JP3949473B2 - Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus - Google Patents

Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus Download PDF

Info

Publication number
JP3949473B2
JP3949473B2 JP2002062866A JP2002062866A JP3949473B2 JP 3949473 B2 JP3949473 B2 JP 3949473B2 JP 2002062866 A JP2002062866 A JP 2002062866A JP 2002062866 A JP2002062866 A JP 2002062866A JP 3949473 B2 JP3949473 B2 JP 3949473B2
Authority
JP
Japan
Prior art keywords
substrate
transfer arm
side transfer
vacuum
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002062866A
Other languages
Japanese (ja)
Other versions
JP2003263801A (en
JP2003263801A5 (en
Inventor
政人 越川
淳 江本
敏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002062866A priority Critical patent/JP3949473B2/en
Priority to KR1020047013886A priority patent/KR100602528B1/en
Priority to TW092104964A priority patent/TW588349B/en
Priority to PCT/JP2003/002691 priority patent/WO2003077244A1/en
Priority to CNB038055317A priority patent/CN100350482C/en
Publication of JP2003263801A publication Critical patent/JP2003263801A/en
Publication of JP2003263801A5 publication Critical patent/JP2003263801A5/ja
Application granted granted Critical
Publication of JP3949473B2 publication Critical patent/JP3949473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、円板状の基板に対して薄膜を形成するスパッタ装置に関し、より詳細には、当該装置を用いて薄膜形成を行う際に、当該装置において用いられる円板状基板をチャッキングする機構すなわちチャッキング方法に関する。また、本発明は、当該スパッタ装置を用いていわゆる光ディスク等のディスク状の記録媒体を製造する、ディスク状記録媒体の製造方法にも関する。
【0002】
【従来技術】
円板状の基板に対して各種薄膜を形成して製造される記録媒体、特にディスク状の形状を有するものとして、例えば、CD、CD−R、CD−RW等のCD系ディスク、あるいはDVD−ROM、DVD−R、等のDVD系ディスク等の光ディスク、あるいはMO、MD等の光磁気ディスク等、種々のディスクが存在する。これらディスクは、例えばポリカーボネート等の素材からなる基板に対して、スパッタ法、スピンコート法等の種々の方法を用いて薄膜を積層することによって製造されている。
【0003】
一般に、これらディスクの素材となる基板は、その供給時において、すでに中央部に貫通穴が形成されている。以降の薄膜形成工程では、通常この中央穴を用いて、成膜装置等への搬入および搬出、および成膜装置等における基板の位置決め等、のハンドリングが行われる。しかしながら、この中央穴の存在は、成膜時において、例えば基板上における薄膜の膜厚あるいは膜質の分布を低下させる恐れがある。このために、一般的には、中央穴に対してキャップ等をかぶせ、その存在が成膜工程に与える影響を極力小さくした状態での成膜が行われる。
【0004】
例えば、DVD系のディスク製造時においては、スピンコート法を用いて紫外線硬化樹脂からなる薄膜が、その構成膜の一つとして形成される。具体的には、まず、回転可能なテーブル上に、その中心とテーブルの回転中心とを一致させるように基板が搭載される。このため、中央穴を貫通するような回転軸を用いる、あるいはテーブルの回転中心に対して同心状に固定されるキャップをディスクの中心穴に配置する等の操作によって、基板のテーブルに対する位置決めと固定が為される。
【0005】
次に、回転中のディスクに対して、中心穴近傍あるいはキャップ端部からディスク外周に向けて、連続的に樹脂の滴下が為される。滴下された樹脂は、ディスクの回転に伴う遠心力により拡散され、その結果基板表面上に樹脂薄膜の形成が行われる。
【0006】
この場合、回転中心より外れた位置に樹脂の滴下を行わざるを得ないため、このことに起因した膜厚の分布が生じていた。しかし、現在、一般的に記録の読み取り等に用いられている赤色レーザー光は、比較的波長が長いためにこの分布は許容し得る範囲のものであった。なお、今後、光ディスクの記録密度をより高めるために、波長の短い例えば青色レーザー光を用いた場合には、より均一性の高い薄膜を得ることが必要となる。
【0007】
また、反射膜等に用いられる金属薄膜等は、スパッタ法を用いて形成される。当該方法においては、円形状基板は、中央穴部分とその外周部分が治具によって覆われた形で、真空容器中でターゲット正面に固定、保持される。一般的には、このターゲットに対してある電圧が与えられ、これによってターゲットと基板との間に放電が発生し、プラズマが生じる。当該プラズマ中のイオンによってターゲット表面のターゲット構成元素がスパッタされ、このスパッタ粒子が基板表面に付着することによって膜形成が行われる。
【0008】
その際、基板表面に対して基板固定用の治具が接触した場合、膜形成時に薄膜と治具との間で異常放電を発生する場合がある。これは、放電によって薄膜中あるいは治具表面に蓄えられた電荷が、軸と膜面との接触点から放出されることによる。また、治具が放電空間に張り出すと、その存在によって電界をゆがめ、その結果膜厚分布に対しても影響を与える場合が生じる。このため、基板表面と治具とは常に一定の微少間隔を空けて保持されることが好ましく、可能であれば治具自体を用いないことが好ましい。
【0009】
本出願人は、以上の課題を解決する手段として、すなわち当該スピンコート法を用いる工程において膜厚分布をより改善する方法として、中央部に穴を設けない基板を用いた製造工程を提案している。当該基板を用いた場合、スパッタ時に基板固定に用いる治具が減少することから、基板表面と治具との間隔の一定保持が容易となり、異常放電の低減も容易となると考えられる。
【0010】
【発明が解決しようとする課題】
スパッタ法においては、放電をターゲットと基板との間で安定且つ均一に維持するために、接地電位となる対向電極がターゲット表面に平行に配置されることが好ましい。従って、接地電位となる基板ホルダは、ターゲット表面に対向して配置されており、さらに、放電空間における電場を乱さないように、基板裏面が基板ホルダ表面に密着していることが好ましい。
【0011】
また、通常スパッタ時にイオン等の入射あるいはプラズマからの放射熱によって、基板温度は上昇する。基板の素材として用いられるポリカーボネートは熱に弱いため、スパッタ時に基板の上昇を抑える必要がある。一般的には、水冷等された基板ホルダに基板裏面を密着させることで、この温度上昇を抑えることとしている。
【0012】
しかしながら、基板に中央穴が存在しない場合、単純に基板外周のみを固定するだけでは、基板ホルダに対して基板を密着させておくことは困難と思われる。本発明は、このような場合に対処するために案出されてものであり、中央穴が存在しない円板状基板をホルダに対して安定して密着させ得るチャッキング方法を提供するものである。また、当該チャッキング方法を具現化したスパッタ装置、および当該スパッタ装置を用いたディスク状記録媒体の製造方法を提供するものである。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るスパッタ装置は、裏面中央に突起部を有する円板状の基板を用い、真空容器中において基板表面に膜形成を行うスパッタ装置であって、基板裏面と密着する平坦面からなる基板受け部と、基板受け部中央に設けられた、突起部が収容される凹部とを有し、凹部には、突起部を固定支持する固定手段が配置されることを特徴としている。
【0014】
なお、当該スパッタ装置においては、基板裏面中央の突起部は、基板裏面から離れるに従ってその径が大きくなる様な円錐の一部を構成する略円柱状の形状を有し、固定手段は、ボールプランジャーからなることが好ましい。さらに、当該スパッタ装置は、平坦面外周において、基板表面の外周を覆うマスクを支持するマスク受け部をさらに有し、マスク受け部は磁力により前記マスクを支持することが好ましい。
【0015】
また、上記課題を解決するために、本発明に係るチャッキング方法は、裏面中央に略円柱状の突起部を有する円板状の基板を用い、真空容器中において基板表面に膜形成を行うスパッタ装置における基板のチャッキング方法であって、
突起部を円筒状の内面を有する凹部に挿入し、凹部に配置された固定手段によって、突起部の軸心を凹部の軸心と一致させるように固定すると共に、突起部を凹部に対する挿入方向に向けて付勢し、基板裏面を凹部周囲に形成された平坦面に密着させることを特徴としている。
【0016】
なお、当該チャッキング方法においては、基板裏面中央の突起部は、基板裏面から離れるに従ってその径が大きくなる様な円錐の一部を構成する略円柱状の形状を有し、固定手段は、ボールプランジャーからなることが好ましい。さらに、当該チャッキング方法においては、基板裏面を平坦面に密着させた後、磁力により平坦面外周に基板表面の外周を覆うマスクを固定することが好ましい。
【0017】
また、上記課題を解決するために、本発明に係るディスク状記録媒体の製造方法は、裏面中央部に略円柱状の突起部を有するディスク状の基板を用い、突起部を、基板を保持する基板受け部に設けられた円筒状の内面を有する凹部に挿入し、凹部に配置された固定手段によって、突起部の軸心を凹部の軸心と一致させるように固定すると共に、突起部を凹部に対する挿入方向に向けて付勢し、基板裏面を凹部周囲に形成された基板受け部である平坦面に密着させ、基板およびマスクをターゲットと正対させ、基板表面とターゲットとの間にプラズマを発生させてターゲットをスパッタすることにより基板表面にターゲットの構成元素を主成分とする薄膜を形成することを特徴としている。
【0018】
なお、当該製造方法においては、基板裏面中央の突起部は、基板裏面から離れるに従ってその径が大きくなる様な円錐の一部を構成する略円柱状の形状を有し、固定手段は、ボールプランジャーからなることが好ましい。さらに、当該製造方法においては、基板裏面を平坦面に密着させた後、磁力により平坦面外周に基板表面の外周を覆うマスクを固定することが好ましい。
【0019】
【実施例】
本発明に係る基板のチャッキング方法について以下に詳述する。当該チャッキング方法を行い得るスパッタ装置に関し、基板ホルダを有する真空側搬送アームの略断面図と、当該真空側搬送アームに略正対して、当該基板ホルダとの間で基板の受け渡しを行う大気側搬送アームの略断面図とを図1に示す。また、これら構成によって基板の受け渡しが行われた状態の略断面図を図2に、図2におけるA部の拡大図を図3に、B部の拡大図を図4に、図5における断面5−5を基板方向から見た図を図5にそれぞれ示す。
【0020】
本発明において用いられる基板10は、成膜面の裏面中央部に突起部11が形成されている。当該突起部は基板中心とその軸心が一致し、且つその径が基板から離れるに従って拡大する円錐の一部を構成する形状を有している。真空側搬送アーム20における基板ホルダ21は、基板裏面に対応する基板受け部22と、その外周に配置されたマスク受け部26とから構成される。基板受け部22は、略円形の平坦面とその中央に設けられた内面が円筒形状となる凹部23とを有している。
【0021】
図4および図5に示すように、凹部23には、その円筒の軸心とは垂直となる方向に駆動する様に設けられたボールプランジャ24が、該軸心を中心として3方向等配に配置されている。基板ホルダ21が基板10を保持する際には、基板裏面の突起部11はこの凹部23に挿入され、固定手段であるボールプランジャ24によって固定、支持される。その際、ボールプランジャ24は、スプリング25による付勢力の作用により、基板突起部11の軸心と凹部23の軸心とが一致するように支持される。
【0022】
ボールプランジャ24と接触する突起部11は基板裏面に近づくに従って径が細くなる形状を有するため、ボールプランジャ24より受ける押しつけ力によって、該突起部11は凹部23の奥方向(突起部の挿入方向)に向かって押し込まれることとなる。この挿入方向に基板10を押し込む作用によって、基板裏面は、基板受け部22として形成された略円形の平坦面に密着し、保持される。また、基板受け部22は水冷等によって温度制御が為されており、基板裏面がこれに密着することによって同時に基板10の温度制御も為されることとなる。
【0023】
マスク15は、リング状の形状を有しており、その内周部には基板の外周端部を覆うためにマスク鍔部16が張り出している。当該マスク鍔部16は、これを支持するマスク本体17と基板11とが、スパッタリングによる成膜時に異常放電を起こさないような充分な間隔をあけられる幅であることを要する。また、成膜時に電界に及ぼす影響を極力小さくするためにその内周端部にはテーパー部が設けられている。
【0024】
また、マスク鍔部16の内周端部は、基板10の表面との間で、スパッタリングによる成膜時における異常放電の発生を防止するために所定値以下の微少間隔を空け、且つこれらの接触を避ける必要がある。このため、マスク受け部26においてマスク15を支持する際に、これら要件を満たすように、マスク本体17の厚さおよびマスク鍔部16の厚さ、あるいはマスク15の支持方法等を放電条件に応じて定めることを要する。
【0025】
本実施例においては、マスク受け部26に位置された不図示のマグネットによって、マスク受け部26に密着してマスク15は固定、支持される。このため、マスク本体17およびマスク鍔部16の厚さの調節によって、前述の要件を満たす構成としている。
【0026】
大気側搬送アーム30は、基板をその表面の中央部において吸着、保持する吸着軸31と、マスクをその表面において位置決めし且つこれを保持するマスク保持部33とを有している。吸着軸31およびマスク保持部33は大気側搬送アーム30に固定されているが、マスク15に対して磁力を及ぼしこれをマスク保持部に吸着させるマグネット35は、大気側搬送アーム30に対して駆動可能となっている。
【0027】
大気側搬送アーム30に保持された基板10を、真空側搬送アーム20に受け渡す際の動作について以下に述べる。まず、基板10およびマスク15を保持しない真空側搬送アーム20と、吸着軸31およびマスク保持部33によって基板10およびマスク15を所定位置に保持した大気側搬送アーム30とが正対する。この状態で、大気側搬送アーム30が真空側搬送アーム20に近づき、所定間隔となった状態で停止する。その際、基板突起部11は、真空側搬送アーム20における基板受け部22の凹部23に挿入され、その先端がボールプランジャ24よりも凹部の奥に位置した状態となる。
【0028】
ここで、吸着軸31による基板10の保持を解除すると、ボールプランジャ24による付勢力によって、基板突起部11はその挿入方向に押し込まれ、基板裏面が基板受け部22の平坦面に密着した状態で固定、保持される。次に、大気側搬送アーム30のマグネット35が退避し、マスク15がマスク保持部33から脱離可能となる。この状態で、すでに、マスク15に対してマスク受け部26における不図示のマグネットからの磁力が働いているために、マスク15はその姿勢を変えることなくマスク受け部26に吸着、保持される。
【0029】
その後、大気側搬送アーム30は退避し、新たに不図示のターゲット保持ユニットが真空側搬送アーム20に対して所定位置に正対し、真空側搬送アーム20と組み合わせられてスパッタ成膜室を構成し、成膜プロセスが実行される。成膜プロセス終了後、ターゲット保持ユニットの退避、大気側搬送アーム30の真空側搬送アーム20に対する正対が順次行われ、上述の基板10の受け渡しとは逆の手順によって、真空側搬送アーム20から大気側搬送アーム30への基板10の受け渡しが行われる。
【0030】
以上の構成の採用により、中央穴を有さない基板を用いても、接地電位となる基板ホルダ21をターゲット表面に対向して配置し、且つ基板裏面を基板ホルダ表面すなわち基板受け部26表面に密着させることが可能となる。また、水冷等された基板受け部26表面に基板裏面を密着させることで、スパッタ時における基板の温度上昇を抑えることが可能なる。さらに、マスク内周端部と基板表面との間隔を所定値とすることが容易となり異常放電等を減少させることが可能となる。
【0031】
なお、本実施例においては、ボールプランジャ24の作用方向は凹部23の軸心と垂直の方向としているが、本発明はこれに限定されず、軸心の方向と異なる方向に作用することとすればよい。また、一つの凹部23に対して三個のボールプランジャ24を配置しているが、突起部11を凹部中心に固定、支持することが可能であれば、その個数は三個に限られない。また、突起部11の固定、保持にボールプランジャを用いているが、同様の作用を有するものであれば、当該構成はボールプランジャに限定されない。
【0032】
また、単にボールプランジャの作用によってのみ基板を挿入方向に押し込むのではなく、凹部に連通する排気ポートを設け、大気中で大気側搬送アームから真空側搬送アームに基板を受け渡す際に、基板を一時的に真空吸着する構成としても良い。また、基板裏面に設けられた突起部は、基板裏面から離れるに従ってその径が大きくなる、軸方向の断面が台形となる形状を有しているが、前述の真空吸着等によって基板裏面を基板受け部の平坦面に密着可能であれば、当該形状に限定されない。例えば、円筒状の突起、あるいは略円筒状の突起であってボールプランジャの先端が僅かにはまる凹部が設けられたもの等、ボールプランジャによって固定可能となるであろう種々の形状を突起部に対して用いることが可能である。
【0033】
また、本発明は、単に光ディスク等の製造方法として用いられるだけでなく、中央部の除去工程が後に施される製品、例えばハードディスク等、円板状の部材全ての製造工程に対しても適応可能である。
【0034】
【本発明の効果】
本発明の実施により、中央穴が存在しない円板状基板をホルダに対して安定して密着させて、保持することが可能となる。これにより、スピンコート法による成膜工程だけでなく、スパッタ法による成膜工程において中央穴が存在しない円板状基板に対して薄膜形成を行うことが可能となり、膜厚、膜質の均一性がより高い薄膜を得ることが可能となる。また、スパッタ法おける基板の保持部品を減らすことにより、成膜工程における異常放電の低減を図ることが可能となる。
【図面の簡単な説明】
【図1】 真空側搬送アームと大気側搬送アームとが略正対した状態における両者の断面における概略構成を示す図である。
【図2】図1に示した真空側搬送アームと大気側搬送アームとにおいて基板を受け渡す際の状態を示す図である。
【図3】図2におけるA部を拡大して示す図である。
【図4】図2におけるB部を拡大して示す図である。
【図5】図4における線5−5における断面を基板側から見た状態を示す図である。
【符号の説明】
10: 基板、
11: 突起部、
15: マスク、
16: マスク鍔部、
17: マスク本体、
20: 真空側搬送アーム、
21: 基板ホルダ、
22: 基板受け部、
23: 凹部、
24: ボールプランジャ、
25: スプリング、
26: マスク受け部、
30: 大気側搬送アーム、
31: 吸着軸、
33: マスク保持部、
35: マグネット、
[0001]
[Field of the Invention]
The present invention relates to a sputtering apparatus for forming a thin film on a disk-shaped substrate, and more particularly, when a thin film is formed using the apparatus, the disk-shaped substrate used in the apparatus is chucked. The mechanism relates to a chucking method. The present invention also relates to a method for manufacturing a disk-shaped recording medium, in which a disk-shaped recording medium such as a so-called optical disk is manufactured using the sputtering apparatus.
[0002]
[Prior art]
Recording media manufactured by forming various thin films on a disk-shaped substrate, particularly those having a disk shape, such as CD-based disks such as CD, CD-R, CD-RW, or DVD- There are various disks such as optical disks such as DVD-based disks such as ROM and DVD-R, and magneto-optical disks such as MO and MD. These discs are manufactured by laminating thin films on a substrate made of a material such as polycarbonate by using various methods such as sputtering and spin coating.
[0003]
Generally, a substrate serving as a material for these discs already has a through-hole formed in the central portion at the time of supply. In the subsequent thin film forming process, handling such as carrying in and out of the film forming apparatus or the like and positioning of the substrate in the film forming apparatus or the like is usually performed using this central hole. However, the presence of the central hole may reduce the film thickness or film quality distribution on the substrate during film formation. Therefore, in general, film formation is performed in a state where a cap or the like is placed over the central hole and the influence of the presence on the film formation process is minimized.
[0004]
For example, when manufacturing a DVD-based disk, a thin film made of an ultraviolet curable resin is formed as one of the constituent films by using a spin coating method. Specifically, first, a substrate is mounted on a rotatable table so that the center thereof coincides with the rotation center of the table. For this reason, positioning and fixing the substrate to the table by using a rotating shaft that penetrates the center hole or by placing a cap fixed concentrically to the center of rotation of the table in the center hole of the disk. Is done.
[0005]
Next, the resin is continuously dropped onto the rotating disk from the vicinity of the center hole or from the end of the cap toward the outer periphery of the disk. The dropped resin is diffused by the centrifugal force accompanying the rotation of the disk, and as a result, a resin thin film is formed on the substrate surface.
[0006]
In this case, since the resin must be dropped at a position deviating from the rotation center, a film thickness distribution resulting from this has occurred. However, at present, the red laser light that is generally used for reading a record or the like has a relatively long wavelength, and thus this distribution is within an acceptable range. In the future, in order to further increase the recording density of the optical disk, it is necessary to obtain a thin film with higher uniformity when, for example, blue laser light having a short wavelength is used.
[0007]
Moreover, the metal thin film etc. which are used for a reflecting film etc. are formed using a sputtering method. In this method, the circular substrate is fixed and held on the front surface of the target in the vacuum container in a form in which the central hole portion and the outer peripheral portion thereof are covered with a jig. In general, a certain voltage is applied to the target, whereby a discharge is generated between the target and the substrate, and plasma is generated. A target constituent element on the target surface is sputtered by ions in the plasma, and the sputtered particles adhere to the substrate surface to form a film.
[0008]
At that time, when a substrate fixing jig comes into contact with the substrate surface, abnormal discharge may occur between the thin film and the jig during film formation. This is because the electric charge stored in the thin film or the jig surface by discharge is discharged from the contact point between the shaft and the film surface. Further, when the jig protrudes into the discharge space, the electric field is distorted due to the presence thereof, and as a result, the film thickness distribution may be affected. For this reason, it is preferable that the substrate surface and the jig are always held at a certain minute interval, and if possible, it is preferable not to use the jig itself.
[0009]
The present applicant has proposed a manufacturing process using a substrate that does not have a hole in the center as a means for solving the above problems, that is, as a method for further improving the film thickness distribution in the process using the spin coating method. Yes. When the substrate is used, the number of jigs used for fixing the substrate during sputtering decreases, so that it is easy to maintain a constant distance between the substrate surface and the jig and to reduce abnormal discharge.
[0010]
[Problems to be solved by the invention]
In the sputtering method, in order to maintain a stable and uniform discharge between the target and the substrate, it is preferable that a counter electrode having a ground potential is arranged in parallel to the target surface. Therefore, it is preferable that the substrate holder having the ground potential is disposed to face the target surface, and that the back surface of the substrate is in close contact with the substrate holder surface so as not to disturb the electric field in the discharge space.
[0011]
In addition, the substrate temperature rises due to the incidence of ions or the like or the radiant heat from plasma during normal sputtering. Since polycarbonate used as a substrate material is vulnerable to heat, it is necessary to suppress the rise of the substrate during sputtering. Generally, the temperature rise is suppressed by bringing the back surface of the substrate into close contact with a substrate holder that is cooled with water or the like.
[0012]
However, when there is no central hole in the substrate, it seems difficult to keep the substrate in close contact with the substrate holder by simply fixing only the outer periphery of the substrate. The present invention has been devised to cope with such a case, and provides a chucking method capable of stably bringing a disc-shaped substrate having no central hole into contact with a holder. . The present invention also provides a sputtering apparatus embodying the chucking method and a method for manufacturing a disk-shaped recording medium using the sputtering apparatus.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, a sputtering apparatus according to the present invention is a sputtering apparatus that uses a disk-shaped substrate having a protrusion at the center of the back surface and forms a film on the surface of the substrate in a vacuum vessel. A substrate receiving portion comprising a flat surface closely contacting the substrate and a recess provided in the center of the substrate receiving portion for receiving the protrusion, and a fixing means for fixing and supporting the protrusion is disposed in the recess. It is characterized by.
[0014]
In the sputtering apparatus, the protrusion at the center of the back surface of the substrate has a substantially cylindrical shape that forms part of a cone whose diameter increases as the distance from the back surface of the substrate increases. Preferably it consists of a jar. Furthermore, it is preferable that the sputtering apparatus further includes a mask receiving portion that supports a mask covering the outer periphery of the substrate surface on the outer periphery of the flat surface, and the mask receiving portion supports the mask by a magnetic force.
[0015]
In order to solve the above problems, the chucking method according to the present invention uses a disk-shaped substrate having a substantially cylindrical protrusion at the center of the back surface, and performs sputtering to form a film on the substrate surface in a vacuum vessel. A method for chucking a substrate in an apparatus, comprising:
The protruding portion is inserted into a concave portion having a cylindrical inner surface, and fixed by the fixing means arranged in the concave portion so that the axis of the protruding portion is aligned with the axis of the concave portion, and the protruding portion is inserted in the insertion direction with respect to the concave portion. It is characterized in that the back surface of the substrate is brought into close contact with a flat surface formed around the recess.
[0016]
In the chucking method, the protrusion at the center of the back surface of the substrate has a substantially cylindrical shape that forms a part of a cone whose diameter increases as the distance from the back surface of the substrate increases. It preferably consists of a plunger. Further, in the chucking method, it is preferable that after the back surface of the substrate is brought into close contact with the flat surface, a mask covering the outer periphery of the substrate surface is fixed to the outer periphery of the flat surface by a magnetic force.
[0017]
In order to solve the above problems, a method for manufacturing a disk-shaped recording medium according to the present invention uses a disk-shaped substrate having a substantially cylindrical protrusion at the center of the back surface, and holds the substrate with the protrusion. The projection is inserted into a recess having a cylindrical inner surface provided in the substrate receiving portion, and fixed by the fixing means disposed in the recess so that the axis of the projection coincides with the axis of the recess. Energized toward the insertion direction with respect to the substrate, the back surface of the substrate is brought into close contact with the flat surface that is the substrate receiving portion formed around the recess, the substrate and the mask are directly opposed to the target, and plasma is generated between the substrate surface and the target. A thin film mainly containing a constituent element of the target is formed on the substrate surface by generating and sputtering the target.
[0018]
In this manufacturing method, the protrusion at the center of the back surface of the substrate has a substantially cylindrical shape that forms a part of a cone whose diameter increases as the distance from the back surface of the substrate increases. Preferably it consists of a jar. Further, in the manufacturing method, it is preferable that after the back surface of the substrate is brought into close contact with the flat surface, a mask covering the outer periphery of the substrate surface is fixed to the outer periphery of the flat surface by a magnetic force.
[0019]
【Example】
The substrate chucking method according to the present invention will be described in detail below. Regarding a sputtering apparatus capable of performing the chucking method, a schematic cross-sectional view of a vacuum-side transfer arm having a substrate holder, and an atmosphere side that transfers the substrate to and from the substrate holder substantially facing the vacuum-side transfer arm A schematic cross-sectional view of the transfer arm is shown in FIG. FIG. 2 is a schematic cross-sectional view of a state where the substrate is transferred by these configurations, FIG. 3 is an enlarged view of a portion A in FIG. 2, FIG. 4 is an enlarged view of a B portion, and FIG. The figure which looked at -5 from the board | substrate direction is shown in FIG.
[0020]
The substrate 10 used in the present invention has a protrusion 11 formed at the center of the back surface of the film formation surface. The protrusion has a shape that forms part of a cone whose center is aligned with the center of the substrate and whose diameter increases as the distance from the substrate increases. The substrate holder 21 in the vacuum side transfer arm 20 includes a substrate receiving portion 22 corresponding to the back surface of the substrate and a mask receiving portion 26 disposed on the outer periphery thereof. The substrate receiving part 22 has a substantially circular flat surface and a concave part 23 having a cylindrical inner surface provided at the center thereof.
[0021]
As shown in FIGS. 4 and 5, ball plungers 24 are provided in the recess 23 so as to be driven in a direction perpendicular to the axial center of the cylinder. Has been placed. When the substrate holder 21 holds the substrate 10, the protrusion 11 on the back surface of the substrate is inserted into the recess 23 and fixed and supported by a ball plunger 24 that is a fixing means. At that time, the ball plunger 24 is supported by the action of the urging force of the spring 25 so that the axis of the substrate projection 11 and the axis of the recess 23 coincide.
[0022]
Since the protrusion 11 that comes into contact with the ball plunger 24 has a shape that decreases in diameter as it approaches the back surface of the substrate, the protrusion 11 is pushed inward by the pressing force received from the ball plunger 24 (the insertion direction of the protrusion). Will be pushed toward. By the action of pushing the substrate 10 in this insertion direction, the back surface of the substrate is brought into close contact with and held by a substantially circular flat surface formed as the substrate receiving portion 22. Further, the temperature of the substrate receiving portion 22 is controlled by water cooling or the like, and the temperature of the substrate 10 is also controlled at the same time when the back surface of the substrate is in close contact with the substrate receiving portion 22.
[0023]
The mask 15 has a ring shape, and a mask flange 16 projects from the inner periphery of the mask 15 to cover the outer periphery of the substrate. The mask flange 16 needs to have a width that allows the mask main body 17 and the substrate 11 supporting the mask flange 16 to have a sufficient interval so as not to cause abnormal discharge during film formation by sputtering. Further, in order to minimize the influence on the electric field during film formation, a taper portion is provided at the inner peripheral end portion.
[0024]
Further, the inner peripheral end of the mask flange 16 is spaced from the surface of the substrate 10 with a minute interval equal to or less than a predetermined value in order to prevent the occurrence of abnormal discharge during film formation by sputtering. Need to avoid. For this reason, when the mask 15 is supported by the mask receiving portion 26, the thickness of the mask body 17 and the thickness of the mask flange 16 or the support method of the mask 15 are determined according to the discharge conditions so as to satisfy these requirements. Need to be determined.
[0025]
In this embodiment, the mask 15 is fixed and supported in close contact with the mask receiving portion 26 by a magnet (not shown) positioned in the mask receiving portion 26. For this reason, it is set as the structure which satisfy | fills the above-mentioned requirements by adjusting the thickness of the mask main body 17 and the mask collar part 16. FIG.
[0026]
The atmosphere-side transfer arm 30 has a suction shaft 31 that sucks and holds the substrate at the center of the surface thereof, and a mask holding portion 33 that positions and holds the mask on the surface. Although the suction shaft 31 and the mask holding unit 33 are fixed to the atmosphere-side transfer arm 30, the magnet 35 that applies a magnetic force to the mask 15 and attracts it to the mask holding unit is driven with respect to the atmosphere-side transfer arm 30. It is possible.
[0027]
The operation when the substrate 10 held by the atmosphere-side transfer arm 30 is transferred to the vacuum-side transfer arm 20 will be described below. First, the vacuum-side transfer arm 20 that does not hold the substrate 10 and the mask 15 and the atmosphere-side transfer arm 30 that holds the substrate 10 and the mask 15 at predetermined positions by the suction shaft 31 and the mask holding unit 33 face each other. In this state, the atmosphere-side transfer arm 30 approaches the vacuum-side transfer arm 20 and stops at a predetermined interval. At that time, the substrate protrusion 11 is inserted into the recess 23 of the substrate receiving portion 22 in the vacuum-side transfer arm 20, and the tip thereof is positioned behind the recess than the ball plunger 24.
[0028]
Here, when the holding of the substrate 10 by the suction shaft 31 is released, the urging force of the ball plunger 24 pushes the substrate protruding portion 11 in the insertion direction, and the substrate back surface is in close contact with the flat surface of the substrate receiving portion 22. Fixed and held. Next, the magnet 35 of the atmosphere-side transfer arm 30 is retracted, and the mask 15 can be detached from the mask holding unit 33. In this state, since the magnetic force from a magnet (not shown) in the mask receiving portion 26 has already acted on the mask 15, the mask 15 is attracted and held by the mask receiving portion 26 without changing its posture.
[0029]
Thereafter, the atmosphere-side transfer arm 30 is retracted, and a new target holding unit (not shown) directly faces a predetermined position with respect to the vacuum-side transfer arm 20, and is combined with the vacuum-side transfer arm 20 to form a sputter deposition chamber. Then, a film forming process is executed. After completion of the film formation process, the target holding unit is retracted, and the air-side transfer arm 30 is directly opposed to the vacuum-side transfer arm 20, and the vacuum-side transfer arm 20 is moved in the reverse order to the delivery of the substrate 10 described above. The substrate 10 is transferred to the atmosphere-side transfer arm 30.
[0030]
By adopting the above configuration, even when a substrate having no central hole is used, the substrate holder 21 that is at the ground potential is arranged to face the target surface, and the back surface of the substrate is placed on the substrate holder surface, that is, the surface of the substrate receiving portion 26. It becomes possible to make it adhere. Further, by bringing the back surface of the substrate into close contact with the surface of the substrate receiving portion 26 that is cooled with water or the like, it is possible to suppress the temperature rise of the substrate during sputtering. In addition, the distance between the inner peripheral edge of the mask and the substrate surface can be easily set to a predetermined value, and abnormal discharge or the like can be reduced.
[0031]
In this embodiment, the action direction of the ball plunger 24 is a direction perpendicular to the axis of the recess 23, but the present invention is not limited to this, and it is assumed that it acts in a direction different from the direction of the axis. That's fine. Three ball plungers 24 are arranged for one recess 23, but the number is not limited to three as long as the protrusion 11 can be fixed and supported at the center of the recess. Further, although the ball plunger is used for fixing and holding the protruding portion 11, the configuration is not limited to the ball plunger as long as it has a similar action.
[0032]
Also, instead of simply pushing the substrate in the insertion direction only by the action of the ball plunger, an exhaust port communicating with the recess is provided, and the substrate is transferred when the substrate is transferred from the atmosphere-side transfer arm to the vacuum-side transfer arm in the atmosphere. It is good also as a structure which carries out vacuum suction temporarily. In addition, the protrusion provided on the back surface of the substrate has a shape in which the diameter increases as the distance from the back surface of the substrate increases, and the axial cross section has a trapezoidal shape. The shape is not limited to the above as long as it can adhere to the flat surface of the part. For example, various protrusions that can be fixed by the ball plunger, such as a cylindrical protrusion, or a substantially cylindrical protrusion that is provided with a recess in which the tip of the ball plunger slightly fits the protrusion. Can be used.
[0033]
Further, the present invention is not only used as a manufacturing method of an optical disk etc., but can be applied to a manufacturing process of all disc-shaped members such as a hard disk or the like after a removal process of the central portion. It is.
[0034]
[Effect of the present invention]
By carrying out the present invention, it becomes possible to stably hold a disc-shaped substrate having no central hole in close contact with the holder. As a result, it becomes possible to form a thin film on a disk-shaped substrate having no central hole in a film forming process by a sputtering method as well as a film forming process by a spin coating method. A higher thin film can be obtained. Further, by reducing the number of substrate holding parts in the sputtering method, it is possible to reduce abnormal discharge in the film forming process.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration in a cross section of a vacuum side transfer arm and an atmosphere side transfer arm in a state where the vacuum side transfer arm and an atmosphere side transfer arm are substantially facing each other.
2 is a diagram showing a state when a substrate is delivered between the vacuum side transfer arm and the atmosphere side transfer arm shown in FIG. 1; FIG.
FIG. 3 is an enlarged view showing a part A in FIG. 2;
4 is an enlarged view of a portion B in FIG. 2. FIG.
5 is a view showing a cross section taken along line 5-5 in FIG. 4 as viewed from the substrate side.
[Explanation of symbols]
10: substrate,
11: protrusion,
15: Mask,
16: Mask buttocks,
17: Mask body,
20: Vacuum side transfer arm,
21: substrate holder,
22: Substrate receiving part,
23: recess,
24: Ball plunger,
25: Spring,
26: Mask receiving part,
30: Atmosphere side transfer arm,
31: adsorption axis,
33: Mask holding part,
35: Magnet,

Claims (12)

裏面中央に突起部を有する円板状の基板を用い、真空容器中において前記基板表面に膜形成を行うスパッタ装置であって、
前記基板裏面と密着する平坦面からなる基板受け部と、
前記基板受け部中央に設けられた、前記突起部が収容される凹部と、を有して前記真空容器中にて前記基板を保持する真空側搬送アームであって、
前記凹部には、前記突起部を固定支持するボールプランジャーからなる固定手段が配置される真空側搬送アームと
前記基板の表面中央部を保持して前記基板を前記真空側搬送アームに受け渡す大気側搬送アームと、を有し、
前記基板裏面中央の突起部は、基板裏面から離れるに従ってその径が大きくなる様な円錐の一部を構成する略円柱状の形状を有し、
前記固定手段は前記突起部と協働して前記突起部を前記凹部に対して押し込む作用を呈し、
前記大気側搬送アームは、前記真空側搬送アームに前記基板を受け渡す際に、前記真空側搬送アームと所定間隔離れて停止した状態にて、前記固定手段と前記突起部との協働による作用を利用して前記基板受け面に前記基板を移送することを特徴とするスパッタ装置。
A sputtering apparatus that uses a disk-shaped substrate having a protrusion at the center of the back surface and forms a film on the surface of the substrate in a vacuum vessel,
A substrate receiving portion comprising a flat surface in close contact with the substrate back surface;
A vacuum-side transfer arm that holds the substrate in the vacuum container , and has a recess provided in the center of the substrate receiving portion, in which the protrusion is accommodated .
In the recess, and the vacuum-side transfer arm securing means comprising a ball plunger for fixing and supporting the projection is Ru is disposed,
An atmosphere-side transfer arm that holds the surface center portion of the substrate and transfers the substrate to the vacuum-side transfer arm;
The protrusion at the center of the back surface of the substrate has a substantially cylindrical shape that constitutes a part of a cone whose diameter increases as the distance from the back surface of the substrate increases.
It said fixing means caused a acts to push against the recess of the protrusion cooperates with the protrusion,
When the atmosphere-side transfer arm delivers the substrate to the vacuum-side transfer arm, the air-side transfer arm is stopped by a predetermined distance from the vacuum-side transfer arm and acts by the cooperation of the fixing means and the protrusion. A sputtering apparatus , wherein the substrate is transferred to the substrate receiving surface by using a substrate .
前記ボールプランジャーは前記突起部の軸心を中心として等配に配置されていることを特徴とする請求項1記載の装置。 Said ball plunger device of claim 1, wherein that you have disposed equidistantly about an axis of the protrusion. 前記固定手段は、前記凹部に連通する排気ポートを更に有し、前記基板を前記大気側搬送アームから前記真空側搬送アームに受け渡す際に真空吸着による作用を加味することを特徴とする請求項1記載の装置。The fixing means further includes an exhaust port communicating with the recess, and takes into account the action of vacuum adsorption when the substrate is transferred from the atmosphere-side transfer arm to the vacuum-side transfer arm. The apparatus according to 1. 前記平坦面外周において、前記基板表面の外周を覆うマスクを支持するマスク受け部をさらに有し、前記マスク受け部は磁力により前記マスクを支持することを特徴とする請求項1乃至3何れかに記載の装置。  4. The apparatus according to claim 1, further comprising a mask receiving portion that supports a mask covering the outer periphery of the substrate surface on the outer periphery of the flat surface, and the mask receiving portion supports the mask by a magnetic force. The device described. 裏面中央に略円柱状の突起部を有する円板状の基板を用い、真空容器中において基板表面に膜形成を行うスパッタ装置における前記基板のチャッキング方法であって、
前記基板裏面中央の突起部は、基板裏面から離れるに従ってその径が大きくなる様な円錐の一部を構成する略円柱状の形状を有し、
前記突起部を円筒状の内面を有する凹部に挿入し、
前記基板の表面中央部を保持する大気側搬送アームは前記真空容器中にて前記基板を前記基板の裏面側より保持する真空側搬送アームに対して所定間隔保持して正対させ、
前記正対した状態において、前記凹部に配置されたボールプランジャーからなる固定手段によって、前記突起部の軸心を前記凹部の軸心と一致させるように固定すると共に、前記固定手段と前記突起部とが協働することによって前記突起部を前記凹部に対する挿入方向に向けて付勢し、
前記基板裏面を前記凹部周囲に形成された平坦面に密着させることを特徴とするチャッキング方法。
A method of chucking the substrate in a sputtering apparatus that uses a disk-shaped substrate having a substantially cylindrical protrusion at the center of the back surface and forms a film on the substrate surface in a vacuum vessel,
The protrusion at the center of the back surface of the substrate has a substantially cylindrical shape that constitutes a part of a cone whose diameter increases as the distance from the back surface of the substrate increases.
Inserting the protrusion into a recess having a cylindrical inner surface;
The atmosphere-side transfer arm that holds the front surface center portion of the substrate is held in a predetermined interval with the vacuum-side transfer arm that holds the substrate from the back side of the substrate in the vacuum container,
In the face-to-face state, the fixing means made of a ball plunger disposed in the concave portion fixes the axial center of the protruding portion so as to coincide with the axial center of the concave portion, and the fixing means and the protruding portion , And urge the protrusion toward the insertion direction with respect to the recess,
A chucking method, wherein the back surface of the substrate is brought into close contact with a flat surface formed around the recess.
前記ボールプランジャーは前記突起部の軸心を中心として等配に配置されていることを特徴とする請求項5記載の方法。  The method according to claim 5, wherein the ball plungers are arranged equidistantly about the axis of the protrusion. 前記固定手段は、前記凹部に連通する排気ポートを更に有し、前記基板を前記大気側搬送アームから前記真空側搬送アームに受け渡す際に真空吸着による作用を加味することを特徴とする請求項5記載の方法。The fixing means further includes an exhaust port communicating with the recess, and takes into account the action of vacuum adsorption when the substrate is transferred from the atmosphere-side transfer arm to the vacuum-side transfer arm. 5. The method according to 5. 前記基板裏面を前記平坦面に密着させた後、磁力により前記平坦面外周に前記基板表面の外周を覆うマスクを固定することを特徴とする請求項5乃至7何れかに記載の方法。  The method according to claim 5, wherein after the back surface of the substrate is brought into close contact with the flat surface, a mask covering the outer periphery of the substrate surface is fixed to the outer periphery of the flat surface by a magnetic force. ディスク状記録媒体の製造方法であって、
裏面中央部に略円柱状であって前記基板裏面から離れるに従ってその径が大きくなる様 な円錐の一部を構成する略円柱状の突起部を有するディスク状の基板を用い、
前記突起部を、前記基板を保持する基板受け部に設けられた円筒状の内面を有する凹部に挿入し、
前記基板の表面中央部を保持する大気側搬送アームは前記真空容器中にて前記基板を前記基板の裏面側より保持する真空側搬送アームに対して所定間隔保持して正対させ、
前記正対した状態において、前記凹部に配置されたボールプランジャーからなる固定手段によって、前記突起部の軸心を前記凹部の軸心と一致させるように固定すると共に、前記固定手段と前記突起部とが協働することによって前記突起部を前記凹部に対する挿入方向に向けて付勢し、
前記基板裏面を前記凹部周囲に形成された前記基板受け部である平坦面に密着させ、
前記基板およびマスクをターゲットと正対させ、
前記基板表面と前記ターゲットとの間にプラズマを発生させて前記ターゲットをスパッタすることにより前記基板表面に前記ターゲットの構成元素を主成分とする薄膜を形成することを特徴とするディスク状記録媒体の製造方法。
A method of manufacturing a disk-shaped recording medium,
Using a disk-shaped substrate having a substantially cylindrical projection that forms a part of a cone that is substantially cylindrical in the center of the back surface and increases in diameter as the distance from the back surface of the substrate increases .
The protrusion is inserted into a recess having a cylindrical inner surface provided in a substrate receiving portion for holding the substrate;
The atmosphere-side transfer arm that holds the front surface center portion of the substrate is held in a predetermined interval with the vacuum-side transfer arm that holds the substrate from the back side of the substrate in the vacuum container,
In the face-to-face state, the fixing means made of a ball plunger disposed in the concave portion fixes the axial center of the protruding portion so as to coincide with the axial center of the concave portion, and the fixing means and the protruding portion , And urge the protrusion toward the insertion direction with respect to the recess,
Adhering the back surface of the substrate to a flat surface that is the substrate receiving portion formed around the recess,
Making the substrate and mask face the target;
A disk-shaped recording medium comprising: a thin film mainly comprising constituent elements of the target on the substrate surface by generating plasma between the substrate surface and the target and sputtering the target. Production method.
前記ボールプランジャーは前記突起部の軸心を中心として等配に配置されていることを特徴とする請求項9記載の方法。The method of claim 9, wherein said ball plunger characterized that you have disposed equidistantly about an axis of the protrusion. 前記固定手段は、前記凹部に連通する排気ポートを更に有し、前記基板を前記大気側搬送アームから前記真空側搬送アームに受け渡す際に真空吸着による作用を加味することを特徴とする請求項9記載の方法。The fixing means further includes an exhaust port communicating with the recess, and takes into account the action of vacuum adsorption when the substrate is transferred from the atmosphere-side transfer arm to the vacuum-side transfer arm. 9. The method according to 9. 前記基板裏面を前記平坦面に密着させた後、磁力により前記平坦面外周に前記基板表面の外周を覆うマスクを固定することを特徴とする請求項9乃至11何れかに記載の方法。  The method according to claim 9, wherein after the back surface of the substrate is brought into close contact with the flat surface, a mask covering the outer periphery of the substrate surface is fixed to the outer periphery of the flat surface by a magnetic force.
JP2002062866A 2002-03-08 2002-03-08 Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus Expired - Fee Related JP3949473B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002062866A JP3949473B2 (en) 2002-03-08 2002-03-08 Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus
KR1020047013886A KR100602528B1 (en) 2002-03-08 2003-03-07 Disk-like substrate chucking device and method, and method of producing disk-like recording medium using the device
TW092104964A TW588349B (en) 2002-03-08 2003-03-07 Disk-like substrate sputtering device, substrate chucking method in the device, method of producing disk-like recording medium using the device
PCT/JP2003/002691 WO2003077244A1 (en) 2002-03-08 2003-03-07 Disk-like substrate sputtering device, substrate chucking method in the device, method of producing disk-like recording medium using the device
CNB038055317A CN100350482C (en) 2002-03-08 2003-03-07 Disk-like substrate sputtering device, substrate chucking method in the device, method of producing disk-like recording medium using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062866A JP3949473B2 (en) 2002-03-08 2002-03-08 Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus

Publications (3)

Publication Number Publication Date
JP2003263801A JP2003263801A (en) 2003-09-19
JP2003263801A5 JP2003263801A5 (en) 2005-08-25
JP3949473B2 true JP3949473B2 (en) 2007-07-25

Family

ID=27800174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062866A Expired - Fee Related JP3949473B2 (en) 2002-03-08 2002-03-08 Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus

Country Status (5)

Country Link
JP (1) JP3949473B2 (en)
KR (1) KR100602528B1 (en)
CN (1) CN100350482C (en)
TW (1) TW588349B (en)
WO (1) WO2003077244A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696554B1 (en) * 2005-12-16 2007-03-19 삼성에스디아이 주식회사 Deposition apparatus
TWI421358B (en) * 2007-08-17 2014-01-01 Hon Hai Prec Ind Co Ltd Device for fixing backing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101206A (en) * 1989-09-14 1991-04-26 Fuji Photo Film Co Ltd Sputtering device
JPH07296431A (en) * 1994-04-26 1995-11-10 Shin Etsu Chem Co Ltd Mask for film formation
JPH1040584A (en) * 1996-07-22 1998-02-13 Matsushita Electric Ind Co Ltd Manufacture of disk body such as optical disk
JP2000222785A (en) * 1999-01-29 2000-08-11 Ricoh Co Ltd Production of optical information recording medium and producing device therefor
JP2001246643A (en) * 2000-03-03 2001-09-11 Hitachi Maxell Ltd Recording medium, injection mold, injection molding machine and molding method
CN2431622Y (en) * 2000-07-07 2001-05-23 上海音桥科技有限公司 Non-circular CD
JP2002173761A (en) * 2000-12-06 2002-06-21 Shibaura Mechatronics Corp Inner mask
JP2002269852A (en) * 2001-03-13 2002-09-20 Ricoh Co Ltd Optical information recording medium manufacturing device

Also Published As

Publication number Publication date
CN1639785A (en) 2005-07-13
TW200304137A (en) 2003-09-16
KR100602528B1 (en) 2006-07-19
KR20040091105A (en) 2004-10-27
CN100350482C (en) 2007-11-21
WO2003077244A1 (en) 2003-09-18
TW588349B (en) 2004-05-21
JP2003263801A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP3957173B2 (en) Substrate delivery method to disk-shaped substrate deposition apparatus, substrate delivery mechanism and substrate holder used in the method, and disc-shaped recording medium manufacturing method using the method
JP4121763B2 (en) Substrate exchange unit and substrate exchange method for thin film forming apparatus
JP3949473B2 (en) Sputtering apparatus for disk-shaped substrate, substrate chucking method in the apparatus, and manufacturing method of disk-shaped recording medium using the apparatus
JP3983113B2 (en) Substrate delivery method, substrate delivery system, and disc-shaped recording medium manufacturing method using the method
KR100594527B1 (en) Method of delivering substrates to a film forming device for disk-like substrates, substrate delivering mechanism and mask used in such method, and disk-like recording medium producing method using such method
JP3398452B2 (en) Sputtering equipment
JP4082566B2 (en) Disk-shaped member holding device
KR100697165B1 (en) Method of delivering substrate to film forming device for disk-like substrate, mechanism for delivering substrate used for the method, substrate holder, and method of manufacturing disk-like recording medium using the method
KR100697164B1 (en) Method for delivery of substrate to film forming device for disk-like substrate, substrate delivery mechanism and substrate holder used for the method, and method of manufacturing disk-like recording medium using the method
EP1496135A1 (en) Spattering device, method of forming thin film by spattering, and method of manufacturing disk-like recording medium using the device
JP2005018814A (en) Inner mask for disk-shaped substrate, inner mask and outer mask for film forming device, receiving and delivering method of substrate, and manufacturing method of disk-shaped recording medium using method
JP3418488B2 (en) Manufacturing method of stamper for duplicating optical disk

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees