JP2003206112A - Porous carbon material and method for manufacturing the same - Google Patents

Porous carbon material and method for manufacturing the same

Info

Publication number
JP2003206112A
JP2003206112A JP2002003827A JP2002003827A JP2003206112A JP 2003206112 A JP2003206112 A JP 2003206112A JP 2002003827 A JP2002003827 A JP 2002003827A JP 2002003827 A JP2002003827 A JP 2002003827A JP 2003206112 A JP2003206112 A JP 2003206112A
Authority
JP
Japan
Prior art keywords
carbon material
porous carbon
porous
material according
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002003827A
Other languages
Japanese (ja)
Inventor
Akira Tomita
彰 富田
Takashi Kyotani
隆 京谷
Shishin Ba
志新 馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Tosoh Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Nippon Steel Chemical Co Ltd filed Critical Tosoh Corp
Priority to JP2002003827A priority Critical patent/JP2003206112A/en
Publication of JP2003206112A publication Critical patent/JP2003206112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new porous carbon material and to provide a method for manufacturing the same. <P>SOLUTION: The porous carbon material has a long-period regular structure within the range of 0.5-100 nm and has internal pores. This porous carbon material is manufactured by introducing an organic substance into the surface of a porous material and into the pores and heating the porous material to carbonize the organic substance in a first treatment step, further introducing the organic substance and carbonizing it by heating in a second treatment step, and heating the porous material at a temperature above that of the second treatment and removing the porous material in a third treatment step. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術野】本発明は新規な多孔質炭素材料
に関するものであって、詳しくは、内部に空孔を有し、
分子レベルの3次元構造規則性を持った炭素材料とその
合成方法、さらに詳しくは0.5nmから100nmの3次
元長周期規則構造を有する多孔質炭素材料とその製造方
法に関するものである。
TECHNICAL FIELD The present invention relates to a novel porous carbon material, more specifically, it has pores inside,
The present invention relates to a carbon material having a three-dimensional structural regularity at the molecular level and a method for synthesizing the same, and more particularly to a porous carbon material having a three-dimensional long-period ordered structure of 0.5 nm to 100 nm and a method for producing the same.

【0002】[0002]

【従来の技術】炭素は、耐熱性が高く、電気や熱も良く
伝え、しかも薬品などにも侵されにくいなど、単一の元
素からできているとは思えないほど多様な性質を持つ魅
力的な材料である。最近では、これまで使われてきた用
途以外にも、電気エネルギーを化学エネルギーに変換し
て貯蔵するデバイスであるキャパシタやリチウムイオン
電池の電極材料への適用や、水素やメタンなどに代表さ
れる付加価値の高いガスを貯蔵する材料への適用などが
提案されている。規則構造を有する(半)多孔質炭素を
得る方法としては、鋳型として半多孔質(メソポーラ
ス)シリカを使用して、規則構造を有する半多孔質炭素
を得ることを開示する文献もあるが、規則的な細孔構造
を得ることができない(Roo R他,J.Phys.Chem.B 1999;1
03:7743-7746、Lee J他,Chem.Commum 1999;2177-217
8)。また、鋳型としてYゼオライトを使用して、長周期
規則構造を有する炭素材料を得ることを開示する(京谷
他,Chem.Commum 2000;2365-2366)文献もある。
2. Description of the Related Art Carbon has a high heat resistance, conducts electricity and heat well, and is not easily attacked by chemicals. It has a variety of properties that make it unlikely to be made of a single element. It is a good material. Recently, in addition to the applications that have been used up to now, it has been applied to electrode materials for capacitors and lithium-ion batteries, which are devices that convert electrical energy into chemical energy for storage, and additions such as hydrogen and methane. Application to materials that store high-value gases has been proposed. As a method for obtaining (semi) porous carbon having an ordered structure, there is a document which discloses using semiporous (mesoporous) silica as a template to obtain semiporous carbon having an ordered structure. To obtain a specific pore structure (Roo R et al., J. Phys. Chem. B 1999; 1
03: 7743-7746, Lee J et al., Chem. Commumum 1999; 2177-217.
8). In addition, there is also a document that obtains a carbon material having a long-period ordered structure by using Y zeolite as a template (Kyotani et al., Chem. Commumum 2000; 2365-2366).

【0003】[0003]

【発明が解決しようとする課題】古くから種々の炭素材
料が製造されてきたが、これまで提案されている炭素材
料は、石油や石炭から取れる重質芳香族化合物であるピ
ッチや汎用高分子類など既存の材料をいかに巧みに炭素
化して目的の構造や特性に近づけるかという点にポイン
トを置いて調製されたものであった。新しい機能を備え
た炭素材料を調製するためには、分子レベルで炭素材料
を設計、合成することが必要と考えられるが、これまで
の調製方法ではそのような炭素材料を合成することは困
難であった。
Various carbon materials have been produced for a long time, and the carbon materials proposed so far are pitch and general-purpose polymers which are heavy aromatic compounds obtained from petroleum and coal. It was prepared with an emphasis on how to skillfully carbonize existing materials to bring them closer to the desired structure and properties. In order to prepare a carbon material with a new function, it is necessary to design and synthesize a carbon material at the molecular level, but it is difficult to synthesize such a carbon material by the conventional preparation methods. there were.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記状況を
鑑み、細孔炭素材料の最適な合成条件について鋭意検討
を行った結果、多孔質材料を鋳型に使用して、第1の処
理として多孔質材料の表面および空孔内部に有機物を導
入し、これを加熱することによって該有機物を炭化し、
その後、第2の処理としてさらに有機物を導入してこれ
を気相炭化させた後に孔質材料を除去することで、鋳型
に用いる多孔質材料の空孔の形状を反映したナノレベル
の構造規則性と多孔質材料の形状を反映した空孔を持
ち、かつ、炭素の二次元積層規則性を示さない新規な多
孔質炭素材料を製造できることを見出し、本発明を完成
するに至った。
In view of the above situation, the inventors of the present invention have made earnest studies on optimum synthesis conditions for a porous carbon material, and as a result, have used a porous material as a mold and have conducted a first treatment. As an organic substance is introduced into the surface of the porous material and inside the pores, and the organic substance is carbonized by heating it,
After that, as a second treatment, an organic substance is further introduced, and this is vapor-phase carbonized, and then the porous material is removed to obtain a nano-level structural regularity reflecting the shape of the pores of the porous material used for the template. It was found that a novel porous carbon material having voids reflecting the shape of the porous material and exhibiting no two-dimensional stacking regularity of carbon can be produced, and has completed the present invention.

【0005】[0005]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明の炭素材料は、0.5nmから100nmの3次
元長周期規則構造を有すると共に、内部に空孔を持ち、
粉末X線回折測定および13C−固体−NMR測定におい
て炭素の2次元積層規則性を示す回折ピークを示さない
多孔質炭素材料である。具体的には、炭素鎖と炭素鎖が
0.5nmから100nm、好ましくは1nmから50nm、よ
り好ましくは1nmから2nmの任意のある間隔で3次元的
に長周期にわたって規則的に繰り返した構造の炭素材料
である。本発明の炭素材料は、構造内部に空孔を持つ多
孔質な炭素材料であるが、内部の空孔において、直径が
2nm以下の空孔、いわゆるミクロ孔の容量が0.5cm3/g
以上であることが好ましい。また、直径が2から50nm
の空孔、いわゆるメソ孔の容量が1cm3/g以下であるこ
とが好ましく、ゼロであることがさらに好ましい。さら
に、BET比表面積が2000cm2/g以上であることが
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The carbon material of the present invention has a three-dimensional long-period ordered structure of 0.5 nm to 100 nm and has pores inside.
It is a porous carbon material showing no diffraction peak showing the two-dimensional stacking regularity of carbon in powder X-ray diffraction measurement and 13 C-solid-state NMR measurement. Specifically, a carbon chain and a carbon chain having a structure in which carbon chains are regularly repeated three-dimensionally over a long period at an arbitrary interval of 0.5 nm to 100 nm, preferably 1 nm to 50 nm, more preferably 1 nm to 2 nm. It is a material. The carbon material of the present invention is a porous carbon material having pores inside the structure, and the pores having a diameter of 2 nm or less, so-called micropores, have a capacity of 0.5 cm 3 / g.
The above is preferable. Also, the diameter is 2 to 50 nm
The volume of the pores, so-called mesopores, is preferably 1 cm 3 / g or less, and more preferably zero. Further, it is preferable that the BET specific surface area is 2000 cm 2 / g or more.

【0006】詳細については不明だが、前述したキャパ
シタやリチウムイオン電池用の電極材料や、水素やメタ
ンなどに代表される付加価値の高いガスの貯蔵材料への
適用に関しては、BET比表面積が大きく、加えてミク
ロ孔が存在することが重要であると考えられる。これに
対して、メソ孔は前記用途などへの適用に際してはあま
り効果がなく、従って、高い機能を発現させるために
は、相対的にミクロ孔が多く存在することが重要で、な
るべくメソ孔は少ない方が良いと考えられる。
Although the details are unknown, the BET specific surface area is large when it is applied to the above-mentioned electrode materials for capacitors and lithium-ion batteries and storage materials for high value-added gases typified by hydrogen and methane. In addition, the presence of micropores is considered important. On the other hand, mesopores are not very effective when applied to the above-mentioned applications, etc. Therefore, it is important that a large number of micropores are relatively present in order to express a high function. It is considered that less is better.

【0007】本発明の多孔質炭素材料は、構造内部に空
孔を有し、該空孔が網目状に連結した構造を有する多孔
質材料を鋳型に用いて、第1の処理として多孔質材料の
表面および空孔内部に有機物を導入し、これを加熱する
ことによって該有機物を炭化し、その後、第2の処理と
してさらに有機物を導入して炭化させた後に、さらに、
第3の処理として第2の処理における温度よりも高い温
度で加熱したのち、多孔質材料を除去することで容易に
製造できる。
The porous carbon material of the present invention has pores inside the structure, and the porous material having a structure in which the pores are connected in a mesh shape is used as a mold, and the porous material is used as the first treatment. Of the organic substance on the surface and inside of the pores and carbonizing the organic substance by heating it, and then introducing the organic substance and carbonizing it as the second treatment.
The third treatment can be easily performed by heating at a temperature higher than the temperature in the second treatment and then removing the porous material.

【0008】詳細については不明だが、上記の連続する
3つの処理によって、多孔質材料の内部に均一に炭素を
生成させることが可能となり、長周期にわたって規則的
に繰り返した構造の炭素材料が生成し易くなると考えら
れる。特に、3次元長周期規則構造を発達させるために
は、第2の処理において気体状の有機物を導入して気相
炭化させ第3の処理を行なうことが好ましい。
Although details are unknown, it is possible to uniformly generate carbon inside the porous material by the above-mentioned three successive treatments, and a carbon material having a structure which is regularly repeated over a long period is generated. It will be easier. In particular, in order to develop a three-dimensional long-period ordered structure, it is preferable to introduce a gaseous organic substance in the second treatment to vapor-phase carbonize it and perform the third treatment.

【0009】本発明の多孔質炭素材料の製造において用
いることができる有機物としては、何らかの方法によっ
て液化または気化できることが必要である。液化の方法
としては融点以上に熱することや溶媒に溶解させること
が、気化の方法としては沸点以上に熱することや雰囲気
を減圧にすることが挙げられる。有機物の具体例として
は、フルフリルアルコール、アクリロニトリル、酢酸ビ
ニルなどが例示される。
The organic substance that can be used in the production of the porous carbon material of the present invention must be capable of being liquefied or vaporized by some method. Liquefaction methods include heating above the melting point and dissolving in a solvent, and vaporization methods include heating above the boiling point and reducing the atmosphere. Specific examples of organic substances include furfuryl alcohol, acrylonitrile, and vinyl acetate.

【0010】有機物を多孔質材料の空孔内部へ導入する
際には、多孔質材料を予め減圧にしておくことが好まし
い。有機物を炭化させる際には、鋳型の多孔質材料は安
定であって、有機物の炭化反応のみが起こる方法であれ
ば如何なる方法を用いても良い。
When introducing the organic substance into the pores of the porous material, it is preferable to reduce the pressure of the porous material in advance. When carbonizing the organic matter, any method may be used as long as the porous material of the template is stable and only the carbonization reaction of the organic matter occurs.

【0011】第2の処理で気体状の有機物を使用する際
には、メタン、エタン、プロパン、プロピレン、ベンゼ
ン、エチレンなどの常温で気体の化合物を用いることが
好ましい。これらの気体状の有機物は、キャリアガスと
ともに多孔質材料に接触させるように流通させながら加
熱することで、容易に気相で炭化することができる。な
お、キャリアガスの種類、流速および流量および加熱温
度は、使用する有機物や多孔質材料の種類によって適宜
調節することが必要である。
When a gaseous organic substance is used in the second treatment, it is preferable to use a compound that is gaseous at room temperature, such as methane, ethane, propane, propylene, benzene and ethylene. These gaseous organic substances can be easily carbonized in the vapor phase by heating while flowing so as to come into contact with the porous material together with the carrier gas. The type of carrier gas, the flow rate, the flow rate, and the heating temperature need to be appropriately adjusted depending on the type of organic material or porous material used.

【0012】本発明の多孔質炭素材料を合成する際の鋳
型に用いる多孔質材料としては、空孔内部に有機物が導
入できること、該有機物を炭化させる際に元の構造を安
定に保つこと、生成した多孔質炭素材料と分離できるこ
とが必要である。このため、耐熱性が優れ、酸やアルカ
リに溶解するものが好ましく、多孔質な酸化物が例示さ
れる。
As a porous material used as a template for synthesizing the porous carbon material of the present invention, an organic substance can be introduced into pores, an original structure can be stably maintained when carbonizing the organic substance, It is necessary to be able to separate from the porous carbon material. Therefore, those having excellent heat resistance and being soluble in acid or alkali are preferable, and porous oxides are exemplified.

【0013】得られる多孔質炭素材料は、鋳型の空孔の
形状と該空孔の連結様式を反映した構造と、鋳型自身の
形状を反映した空孔を有する炭素材料が生成する。言い
換えれば、鋳型の形態を転写した状態で炭素材料が合成
される。このため、鋳型の多孔質材料としては、結晶が
十分に発達した、粒子サイズのそろった、構造および組
成が均一な材料であることが望ましい。
The resulting porous carbon material is a carbon material having a structure that reflects the shape of the pores of the mold and the mode of connection of the pores, and pores that reflect the shape of the mold itself. In other words, the carbon material is synthesized while the form of the template is transferred. Therefore, it is desirable that the template porous material be a material in which crystals are sufficiently developed, particle sizes are uniform, and the structure and composition are uniform.

【0014】以上のように、鋳型の多孔質材料の備える
べき材料物性と、得られる多孔質炭素材料物性を考慮す
ると、鋳型となる多孔質材料としては、ゼオライトが特
に好ましいと考えられる。ゼオライトは、シリカ構造の
ケイ素(Si)の一部がアルミニウム(Al)で置換さ
れたアルミノケイ酸塩であって、骨格自体が負電荷を持
つことから構造内にカチオンが分布した構造を持つ。S
i/Alモル比およびカチオンの種類や量、およびカチ
オンに水和した水分子の数によって多様な結晶構造、例
えば空孔が2次元的に連結したものや3次元的に連結し
たもの、多様なサイズの空孔を持つ多孔質材料である。
ゼオライトのなかでもFAU型ゼオライトが好ましく、
その中でもY型ゼオライトがより好ましい。
As described above, considering the physical properties of the porous material of the template and the physical properties of the obtained porous carbon material, zeolite is considered to be particularly preferable as the porous material of the template. Zeolite is an aluminosilicate in which a part of silicon (Si) in the silica structure is replaced with aluminum (Al), and has a structure in which cations are distributed in the structure because the skeleton itself has a negative charge. S
Depending on the i / Al molar ratio, the kind and amount of cations, and the number of water molecules hydrated in the cations, various crystal structures, such as two-dimensionally connected vacancy and three-dimensionally connected vacancy, It is a porous material with pores of a size.
Among the zeolites, FAU type zeolite is preferable,
Among them, Y-type zeolite is more preferable.

【0015】多孔質材料の除去は、生成した多孔質炭素
材料を分離できる方法であれば如何なる方法を用いても
良いが、例えば、上述のゼオライトに関しては、酸で溶
解することが可能であり、具体的には、塩酸やフッ化水
素酸を用いることで容易に溶解することができる。
Any method can be used for removing the porous material as long as it can separate the produced porous carbon material. For example, the above-mentioned zeolite can be dissolved with an acid, Specifically, it can be easily dissolved by using hydrochloric acid or hydrofluoric acid.

【0016】好適には、第1の処理としてゼオライト空
孔内部に液状の有機物を導入し、これを加熱することに
よって該有機物を重合したのち、600〜900℃に加
熱して炭化し、第2の処理としてガス状の有機物を導入
してこれを600〜900℃に加熱して気相炭化させて
第1の処理で生じた炭化物の空洞又は表面に炭化物を付
着させた後に、第3の処理として第2の処理における温
度よりも高い温度であって、800〜1000℃で加熱
処理した後にゼオライトを溶解させて除去するという条
件が挙げられる。
Preferably, as the first treatment, a liquid organic substance is introduced into the pores of the zeolite, and the organic substance is polymerized by heating the same, and then heated to 600 to 900 ° C. to carbonize the second organic substance. As a treatment of 1, the gaseous organic substance is introduced, and this is heated to 600 to 900 ° C. to be vapor-phase carbonized to adhere the carbide to the cavity or surface of the carbide generated in the first treatment, and then to the third treatment. The condition is that the temperature is higher than the temperature in the second treatment, and the zeolite is dissolved and removed after the heat treatment at 800 to 1000 ° C.

【0017】[0017]

【実施例】以下に、本発明の具体例として実施例を示す
が、本発明は実施例により制限されるものではない。
EXAMPLES Examples will be shown below as specific examples of the present invention, but the present invention is not limited to the examples.

【0018】実施例1 Na−Y型ゼオライト(SiO2/Al23=5.6)を
用いて、ナノオーダーの3次元長周期構造規則性を有す
る多孔質炭素材料を合成した。なお、Y型ゼオライトは
3次元的に網目状に連結した空孔を持つ多孔質材料であ
る。予め、150℃で乾燥したNa−Y型ゼオライトの
粉末をガラス容器に入れ、容器ごと減圧状態にした後、
ゼオライトが浸る程度にフルフリルアルコールを加え、
攪拌しながら含浸させた後に、余分なフルフリルアルコ
ールを取り除き、150℃で熱処理を行い空孔中に含浸
させたフルフリルアルコールを重合させた。得られたゼ
オライト−フルフリルアルコール重合体の複合体を、石
英製反応管に入れて700℃まで昇温して炭化させ、キ
ャリアガスにN2ガスを使用してプロピレン(N2中2
%)を反応管に流し、700℃で4時間気相炭化を行
い、ゼオライト−フルフリルアルコール炭化物の複合体
の空孔内に炭素を堆積させた。その後、N2ガス気流中
で900℃まで昇温を行ない、900℃で3時間熱処理
を行ない、ゼオライト−炭素複合体を得た。
Example 1 A Na-Y type zeolite (SiO 2 / Al 2 O 3 = 5.6) was used to synthesize a porous carbon material having nano-order three-dimensional long-period structural regularity. The Y-type zeolite is a porous material having pores that are three-dimensionally connected in a mesh. In advance, the powder of Na-Y type zeolite dried at 150 ° C. was placed in a glass container, and the container was evacuated,
Add furfuryl alcohol to the extent that the zeolite is immersed,
After impregnation with stirring, excess furfuryl alcohol was removed, and heat treatment was performed at 150 ° C. to polymerize the furfuryl alcohol impregnated in the pores. Obtained zeolite - a complex of furfuryl alcohol polymer put into a quartz reaction tube was carbonized by heating up to 700 ° C., in using N 2 gas as a carrier gas of propylene (N 2 2
%) In a reaction tube and vapor-phase carbonized at 700 ° C. for 4 hours to deposit carbon in the pores of the zeolite-furfuryl alcohol-carbide composite. Then, the temperature was raised to 900 ° C. in a N 2 gas stream, and heat treatment was performed at 900 ° C. for 3 hours to obtain a zeolite-carbon composite.

【0019】生成したゼオライト−炭素複合体をフッ化
水素酸および塩酸で処理してゼオライトを溶解除去し、
炭素のみ取出した。得られた炭素の構造を粉末X線回折
装置で調べたところ、炭素に特有の2θが25°(Cu
Kα)付近の002面からの回折は認められず、代わ
りに6°付近に鋭いピークが観察された。回折パターン
を図1(a)に示した。合成に使用したゼオライトの構
造を粉末X線回折装置で調べたところ、得られた炭素と
同様に6°付近に鋭いピークが観察された。回折パター
ンを図1(b)に示した。6°付近の回折ピークは、Y
型ゼオライトのスーパーケージの規則性に由来する1.
4nmのピークであり、従って、合成した炭素材料は、
ゼオライトの空孔の規則性を反映した、1.4nmの長
周期の規則構造が3次元的に発達していることが分かっ
た。
The produced zeolite-carbon composite is treated with hydrofluoric acid and hydrochloric acid to dissolve and remove the zeolite,
Only carbon was taken out. When the structure of the obtained carbon was examined by a powder X-ray diffractometer, 2θ unique to carbon was 25 ° (Cu
No diffraction from the 002 plane near Kα) was observed, and instead a sharp peak was observed at around 6 °. The diffraction pattern is shown in FIG. When the structure of the zeolite used for the synthesis was examined by a powder X-ray diffractometer, a sharp peak was observed at around 6 °, similar to the obtained carbon. The diffraction pattern is shown in FIG. The diffraction peak near 6 ° is Y
Derived from the super cage regularity of type zeolite 1.
It has a peak of 4 nm, and thus the synthesized carbon material is
It was found that a regular structure with a long period of 1.4 nm, which reflects the regularity of the pores of zeolite, develops three-dimensionally.

【0020】次に、得られた炭素の構造を13C−固体−
NMRにて、(a)CP/MASおよび(b)SPE/
MASの2つの異なるモードで測定を行なった。得られ
たNMRスペクトルをそれぞれ図2(a)、図2(b)
に示した。いずれの測定モードにおいても、鎖状炭素化
合物の存在を示す10から50ppm付近のピークは認め
られず、2次元の構造規則性を持たない炭素材料である
ことが分かった。次に、得られた炭素材料の空孔を調べ
た。得られた化合物はBET比表面積3600m2/g、ミ
クロ孔の占める体積が1.52cm3/gでメソ孔の占める体
積が0.05cm3/gであった。
Next, the structure of the obtained carbon was changed to 13 C-solid-
In NMR, (a) CP / MAS and (b) SPE /
Measurements were made in two different modes of MAS. The obtained NMR spectra are shown in FIG. 2 (a) and FIG. 2 (b), respectively.
It was shown to. In any of the measurement modes, no peak around 10 to 50 ppm indicating the presence of the chain carbon compound was observed, and it was found that the carbon material does not have a two-dimensional structural regularity. Next, the pores of the obtained carbon material were examined. The obtained compound had a BET specific surface area of 3600 m 2 / g, a volume of micropores of 1.52 cm 3 / g and a volume of mesopores of 0.05 cm 3 / g.

【0021】比較例 比較例として、ゼオライトを使用しないこと以外は実施
例と同様にして、フルフリルアルコールの重合、炭化、
プロピレンの気相炭化及び900℃で3時間熱処理を行
ない炭素の合成を行った。得られた炭素の構造を実施例
と同様に粉末X線回折装置で調べたところ、回折ピーク
が認められず、非晶質な炭素であることが分かった。次
に、得られた炭素材料の空孔を実施例と同様に調べた。
得られた炭素はBET比表面積0m2/g、ミクロ孔および
メソ孔とも0cm3/gで空孔を持たない炭素材料であるこ
とが分かった。
Comparative Example As a comparative example, in the same manner as in Example except that zeolite was not used, polymerization of furfuryl alcohol, carbonization,
Gas phase carbonization of propylene and heat treatment at 900 ° C. for 3 hours were carried out to synthesize carbon. When the structure of the obtained carbon was examined by a powder X-ray diffractometer in the same manner as in the examples, no diffraction peak was observed and it was found that the carbon was amorphous carbon. Next, the voids of the obtained carbon material were examined in the same manner as in the example.
It was found that the obtained carbon was a carbon material having a BET specific surface area of 0 m 2 / g, both micropores and mesopores of 0 cm 3 / g and having no pores.

【0022】[0022]

【発明の効果】本発明の多孔質炭素材料の製造方法によ
れば、鋳型に用いる多孔質材料の空孔の形状を反映した
ナノレベルの構造規則性と多孔質材料の形状を反映した
空孔を持った、新規な3次元多孔質炭素材料が得られ
る。ナノレベルの構造規則性と多孔性を兼ね備えた炭素
材料は、電気エネルギーを化学エネルギーに変換して貯
蔵するデバイスであるキャパシタやリチウムイオン電池
の電極材料への適用、水素やメタンなどに代表される付
加価値の高いガスを貯蔵する材料への適用、さらには新
規複合材料のマトリックス、電気伝導性材料および炭素
膜などへの適用が期待される。このような炭素材料が合
成できることは、各種産業上の材料選択の幅を広げた
り、製品の性能を飛躍的に向上させる可能性を有する点
で有益である。
According to the method for producing a porous carbon material of the present invention, the nano-level structural regularity reflecting the shape of the pores of the porous material used for the mold and the pores reflecting the shape of the porous material. A new three-dimensional porous carbon material having Carbon materials that have both nano-level structural regularity and porosity are typified by hydrogen, methane, etc., applied to electrode materials for capacitors and lithium-ion batteries, which are devices that convert electrical energy into chemical energy and store it. It is expected to be applied to materials that store gas with high added value, and further to new composite materials such as matrices, electrically conductive materials and carbon films. The ability to synthesize such a carbon material is advantageous in that it has the potential to broaden the range of material selection in various industries and dramatically improve the performance of products.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例で使用しゼオライトと合成した炭素材
料のX線回折パターンを示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of a carbon material used in Examples and synthesized with zeolite.

【図2】 実施例で合成した炭素材料の13C−固体−N
MRスペクトルを示す。
FIG. 2 13 C-solid-N of the carbon material synthesized in the example.
An MR spectrum is shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬 志新 宮城県仙台市青葉区米ヶ袋2−2−2 402号 Fターム(参考) 4G046 CA00 CA01 CB02 CB05 CC01 CC05 CC06 5H050 AA01 BA17 CB07 EA01 EA21 FA13 GA00 GA02 GA11 GA12 HA00 HA04 HA07 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shishin Ma             2-2-2 Yonegabukuro, Aoba-ku, Sendai City, Miyagi Prefecture             No. 402 F term (reference) 4G046 CA00 CA01 CB02 CB05 CC01                       CC05 CC06                 5H050 AA01 BA17 CB07 EA01 EA21                       FA13 GA00 GA02 GA11 GA12                       HA00 HA04 HA07 HA14

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 隣接する炭素鎖の間隔が0.5nmから1
00nmの範囲である3次元の長周期規則構造を有し、内
部に少なくともミクロ孔を有する多孔質炭素材料。
1. The spacing between adjacent carbon chains is 0.5 nm to 1
A porous carbon material having a three-dimensional long-period ordered structure in the range of 00 nm and having at least micropores inside.
【請求項2】 粉末X線回折測定において2次元積層規
則性を示す回折ピークを示さない請求項1記載の多孔質
炭素材料。
2. The porous carbon material according to claim 1, which does not show a diffraction peak showing two-dimensional stacking regularity in powder X-ray diffraction measurement.
【請求項3】 13C−固体−NMR測定において、鎖状
炭素の存在を表わす10から50ppm付近のピークを示
さない請求項1又は請求項2に記載の多孔質炭素材料。
3. The porous carbon material according to claim 1, which does not show a peak in the vicinity of 10 to 50 ppm indicating the presence of chain carbon in 13 C-solid-state NMR measurement.
【請求項4】 内部の空孔において、ミクロ孔の占める
容積が0.5cm3/g以上である請求項1〜請求項3のい
ずれかに記載の多孔質炭素材料。
4. The porous carbon material according to claim 1, wherein the volume of the micropores in the inner pores is 0.5 cm 3 / g or more.
【請求項5】 内部の空孔において、メソ孔の占める容
積が1cm3/g以下である請求項1〜請求項4のいずれか
に記載の多孔質炭素材料。
5. The porous carbon material according to claim 1, wherein the volume of the mesopores in the internal pores is 1 cm 3 / g or less.
【請求項6】 BET比表面積が2000cm2/g以上で
ある請求項1〜請求項5のいずれかに記載の多孔質炭素
材料。
6. The porous carbon material according to claim 1, which has a BET specific surface area of 2000 cm 2 / g or more.
【請求項7】 第1の処理として多孔質材料の表面およ
び空孔内部に有機物を導入し、これを加熱することによ
って該有機物を炭化し、その後、第2の処理として有機
物を導入してこれを気相炭化させた後に、多孔質材料を
除去する請求項1〜請求項6のいずれかに記載の多孔質
炭素材料の製造方法。
7. As a first treatment, an organic substance is introduced into the surface and inside the pores of the porous material, and the organic substance is carbonized by heating it, and then, as a second treatment, the organic substance is introduced and The method for producing a porous carbon material according to any one of claims 1 to 6, wherein the porous material is removed after the gas phase carbonization.
【請求項8】 第2の処理において、気体状の有機物を
導入して気相炭化させた後に多孔質材料を除去する請求
項7記載の多孔質炭素材料の製造方法。
8. The method for producing a porous carbon material according to claim 7, wherein in the second treatment, a porous organic material is removed after introducing a gaseous organic substance to carry out gas phase carbonization.
【請求項9】 多孔質材料がゼオライトである請求項7
又は請求項8記載の多孔質炭素材料の製造方法。
9. The porous material is a zeolite.
Or the manufacturing method of the porous carbon material according to claim 8.
【請求項10】 ゼオライトがFAU型ゼオライトであ
る請求項9記載の多孔質炭素材料の製造方法。
10. The method for producing a porous carbon material according to claim 9, wherein the zeolite is a FAU type zeolite.
【請求項11】 FAU型ゼオライトがY型ゼオライト
である請求項9記載の多孔質炭素材料の製造方法。
11. The method for producing a porous carbon material according to claim 9, wherein the FAU type zeolite is a Y type zeolite.
【請求項12】 第1の処理としてゼオライト空孔内部
に有機物を導入し、これを加熱することによって該有機
物を重合したのち、600〜900℃に加熱して炭化
し、第2の処理としてガス状の有機物を導入してこれを
加熱して炭化させた後に、第3の処理として第2の処理
における温度よりも高い温度であって、800〜100
0℃に加熱した後にゼオライトを溶解させて除去する請
求項7〜請求項11のいずれかに記載の多孔質炭素材料
の製造方法。
12. An organic substance is introduced into the pores of zeolite as the first treatment, and the organic substance is polymerized by heating the same, and then heated to 600 to 900 ° C. to carbonize, and a gas is used as the second treatment. After introducing a particulate organic substance and heating and carbonizing it, the temperature is higher than the temperature in the second treatment as the third treatment, and is 800 to 100.
The method for producing a porous carbon material according to any one of claims 7 to 11, wherein the zeolite is dissolved and removed after heating to 0 ° C.
JP2002003827A 2002-01-10 2002-01-10 Porous carbon material and method for manufacturing the same Pending JP2003206112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003827A JP2003206112A (en) 2002-01-10 2002-01-10 Porous carbon material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003827A JP2003206112A (en) 2002-01-10 2002-01-10 Porous carbon material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003206112A true JP2003206112A (en) 2003-07-22

Family

ID=27643317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003827A Pending JP2003206112A (en) 2002-01-10 2002-01-10 Porous carbon material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003206112A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
JP2006335596A (en) * 2005-06-01 2006-12-14 Tohoku Univ Simple synthesizing method for microporous carbon having regularity and large surface area
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
WO2009107678A1 (en) 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel
JP2013199428A (en) * 2008-10-20 2013-10-03 Nissan Motor Co Ltd Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent material and method for occluding hydrogen using microporous carbon-based material
US8657923B2 (en) 2008-02-26 2014-02-25 Nissan Motor Co., Ltd. Microporous carbon material, manufacturing method thereof, and hydrogen storage method using microporous carbon material
JP2014516906A (en) * 2011-05-11 2014-07-17 エフピーイノベイションズ Chiral or achiral mesoporous carbon
US9242900B2 (en) 2009-12-01 2016-01-26 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Porous geopolymer materials
US9296654B2 (en) 2011-09-21 2016-03-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Geopolymer resin materials, geopolymer materials, and materials produced thereby
US9308511B2 (en) 2009-10-14 2016-04-12 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using thixotropic gels
US9365691B2 (en) 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
US10170759B2 (en) 2013-06-21 2019-01-01 Arizona Board Of Regents On Behalf Of Arizona State University Metal oxides from acidic solutions
US10829382B2 (en) 2017-01-20 2020-11-10 Skysong Innovations Aluminosilicate nanorods
US10926241B2 (en) 2014-06-12 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
WO2022265004A1 (en) 2021-06-14 2022-12-22 学校法人 名古屋電気学園 Method for producing zeolite-templated carbon material using carbon precursor, pellet comprising same, and method for producing same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244311A (en) * 2003-02-13 2004-09-02 Samsung Electronics Co Ltd Carbon molecular sieve and its producing method
US7718570B2 (en) 2003-02-13 2010-05-18 Samsung Sdi Co., Ltd. Carbon molecular sieve and method for manufacturing the same
JP4585773B2 (en) * 2003-02-13 2010-11-24 三星エスディアイ株式会社 Carbon molecular body and method for producing the same
JP2006310514A (en) * 2005-04-28 2006-11-09 Tohoku Univ Electrode material for electric double layer capacitor
JP2006335596A (en) * 2005-06-01 2006-12-14 Tohoku Univ Simple synthesizing method for microporous carbon having regularity and large surface area
JP2007197305A (en) * 2005-12-28 2007-08-09 Toyota Central Res & Dev Lab Inc Porous carbon arrangement and manufacturing method thereof
JP2008016792A (en) * 2006-06-08 2008-01-24 Showa Denko Kk Porous body, manufacturing method therefor and applications therefor
WO2009107678A1 (en) 2008-02-26 2009-09-03 日産自動車株式会社 Microporous carbonaceous material, manufacturing method thereof, and hydrogen storage method using a microporous carbonaceous material
US8657923B2 (en) 2008-02-26 2014-02-25 Nissan Motor Co., Ltd. Microporous carbon material, manufacturing method thereof, and hydrogen storage method using microporous carbon material
JP2013199428A (en) * 2008-10-20 2013-10-03 Nissan Motor Co Ltd Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent material and method for occluding hydrogen using microporous carbon-based material
US9308511B2 (en) 2009-10-14 2016-04-12 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using thixotropic gels
US9242900B2 (en) 2009-12-01 2016-01-26 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Porous geopolymer materials
US9365691B2 (en) 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel
US9440854B2 (en) 2011-03-31 2016-09-13 Fpinnovations Chiral or achiral, mesoporous carbon
JP2014516906A (en) * 2011-05-11 2014-07-17 エフピーイノベイションズ Chiral or achiral mesoporous carbon
US10023466B2 (en) 2011-05-11 2018-07-17 Fpinnovations Chiral or achiral, mesoporous carbon
US9296654B2 (en) 2011-09-21 2016-03-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Geopolymer resin materials, geopolymer materials, and materials produced thereby
US9862644B2 (en) 2011-09-21 2018-01-09 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Geopolymer resin materials, geopolymer materials, and materials produced thereby
US10170759B2 (en) 2013-06-21 2019-01-01 Arizona Board Of Regents On Behalf Of Arizona State University Metal oxides from acidic solutions
US10926241B2 (en) 2014-06-12 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
US11745163B2 (en) 2014-06-12 2023-09-05 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
US10829382B2 (en) 2017-01-20 2020-11-10 Skysong Innovations Aluminosilicate nanorods
WO2022265004A1 (en) 2021-06-14 2022-12-22 学校法人 名古屋電気学園 Method for producing zeolite-templated carbon material using carbon precursor, pellet comprising same, and method for producing same

Similar Documents

Publication Publication Date Title
JP2003206112A (en) Porous carbon material and method for manufacturing the same
Sobrinho et al. Ordered micro-mesoporous carbon from palm oil cooking waste via nanocasting in HZSM-5/SBA-15 composite: preparation and adsorption studies
Ma et al. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y
Schlienger et al. Micro-, mesoporous boron nitride-based materials templated from zeolites
Yang et al. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor
JP5513774B2 (en) Microporous carbon-based material, method for producing microporous carbon-based material, adsorbent, and hydrogen storage method using microporous carbon-based material
Vix-Guterl et al. Formation of ordered mesoporous carbon material from a silica template by a one-step chemical vapour infiltration process.
Choi et al. Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers
JP5861492B2 (en) Carbon filling in zeolite nanochannels
Zhao et al. Generating assembled MFI nanocrystals with reduced b‐axis through structure‐directing agent exchange induced recrystallization
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
JP6482054B2 (en) Metal-supported carbon material and method for producing the same
Garsuch et al. Synthesis of ordered carbon replicas by using Y-zeolite as template in a batch reactor
JP2014055110A (en) Method for producing microporous carbonaceous material
Zhai et al. The influence of carbon source on the wall structure of ordered mesoporous carbons
Shi et al. Ordered mesoporous SiOC and SiCN ceramics from atmosphere-assisted in situ transformation
JP3951567B2 (en) Porous carbon material and method for producing the same
JP2006335596A (en) Simple synthesizing method for microporous carbon having regularity and large surface area
Shi et al. Nanocasting synthesis of ordered mesoporous silicon nitrides with a high nitrogen content
Miller et al. High-Strength, Microporous, Two-Dimensional Polymer Thin Films with Rigid Benzoxazole Linkage
Dorn et al. Atomic-level structure of mesoporous hexagonal boron nitride determined by high-resolution solid-state multinuclear magnetic resonance spectroscopy and density functional theory calculations
JP5388051B2 (en) Mesoporous carbon (MC-MCM-48) and method for producing the same
Li et al. Synthesis and characterization of hollow mesoporous carbon spheres with a highly ordered bicontinuous cubic mesostructure
KR101816369B1 (en) Method for preparing nanotube-MOF hybrid and the nanotube-MOF hybrid prepared therefrom
KR101442197B1 (en) Porous carbon particle, and producing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701