JP3949041B2 - Work vehicle turning control device - Google Patents

Work vehicle turning control device Download PDF

Info

Publication number
JP3949041B2
JP3949041B2 JP2002285041A JP2002285041A JP3949041B2 JP 3949041 B2 JP3949041 B2 JP 3949041B2 JP 2002285041 A JP2002285041 A JP 2002285041A JP 2002285041 A JP2002285041 A JP 2002285041A JP 3949041 B2 JP3949041 B2 JP 3949041B2
Authority
JP
Japan
Prior art keywords
turning
continuously variable
speed
speed ratio
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002285041A
Other languages
Japanese (ja)
Other versions
JP2004114991A5 (en
JP2004114991A (en
Inventor
之史 山中
吉弘 上田
繁樹 林
裕治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002285041A priority Critical patent/JP3949041B2/en
Publication of JP2004114991A publication Critical patent/JP2004114991A/en
Publication of JP2004114991A5 publication Critical patent/JP2004114991A5/ja
Application granted granted Critical
Publication of JP3949041B2 publication Critical patent/JP3949041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Harvester Elements (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、左右一対の走行装置の走行速度を変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられている作業車の旋回制御装置に関する。
【0002】
【従来の技術】
上記構成の作業車の旋回制御装置は、例えばコンバイン等の作業車に適用されるものであり、従来では、次のような構成のものがあった。
つまり、前記一対の無段変速装置として静油圧式の無段変速装置を用いて、変速操作手段として一対の電動モータが設けられ、一対の無段変速装置夫々の出力回転速度を一対の回転センサにて検出して、制御手段としてのコントローラが、前記旋回制御として、旋回指令手段としてのパワステレバーの旋回用の操作角度が大になり指令される旋回半径が小さくなるほど、旋回中心側の無段変速装置を減速させて一対の無段変速装置の回転速度の速度比率を変化させる形態で、各別に設定される目標回転速度になるように各電動モータにより一対の無段変速装置を作動させるように構成されていた(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平8−172871号公報(第3頁―第5頁、図4、図6)
【0004】
【発明が解決しようとする課題】
上記従来構成においては、旋回指令手段にて指令される旋回半径に対応する速度比率となるように変速操作手段を作動させる構成となっており、その変速操作手段の操作において速度比率の単位時間当りの変化量は何ら規制されることはないので、例えば、旋回指令手段にて指令される旋回半径が現在の旋回半径とは大きく異なる旋回半径となるように旋回指令手段が急激に移動操作されたような場合であっても、変速操作手段は、極力、旋回指令手段にて指令される旋回半径に対応する速度比率に合わせるべく追随させながら旋回中心側の無段変速装置を減速操作することになる。そうすると、旋回中心側の無段変速装置が単位時間当りの変化量が大きい状態で急激に減速操作されることになり、旋回操作を行うときの操作フィーリングが悪くなり、操縦者に対する車体の乗り心地が悪化するおそれがあるという不利があった。
【0005】
本発明はかかる点に着目してなされたものであり、その目的は、旋回操作手段にて指令される旋回半径が急激に変更されることがあっても、旋回操作を良好な操作フィーリングで行うことが可能となる作業車の旋回制御装置を提供する点にある。
【0006】
【課題を解決するための手段】
請求項1に記載の作業車の旋回制御装置は、左右一対の走行装置の走行速度を変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられているものであって、前記制御手段が、前記旋回制御として、前記一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量を規制量以下に規制する形態で、前記速度比率を前記旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率にするように前記変速操作手段を作動させるように構成されていることを特徴とする。
【0007】
すなわち、旋回指令手段の指令情報に基づいて旋回を行う場合、一対の無段変速装置の出力回転速度の速度比率を旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率にするように変速操作手段を作動させるのであるが、このとき一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量を規制量以下に規制する形態で変速操作手段を作動させることになる。
【0008】
このように前記速度比率の単位時間あたりの変化量が規制量以下に規制されるので、例えば、旋回指令手段にて指令される旋回半径が現在の旋回半径とは大きく異なる旋回半径となるように旋回指令手段の指令内容が急激に変化したような場合であっても、変速操作手段の作動による旋回半径の変更に伴う無段変速装置の速度変化が小さいものに抑制されることになり、操縦者に対する車体の乗り心地を悪化させるおそれは少ないものとなる。又、常に同じ規制量で規制されることから、旋回指令手段による操作状態が異なった場合であっても常に同じような操作フィーリングにて旋回操作を行うことができる。
【0009】
従って、旋回操作を良好な操作フィーリングで行うことが可能となる作業車の旋回制御装置を提供できるに至った。
【0010】
請求項2に記載の作業車の旋回制御装置は、請求項1において、前記制御手段が、前記旋回制御として、前記一対の無段変速装置の出力回転速度の目標速度比率を、前記一対の無段変速装置による実速度比率と前記最終目標速度比率とに基づいて、単位時間あたりの変化量を前記規制量以下に規制する状態で繰り返し求めて、その求めた目標速度比率にて旋回するように前記変速操作手段を作動させるように構成されていることを特徴とする。
【0011】
すなわち、一対の無段変速装置による実速度比率と旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率とに基づいて、例えば、実速度比率と最終目標速度比率の差が規制値を超えていれば、実速度比率に対して規制量だけ変化した値を次回の目標速度比率として求めるようにしたり、実速度比率と最終目標速度比率の差が規制値以内であればその最終目標速度比率を次回の目標速度比率として求めるようにすることにより、単位時間あたりの変化量を前記規制量以下に規制できることになる。このようにして一対の無段変速装置の出力回転速度の目標速度比率を、単位時間あたりの変化量を規制量以下に規制する状態で繰り返し求めて、その求めた目標速度比率にて旋回するように変速操作手段を作動させるのである。
【0012】
従って、旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率が、現在の実速度比率に比べて規制量を超えるような大きな値として指令されることがあっても、前記速度比率の単位時間あたりの変化量が適正に規制量以下に規制されることになる。
【0013】
請求項3記載の作業車の旋回制御装置は、請求項1又は2において、前記制御手段が、前記旋回制御として、前記一対の無段変速装置のうちの旋回中心から離れる側に位置する無段変速装置の出力回転速度を設定速度に維持させ且つその設定速度よりも旋回中心側に位置する無段変速装置の出力回転速度を減速させることにより、前記一対の無段変速装置の出力回転速度の速度比率を変更させるように構成されていることを特徴とする。
【0014】
すなわち、旋回中心から離れる側に位置する無段変速装置の出力回転速度が設定速度に維持され、旋回中心側に位置する無段変速装置の出力回転速度が前記設定速度よりも減速して旋回走行が行われ、一対の無段変速装置の出力回転速度の速度比率が旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率になるように変速操作手段を作動させるのである。
【0015】
従って、旋回中心から離れる側に位置する走行装置は設定速度に維持され、旋回中心側に位置する走行装置が減速して旋回するので、前記速度比率の単位時間あたりの変化量が適正に規制量以下に規制される状態で、速度比率を変更することにより滑らかなに旋回半径を小さくして小回り旋回させることが可能となる。
【0016】
請求項4に記載の作業車の旋回制御装置は、請求項1〜3のうちのいずれかにおいて、前記規制量を大小に変更調整自在な手動操作式の規制量設定手段が設けられ、前記制御手段が、前記規制量設定手段に設定される前記規制量に基づいて前記旋回制御を実行するように構成されていることを特徴とする。
【0017】
すなわち、手動操作式の規制量設定手段によって前記規制量を大小に変更調整することができ、しかも、制御手段が規制量設定手段に設定される規制量に基づいて旋回制御を実行するので、例えば、規制量を大きくすることによって、一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量が大きくなりショックが発生しない程度で極力迅速に旋回操作を行える状態に設定できる。又、規制量を小さくすることによって、一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量が小さくなり緩やかな旋回操作を行える状態に設定できる。
このように、規制量を適正な値に変更調整することで、操縦者の操作感覚や作業状況の違い等に応じて適切な旋回操作状態に設定することができる。
【0018】
請求項5に記載の作業車の旋回制御装置は、請求項1〜4のうちのいずれかにおいて、前記旋回指令手段が、直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回操作用操作領域において直進指令位置から離れる方向への移動量が大きいほど小さい旋回半径となる旋回状態を指令するように構成されていることを特徴とする。
【0019】
すなわち、旋回指令手段を旋回操作用操作領域において直進指令位置から離れる方向への移動量を大きくするほど小さい旋回半径となる旋回状態を指令することができるので、旋回指令手段の操作位置の変更により作業状況に応じた適正な旋回半径を指令することができ、良好な状態で旋回を行えるものとなる。
【0020】
【発明の実施の形態】
以下、本発明に係る作業車の旋回制御装置の実施形態を作業車の一例としてのコンバインに適用した場合について図面に基づいて説明する。
【0021】
図1に作業車の一例であるコンバインの全体側面が示されており、このコンバインは、走行装置の一例である左右一対のクローラ式走行装置1R、1Lの駆動で走行する走行機体2の前部に、植立穀稈を刈り取って後方に向けて搬送する刈取搬送装置3を昇降可能に連結し、走行機体2に、刈取搬送装置3からの刈取穀稈を受け取って脱穀処理並びに選別処理を実行する脱穀装置4と、脱穀装置4からの穀粒を貯留する穀粒タンク5とを搭載するとともに、穀粒タンク5の前方箇所に搭乗運転部6を形成することによって構成されている。
【0022】
図2に示すように、このコンバインは、エンジン7からの動力を、ベルトテンション式の主クラッチ8を介してミッションケース9の入力軸10に伝達し、この入力軸10から走行用の一対の無段変速装置11R、11Lに分配伝達し、走行用の一方の無段変速装置11Lによる変速後の動力を左側のギヤ式の副変速装置13Lを介して左側のクローラ式走行装置1Lに伝達し、走行用の他方の無段変速装置11Rによる変速後の動力を、右側のギヤ式の副変速装置13Rを介して右側のクローラ式走行装置1Rに伝達するようにして走行駆動用の伝動機構を構成している。一方、エンジン7からの動力が作業用の無段変速装置12にも供給され、その作業用の無段変速装置12による変速後の動力を、ベルトテンション式の刈取クラッチ14を介して刈取搬送装置3に伝達するようにして刈取作業用の伝動機構を構成している。左右のギヤ式の副変速装置13R、13Lは、前記各無段変速装置11R、11Lの変速後の動力を高低2段に切り換え自在に構成されている。又、搭乗運転部6には、前後方向に揺動操作可能な単一の副変速レバー25が設けられ、この副変速レバー25は、図示しない連係機構を介してギヤ式の副変速機構13R、13Lに連係されており、副変速レバー25の操作によって、走行用の各無段変速装置11R、11Lによる変速後の動力を高低2段に変速できるようになっている。
【0023】
走行用の各無段変速装置11R、11Lは、アキシャルプランジャ形式で可変容量型のピストンポンプ19とピストンモータ20とを夫々備えて静油圧式の無段変速装置として構成され、作業用の無段変速装置12も同様に、アキシャルプランジャ形式で可変容量型のピストンポンプ21とピストンモータ22とを備えて静油圧式無段変速装置として構成され、左右のクローラ式走行装置1R、1L夫々の走行方向を前進方向並びに後進方向に切り換え且つ走行速度を無段階に変速することができる構成となっている。
【0024】
そして、図3に示すように、走行用の各無段変速装置11R、11Lを各別に変速操作する変速操作手段としての油圧式の走行用操作機構30と、作業用の無段変速装置12を変速操作する油圧式の作業用操作機構36とが夫々備えられている。前記走行用操作機構30は、走行用の各無段変速装置11R、11Lの夫々における変速用の被操作体としてのトラニオン軸29に連動連結された一対の複動型の油圧シリンダ33R、33Lと、これらの各油圧シリンダ33R、33Lに対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用電磁弁34Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用電磁弁34Bとを備えて構成されている。前記各油圧シリンダ33R、33Lは、内装されるバネの付勢力により中立位置に復帰付勢される構成となっている。
【0025】
前記作業用操作機構36も同様に、作業用の無段変速装置12におけるトラニオン軸37に連動連結されるとともに、内装されるバネの付勢力により中立位置に復帰付勢される構成の複動型の油圧シリンダ40と、この油圧シリンダ40に対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用電磁弁41Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用電磁弁41Bとを備えて構成されている。
【0026】
前記各給油用電磁弁34A、41Aは、バネの付勢力によってスプールを給油停止状態に移動付勢する構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油を供給する状態に切り換える構成となっており、又、前記各排油用電磁弁34B、41Bは、バネの付勢力によってスプールを排出状態に移動付勢される構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油の排出を停止する状態に切り換わる構成となっている。
【0027】
上記したような無段変速装置11R、11Lの変速動作の概略について説明を加えると、図4に示すように、トラニオン軸29の変速位置が中立域にあれば変速出力(走行速度)は零となり、トラニオン軸29の変速位置がその中立域から所定方向に回動操作されると前進方向への走行速度が無段階に増速操作され、トラニオン軸29が中立域から所定方向と反対方向に回動操作されると後進方向への走行速度が無段階に増速操作される構成となっている。
【0028】
搭乗運転部6には、走行停止を指令する停止用指令位置としての中立位置を含む所定操作範囲内で車体前後方向に沿って移動自在で、且つ、中立位置からの前方側への移動操作量が大きくなるほど高速となる目標車速を指令し、中立位置からの後方側への移動操作量が大きくなるほど高速となる目標車速を指令するレバー操作式の人為操作具としての単一の主変速レバー24、及び、直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回操作用操作領域において直進指令位置から離れる方向への移動量が大きいほど小さい旋回半径となる旋回状態を指令する旋回指令手段としての単一の旋回レバー26などが装備されている。そして、図3に示すように、主変速レバー24の操作位置を検出する変速レバーセンサ27と、旋回レバー26の操作位置を検出する操作位置検出手段としての旋回レバーセンサ28とが夫々設けられ、それらは共に回転式のポテンショメータにて構成されている。
前記主変速レバー24は、人為操作を停止して手を離すと中立位置に向けて復帰するように、図示しないバネによって中立位置に復帰付勢される構成となっている。又、旋回レバー26も同様に、人為操作を停止して手を離すと直進指令位置に向けて復帰するように、図示しないバネによって中立位置に復帰付勢される構成となっている。
【0029】
又、走行用の一対の無段変速装置11R、11Lには、それらの出力回転速度を各別に検出する変速出力検出手段としての回転速度センサ44、45と、夫々の無段変速装置11R、11Lの変速位置、すなわち、一対の油圧シリンダ33R、33Lによる夫々のトラニオン軸29の操作角度を検出する変速位置検出手段としての回転式のポテンショメータにて構成される変速位置センサ46、47とが夫々備えられている。尚、作業用の無段変速装置12にも同様に回転速度センサ51が設けられる。
【0030】
そして、前記走行用操作機構30の動作を制御する制御手段としてのマイクロコンピュータ利用の制御装置31が備えられ、この制御装置31は、主変速レバー24にて指令される目標車速で車体を直進走行させるべく走行用操作機構30を作動させる直進制御を実行するとともに、旋回レバー26にて指令された旋回を行うべく走行用操作機構30を作動させる旋回制御を実行する構成となっている。
【0031】
前記直進制御について簡単に説明すると、図5に示すように、旋回レバー26が直進指令位置に操作されて直進が指令されている状態で、主変速レバー24が操作可能範囲のほぼ中間に位置する中立位置に操作されると走行停止状態となり、中立位置から前進側へ揺動操作されるとそれに伴って前進側への走行速度が無段階で高速となる目標車速が指令され、中立位置から後進側へ操作されるとそれに伴って後進側への走行速度が無段階で高速となる目標車速が指令される。
そして、左右一対の無段変速装置11R、11Lの夫々のトラニオン軸29が目標車速に対応する目標変速位置から離れているときは、左右一対の無段変速装置11R、11L夫々のトラニオン軸29を目標車速に対応する目標変速位置になるように走行用操作機構30を作動させる。その後いずれかの無段変速装置のトラニオン軸29が目標変速位置に至ると、いずれか一方の無段変速装置はトラニオン軸29が目標変速位置に維持されるように制御され、他方の無段変速装置はその出力回転速度が前記一方の無段変速装置の出力回転速度と同じ速度になるように速度同期処理が行われる。
【0032】
次に、旋回制御について説明する。
制御装置31は、主変速レバー24が操作されて所定速度で走行しているときに、旋回レバー26が直進指令位置から左右いずれかの旋回指令範囲に揺動操作されると、前記直進指令位置から離れる側に操作されるほど旋回半径が小さくなる旋回状態となるように走行用操作機構30を作動させることになるが、このとき、制御装置31は、一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量を規制量以下に規制する形態で、前記速度比率を旋回レバーにて指令される旋回半径の大きさに対応する最終目標速度比率にするように走行用操作機構30を作動させるよう構成されている。
【0033】
又、前記規制量を大小に変更調整自在な手動操作式の規制量設定手段としてのポテンショメータ式の規制量調節具52が搭乗運転部6に設けられており、制御装置31は、規制量調節具52にて設定される前記規制量に基づいて旋回制御を実行するように構成されている。
【0034】
具体的に説明すると、制御装置31は、一対の無段変速装置11R、11Lのうちのいずれか一方の無段変速装置を基準側の無段変速装置として、その基準側の無段変速装置におけるトラニオン軸29の変速位置が目標変速位置になるように走行用操作機構30を作動させる変速位置調整処理、基準側の無段変速装置の出力回転速度と反対側の無段変速装置の出力回転速度との間の目標速度比率を、一対の無段変速装置による実速度比率と旋回レバー26にて指令される旋回半径に対応する最終目標速度比率とに基づいて単位時間あたりの変化量を規制量調節具52にて設定される前記規制量以下に規制する状態で繰り返し求めて、その目標速度比率から反対側の無段変速装置の目標回転速度を求める目標速度設定処理、及び、前記目標速度比率にて旋回すべく反対側の無段変速装置の出力回転速度が前記目標回転速度になるように走行用操作機構30を作動させる回転速度調整処理の夫々を実行するように構成されている。
【0035】
以下、フローチャートに基づいて制御装置31の旋回制御の処理動作について具体的に説明する。
図6に示すように、旋回レバー26が直進指令位置から左右いずれかの旋回指令範囲に揺動操作されて旋回が指令され、例えば右方向に旋回が指令されている場合には(ステップ1、2)、旋回中心に対して離れる側に位置する無段変速装置である左側の無段変速装置11Lを基準側の無段変速装置として、その基準側の無段変速装置11Lにおけるトラニオン軸29の変速位置が目標変速位置になるように走行用操作機構30を作動させる変速位置調整処理を実行する(ステップ3)。
【0036】
この変速位置調整処理について説明を加えると、図7に示すように、先ず、左側の無段変速装置11Lにおけるトラニオン軸29に対する目標変速位置を計算にて求める(ステップ31)。このとき、主変速レバー24にて指令されている目標車速に対応するトラニオン軸29の変速位置を前記目標変速位置として設定するようになっている。次に、この目標変速位置と、変速位置センサ47にて検出される現在のトラニオン軸29の変速位置との偏差を求めて、その位置偏差が小さくなるように走行用操作機構30を作動させてトラニオン軸29の変速位置を変更調整する(ステップ32、33)。具体的には、前記位置偏差が小さくなるように比例制御によって走行用操作機構30における給油用電磁弁34A及び各排油用電磁弁34Bを切り換え制御して、油圧シリンダ33Rの作動を制御するのである。
【0037】
次に、上記したようにして変速位置調整が行われる左側の無段変速装置11Lの出力回転速度を回転速度センサ45にて検出して、左側の無段変速装置11Lの出力回転速度と右側の無段変速装置11Rの出力回転速度との実速度比率と、旋回レバー26にて指令される旋回半径に対応する最終目標速度比率とに基づいて右側の無段変速装置11Rの目標回転速度を求める目標回転速度設定処理を実行する(ステップ4)。
【0038】
図9に示すように、旋回レバー26の操作位置に対する左右の無段変速装置11R、11Lの速度比率の関係が予め設定されて記憶されている。この図に示す関係について説明を加えると、この図は、旋回レバー26の操作位置の変化に対して、基準側すなわち旋回中心に対して離れる側に位置する無段変速装置の出力回転速度Vを基準として、旋回中心側に位置する無段変速装置の速度比率の変化を示している。ステップ4では、右側の無段変速装置11Rが旋回中心側に位置する無段変速装置であるから、この速度比率の情報から右側の無段変速装置11Rの目標回転速度を求めることになる。
【0039】
そして、旋回レバー26の直進指令位置から離れる方向への移動量と速度比率との関係として、旋回レバー26の操作位置が同じであるときのその操作位置に対応する速度比率が異なる複数種のものであって、且つ、旋回レバー26の移動量が最も大きい最大操作位置に操作されたときの速度比率が互いに異なる旋回モードとなるような複数(図9に示す例では4種類)のものを記憶しており、その記憶している複数種の関係のうちのいずれか1つを選択して演算に使用する構成となっている。複数の関係のうちのいずれかに1つを選択するための人為操作式の選択手段としてのモード切換スイッチ42が設けられており、このモード切換スイッチ42による切換指令が制御装置31に与えられて、制御装置31は、その切換指令に基づいていずれの関数を利用して目標回転速度を求めるかを決定するようになっている。
【0040】
図9に示す4種類の旋回モードについて説明を加えると、旋回レバー26が最大操作位置にまで操作されたときに、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の出力回転速度Vの約1/3の速度にまで減速されるモード(L1)、旋回中心側の無段変速装置の出力回転速度が零となるまで減速されるモード(L2)、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の駆動回転方向とは逆回転方向で反対側の無段変速装置の出力回転速度Vの約1/3の速度になるモード(L3)、旋回中心側の無段変速装置の出力回転速度が反対側の無段変速装置の駆動回転方向とは逆回転方向で反対側の無段変速装置の出力回転速度Vと同程度の速度になるモード(L4)が夫々設定されている。
【0041】
次に前記目標回転速度設定処理について具体的に説明する。この目標回転速度設定処理は、図8に示すように、30msec経過する毎に以下のような手順に基づいて目標回転速度を繰り返し求める(ステップ40)。つまり、旋回レバー26にて指令される旋回半径に対応する最終目標速度比率としてのレバー指令値を速度比率変数に代入する(ステップ41)。尚、旋回レバー26の操作位置に対するレバー指令値は図9に示される関係のうちのいずれか指定された関係から求められる。そして、速度比率変数が、前記実速度比率としての現在の積算変数、つまり、現在の速度比率の情報に対応する値に、前記規制量調節具52にて設定される規制量に対応する規制値を加算した値よりも大きければ、言い換えると、旋回レバーの指令による速度比率の増加側の変化量が前記規制値よりも大であれば、現在の積算変数に規制値を加算した値を積算値として求め、速度比率変数にこの積算値を代入する(ステップ42、43、44)。又、速度比率変数が現在の積算変数から規制値を減算した値よりも小さければ、言い換えると、旋回レバー26の指令による速度比率の減少側の変化量が規制値よりも大であれば、現在の積算変数から規制値を減算した値を積算値として求め、速度比率変数にこの積算値を代入する(ステップ45、46、47)。速度比率変数が、現在の積算変数と規制値とを加算した値よりも大きくなく、且つ、現在の積算変数から規制値を減算した値よりも小さくなければ、レバー指令値を新たな積算変数として代入する(ステップ48)。このときはレバー指令値が速度比率変数に代入された状態となる。
【0042】
そして、このようにして得られた速度比率変数から旋回中心側に位置する無段変速装置の目標回転速度を計算にて求める(ステップ49)。その結果、例えば、旋回レバー26が急激に大きく操作され、図10のラインL5に示すように最終目標速度比率が短時間の間に急激に大きな値に変化しても、図10のラインL6に示すように、単位時間あたりの変化量が規制値以下に規制される状態で目標速度比率が求められることになる。尚、図10において、ラインL7やラインL8は、規制量調節具52にて設定される規制量が大側又は小側に変更調節されたときの状態を示している。
【0043】
次に、前記目標回転速度と現在の右側の無段変速装置11Rの出力回転速度との偏差を求めて、その偏差が小さくなるように、つまり、右側の無段変速装置11Rの出力回転速度が前記目標回転速度になるように走行用操作機構30を作動させる回転速度調整処理を実行する(ステップ5)。具体的には、前記目標回転速度と現在の右側の無段変速装置11Rの出力回転速度との偏差が小さくなるように、PI制御により走行用操作機構30における給油用電磁弁34A及び各排油用電磁弁34Bを切り換え制御して、出力回転速度が目標回転速度になるようにトラニオン軸29の変速位置を変更調整する。
【0044】
この回転速度調整処理においては、前記目標回転速度は、単位時間あたりの変化量が規制量以下に規制される状態で求められる目標速度比率より求められるので、旋回走行するときにおいて、実際の一対の無段変速装置の速度比率は、図10のラインL6に示すように、単位時間あたりの変化量が規制量以下に抑制された状態で変化していくことになり、最終的には旋回レバー26にて指令された旋回半径に対応する最終目標速度比率に収束する。
【0045】
ステップ2で旋回方向として左方向が指令されている場合には、右側の無段変速装置11Rを基準側の無段変速装置として、ステップ3〜5と同様な変速位置調整処理、目標回転速度設定処理、及び、回転速度調整処理の夫々を実行することになる(ステップ6、7、8)。
【0046】
〔別実施形態〕
次に、別実施形態を列記する。
【0047】
(1)上記実施形態では、前記目標回転速度設定処理として、旋回レバーのレバー指令値に対応する速度比率変数の単位時間あたりの変化量を規制する形態で目標回転速度を設定する構成としたが、このような構成に代えて、次のように制御する構成としてもよい。
図11に示すように、30msec経過する毎に、旋回レバー26の指令値と図9に示すような複数の旋回モードのうち選択された関係とに基づいて、旋回レバー26の指令値に対応した指令回転速度Nsを計算にて求め、その求めた指令回転速度Nsが、回転速度センサにて検出される旋回中心側の無段変速装置の実回転速度Nxに規制値ΔNを加算した値よりも大きい場合には、実回転速度Nxに規制値ΔNを加算した値を目標回転速度Nmとして設定する。又、前記指令回転速度Nsが、前記実回転速度Nxから規制値ΔNを減算した値よりも小さい場合には、実回転速度Nxから規制値ΔNを減算した値を目標回転速度Nmとして設定する。そして、指令回転速度Nsが実回転速度Nxに規制値ΔNを加算した値よりも大きくなく、且つ、実回転速度Nxから規制値ΔNを減算した値よりも小さくなければ、指令回転速度Nsを目標回転速度Nmとして設定する。
つまり、この実施形態では、前記指令回転速度Nsが最終目標速度比率に対応する旋回中心側の無段変速装置の目標回転速度であり、その指令に対する変速操作において、旋回中心側の無段変速装置の回転速度の単位時間当りの変化量を規制量以下に規制する構成である。
【0048】
(2)上記実施形態では、前記規制量を大小に変更調整自在な手動操作式の規制量設定手段が設けられる構成としたが、このような構成に限らず、前記一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量を常に一定の規制量にて規制する構成としてもよい。
【0049】
(3)上記実施形態では、前記一対の無段変速装置の出力回転速度の目標速度比率を、単位時間あたりの変化量を規制量以下に規制する状態で繰り返し求めて、その求めた目標速度比率にて旋回するように変速操作手段を作動させる構成としたが、このような構成に代えて、例えば、旋回指令手段の手動操作による移動速度を規制量に対応するような速度になるように機械的に抑制して、旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率の単位時間あたりの変化量を規制量以下に規制するような構成としてもよい。
【0050】
(4)上記実施形態では、旋回中心に対して離れる側に位置する走行装置が主変速レバーにて指令される目標車速に対応する走行速度に維持されるように、目標車速に対応するトラニオン軸の変速位置を目標変速位置として設定するように構成したが、このような構成に限らず、目標車速に対して例えば0.8〜1.2程度の所定の比率を掛けた車速に対応するトラニオン軸の変速位置を目標変速位置として設定するようにしてもよい。
【0051】
(5)上記実施形態では、前記旋回指令手段の直進指令位置から離れる方向への移動量と速度比率との関係として複数のものを記憶してそのうちのいずれか1つをモード切換スイッチにて選択して使用する構成としたが、このような構成に代えて、1種類の関係だけを設定して常にその1種類の関係に基づいて目標速度比率を求めるものでもよい。
【0052】
(6)上記実施形態では、前記旋回制御において前記一対の無段変速装置のうちの旋回中心から離れる側に位置する無段変速装置の出力回転速度を設定速度に維持させ且つその設定速度よりも旋回中心側に位置する無段変速装置の出力回転速度を減速させる構成としたが、このような構成に限らず、旋回中心側に位置する無段変速装置の出力回転速度を設定速度に維持させ、旋回中心から離れる側に位置する無段変速装置の出力回転速度をその設定速度よりも増速させて旋回する構成としてもよい。
【0053】
(7)上記実施形態では、無段変速装置のトラニオン軸を操作するアクチュエータとして、油圧シリンダを例示したが、油圧モータや電動モータ等他のアクチュエータを用いてもよい。
【0054】
(8)上記実施形態では、一対の無段変速装置として、静油圧式無段変速装置を用いたが、このような構成に代えて、例えば、ベルト式無段変速装置やテーパコーン型の無段変速装置と走行方向を前後で切り換えるための前後進切換機構とを組み合わせる構成としてもよい。又、このような構成と合わせて、前記車速指令手段として、所定操作範囲の一端側が走行停止を指令する停止指令位置になり、所定操作範囲の他端側が高速側の上限値になるように構成するものでもよい。
【0055】
(9)上記実施形態では、作業車としてコンバインを例示したが、本発明はコンバインに限らず、人参収穫機や大根収穫機など他の農作業車でもよく、又、農作業車に限らず建設機械等の作業車でもよい。
【図面の簡単な説明】
【図1】コンバインの全体側面図
【図2】伝動構造を示す概略構成図
【図3】制御ブロック図
【図4】変速位置と変速出力との関係を示す図
【図5】主変速レバー操作位置と目標車速との関係を示す図
【図6】制御動作のフローチャート
【図7】制御動作のフローチャート
【図8】制御動作のフローチャート
【図9】旋回レバーの位置と速度比率との関係を示す図
【図10】速度比率の時間経過に伴う変化を示す図
【図11】別実施形態の制御動作のフローチャート
【符号の説明】
1R、1L 走行装置
11R、11L 無段変速装置
26 旋回指令手段
30 変速操作手段
31 制御手段
52 規制量設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a traveling speed of a pair of left and right traveling devices. Change A pair of speedless continuously variable transmissions, a speed change operation means that can freely shift the pair of continuously variable transmissions individually, and a command for direct advance and turn, and a turn radius when turning. The present invention relates to a turning control device for a work vehicle, which is provided with turning command means and control means for executing turning control for operating the speed change operation means to perform straight advancement and turning based on command information of the turning command means.
[0002]
[Prior art]
The turning control device for a work vehicle having the above-described configuration is applied to a work vehicle such as a combine, for example, and conventionally has the following configuration.
In other words, a hydrostatic continuously variable transmission is used as the pair of continuously variable transmissions, a pair of electric motors are provided as shift operation means, and the output rotation speed of each of the pair of continuously variable transmissions is a pair of rotation sensors. As the turning control, the controller as the control means detects that the turning angle of the power steering lever as the turning command means becomes larger and the commanded turning radius becomes smaller. A pair of continuously variable transmissions are operated by each electric motor so as to achieve a target rotational speed set for each in a form in which the speed ratio of the rotational speeds of the pair of continuously variable transmissions is changed by decelerating the transmission. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-172871 (pages 3-5, FIGS. 4 and 6)
[0004]
[Problems to be solved by the invention]
In the above-described conventional configuration, the speed change operation means is operated so as to have a speed ratio corresponding to the turning radius commanded by the turn command means, and the operation of the speed change operation means per unit time of the speed ratio. Therefore, for example, the turning command means is suddenly moved so that the turning radius commanded by the turning command means becomes a turning radius that is significantly different from the current turning radius. Even in such a case, the speed change operating means decelerates the continuously variable transmission on the turning center side while following the speed ratio corresponding to the turning radius commanded by the turning command means as much as possible. Become. Then, the continuously variable transmission on the turning center side is suddenly decelerated with a large amount of change per unit time, and the feeling of operation when performing the turning operation is deteriorated, so There was a disadvantage that the comfort could deteriorate.
[0005]
The present invention has been made paying attention to such a point, and its purpose is to achieve a turning operation with a good operation feeling even when the turning radius commanded by the turning operation means is suddenly changed. It is in the point which provides the turning control apparatus of the working vehicle which can be performed.
[0006]
[Means for Solving the Problems]
The turning control device for a work vehicle according to claim 1 is a traveling speed of a pair of left and right traveling devices. Change A pair of speedless continuously variable transmissions, a speed change operation means that can freely shift the pair of continuously variable transmissions individually, and a command for direct advance and turn, and a turn radius when turning. A turn command means; and a control means for executing a turn control for operating the speed change operation means to perform straight advance and turn based on command information of the turn command means, wherein the control means As the turning control, the speed command is commanded by the turning command means in such a manner that the amount of change in the speed ratio of the output rotational speed of the pair of continuously variable transmissions per unit time is regulated to a regulation amount or less. The shift operation means is configured to operate so as to obtain a final target speed ratio corresponding to the magnitude of the turning radius.
[0007]
That is, when turning based on the command information of the turn command means, the final target speed ratio corresponding to the turning radius commanded by the turn command means is the speed ratio of the output rotational speed of the pair of continuously variable transmissions. In this case, the speed change operation means is operated in such a manner that the amount of change per unit time in the speed ratio of the output rotation speed of the pair of continuously variable transmission is controlled to be equal to or less than the control amount. I will let you.
[0008]
As described above, since the amount of change per unit time of the speed ratio is regulated below the regulation amount, for example, the turning radius commanded by the turning command means is a turning radius that is significantly different from the current turning radius. Even when the command content of the turn command means changes suddenly, the speed change of the continuously variable transmission due to the change of the turn radius due to the operation of the speed change operation means is suppressed to a small one. There is little risk of worsening the ride comfort of the vehicle body. Moreover, since it is always regulated by the same regulation amount, even if the operation state by the turning command means is different, the turning operation can always be performed with the same operation feeling.
[0009]
Therefore, it has become possible to provide a turning control device for a work vehicle that enables the turning operation to be performed with a good operation feeling.
[0010]
According to a second aspect of the present invention, there is provided the turning control device for a work vehicle according to the first aspect, wherein the control means sets a target speed ratio of output rotational speeds of the pair of continuously variable transmissions as the pair of continuously variable as the turning control. Based on the actual speed ratio by the step transmission and the final target speed ratio, the amount of change per unit time is repeatedly obtained in a state of being regulated to be less than or equal to the regulation amount, and the vehicle is turned at the obtained target speed ratio. The shift operation means is configured to operate.
[0011]
That is, based on the actual speed ratio by the pair of continuously variable transmission and the final target speed ratio corresponding to the turning radius commanded by the turning command means, for example, the difference between the actual speed ratio and the final target speed ratio. If the value exceeds the regulation value, a value that changes by the regulation amount with respect to the actual speed ratio can be obtained as the next target speed ratio, or if the difference between the actual speed ratio and the final target speed ratio is within the regulation value By obtaining the final target speed ratio as the next target speed ratio, the amount of change per unit time can be regulated to the regulation quantity or less. In this manner, the target speed ratio of the output rotation speed of the pair of continuously variable transmissions is repeatedly obtained in a state where the amount of change per unit time is regulated to be equal to or less than the regulation amount, and the vehicle is turned at the obtained target speed ratio. The shift operation means is actuated.
[0012]
Therefore, even if the final target speed ratio corresponding to the magnitude of the turning radius commanded by the turning command means may be commanded as a large value that exceeds the regulation amount compared to the current actual speed ratio, The amount of change of the speed ratio per unit time is appropriately regulated below the regulation amount.
[0013]
According to a third aspect of the present invention, there is provided the work vehicle turning control device according to the first or second aspect, wherein the control means is a steplessly located on the side away from the turning center of the pair of continuously variable transmissions as the turning control. By maintaining the output rotational speed of the transmission at the set speed and decelerating the output rotational speed of the continuously variable transmission located closer to the turning center than the set speed, the output rotational speed of the pair of continuously variable transmissions is reduced. It is configured to change the speed ratio.
[0014]
That is, the output rotational speed of the continuously variable transmission located on the side away from the turning center is maintained at the set speed, and the output rotational speed of the continuously variable transmission located on the turning center side is decelerated from the set speed to make a turn run. And the speed change operation means is operated so that the speed ratio of the output rotation speeds of the pair of continuously variable transmissions becomes the final target speed ratio corresponding to the turning radius commanded by the turning command means. .
[0015]
Accordingly, the traveling device located on the side away from the turning center is maintained at the set speed, and the traveling device located on the turning center side decelerates and turns, so that the amount of change per unit time of the speed ratio is appropriately regulated. By changing the speed ratio in the state regulated below, it is possible to smoothly make a small turn with a small turning radius.
[0016]
According to a fourth aspect of the present invention, there is provided the turning control apparatus for a work vehicle according to any one of the first to third aspects, further comprising a manually-operated restriction amount setting unit capable of changing and adjusting the restriction amount to be larger or smaller. The means is configured to execute the turning control based on the restriction amount set in the restriction amount setting means.
[0017]
That is, the restriction amount can be changed to a large or small value by a manually operated restriction amount setting means, and the turning control is executed based on the restriction amount set in the restriction amount setting means. By increasing the restriction amount, the amount of change per unit time in the speed ratio of the output rotation speed of the pair of continuously variable transmissions can be increased so that the turning operation can be performed as quickly as possible without causing a shock. Further, by reducing the restriction amount, the amount of change per unit time in the speed ratio of the output rotational speed of the pair of continuously variable transmissions can be reduced, so that a gentle turning operation can be performed.
In this way, by changing and adjusting the regulation amount to an appropriate value, it is possible to set an appropriate turning operation state in accordance with a difference in operating feeling of the operator, a work situation, or the like.
[0018]
According to a fifth aspect of the present invention, there is provided the turning control device for a work vehicle according to any one of the first to fourth aspects, wherein the turning command means includes a rectilinear command position for commanding straight travel and an operation area for swivel operation for commanding turning. It is configured to command a turning state having a smaller turning radius as the amount of movement in the direction away from the straight-ahead command position is larger in the turning operation operation area, and the turning operation can be performed over the entire range. To do.
[0019]
That is, since the turning state can be instructed to have a smaller turning radius as the amount of movement of the turning command means in the direction away from the rectilinear instruction position in the operation area for the turning operation is increased, the change of the operation position of the turning command means An appropriate turning radius according to the work situation can be commanded, and turning can be performed in a good state.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a case where an embodiment of a turning control device for a work vehicle according to the present invention is applied to a combine as an example of a work vehicle will be described with reference to the drawings.
[0021]
FIG. 1 shows an entire side surface of a combine that is an example of a work vehicle. The combine is a front part of a traveling machine body 2 that is driven by a pair of left and right crawler type traveling devices 1R and 1L that is an example of a traveling device. Next, the harvesting and conveying device 3 that harvests the planted cereal and conveys it backwards is connected to be movable up and down, and the traveling machine body 2 receives the harvested cereal from the harvesting and conveying device 3 and executes the threshing process and the sorting process. The threshing device 4 to be mounted and the grain tank 5 for storing the grain from the threshing device 4 are mounted, and the boarding operation unit 6 is formed at a location in front of the grain tank 5.
[0022]
As shown in FIG. 2, this combine transmits power from the engine 7 to the input shaft 10 of the transmission case 9 via the belt tension type main clutch 8, and a pair of traveling non-loads from the input shaft 10. Distributing and transmitting to the step transmissions 11R and 11L, and transmitting the power after shifting by the one continuously variable transmission 11L for traveling to the left crawler traveling device 1L via the left gear-type sub-transmission device 13L, A driving mechanism is configured to transmit power after shifting by the other continuously variable transmission 11R for traveling to the right crawler traveling device 1R via the right gear-type auxiliary transmission 13R. is doing. On the other hand, the power from the engine 7 is also supplied to the continuously variable transmission 12 for work, and the power after shifting by the continuously variable transmission 12 for work is transferred to the cutting and conveying device via the belt tension type cutting clutch 14. The transmission mechanism for the cutting operation is configured so as to be transmitted to 3. The left and right gear-type sub-transmission devices 13R and 13L are configured to be able to switch the power after shifting of the continuously variable transmission devices 11R and 11L to high and low two stages. The boarding operation unit 6 is provided with a single auxiliary transmission lever 25 that can swing in the front-rear direction. The auxiliary transmission lever 25 is connected to a gear-type auxiliary transmission mechanism 13R, via a linkage mechanism (not shown). 13L is linked, and the power after shifting by the continuously variable transmissions 11R, 11L for traveling can be shifted to two levels of high and low by operating the auxiliary transmission lever 25.
[0023]
Each of the continuously variable transmissions 11R and 11L for traveling includes an axial plunger type variable displacement piston pump 19 and a piston motor 20, and is configured as a hydrostatic continuously variable transmission. Similarly, the transmission 12 includes an axial plunger type variable displacement piston pump 21 and a piston motor 22, and is configured as a hydrostatic continuously variable transmission, and the traveling directions of the left and right crawler traveling devices 1 </ b> R and 1 </ b> L are respectively. Can be switched between the forward direction and the reverse direction, and the traveling speed can be changed steplessly.
[0024]
Then, as shown in FIG. 3, a hydraulic travel operation mechanism 30 as a shift operation means for shifting the travel continuously variable transmissions 11R and 11L separately and a working continuously variable transmission 12 are provided. A hydraulic work operation mechanism 36 that performs a speed change operation is provided. The travel operation mechanism 30 includes a pair of double-acting hydraulic cylinders 33R and 33L linked to a trunnion shaft 29 as an operation body for shifting in each of the continuously variable transmissions 11R and 11L for travel. A pair of two-position switching type oil supply that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers corresponding to respective operations in the forward and reverse directions for the respective hydraulic cylinders 33R, 33L and a state in which the supply is stopped. The electromagnetic valve 34A and a pair of two-position switching type oil draining solenoid valves 34B that can be switched between a state in which hydraulic oil is discharged from the pair of oil chambers and a state in which the discharge is stopped are configured. Each of the hydraulic cylinders 33R and 33L is configured to be urged to return to the neutral position by the urging force of an internally mounted spring.
[0025]
Similarly, the work operation mechanism 36 is linked to the trunnion shaft 37 of the work continuously variable transmission 12 and is double-actuated so as to be returned to the neutral position by the biasing force of the internal spring. And a pair of two-position switching type oil supply that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers corresponding to respective operations in the forward and reverse directions with respect to the hydraulic cylinder 40 and a state in which the supply is stopped. 41A, and a pair of two-position switching type oil discharge solenoid valve 41B that can be switched between a state in which hydraulic oil is discharged from the pair of oil chambers and a state in which the discharge is stopped. .
[0026]
Each of the solenoid valves 34A, 41A for refueling is configured to move and urge the spool to a refueling stop state by a biasing force of the spring, and operates to move the spool against the biasing force of the spring by the electromagnetic force of the solenoid. Each of the solenoid valves 34B and 41B for draining oil is configured to be urged to move the spool to a discharged state by a biasing force of a spring. The structure is switched to a state in which the discharge of the hydraulic oil is stopped by moving the spool against the urging force of the spring by the electromagnetic force of the solenoid.
[0027]
The outline of the speed change operation of the continuously variable transmissions 11R and 11L as described above will be described. As shown in FIG. 4, if the speed change position of the trunnion shaft 29 is in the neutral range, the speed change output (travel speed) becomes zero. When the shift position of the trunnion shaft 29 is rotated in a predetermined direction from the neutral region, the traveling speed in the forward direction is increased steplessly, and the trunnion shaft 29 rotates in the direction opposite to the predetermined direction from the neutral region. When the vehicle is operated, the traveling speed in the reverse direction is increased steplessly.
[0028]
The boarding operation unit 6 is movable along the longitudinal direction of the vehicle body within a predetermined operation range including a neutral position as a stop command position for instructing to stop traveling, and the amount of movement operation forward from the neutral position A single main speed change lever 24 as a lever-operated manipulating tool that commands a target vehicle speed that increases as the speed increases, and commands a target vehicle speed that increases as the amount of movement from the neutral position to the rear side increases. And can be moved over the entire range of the rectilinear command position for commanding straight travel and the swivel operation area for commanding swivel, and the amount of movement in the direction away from the rectilinear command position is large in the operation area for swivel operation A single turning lever 26 is provided as a turning command means for instructing a turning state with a small turning radius. As shown in FIG. 3, a shift lever sensor 27 for detecting the operation position of the main shift lever 24 and a swing lever sensor 28 as an operation position detecting means for detecting the operation position of the swing lever 26 are provided. They are both composed of a rotary potentiometer.
The main transmission lever 24 is configured to be urged to return to the neutral position by a spring (not shown) so as to return toward the neutral position when the manual operation is stopped and the hand is released. Similarly, the turning lever 26 is configured to be urged to return to a neutral position by a spring (not shown) so as to return toward the straight advance command position when the manual operation is stopped and the hand is released.
[0029]
Further, the pair of continuously variable transmissions 11R and 11L for traveling include rotational speed sensors 44 and 45 as shift output detecting means for detecting their output rotational speeds individually, and respective continuously variable transmissions 11R and 11L. Shift position sensors 46 and 47 each comprising a rotary potentiometer as a shift position detecting means for detecting an operation angle of each trunnion shaft 29 by a pair of hydraulic cylinders 33R and 33L. It has been. The working continuously variable transmission 12 is similarly provided with a rotational speed sensor 51.
[0030]
A control device 31 using a microcomputer is provided as a control means for controlling the operation of the travel operation mechanism 30, and this control device 31 travels straight through the vehicle body at a target vehicle speed commanded by the main transmission lever 24. In this configuration, the traveling operation mechanism 30 is actuated so as to perform straight-ahead control, and the traveling operation mechanism 30 is activated to perform the turning commanded by the turning lever 26.
[0031]
Briefly describing the straight-ahead control, as shown in FIG. 5, the main transmission lever 24 is positioned approximately in the middle of the operable range in a state where the turning lever 26 is operated to the straight-ahead command position and the straight-ahead is commanded. When the vehicle is operated to the neutral position, the vehicle is stopped, and when it is swung from the neutral position to the forward side, the target vehicle speed is commanded so that the traveling speed to the forward side increases steplessly. When the vehicle is operated to the side, a target vehicle speed at which the traveling speed to the reverse side is increased steplessly is commanded accordingly.
When the trunnion shafts 29 of the pair of left and right continuously variable transmissions 11R and 11L are away from the target shift position corresponding to the target vehicle speed, the trunnion shafts 29 of the pair of left and right continuously variable transmissions 11R and 11L are moved. The travel operation mechanism 30 is operated so as to reach a target shift position corresponding to the target vehicle speed. Thereafter, when the trunnion shaft 29 of one of the continuously variable transmissions reaches the target shift position, one of the continuously variable transmissions is controlled so that the trunnion shaft 29 is maintained at the target shift position, and the other continuously variable transmission is controlled. The device is subjected to speed synchronization processing so that its output rotational speed is the same as the output rotational speed of the one continuously variable transmission.
[0032]
Next, turning control will be described.
When the main shift lever 24 is operated and the controller 31 is traveling at a predetermined speed, if the swing lever 26 is swung from the straight command position to either the left or right turn command range, the straight command position The travel operation mechanism 30 is operated so that the turning radius becomes smaller as the operation is further away from the vehicle. At this time, the control device 31 outputs the output rotation speed of the pair of continuously variable transmissions. In this mode, the amount of change in the speed ratio per unit time is controlled to be equal to or less than the control amount, and the speed ratio is set to the final target speed ratio corresponding to the turning radius commanded by the turning lever. The mechanism 30 is configured to operate.
[0033]
Further, a potentiometer type regulation amount adjusting tool 52 as a manually operated regulation quantity setting means capable of changing the regulation quantity to be large or small is provided in the boarding operation unit 6, and the control device 31 includes a regulation quantity regulation tool. The turning control is executed based on the restriction amount set at 52.
[0034]
More specifically, the control device 31 uses any one of the pair of continuously variable transmissions 11R and 11L as a reference continuously variable transmission, and in the reference continuously variable transmission. Shift position adjustment processing for operating the travel operation mechanism 30 so that the shift position of the trunnion shaft 29 becomes the target shift position, the output rotation speed of the continuously variable transmission on the opposite side to the output rotation speed of the reference continuously variable transmission. The amount of change per unit time based on the actual speed ratio by the pair of continuously variable transmission and the final target speed ratio corresponding to the turning radius commanded by the turning lever 26. A target speed setting process in which the target rotational speed of the continuously variable transmission on the opposite side is obtained from the target speed ratio, repeatedly obtained in a state of being regulated below the regulation amount set by the adjuster 52; and the target speed Output rotational speed of the continuously variable transmission on the opposite side in order to swivel is configured to perform each of the rotational speed adjustment process for operating the travel operation mechanism 30 so that the target rotational speed at a rate.
[0035]
The processing operation of the turning control of the control device 31 will be specifically described below based on the flowchart.
As shown in FIG. 6, when the turning lever 26 is swung from the straight command position to one of the left and right turn command ranges to turn, for example, when turning to the right is commanded (step 1, 2) The left continuously variable transmission 11L, which is a continuously variable transmission located on the side away from the turning center, is used as a reference continuously variable transmission, and the trunnion shaft 29 of the reference continuously variable transmission 11L A shift position adjustment process for operating the travel operation mechanism 30 so that the shift position becomes the target shift position is executed (step 3).
[0036]
If this shift position adjustment process is described, as shown in FIG. 7, first, a target shift position for the trunnion shaft 29 in the left continuously variable transmission 11L is calculated (step 31). At this time, the shift position of the trunnion shaft 29 corresponding to the target vehicle speed commanded by the main shift lever 24 is set as the target shift position. Next, a deviation between the target shift position and the current shift position of the trunnion shaft 29 detected by the shift position sensor 47 is obtained, and the travel operation mechanism 30 is operated so that the position deviation is reduced. The shift position of the trunnion shaft 29 is changed and adjusted (steps 32 and 33). Specifically, the operation of the hydraulic cylinder 33R is controlled by switching the oil supply solenoid valve 34A and each oil discharge solenoid valve 34B in the travel operation mechanism 30 by proportional control so that the position deviation is reduced. is there.
[0037]
Next, the rotational speed sensor 45 detects the output rotational speed of the left continuously variable transmission 11L where the shift position adjustment is performed as described above, and the output rotational speed of the left continuously variable transmission 11L and the right The target rotational speed of the right continuously variable transmission 11R is obtained based on the actual speed ratio with the output rotational speed of the continuously variable transmission 11R and the final target speed ratio corresponding to the turning radius commanded by the turning lever 26. A target rotational speed setting process is executed (step 4).
[0038]
As shown in FIG. 9, the relationship of the speed ratio of the left and right continuously variable transmissions 11R and 11L with respect to the operation position of the turning lever 26 is preset and stored. If the relationship shown in this figure is further described, this figure shows the output rotation speed V of the continuously variable transmission located on the reference side, that is, on the side away from the turning center, with respect to the change in the operation position of the turning lever 26. As a reference, the change in the speed ratio of the continuously variable transmission located on the turning center side is shown. In step 4, since the right continuously variable transmission 11R is a continuously variable transmission located on the turning center side, the target rotational speed of the right continuously variable transmission 11R is obtained from the information of this speed ratio.
[0039]
A plurality of types having different speed ratios corresponding to the operation position when the operation position of the turning lever 26 is the same as the relationship between the moving amount in the direction away from the rectilinear command position of the turning lever 26 and the speed ratio. In addition, a plurality of (four types in the example shown in FIG. 9) such that the speed ratios are different when operated to the maximum operation position where the movement amount of the turning lever 26 is the largest are stored. Thus, any one of the stored plural types of relationships is selected and used for the calculation. A mode changeover switch 42 is provided as an artificially operated selection means for selecting one of a plurality of relationships, and a change command by the mode changeover switch 42 is given to the control device 31. The control device 31 determines which function is used to obtain the target rotational speed based on the switching command.
[0040]
The four types of turning modes shown in FIG. 9 will be described. When the turning lever 26 is operated to the maximum operating position, the continuously variable transmission having the output rotational speed of the continuously variable transmission on the turning center side opposite to that of the continuously variable transmission. Mode (L1) in which the speed is reduced to about 1/3 of the output rotation speed V of the vehicle, mode (L2) in which the output rotation speed of the continuously variable transmission on the turning center side is reduced to zero, and the turning center side. A mode in which the output rotational speed of the continuously variable transmission is opposite to the drive rotational direction of the opposite continuously variable transmission and is about 1/3 of the output rotational speed V of the opposite continuously variable transmission ( L3), the output rotational speed of the continuously variable transmission on the turning center side is opposite to the drive rotational direction of the continuously variable transmission on the opposite side, and the same speed as the output rotational speed V of the opposite continuously variable transmission on the opposite side. Each mode (L4) is set.
[0041]
Next, the target rotation speed setting process will be specifically described. In this target rotational speed setting process, as shown in FIG. 8, the target rotational speed is repeatedly obtained based on the following procedure every 30 msec (step 40). That is, the lever command value as the final target speed ratio corresponding to the turning radius commanded by the turning lever 26 is substituted into the speed ratio variable (step 41). Note that the lever command value for the operation position of the turning lever 26 is obtained from any one of the relationships shown in FIG. The speed ratio variable is a current integrated variable as the actual speed ratio, that is, a restriction value corresponding to a restriction amount set by the restriction amount adjuster 52 to a value corresponding to the current speed ratio information. In other words, if the amount of change on the increase side of the speed ratio by the turn lever command is larger than the regulation value, the value obtained by adding the regulation value to the current accumulation variable is the accumulated value. And the integrated value is substituted into the speed ratio variable (steps 42, 43, 44). Also, if the speed ratio variable is smaller than the value obtained by subtracting the regulation value from the current integration variable, in other words, if the change amount on the decrease side of the speed ratio by the command of the turning lever 26 is larger than the regulation value, A value obtained by subtracting the regulation value from the integrated variable is obtained as an integrated value, and this integrated value is substituted into the speed ratio variable (steps 45, 46, 47). If the speed ratio variable is not larger than the value obtained by adding the current integration variable and the regulation value, and is not smaller than the value obtained by subtracting the regulation value from the current integration variable, the lever command value is set as a new integration variable. Substitute (step 48). At this time, the lever command value is substituted into the speed ratio variable.
[0042]
Then, the target rotational speed of the continuously variable transmission located on the turning center side is calculated from the speed ratio variable thus obtained (step 49). As a result, for example, even if the turning lever 26 is suddenly operated greatly and the final target speed ratio suddenly changes to a large value in a short time as shown by the line L5 in FIG. 10, the line L6 in FIG. As shown, the target speed ratio is obtained in a state where the amount of change per unit time is regulated below the regulation value. In FIG. 10, line L7 and line L8 indicate a state when the restriction amount set by the restriction amount adjuster 52 is changed and adjusted to the large side or the small side.
[0043]
Next, the deviation between the target rotational speed and the current output speed of the continuously variable transmission 11R on the right side is obtained so that the deviation becomes small, that is, the output rotational speed of the right continuously variable transmission 11R is Rotational speed adjustment processing for operating the traveling operation mechanism 30 to achieve the target rotational speed is executed (step 5). Specifically, the refueling solenoid valve 34A and each oil drain in the travel operation mechanism 30 are controlled by PI control so that the deviation between the target rotational speed and the current output rotational speed of the continuously variable transmission 11R on the right side is reduced. By switching and controlling the electromagnetic valve 34B, the shift position of the trunnion shaft 29 is changed and adjusted so that the output rotation speed becomes the target rotation speed.
[0044]
In this rotational speed adjustment process, the target rotational speed is obtained from a target speed ratio obtained in a state where the amount of change per unit time is regulated to be equal to or less than the regulated amount. The speed ratio of the continuously variable transmission changes as shown by a line L6 in FIG. 10 in a state where the amount of change per unit time is suppressed below the regulation amount. It converges to the final target speed ratio corresponding to the turning radius commanded at.
[0045]
If the left direction is commanded as the turning direction in step 2, the right-side continuously variable transmission 11R is used as the reference continuously variable transmission, and the same shift position adjustment process and target rotational speed setting as in steps 3 to 5 are performed. Each of the processing and the rotation speed adjustment processing is executed (steps 6, 7, and 8).
[0046]
[Another embodiment]
Next, another embodiment is listed.
[0047]
(1) In the above embodiment, the target rotation speed is set in such a manner that the change amount per unit time of the speed ratio variable corresponding to the lever command value of the turning lever is regulated as the target rotation speed setting process. Instead of such a configuration, the following control may be performed.
As shown in FIG. 11, every time 30 msec elapses, the command value of the turning lever 26 is determined based on the command value of the turning lever 26 and the relationship selected among the plurality of turning modes as shown in FIG. The command rotational speed Ns is obtained by calculation, and the obtained command rotational speed Ns is greater than the value obtained by adding the regulation value ΔN to the actual rotational speed Nx of the continuously variable transmission on the turning center side detected by the rotational speed sensor. If it is larger, a value obtained by adding the regulation value ΔN to the actual rotational speed Nx is set as the target rotational speed Nm. When the command rotational speed Ns is smaller than the value obtained by subtracting the regulation value ΔN from the actual rotational speed Nx, a value obtained by subtracting the regulation value ΔN from the actual rotational speed Nx is set as the target rotational speed Nm. If the command rotational speed Ns is not larger than the value obtained by adding the regulation value ΔN to the actual rotational speed Nx and is not smaller than the value obtained by subtracting the regulation value ΔN from the actual rotational speed Nx, the command rotational speed Ns is set as the target. Set as rotation speed Nm.
That is, in this embodiment, the command rotational speed Ns is the target rotational speed of the continuously variable transmission on the turning center side corresponding to the final target speed ratio, and the continuously variable transmission on the turning center side in the shifting operation in response to the command. It is the structure which regulates the variation | change_quantity per unit time of the rotational speed of this to below regulation amount.
[0048]
(2) In the above-described embodiment, a configuration is provided in which a manually-operated restriction amount setting unit that can adjust the restriction amount to be large or small is provided. It is good also as a structure which always regulates the variation | change_quantity per unit time of the speed ratio of an output rotational speed with a fixed regulation amount.
[0049]
(3) In the above embodiment, the target speed ratio of the output rotation speeds of the pair of continuously variable transmissions is repeatedly obtained in a state where the amount of change per unit time is regulated below the regulation amount, and the obtained target speed ratio However, instead of such a configuration, for example, the machine may be configured so that the moving speed by manual operation of the turning command means becomes a speed corresponding to the regulation amount. The amount of change per unit time of the final target speed ratio corresponding to the magnitude of the turning radius commanded by the turning command means may be controlled to be equal to or less than the regulated amount.
[0050]
(4) In the above embodiment, the trunnion shaft corresponding to the target vehicle speed is maintained so that the traveling device located on the side away from the turning center is maintained at the traveling speed corresponding to the target vehicle speed commanded by the main speed change lever. However, the present invention is not limited to such a configuration, and the trunnion corresponding to the vehicle speed obtained by multiplying the target vehicle speed by a predetermined ratio of about 0.8 to 1.2, for example. The shaft shift position may be set as the target shift position.
[0051]
(5) In the above embodiment, a plurality of values are stored as the relationship between the movement amount in the direction away from the rectilinear command position of the turning command means and the speed ratio, and any one of them is selected by the mode switch. However, instead of such a configuration, only one type of relationship may be set and the target speed ratio may always be obtained based on the one type of relationship.
[0052]
(6) In the above embodiment, in the turning control, the output rotational speed of the continuously variable transmission located on the side away from the turning center of the pair of continuously variable transmissions is maintained at the set speed and is higher than the set speed. Although the output rotational speed of the continuously variable transmission located on the turning center side is decelerated, the present invention is not limited to this configuration, and the output rotational speed of the continuously variable transmission located on the turning center side is maintained at the set speed. The output rotational speed of the continuously variable transmission located on the side away from the turning center may be set to be higher than the set speed for turning.
[0053]
(7) In the above embodiment, the hydraulic cylinder is exemplified as the actuator for operating the trunnion shaft of the continuously variable transmission, but other actuators such as a hydraulic motor and an electric motor may be used.
[0054]
(8) In the above embodiment, the hydrostatic continuously variable transmission is used as the pair of continuously variable transmissions. However, instead of such a configuration, for example, a belt-type continuously variable transmission or a tapered cone type continuously variable transmission is used. It is good also as a structure which combines a transmission and the forward / reverse switching mechanism for switching a driving direction back and forth. Further, in combination with such a configuration, the vehicle speed command means is configured such that one end side of the predetermined operation range is a stop command position for commanding stop of running and the other end side of the predetermined operation range is an upper limit value on the high speed side. You may do it.
[0055]
(9) In the above embodiment, a combine is exemplified as a work vehicle. However, the present invention is not limited to a combine, and may be another agricultural work vehicle such as a carrot harvester or a radish harvester. Other work vehicles may be used.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is a schematic configuration diagram showing a transmission structure.
FIG. 3 is a control block diagram.
FIG. 4 is a diagram showing a relationship between a shift position and a shift output.
FIG. 5 is a diagram showing a relationship between a main shift lever operation position and a target vehicle speed.
FIG. 6 is a flowchart of the control operation.
FIG. 7 is a flowchart of the control operation.
FIG. 8 is a flowchart of the control operation.
FIG. 9 is a diagram showing the relationship between the position of the turning lever and the speed ratio.
FIG. 10 is a graph showing a change in speed ratio with time.
FIG. 11 is a flowchart of a control operation according to another embodiment.
[Explanation of symbols]
1R, 1L traveling device
11R, 11L continuously variable transmission
26 Turning command means
30 speed change operation means
31 Control means
52 Control amount setting means

Claims (5)

左右一対の走行装置の走行速度を変速する一対の無段変速装置と、その一対の無段変速装置を各別に変速操作自在な変速操作手段と、直進及び旋回を指令自在で且つ旋回するときの旋回半径の大きさを指令自在な旋回指令手段と、前記旋回指令手段の指令情報に基づいて直進及び旋回を行うべく前記変速操作手段を作動させる旋回制御を実行する制御手段とが備えられている作業車の旋回制御装置であって、
前記制御手段が、前記旋回制御として、
前記一対の無段変速装置の出力回転速度の速度比率の単位時間あたりの変化量を規制量以下に規制する形態で、前記速度比率を前記旋回指令手段にて指令される旋回半径の大きさに対応する最終目標速度比率にするように、前記変速操作手段を作動させるよう構成されている作業車の旋回制御装置。
A pair of continuously variable transmission for varying speed of the running speed of the pair of left and right traveling devices, a freely shift operation means shifting operation to each other the pair of continuously variable transmission, when and pivot freely commanding straight and turning Turn command means capable of commanding the magnitude of the turn radius, and control means for executing turn control for operating the speed change operation means to perform straight advance and turn based on the command information of the turn command means. A turning control device for a working vehicle,
The control means as the turning control,
In the form in which the amount of change per unit time of the speed ratio of the output rotational speed of the pair of continuously variable transmissions is restricted to a regulation amount or less, the speed ratio is set to the magnitude of the turning radius commanded by the turning command means. A turning control device for a work vehicle configured to operate the shift operation means so as to obtain a corresponding final target speed ratio.
前記制御手段が、前記旋回制御として、
前記一対の無段変速装置の出力回転速度の目標速度比率を、前記一対の無段変速装置による実速度比率と前記最終目標速度比率とに基づいて、単位時間あたりの変化量を前記規制量以下に規制する状態で繰り返し求めて、その求めた目標速度比率にて旋回するように、前記変速操作手段を作動させるよう構成されている請求項1記載の作業車の旋回制御装置。
The control means as the turning control,
Based on the target speed ratio of the output rotational speed of the pair of continuously variable transmissions based on the actual speed ratio and the final target speed ratio of the pair of continuously variable transmissions, the amount of change per unit time is equal to or less than the regulation amount. 2. The turning control device for a work vehicle according to claim 1, wherein the shift operation means is operated so as to be repeatedly obtained in a restricted state and turn at the obtained target speed ratio.
前記制御手段が、前記旋回制御として、
前記一対の無段変速装置のうちの旋回中心から離れる側に位置する無段変速装置の出力回転速度を設定速度に維持させ且つその設定速度よりも旋回中心側に位置する無段変速装置の出力回転速度を減速させることにより、前記一対の無段変速装置の出力回転速度の速度比率を変更させるよう構成されている請求項1又は2に記載の作業車の旋回制御装置。
The control means as the turning control,
Of the pair of continuously variable transmissions, the output rotational speed of the continuously variable transmission located on the side away from the turning center is maintained at the set speed, and the output of the continuously variable transmission located closer to the turning center than the set speed. The work vehicle turning control device according to claim 1 or 2, wherein a speed ratio of output rotational speeds of the pair of continuously variable transmissions is changed by decelerating the rotational speed.
前記規制量を大小に変更調整自在な手動操作式の規制量設定手段が設けられ、
前記制御手段が、前記規制量設定手段に設定される前記規制量に基づいて前記旋回制御を実行するように構成されている請求項1〜3のうちいずれか1項に記載の作業車の旋回制御装置。
A manually operated restriction amount setting means that can freely adjust the restriction amount to a large or small amount is provided,
The turning of the work vehicle according to any one of claims 1 to 3, wherein the control means is configured to execute the turning control based on the restriction amount set in the restriction amount setting means. Control device.
前記旋回指令手段が、
直進を指令する直進指令位置及び旋回を指令する旋回操作用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回操作用操作領域において直進指令位置から離れる方向への移動量が大きいほど小さい旋回半径となる旋回状態を指令するように構成されている請求項1〜4のうちいずれか1項に記載の作業車の旋回制御装置。
The turning command means is
The vehicle can be moved over the entire range of the rectilinear command position for commanding straight and the swivel operation area for commanding the turn, and the smaller the amount of movement in the direction away from the rectilinear command position in the swivel operation area, the smaller the turn. The turning control device for a work vehicle according to any one of claims 1 to 4, wherein the turning control device is configured to command a turning state having a radius.
JP2002285041A 2002-09-30 2002-09-30 Work vehicle turning control device Expired - Fee Related JP3949041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285041A JP3949041B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285041A JP3949041B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Publications (3)

Publication Number Publication Date
JP2004114991A JP2004114991A (en) 2004-04-15
JP2004114991A5 JP2004114991A5 (en) 2005-06-16
JP3949041B2 true JP3949041B2 (en) 2007-07-25

Family

ID=32278439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285041A Expired - Fee Related JP3949041B2 (en) 2002-09-30 2002-09-30 Work vehicle turning control device

Country Status (1)

Country Link
JP (1) JP3949041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385618B2 (en) * 2009-01-14 2014-01-08 株式会社クボタ Work vehicle turning control device

Also Published As

Publication number Publication date
JP2004114991A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4353953B2 (en) Drive control device for work vehicle
JP3949041B2 (en) Work vehicle turning control device
JP3782030B2 (en) Work vehicle turning control device
JP3786629B2 (en) Work vehicle travel control device
JP2007082450A (en) Operation apparatus for working vehicle
JP4537923B2 (en) Shift control device for work equipment
JP4681394B2 (en) Drive control device for mowing machine
JP2007091090A (en) Travel controlling device for working vehicle
JP3850322B2 (en) Work vehicle turning control device
JP3176237B2 (en) Work vehicle steering system
JP3883484B2 (en) Work vehicle turning control device
JPH0874995A (en) Automatic speed changing structure of working vehicle
JP4023686B2 (en) Work vehicle turning control device
JP4297826B2 (en) Work vehicle turning control device
JP2004116728A (en) Shift controller and work vehicle provided therewith
JP2004116756A (en) Running control device of working vehicle
JP2004114797A (en) Turning control apparatus for working vehicle
JP2004116660A (en) Travel controller for work vehicle
JPH08142901A (en) Spin-turn mechanism
JP2010164109A (en) Driving control device for work vehicle
JP2004114798A (en) Turning control apparatus for working vehicle
JP2007091091A (en) Travel controlling device for working vehicle
JP2004116757A (en) Travel controller for work vehicle
KR20040007240A (en) Propelling control apparatus for a working vehicle
JP5155633B2 (en) Work vehicle turning control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Ref document number: 3949041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees