JP5213102B2 - Method for producing porous carbon material - Google Patents

Method for producing porous carbon material Download PDF

Info

Publication number
JP5213102B2
JP5213102B2 JP2007325367A JP2007325367A JP5213102B2 JP 5213102 B2 JP5213102 B2 JP 5213102B2 JP 2007325367 A JP2007325367 A JP 2007325367A JP 2007325367 A JP2007325367 A JP 2007325367A JP 5213102 B2 JP5213102 B2 JP 5213102B2
Authority
JP
Japan
Prior art keywords
compound
heating
carbon material
organic compound
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007325367A
Other languages
Japanese (ja)
Other versions
JP2009143786A (en
Inventor
強 徐
波 劉
洋 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007325367A priority Critical patent/JP5213102B2/en
Publication of JP2009143786A publication Critical patent/JP2009143786A/en
Application granted granted Critical
Publication of JP5213102B2 publication Critical patent/JP5213102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、多孔質炭素材料の製造方法に関する。   The present invention relates to a method for producing a porous carbon material.

炭素は、耐熱性、導電性、伝熱性などの各種特性が良好であって、耐薬品性にも優れており、多様な性質を持つ魅力的な材料である。近年、炭素材料は、従来使われてきた用途以外に、電気エネルギーを化学エネルギーに変換して貯蔵するデバイスであるキャパシタやリチウムイオン電池の電極材料への適用や、水素やメタンなどに代表される付加価値の高いガスを貯蔵する材料への適用などが提案されている。   Carbon is an attractive material with various properties such as excellent heat resistance, electrical conductivity, and heat transfer properties, and excellent chemical resistance. In recent years, carbon materials are represented by applications such as hydrogen and methane, as well as electrode materials for capacitors and lithium ion batteries, which are devices that convert electrical energy into chemical energy for storage, in addition to conventional applications. Application to a material that stores gas with high added value has been proposed.

炭素材料の製造方法としては、従来から、ピッチや汎用高分子類などの材料を炭素化して目的の構造や特性に近づける方法について各種の検討がなされている。   As a method for producing a carbon material, various studies have conventionally been made on methods for carbonizing materials such as pitch and general-purpose polymers to bring them closer to a target structure and characteristics.

また、炭素材料の比表面積を拡げる手法としては、従来は、空気中高温での酸素や水蒸気による処理や、塩化亜鉛や水酸化カリウムなどによる処理によって賦活を行ってきた。しかしこの方法では、(1)目的とする孔径以外の孔も共存するものしか得られない、(2)細孔表面に含酸素官能基等が置換されたものしか得られない、(3)賦活処理中に炭素が消失し収量が低い、などの欠点があった。   Further, as a method for expanding the specific surface area of the carbon material, conventionally, activation has been performed by treatment with oxygen or water vapor at a high temperature in the air, or treatment with zinc chloride or potassium hydroxide. However, in this method, (1) only those having pores other than the intended pore diameter can be obtained, (2) only those having oxygen-containing functional groups substituted on the surface of the pores can be obtained, (3) activation There were drawbacks such as loss of carbon during processing and low yield.

新しい機能を備えた炭素材料を調製するためには、分子レベルで炭素材料を設計、合成することが必要と考えられるが、これまでの調製方法ではこの様な炭素材料を合成することは困難であった。   In order to prepare carbon materials with new functions, it is considered necessary to design and synthesize carbon materials at the molecular level. However, it is difficult to synthesize such carbon materials with conventional preparation methods. there were.

最近、ゼオライト、メソポーラスシリカなどの多孔質材料を鋳型として用いて多孔質炭素材料を合成する方法が報告されている(下記特許文献1及び2参照)。しかしながら、これらの多孔質材料を鋳型とする場合には、炭素材料形成後に、鋳型として用いた多孔質材料をフッ化水素酸などの強力な試薬によって除去する必要があり、煩雑な工程が必要となることに加えて、炭素材料自体にダメージを与える可能性がある。
特開2002-29860号公報 特開2006-335596号公報
Recently, a method of synthesizing a porous carbon material using a porous material such as zeolite or mesoporous silica as a template has been reported (see Patent Documents 1 and 2 below). However, when these porous materials are used as templates, it is necessary to remove the porous material used as a template with a strong reagent such as hydrofluoric acid after the carbon material is formed, which requires a complicated process. In addition, the carbon material itself can be damaged.
JP 2002-29860 A JP 2006-335596 A

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、従来の方法と比較して簡単な手法によって比表面積が特に高い高機能の多孔質炭素材料を得ることが可能な新規な方法を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main object is to obtain a highly functional porous carbon material having a particularly high specific surface area by a simple method compared to the conventional method. It is to provide a novel method that can do this.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、多孔質炭素材料を形成するための鋳型として、内部に網目状に連結した空孔を有する多孔質構造の金属配位高分子化合物を用い、該金属配位高分子化合物の表面および空孔内部に、有機化合物を導入し、加熱して該有機物を重合・炭化させる方法によれば、空孔を持った高比表面積の多孔質炭素材料を容易に製造できることを見出した。しかも、該有機化合物を重合・炭化させる際に、多孔質金属配位高分子を分解させることができ、鋳型である多孔質金属高分子を除去する工程を省略することが可能となり、極めて簡単な方法によって優れた性能を有する多孔質炭素材料を製造できることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, as a template for forming the porous carbon material, a metal coordination polymer compound having a porous structure having pores connected in a network is used, and the surface of the metal coordination polymer compound and the surface of the metal coordination polymer compound are formed. It has been found that a porous carbon material having pores and a high specific surface area can be easily produced by introducing an organic compound into the pores and heating and polymerizing and carbonizing the organic matter. In addition, when the organic compound is polymerized and carbonized, the porous metal coordination polymer can be decomposed, and the step of removing the porous metal polymer as a template can be omitted, which is extremely simple. It has been found that a porous carbon material having excellent performance can be produced by the method, and the present invention has been completed here.

即ち、本発明は、下記の多孔質炭素材料の製造方法を提供するものである。
1. 金属原子、金属イオン又は金属クラスターが架橋性配位子によって連結されてなる多孔質構造の金属配位高分子化合物を鋳型として用い、該金属配位高分子化合物の表面および空孔内部に、加熱により重合する有機化合物を導入した後、加熱して該有機化合物を重合及び炭化させることを特徴とする多孔質炭素材料の製造方法。
2. 金属配位高分子化合物における架橋性配位子が、2つ以上の配位サイトを持ち、金属原子又は金属イオンに配位して架橋構造を形成し得る化合物であり、金属配位高分子化合物が、炭素材料の前駆体となる有機化合物を導入するために必要な大きさ以上の孔径の細孔を有する化合物である上記項1に記載の多孔質炭素材料の製造方法。
3. 金属配位高分子化合物が、一般式:Zn4O(BDC)3(BDC=1,4-ベンゼンジカルボキシ
レート)で示され、立方晶の結晶構造を有する多孔質構造の金属配位高分子化合物、又は一般式:Co3(NDC)3(NDC=2,6-ナフタレンジカルボキシレート)で示され、単斜晶の結晶構造を有する多孔質構造の金属配位高分子化合物である上記項2に記載の方法。
4. 加熱により重合する有機化合物が、液化又は気化可能な化合物である上記項1〜3のいずれかに記載の多孔質炭素材料の製造方法。
5. 加熱により重合する有機化合物が、フルフリルアルコール、アクリロニトリル、酢酸ビニル、スチレン、ブタジエン、イソプレン及びスクロースからなる群から選ばれた少なくとも一種の化合物である上記項4に記載の方法。
6. 上記項1〜5のいずれかの方法によって得られる多孔質炭素材料。
That is, the present invention provides the following method for producing a porous carbon material.
1. A metal coordination polymer compound having a porous structure in which metal atoms, metal ions or metal clusters are linked by a crosslinkable ligand is used as a template, and the surface of the metal coordination polymer compound and the inside of the pores are heated. A method for producing a porous carbon material comprising introducing an organic compound to be polymerized by heating and then polymerizing and carbonizing the organic compound by heating.
2. The metal coordination polymer compound is a compound in which the crosslinkable ligand in the metal coordination polymer compound has two or more coordination sites and can form a crosslinked structure by coordination with a metal atom or a metal ion. Item 2. The method for producing a porous carbon material according to Item 1, wherein is a compound having pores having a pore size larger than a size necessary for introducing an organic compound to be a precursor of the carbon material.
3. The metal coordination polymer compound is represented by the general formula: Zn 4 O (BDC) 3 (BDC = 1,4-benzenedicarboxylate) and has a cubic crystal structure and a porous metal coordination polymer. The above-mentioned item which is a compound or a porous metal coordination polymer compound represented by the general formula: Co 3 (NDC) 3 (NDC = 2,6-naphthalenedicarboxylate) and having a monoclinic crystal structure 2. The method according to 2.
4). Item 4. The method for producing a porous carbon material according to any one of Items 1 to 3, wherein the organic compound that is polymerized by heating is a compound that can be liquefied or vaporized.
5. Item 5. The method according to Item 4, wherein the organic compound polymerized by heating is at least one compound selected from the group consisting of furfuryl alcohol, acrylonitrile, vinyl acetate, styrene, butadiene, isoprene and sucrose.
6). A porous carbon material obtained by the method according to any one of Items 1 to 5.

本発明の多孔質炭素材料の製造方法は、多孔質体からなる鋳型の表面及び空孔内部に、炭素材料の前駆体となる有機化合物を導入し、これを加熱することによって該有機化合物を重合・炭化し、ナノレベルの構造規則性と空孔を持った、多孔質炭素材料を製造する方法である。以下、本発明の多孔質炭素材料の製造方法について、具体的に説明する。   The method for producing a porous carbon material of the present invention introduces an organic compound that becomes a precursor of a carbon material into the surface of a mold made of a porous material and inside the pores, and polymerizes the organic compound by heating the compound. This is a method for producing a porous carbon material that is carbonized and has nano-level structural regularity and pores. Hereafter, the manufacturing method of the porous carbon material of this invention is demonstrated concretely.

多孔質金属配位高分子化合物
本発明では、鋳型として、多孔質金属配位高分子化合物、即ち、金属原子、金属イオン又は金属クラスターが架橋性のある配位子によって連結されてなる多孔質構造の金属配位高分子化合物を用いることが必要である。この様な多孔質構造の金属配位高分子化合物は、通常、一定の大きさの細孔が規則的に配列された構造を有する材料であり、目的とする炭素材料の前駆体となる有機化合物を空孔内に導入することができ、空孔内において、該有機化合物を炭化・重合させることができる。しかも、有機化合物を重合・炭化させるための加熱処理の際に、金属配位高分子化合物の骨格となる配位子が分解し、配位子の一部は加熱・炭化に参加する可能性もある。更に、金属配位高分子化合物の金属の種類によるが、一部の金属は炭化過程において気化するので、炭素材料形成後に、鋳型である多孔質金属配位高分子化合物及びその残存物を除去する必要がない場合もある。炭化過程において気化しない金属について、酸によって容易に溶解・除去することができる。また、用途によっては、炭化後に残存する金属は、そのまま触媒などとして用いることができる。
Porous metal coordination polymer compound In the present invention, as a template, a porous metal coordination polymer compound, that is, a porous structure in which metal atoms, metal ions or metal clusters are linked by a crosslinkable ligand It is necessary to use the metal coordination polymer compound. Such a metal coordination polymer compound having a porous structure is usually a material having a structure in which pores of a certain size are regularly arranged, and is an organic compound that is a precursor of a target carbon material Can be introduced into the pores, and the organic compound can be carbonized and polymerized in the pores. Moreover, during the heat treatment for polymerizing and carbonizing the organic compound, the ligand that becomes the skeleton of the metal coordination polymer compound is decomposed, and a part of the ligand may participate in the heating and carbonization. is there. Furthermore, depending on the type of metal of the metal coordination polymer compound, some metals are vaporized during the carbonization process, so the porous metal coordination polymer compound as a template and its residue are removed after the carbon material is formed. Sometimes it is not necessary. A metal that does not evaporate in the carbonization process can be easily dissolved and removed by an acid. Depending on the application, the metal remaining after carbonization can be used as it is as a catalyst.

したがって、本発明の製造方法によれば、極めて簡素化された手法で、高機能の多孔質炭素材料を得ることが可能である。   Therefore, according to the production method of the present invention, a highly functional porous carbon material can be obtained by a very simplified method.

金属配位高分子化合物を構成する配位子は特に限定されないが、通常2つ以上の配位サイトを持ち、金属原子又は金属イオンに配位して架橋構造を形成し得る化合物であればよい。その具体例としては、ベンゼンジカルボキシレート、ベンゼントリカルボキシレート、ナフタレンジカルボキシレート、ビフェニルジカルボキシレート、イミダゾールジカルボキシレート、トリエチレンジアミンなどを挙げることができる。   The ligand constituting the metal coordination polymer compound is not particularly limited as long as it is a compound that usually has two or more coordination sites and can coordinate to a metal atom or metal ion to form a crosslinked structure. . Specific examples thereof include benzene dicarboxylate, benzene tricarboxylate, naphthalene dicarboxylate, biphenyl dicarboxylate, imidazole dicarboxylate, and triethylenediamine.

金属配位高分子化合物を構成する金属についても特に限定されないが、具体例としては
、ニッケル、タングステン、パラジウム、クロム、ロジウム、モリブデン、亜鉛、ジルコニウム、マンガン、鉄、ルテニウム、オスミウム、銀、カドミウム、レニウム、イリジウム、コバルト、金などを挙げることができる。
The metal constituting the metal coordination polymer compound is not particularly limited, but specific examples include nickel, tungsten, palladium, chromium, rhodium, molybdenum, zinc, zirconium, manganese, iron, ruthenium, osmium, silver, cadmium, Examples include rhenium, iridium, cobalt, and gold.

本発明で用いる金属配位高分子化合物は、上記した配位子と金属から構成されるものであって、炭素材料の前駆体となる有機化合物を導入するために必要な大きさ以上の孔径の細孔を有するものであればよい。通常、細孔径は0.4nm程度以上であることが好ましい。   The metal coordination polymer compound used in the present invention is composed of the above-described ligand and metal, and has a pore size larger than that necessary for introducing an organic compound that is a precursor of a carbon material. Any material having pores may be used. Usually, the pore diameter is preferably about 0.4 nm or more.

金属配位高分子化合物の具体例としては、一般式:Zn4O(BDC))3(BDC=1,4-ベンゼンジカルボキシレート)で示され、立方晶の結晶構造を有する多孔質構造の金属配位高分子化合物、一般式:Co3(NDC)3(NDC=2,6-ナフタレンジカルボキシレート)で示され、単斜晶の結晶構造を有する金属配位高分子化合物などを挙げることができる。 As a specific example of the metal coordination polymer compound, a porous structure having a cubic crystal structure represented by a general formula: Zn 4 O (BDC)) 3 (BDC = 1,4-benzenedicarboxylate) Metal coordination polymer compound, represented by the general formula: Co 3 (NDC) 3 (NDC = 2,6-naphthalenedicarboxylate) and having a monoclinic crystal structure Can do.

有機化合物
本発明の製造方法では、金属配位高分子化合物の細孔内に導入する有機化合物として、加熱により重合することができる有機化合物を用いる。この様な有機化合物を用いることによって、金属配位高分子化合物の空孔内において空孔の形状に従って重合物が形成され、引き続き炭化されることによって、空孔を持った高比表面積の多孔質炭素材料を得ることができる。
Organic Compound In the production method of the present invention, an organic compound that can be polymerized by heating is used as the organic compound introduced into the pores of the metal coordination polymer compound. By using such an organic compound, a polymer is formed in the pores of the metal coordination polymer compound according to the shape of the pores, and subsequently carbonized, so that the porous material has pores and a high specific surface area. A carbon material can be obtained.

また、該有機化合物は、金属配位高分子化合物の空孔内に容易に導入できるように、何らかの方法によって液化または気化できることが必要である。液化の方法としては、例えば、融点以上に熱する方法や溶媒に溶解させる方法を採用でき、気化の方法としては、沸点以上に加熱する方法や蒸気雰囲気を利用する方法などを採用できる。   In addition, the organic compound needs to be liquefied or vaporized by some method so that it can be easily introduced into the pores of the metal coordination polymer compound. As a liquefaction method, for example, a method of heating above the melting point or a method of dissolving in a solvent can be adopted, and as a vaporization method, a method of heating above the boiling point or a method using a steam atmosphere can be adopted.

以上の条件を満足する有機化合物の具体例としては、フルフリルアルコール、アクリロニトリル、酢酸ビニル、スチレン、ブタジエン、イソプレン、スクロースなどを挙げることができる。   Specific examples of the organic compound that satisfies the above conditions include furfuryl alcohol, acrylonitrile, vinyl acetate, styrene, butadiene, isoprene, sucrose, and the like.

多孔質炭素材料の製造方法
本発明では、まず、鋳型として用いる多孔質構造の金属配位高分子化合物の表面および空孔内部に有機化合物を導入する。
Method for Producing Porous Carbon Material In the present invention, first, an organic compound is introduced into the surface of the metal coordination polymer compound having a porous structure used as a template and inside the pores.

有機化合物を導入する方法については、特に限定はなく、例えば、液状の有機化合物を用いる場合には、有機化合物中に金属配位高分子化合物を浸漬して、該有機化合物を空孔内に十分に浸入させればよい。また、気体状の有機化合物を用いる場合には、該有機化合物の蒸気雰囲気中に金属配位有機化合物を置くことによって、該有機化合物を空孔内に浸入させることが可能である。   The method for introducing the organic compound is not particularly limited. For example, when a liquid organic compound is used, the metal coordination polymer compound is immersed in the organic compound so that the organic compound is sufficiently contained in the pores. I just want to enter. When a gaseous organic compound is used, the organic compound can be infiltrated into the pores by placing the metal coordination organic compound in the vapor atmosphere of the organic compound.

尚、有機化合物を金属配位高分子化合物の空孔内部へ導入する際には、該金属配位高分子化合物を予め減圧にしておくことが好ましい。   When introducing the organic compound into the pores of the metal coordination polymer compound, it is preferable to reduce the pressure of the metal coordination polymer compound in advance.

次いで、有機化合物を表面及び空孔内部に導入した状態で該金属配位高分子化合物を加熱して、該有機化合物を重合及び炭化させる。   Next, the metal coordination polymer compound is heated in a state where the organic compound is introduced into the surface and the inside of the pores to polymerize and carbonize the organic compound.

加熱方法としては、まず、導入した有機化合物の種類に応じて、重合反応が進行する温度で十分に加熱した後、炭化が進行する温度で加熱すればよい。   As a heating method, first, according to the kind of the introduced organic compound, after sufficiently heating at a temperature at which the polymerization reaction proceeds, heating may be performed at a temperature at which carbonization proceeds.

例えば、有機化合物として、フルフリルアルコールを用いる場合には、重合反応を進行
させるためには、60〜200℃程度の温度で 1〜48 時間程度加熱すればよい。加熱時は、フルフリルアルコール雰囲気またはアルゴンや窒素などの不活性雰囲気が望ましい。スクロースを用いる場合には、重合反応を進行させるためには、60〜200℃程度の温度で1〜48時間程度加熱すればよい。加熱時は、アルゴンや窒素などの不活性雰囲気が望ましい。
For example, when furfuryl alcohol is used as the organic compound, heating may be performed at a temperature of about 60 to 200 ° C. for about 1 to 48 hours in order to advance the polymerization reaction. When heating, a furfuryl alcohol atmosphere or an inert atmosphere such as argon or nitrogen is desirable. When sucrose is used, in order to advance the polymerization reaction, it may be heated at a temperature of about 60 to 200 ° C. for about 1 to 48 hours. An inert atmosphere such as argon or nitrogen is desirable during heating.

炭化反応を進行させるためには、例えば、200〜1200℃程度、好ましくは500〜1000℃程度の温度で1〜48時間程度加熱すればよい。加熱時は、アルゴンや窒素などの不活性雰囲気が望ましい。   In order to advance the carbonization reaction, for example, it may be heated at a temperature of about 200 to 1200 ° C., preferably about 500 to 1000 ° C. for about 1 to 48 hours. An inert atmosphere such as argon or nitrogen is desirable during heating.

以上の方法で加熱することによって、金属配位高分子化合物の空孔内に導入した有機化合物が炭化して、多孔質炭素材料が得られる。また、鋳型として用いた金属配位高分子化合物については、加熱・炭化過程において金属配位高分子化合物の骨格が分解し、配位子の一部は加熱・炭化に参加する可能性もある。金属配位高分子化合物の金属成分については、沸点が低い金属については炭化過程において気化するので、炭素材料形成後に、鋳型である多孔質金属配位高分子化合物及びその残存物を除去する必要がない。また、金属成分が残存する場合には、酸によって容易に溶解・除去することができる。また、用途によっては、炭化後に残存する金属は、そのまま触媒などとして用いることができる。   By heating by the above method, the organic compound introduced into the pores of the metal coordination polymer compound is carbonized to obtain a porous carbon material. In addition, regarding the metal coordination polymer compound used as a template, the skeleton of the metal coordination polymer compound is decomposed during the heating / carbonization process, and a part of the ligand may participate in the heating / carbonization. As for the metal component of the metal coordination polymer compound, since the metal having a low boiling point is vaporized in the carbonization process, it is necessary to remove the porous metal coordination polymer compound as a template and its residue after forming the carbon material. Absent. Moreover, when a metal component remains, it can be easily dissolved and removed by an acid. Depending on the application, the metal remaining after carbonization can be used as it is as a catalyst.

本発明の方法で得られる炭素材料は、内部に空孔を持つ多孔質構造の炭素材料となる。   The carbon material obtained by the method of the present invention becomes a porous carbon material having pores inside.

本発明の多孔質炭素材料の製造方法によれば、空孔を持った高比表面積の高機能の多孔質炭素材料を得ることができる。特に、本発明の方法では、有機化合物を重合・炭化する際に、金属配位高分子化合物が分解されるので、該高分子化合物を除去する工程を省略することができ、非常に簡略化された工程によって高機能の多孔質炭素材料を得ることが可能である。   According to the method for producing a porous carbon material of the present invention, a highly functional porous carbon material having pores and a high specific surface area can be obtained. In particular, in the method of the present invention, when the organic compound is polymerized and carbonized, the metal coordination polymer compound is decomposed, so that the step of removing the polymer compound can be omitted, which is very simplified. It is possible to obtain a highly functional porous carbon material by this process.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
一般式:Zn4O(BDC)3(BDC=1,4-ベンゼンジカルボキシレート)で示される多孔質金属
配位高分子化合物(以下「MOF-5」という)を鋳型として用いた。該化合物は、結晶構造
としては立方晶、空間群Fm-3m、ユニットセルパラメーターa = 25.669 Å, V= 16913Å, Z = 8であり、3次元チャンネル(孔径 18 Å)を有する多孔質構造の金属配位高分子化合物である (「 Hailian Li, Mohamed Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276.」、「Gonzalez, J.; Devi, R. N.; Tunstall, D. P.; Cox, P. A.; Wright, P. A. Micropor. Mesopor. Mat. 2005, 84, 97.」等参照)。
Example 1
A porous metal coordination polymer compound (hereinafter referred to as “MOF-5”) represented by the general formula: Zn 4 O (BDC) 3 (BDC = 1,4-benzenedicarboxylate) was used as a template. The compound has cubic structure, space group Fm-3m, unit cell parameters a = 25.669 Å, V = 16913 3 3 , Z = 8 and has a porous structure having a three-dimensional channel (pore size 18 Å). It is a metal coordination polymer compound ("Hailian Li, Mohamed Eddaoudi, M. O'Keeffe, OM Yaghi, Nature, 1999, 402, 276.", "Gonzalez, J .; Devi, RN; Tunstall, DP; Cox , PA; Wright, PA Micropor. Mesopor. Mat. 2005, 84, 97. ").

まず、200℃で2時間真空脱気したMOF-5 を、フルフリルアルコール(FA)中に浸し、室温で30分間真空排気した後、フルフリルアルコール(FA)に浸したまま12時間保持した。その後、表面に付着したフルフリルアルコールをエタノールで洗い流した後、試料を80℃で24時間加熱し、更に、150 ℃ で6時間加熱して重合反応を進行させた。その後、アルゴン雰囲気中で、1000 ℃で8時間焼成して炭化させた。   First, MOF-5 which was vacuum degassed at 200 ° C. for 2 hours was immersed in furfuryl alcohol (FA), evacuated at room temperature for 30 minutes, and then held for 12 hours while being immersed in furfuryl alcohol (FA). Thereafter, the furfuryl alcohol adhering to the surface was washed away with ethanol, and then the sample was heated at 80 ° C. for 24 hours, and further heated at 150 ° C. for 6 hours to advance the polymerization reaction. Thereafter, it was calcined by baking at 1000 ° C. for 8 hours in an argon atmosphere.

得られた炭素材料について、表面積測定の結果、BET比表面積は2524 m2/gであり、
多孔質構造であることが確認できた。また、元素分析の結果、Znは残存しなかった。
About the obtained carbon material, as a result of the surface area measurement, the BET specific surface area is 2524 m 2 / g,
It was confirmed that the structure was porous. As a result of elemental analysis, Zn did not remain.

実施例2
実施例1で用いたMOF-5を鋳型として用い、200℃で2時間真空脱気した後、フルフリル
アルコール(FA)の蒸気雰囲気下で150℃で48時間加熱して、重合反応を進行させた。
その後、1000 ℃で8時間焼成して炭化させた。得られた炭素材料について表面積測定の結果、BET比表面積は2872 m2/gであり、多孔質構造であることが確認できた。また、元
素分析の結果、Znは残存しなかった。
Example 2
The MOF-5 used in Example 1 was used as a template, vacuum degassed at 200 ° C. for 2 hours, and then heated at 150 ° C. for 48 hours in a vapor atmosphere of furfuryl alcohol (FA) to advance the polymerization reaction. It was.
Thereafter, it was calcined by baking at 1000 ° C. for 8 hours. As a result of measuring the surface area of the obtained carbon material, the BET specific surface area was 2872 m 2 / g, and it was confirmed to be a porous structure. As a result of elemental analysis, Zn did not remain.

上記方法で得られた多孔質炭素材料を用いて、77 Kで水素の吸蔵量を測定した結果、1
気圧での水素吸蔵量は323 cm3/gであった。
Using the porous carbon material obtained by the above method, the hydrogen storage amount was measured at 77 K.
The amount of hydrogen stored at atmospheric pressure was 323 cm 3 / g.

また、該多孔質炭素材料を電気二重層キャパシタの電極材料として、1 Mの硫酸水溶液
を電解質として用いて、キャパシタンスを測定した結果、電流密度が250 mA/gでは、 キ
ャパシタンスは258 F/gであった。
The capacitance was measured using the porous carbon material as the electrode material of the electric double layer capacitor and the 1 M sulfuric acid aqueous solution as the electrolyte. As a result, when the current density was 250 mA / g, the capacitance was 258 F / g. there were.

実施例3
実施例1で用いたMOF-5を鋳型として用い、200℃で2時間真空脱気した後、フルフリル
アルコール(FA)中に浸し、室温で30分間真空排気した後、フルフリルアルコール(FA)に浸したまま12時間保持した。
Example 3
MOF-5 used in Example 1 was used as a mold, vacuum deaerated at 200 ° C. for 2 hours, immersed in furfuryl alcohol (FA), evacuated at room temperature for 30 minutes, and then furfuryl alcohol (FA). And kept for 12 hours.

表面に付着したフルフリルアルコールをエタノールで洗い流した後、試料を80℃で24時間加熱し、さらに150 ℃で6時間加熱して重合反応を進行させた。その後、アルゴン雰囲
気中で、530 ℃で8時間焼成して炭化させた。次いで、形成された炭素材料を1 Mの塩酸溶液で洗浄した。
After the furfuryl alcohol adhering to the surface was washed away with ethanol, the sample was heated at 80 ° C. for 24 hours, and further heated at 150 ° C. for 6 hours to advance the polymerization reaction. Thereafter, it was calcined by baking at 530 ° C. for 8 hours in an argon atmosphere. The formed carbon material was then washed with 1 M hydrochloric acid solution.

上記方法で得られた炭素材料について表面積測定の結果、BET比表面積は3084 m2/g
であり、多孔質構造であることが確認できた。
As a result of measuring the surface area of the carbon material obtained by the above method, the BET specific surface area was 3084 m 2 / g.
It was confirmed that the structure was porous.

実施例4
実施例1で用いたMOF-5を鋳型として用い、200℃で2時間真空脱気した後、スクロース水
溶液(スクロース 10 g, H2O 48 ml, 96% H2SO4 8 ml)に浸し、室温で30分間真空排気した後、水で洗浄した。その後、得られた試料を100 ℃で1時間加熱し、さらに160℃で2時間
加熱して重合反応を進行させた。上記したスクロース水溶液への浸漬、洗浄、加熱過程をさらに一回繰り返したのち、アルゴン雰囲気中で、試料を900oCで8時間焼成し、炭化させた。得られた炭素材料について表面積測定の結果、BET比表面積は856 m2/gであり、多孔質構造であることが確認できた。
Example 4
MOF-5 used in Example 1 was used as a template, vacuum degassed at 200 ° C. for 2 hours, and then immersed in an aqueous sucrose solution (sucrose 10 g, H 2 O 48 ml, 96% H 2 SO 4 8 ml), The mixture was evacuated at room temperature for 30 minutes and then washed with water. Thereafter, the obtained sample was heated at 100 ° C. for 1 hour, and further heated at 160 ° C. for 2 hours to advance the polymerization reaction. The above immersion, washing, and heating processes in the aqueous sucrose solution were repeated once, and then the sample was baked at 900 ° C. for 8 hours in an argon atmosphere to be carbonized. As a result of measuring the surface area of the obtained carbon material, the BET specific surface area was 856 m 2 / g, and it was confirmed to be a porous structure.

実施例5
一般式:Co3(NDC)3(NDC=2,6-ナフタレンジカルボキシレート)で示される多孔質金属配位高分子を鋳型として用いた。該化合物は、結晶構造としては単斜晶、空間群C2/c、ユニットセルパラメーターa = 13.331, b =18.051, c = 21.149Å, V=5016.7Å3, Z = 4で
あり、a軸方向に7x7 Å, b軸方向に6x8 Åの1次元チャンネルを有する多孔質構造の金属配位高分子化合物である(B. Liu, R.-Q. Zou, R.-Q. Zhong, S. Han, H. Shioyama, T. Yamada, G. Maruta, S. Takada, Q. Xu, Micropor. MesoPor. Mater. (2007) dio:10.1016/j.micromeso.2007.08.24.参照)。
Example 5
A porous metal coordination polymer represented by the general formula: Co 3 (NDC) 3 (NDC = 2,6-naphthalenedicarboxylate) was used as a template. The compound as a crystalline structure monoclinic, space group C2 / c, unit cell parameters a = 13.331, b = 18.051, c = 21.149Å, V = 5016.7Å 3, a Z = 4, the a-axis direction It is a metal coordination polymer compound with a porous structure having a one-dimensional channel of 7x7 mm and 6x8 mm in the b-axis direction (B. Liu, R.-Q. Zou, R.-Q. Zhong, S. Han, H. Shioyama, T. Yamada, G. Maruta, S. Takada, Q. Xu, Micropor. MesoPor. Mater. (2007) dio: 10.1016 / j.micromeso.2007.08.24.).

まず、該金属配位高分子化合物を200℃で2時間真空脱気した後、フルフリルアルコール(FA)中に25℃で12時間浸した。この試料をガラス管に封管し、80 ℃で24時間加熱し
、さらに 150℃で6時間加熱して重合反応を進行させた。その後、アルゴン雰囲気中で、500 ℃で6時間焼成して炭化させた。次いで、形成された炭素材料を1 Mの塩酸溶液で洗浄した。
First, the metal coordination polymer compound was vacuum degassed at 200 ° C. for 2 hours, and then immersed in furfuryl alcohol (FA) at 25 ° C. for 12 hours. This sample was sealed in a glass tube, heated at 80 ° C. for 24 hours, and further heated at 150 ° C. for 6 hours to advance the polymerization reaction. Thereafter, carbonization was performed by baking at 500 ° C. for 6 hours in an argon atmosphere. The formed carbon material was then washed with 1 M hydrochloric acid solution.

上記方法で得られた炭素材料について表面積測定の結果、BET比表面積は367 m2/gであり、多孔質構造であることが確認できた。 As a result of measuring the surface area of the carbon material obtained by the above method, the BET specific surface area was 367 m 2 / g, and it was confirmed that the carbon material had a porous structure.

Claims (9)

金属原子、金属イオン又は金属クラスターが架橋性配位子によって連結されてなる多孔質構造の金属配位高分子化合物を鋳型として用い、該金属配位高分子化合物の表面および空孔内部に、加熱により重合する有機化合物を導入した後、加熱して該有機化合物を重合及び炭化させることを特徴とする多孔質炭素材料の製造方法。 A metal coordination polymer compound having a porous structure in which metal atoms, metal ions or metal clusters are linked by a crosslinkable ligand is used as a template, and the surface of the metal coordination polymer compound and the inside of the pores are heated. A method for producing a porous carbon material comprising introducing an organic compound to be polymerized by heating and then polymerizing and carbonizing the organic compound by heating. 金属配位高分子化合物における架橋性配位子が、2つ以上の配位サイトを持ち、金属原子又は金属イオンに配位して架橋構造を形成し得る化合物であり、金属配位高分子化合物が、炭素材料の前駆体となる有機化合物を導入するために必要な大きさ以上の孔径の細孔を有する化合物である請求項1に記載の多孔質炭素材料の製造方法。 The metal coordination polymer compound is a compound in which the crosslinkable ligand in the metal coordination polymer compound has two or more coordination sites and can form a crosslinked structure by coordination with a metal atom or a metal ion. 2. The method for producing a porous carbon material according to claim 1, wherein the compound has pores having a pore size larger than a size necessary for introducing an organic compound serving as a precursor of the carbon material. 金属配位高分子化合物が、一般式:Zn4O(BDC)3(BDC=1,4-ベンゼンジカルボキシレート
)で示され、立方晶の結晶構造を有する多孔質構造の金属配位高分子化合物、又は一般式:Co3(NDC)3(NDC=2,6-ナフタレンジカルボキシレート)で示され、単斜晶の結晶構造を有する多孔質構造の金属配位高分子化合物である請求項2に記載の方法。
The metal coordination polymer compound is represented by the general formula: Zn 4 O (BDC) 3 (BDC = 1,4-benzenedicarboxylate) and has a cubic crystal structure and a porous metal coordination polymer. A compound or a metal coordination polymer compound having a porous structure represented by a general formula: Co 3 (NDC) 3 (NDC = 2,6-naphthalenedicarboxylate) and having a monoclinic crystal structure 2. The method according to 2.
加熱により重合する有機化合物が、液化又は気化可能な化合物である請求項1〜3のいずれかに記載の多孔質炭素材料の製造方法。 The method for producing a porous carbon material according to claim 1, wherein the organic compound that is polymerized by heating is a compound that can be liquefied or vaporized. 加熱により重合する有機化合物が、フルフリルアルコール、アクリロニトリル、酢酸ビニル、スチレン、ブタジエン、イソプレン及びスクロースからなる群から選ばれた少なくとも一種の化合物である請求項4に記載の方法。 The method according to claim 4, wherein the organic compound polymerized by heating is at least one compound selected from the group consisting of furfuryl alcohol, acrylonitrile, vinyl acetate, styrene, butadiene, isoprene and sucrose. 前記加熱は、有機化合物の重合反応が進行する温度で加熱後、更に、重合した有機化合物が炭化する温度で加熱することにより行う、請求項1〜5のいずれかに記載の多孔質炭素材料の製造方法。The porous carbon material according to any one of claims 1 to 5, wherein the heating is performed by heating at a temperature at which a polymerization reaction of the organic compound proceeds, and further at a temperature at which the polymerized organic compound is carbonized. Production method. 前記有機化合物の重合反応が進行する温度で加熱する際の加熱温度は、60〜200℃である請求項6に記載の方法。The method according to claim 6, wherein a heating temperature when heating at a temperature at which a polymerization reaction of the organic compound proceeds is 60 to 200 ° C. 7. 前記重合した有機化合物が炭化する温度で加熱する際の加熱温度は、200〜1200℃である請求項6又は7に記載の方法。The method according to claim 6 or 7, wherein a heating temperature at the time of heating at a temperature at which the polymerized organic compound is carbonized is 200 to 1200 ° C. 前記加熱は、不活性雰囲気下で行なわれる、請求項1〜8のいずれかに記載の多孔質炭素材料の製造方法。The said heating is a manufacturing method of the porous carbon material in any one of Claims 1-8 performed in inert atmosphere.
JP2007325367A 2007-12-18 2007-12-18 Method for producing porous carbon material Expired - Fee Related JP5213102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325367A JP5213102B2 (en) 2007-12-18 2007-12-18 Method for producing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325367A JP5213102B2 (en) 2007-12-18 2007-12-18 Method for producing porous carbon material

Publications (2)

Publication Number Publication Date
JP2009143786A JP2009143786A (en) 2009-07-02
JP5213102B2 true JP5213102B2 (en) 2013-06-19

Family

ID=40914863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325367A Expired - Fee Related JP5213102B2 (en) 2007-12-18 2007-12-18 Method for producing porous carbon material

Country Status (1)

Country Link
JP (1) JP5213102B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158403A (en) * 2016-07-15 2016-11-23 中山大学 Metal-complexing supermolecule grid and Two-dimensional Carbon composite and preparation method and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967669B1 (en) * 2010-11-23 2012-11-30 Hutchinson NEW SULFUR MODIFIED MONOLITHIC POROUS CARBON MATERIAL, PROCESS FOR PREPARING SAME, AND USES FOR ENERGY STORAGE AND RESTITUTION
WO2014123091A1 (en) * 2013-02-08 2014-08-14 国立大学法人京都大学 Porous metal complex, method for producing polymer using same, and vinyl ester copolymer
KR20220054049A (en) * 2020-10-23 2022-05-02 주식회사 엘지에너지솔루션 Core-shell structured porous carbon material, method for manufacturing the same, sulfur-carbon composite including the same, and lithium secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951567B2 (en) * 2000-07-10 2007-08-01 東ソー株式会社 Porous carbon material and method for producing the same
EP1683759B1 (en) * 2005-01-21 2010-05-19 Samsung SDI Co., Ltd. Carbon-metal composite material and process of preparing the same
JP2006335596A (en) * 2005-06-01 2006-12-14 Tohoku Univ Simple synthesizing method for microporous carbon having regularity and large surface area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158403A (en) * 2016-07-15 2016-11-23 中山大学 Metal-complexing supermolecule grid and Two-dimensional Carbon composite and preparation method and application
CN106158403B (en) * 2016-07-15 2020-10-23 中山大学 Metal coordination supermolecular grid and two-dimensional carbon composite material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2009143786A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
Jorge et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis
Shi et al. Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@ zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions
Iglesias et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2
Zhang et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors
Yang et al. Layer-stacked graphite-like porous carbon for flexible all-solid-state supercapacitor
Torad et al. Electric double‐layer capacitors based on highly graphitized nanoporous carbons derived from ZIF‐67
Liu et al. Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor
Tang et al. MOF/PCP-based electrocatalysts for the oxygen reduction reaction
Kim et al. Boost-up electrochemical performance of MOFs via confined synthesis within nanoporous carbon matrices for supercapacitor and oxygen reduction reaction applications
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
JP6460448B2 (en) Porous carbon material and method for producing the same
TW201135772A (en) Nitrogen-containing porous carbon material, process for producing the same, and electric double layer capacitor using the nitrogen-containing porous carbon material
Hao et al. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11
JP6071261B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor using the same
JP5710693B2 (en) Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent, and hydrogen storage method using microporous carbon-based material
Tong et al. Hierarchically porous carbons derived from nonporous coordination polymers
CN104659371B (en) High organic compatibility carbon-coated aluminum foils of a kind of high temperature resistant low resistance and preparation method thereof
JP2014218603A (en) Porous metal coordination polymer compound and production method of porous carbon material
Jiang et al. Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution
JP5213102B2 (en) Method for producing porous carbon material
Shi et al. Facile synthesis of iron-and nitrogen-doped porous carbon for selective CO2 electroreduction
Liu et al. An “in situ templating” strategy towards mesoporous carbon for high-rate supercapacitor and high-adsorption capacity on dye macromolecules
Yang et al. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO 2 with excellent efficiency
Huang et al. Wood-derived electrode supporting cvd-grown ReS 2 for efficient and stable hydrogen production
Vinodh et al. Synthesis and characterization of semiconducting porous carbon for energy applications and CO2 adsorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees