[0020]
The resulting porous carbon material produces a carbon material having a structure that reflects the shape of the pores of the mold and the connection mode of the pores, and a hole that reflects the shape of the mold itself. In other words, the carbon material is synthesized with the template form transferred. For this reason, it is desirable that the porous material of the template is a material having a sufficiently developed crystal, a uniform particle size, and a uniform structure and composition.
[0021]
As described above, in view of the material properties to be provided for the porous material of the template and the properties of the obtained porous carbon material, zeolite is used as the porous material to be the template.
[0022]
Zeolite is an aluminosilicate in which a part of silicon (Si) having a silica structure is replaced with aluminum (Al), and has a structure in which cations are distributed in the structure because the skeleton itself has a negative charge.
[0023]
Various crystal structures depending on the Si / Al molar ratio, the type and amount of the cation, and the number of water molecules hydrated to the cation, such as those in which vacancies are two-dimensionally connected, three-dimensionally connected, and various It is a porous material with pores of size.
[0024]
Among the zeolites, FAU type zeolite is preferable, and among these, Y type zeolite is more preferable.
[0025]
Any method can be used for removing the porous material made of zeolite as long as the produced porous carbon material can be separated. However, the zeolite can be dissolved with an acid, specifically, hydrochloric acid. It can be easily dissolved by using hydrofluoric acid.
[0026]
【Example】
Examples are shown below as specific examples of the present invention, but the present invention is not limited to the examples.
[0027]
Example 1
A porous carbon material having nano-order long-period structure regularity was synthesized using Na-Y type zeolite (SiO 2 / Al 2 O 3 = 5.6). Y-type zeolite is a porous material having pores connected in a three-dimensional network.
[0028]
Na-Y type zeolite powder dried in advance at 150 ° C. was put in a glass container, and the whole container was put under reduced pressure, and then furfuryl alcohol was added to such an extent that the zeolite was immersed, and impregnated with stirring.
[0029]
After removing excess furfuryl alcohol, heat treatment was performed at 150 ° C., and the furfuryl alcohol impregnated in the pores was polymerized and further heat treated at 700 ° C. to carbonize to synthesize a carbon-zeolite composite. Next, this carbon-zeolite composite is put into a quartz reaction tube, N 2 gas is used as a carrier gas, propylene (2% in N 2 ) is allowed to flow through the reaction tube, and gas phase carbonization is performed at 800 ° C. for 4 hours. And carbon was further deposited in the pores of the carbon-zeolite composite.
[0030]
The produced carbon-zeolite composite was treated with hydrofluoric acid and hydrochloric acid to dissolve and remove the zeolite, and only carbon was extracted.
[0031]
When the structure of the obtained carbon was examined with a powder X-ray diffractometer, almost no diffraction from the 002 plane peculiar to carbon was observed, and instead a sharp peak was observed at around 6 °. The diffraction pattern is shown in FIG.
[0032]
When the structure of the zeolite used for the synthesis was examined with a powder X-ray diffractometer, a sharp peak was observed in the vicinity of 6 ° like the obtained carbon. The diffraction pattern is shown in FIG.
[0033]
The diffraction peak around 6 ° is a 1.4 nm peak derived from the regularity of the super-cage of the Y-type zeolite, and thus the synthesized carbon material reflects the regularity of the pores of the zeolite at 1.4 nm. It has been found that the long-period regular structure has been developed three-dimensionally.
[0034]
Next, vacancies in the obtained carbon material were examined. The results are shown in Table 1. The obtained compound was found to be a porous carbon material having a BET specific surface area of 1910 m 2 · g −1 and a volume occupied by micropores of 1.1 cm 3 · g −1 and having no mesopores.
[0035]
Comparative Example 1
As Comparative Example 1, carbon was synthesized in the same manner as in Example except that no zeolite was used.
[0036]
When the structure of the obtained carbon was examined with a powder X-ray diffractometer in the same manner as in Example, no diffraction peak was observed, and it was found that the carbon was amorphous carbon.
[0037]
Next, the holes of the obtained carbon material were examined in the same manner as in the example. The results are shown in Table 1. The obtained compound was found to be a carbon material having no BET with a BET specific surface area of 0 m 2 · g −1 , both micropores and mesopores being 0 cm 3 · g −1 .
[0038]
[Table 1]
Figure 0003951567
[0039]
【The invention's effect】
As described above, according to the study by the present inventors, the porous material is used as a mold, the organic material is introduced into the surface of the porous material and inside the pores as the first treatment, and this is heated. The organic material is carbonized, and then, as a second treatment, the organic material is further introduced and carbonized, and then the porous material is removed, whereby the nano-level structure reflecting the shape of the pores of the porous material used for the mold It was found that a novel porous carbon material having pores reflecting the regularity and the shape of the porous material can be produced.
[0040]
Carbon materials that combine nano-level structural regularity and porosity are represented by applications such as capacitors and lithium-ion battery electrode materials that convert electrical energy into chemical energy for storage, and hydrogen and methane. The application to materials that store high value-added gas, as well as the application of new composite materials to matrices, electrically conductive materials, carbon films, etc. This is an industrially useful finding.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray diffraction pattern of a carbon material synthesized with zeolite used in Examples.
[Explanation of symbols]
(A) The powder X-ray-diffraction pattern of the carbon synthesize | combined in Example 1 is shown.
(B) The powder X-ray diffraction pattern of the zeolite used in Example 1 is shown.

Claims (9)

ゼオライトの空孔の形状と該空孔の連続様式であるゼオライトのスーパーケージの規則性を反映した0.5nmから100nmの範囲に任意のある間隔で二次元的又は三次元的な長周期規則構造を有し、内部に空孔を有する多孔質炭素材料。Two-dimensional or three-dimensional long-period ordered structure at an arbitrary interval in the range of 0.5 nm to 100 nm reflecting the shape of the pores of the zeolite and the regularity of the supercage of the zeolite which is the continuous mode of the pores A porous carbon material having pores inside. ゼオライトの空孔の形状と該空孔の連続様式であるゼオライトのスーパーケージの規則性を反映した0.5nmから100nmの範囲に任意のある間隔で二次元的又は三次元的な長周期規則構造を有することにより、当該ゼオライトの粉末X線回折ピークの少なくとも一と同様の回折ピークを有し、なおかつ内部に空孔を有する多孔質炭素材料。Two-dimensional or three-dimensional long-period ordered structure at an arbitrary interval in the range of 0.5 nm to 100 nm reflecting the shape of the pores of the zeolite and the regularity of the supercage of the zeolite which is the continuous mode of the pores A porous carbon material having a diffraction peak similar to at least one of the powder X-ray diffraction peaks of the zeolite and having pores therein. 6°付近にX線回折ピークを有することを特徴とする請求項1乃至請求項2記載の多孔質炭素材料3. The porous carbon material according to claim 1, which has an X-ray diffraction peak in the vicinity of 6 °. 内部の空孔において、直径2nm以下のミクロ孔の占める容積0.5cm・g−1以上である請求項1乃至請求項3記載の多孔質炭素材料。The porous carbon material according to any one of claims 1 to 3, wherein a volume occupied by micropores having a diameter of 2 nm or less in the internal pores is 0.5 cm 3 · g -1 or more. 内部の空孔において、直径が2〜50nmのメソ孔の占める容積が1cm・g−1以下である請求項1乃至請求項4記載の多孔質炭素材料。5. The porous carbon material according to claim 1, wherein a volume occupied by mesopores having a diameter of 2 to 50 nm in the internal pores is 1 cm 3 · g −1 or less. 第1の処理としてゼオライトからなる多孔質材料の表面および空孔内部に有機物を導入し、これを加熱することによって該有機物を炭化し、その後、第2の処理としてさらに有機物を導入して炭化させた後に多孔質材料を除去する請求項1乃至請求項5記載の多孔質炭素材料の製造方法。As a first treatment, an organic substance is introduced into the surface and pores of a porous material made of zeolite, and this is heated to carbonize the organic substance. Then, as a second treatment, the organic substance is further introduced and carbonized. 6. The method for producing a porous carbon material according to claim 1, wherein the porous material is removed after the removal. 第2の処理において、気体状の機物を導入して気相炭化させた後に多孔質材料を除去する請求項6記載の多孔質炭素材料の製造方法。In the second process, the manufacturing method of the porous carbon material according to claim 6, wherein the removal of the porous material after gas phase carbonized by introducing a gaseous organic matter. ゼオライトがFAU型ゼオライトである請求項6記載の多孔質炭素材料の製造方法。The method for producing a porous carbon material according to claim 6, wherein the zeolite is FAU type zeolite. FAU型ゼオライトがY型ゼオライトである請求項8記載の多孔質炭素材料の製造方法。The method for producing a porous carbon material according to claim 8, wherein the FAU type zeolite is Y type zeolite.
JP2000213398A 2000-07-10 2000-07-10 Porous carbon material and method for producing the same Expired - Fee Related JP3951567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213398A JP3951567B2 (en) 2000-07-10 2000-07-10 Porous carbon material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213398A JP3951567B2 (en) 2000-07-10 2000-07-10 Porous carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002029860A JP2002029860A (en) 2002-01-29
JP3951567B2 true JP3951567B2 (en) 2007-08-01

Family

ID=18709157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213398A Expired - Fee Related JP3951567B2 (en) 2000-07-10 2000-07-10 Porous carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3951567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107678A1 (en) 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel
JP2013199428A (en) * 2008-10-20 2013-10-03 Nissan Motor Co Ltd Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent material and method for occluding hydrogen using microporous carbon-based material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750024B2 (en) * 2002-09-30 2006-03-01 松下電器産業株式会社 Method for producing porous body
KR100474854B1 (en) * 2003-02-13 2005-03-10 삼성에스디아이 주식회사 Carbon molecular sieve and preparation method thereof
JP5145496B2 (en) * 2006-06-07 2013-02-20 住友金属鉱山株式会社 Method for producing carbon nanostructure
JP4956733B2 (en) * 2006-06-08 2012-06-20 昭和電工株式会社 Porous material, method for producing the same, and use thereof
JP5213102B2 (en) * 2007-12-18 2013-06-19 独立行政法人産業技術総合研究所 Method for producing porous carbon material
US8657923B2 (en) 2008-02-26 2014-02-25 Nissan Motor Co., Ltd. Microporous carbon material, manufacturing method thereof, and hydrogen storage method using microporous carbon material
DE102011016468B3 (en) * 2011-04-08 2012-02-23 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon composite laminate, process for its manufacture and use
JP5780589B2 (en) * 2011-07-05 2015-09-16 日産自動車株式会社 Carbon material, metal-supported carbon material using the same, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107678A1 (en) 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP2013199428A (en) * 2008-10-20 2013-10-03 Nissan Motor Co Ltd Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent material and method for occluding hydrogen using microporous carbon-based material
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel

Also Published As

Publication number Publication date
JP2002029860A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
Shcherban Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide
Ma et al. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y
Malgras et al. Fabrication of nanoporous carbon materials with hard-and soft-templating approaches: A review
Rodriguez-Mirasol et al. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template
Zhai et al. Carbon materials for chemical capacitive energy storage
Ryoo et al. Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties
Pacuła et al. Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates
JP2003206112A (en) Porous carbon material and method for manufacturing the same
Sobrinho et al. Ordered micro-mesoporous carbon from palm oil cooking waste via nanocasting in HZSM-5/SBA-15 composite: preparation and adsorption studies
CN102398902B (en) Method for preparing carbon nano material by using natural endellite as formwork
JP6082386B2 (en) Chiral or achiral mesoporous carbon
JP3951567B2 (en) Porous carbon material and method for producing the same
Zarbin et al. Preparation, characterization and pyrolysis of poly (furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template
JP5710693B2 (en) Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent, and hydrogen storage method using microporous carbon-based material
JP2003034516A (en) Carbon molecular material and method for manufacturing it
Ryoo et al. Nanostructured carbon materials synthesized from mesoporous silica crystals by replication
CN1747218A (en) The lithium ion battery of incorporating carbon nanostructure materials
JP2006335596A (en) Simple synthesizing method for microporous carbon having regularity and large surface area
WO2009107678A1 (en) Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP5861492B2 (en) Carbon filling in zeolite nanochannels
CN106467300A (en) Three-dimensional grapheme material of micropore-mesopore-macropore multilevel hierarchy and its preparation method and application
JP6482054B2 (en) Metal-supported carbon material and method for producing the same
Lee et al. Ultramicroporous carbon synthesis using lithium-ion effect in ZSM-5 zeolite template
Lv et al. One-step site-specific activation approach for preparation of hierarchical porous carbon materials with high electrochemical performance
JP5388051B2 (en) Mesoporous carbon (MC-MCM-48) and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees