JP3850322B2 - Work vehicle turning control device - Google Patents

Work vehicle turning control device Download PDF

Info

Publication number
JP3850322B2
JP3850322B2 JP2002075941A JP2002075941A JP3850322B2 JP 3850322 B2 JP3850322 B2 JP 3850322B2 JP 2002075941 A JP2002075941 A JP 2002075941A JP 2002075941 A JP2002075941 A JP 2002075941A JP 3850322 B2 JP3850322 B2 JP 3850322B2
Authority
JP
Japan
Prior art keywords
turning
command
traveling
state
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002075941A
Other languages
Japanese (ja)
Other versions
JP2003267254A (en
Inventor
之史 山中
吉弘 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002075941A priority Critical patent/JP3850322B2/en
Publication of JP2003267254A publication Critical patent/JP2003267254A/en
Application granted granted Critical
Publication of JP3850322B2 publication Critical patent/JP3850322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、左右一対の走行装置の走行状態を直進状態及び旋回状態に切り換え自在で、且つ、前記旋回状態において前記一対の走行装置夫々の走行速度を異ならせて旋回力を変更自在に構成されている旋回操作手段と、前記直進状態を指令する直進指令位置及び前記旋回状態を指令する旋回指令用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回状態として、前記旋回指令操作領域において直進指令位置から離れる方向への移動量が大きいほど大きな旋回力となる旋回状態を指令する旋回指令手段とを備えた作業車の旋回制御装置に関する。
【0002】
【従来の技術】
上記構成の作業車の旋回制御装置として、従来では、例えば、特開平10−84749号公報に示される構成のものがあった。
すなわち、前記旋回操作手段として、左右一対の走行装置を夫々各別に駆動する一対の静油圧式無段変速装置(HST)を備えて、それら一対の静油圧式無段変速装置による左右の走行装置の走行速度を同速度にすることで直進状態に切り換え、左右の走行装置の走行速度に速度差を与えて旋回状態に切り換える構成となっており、次のような旋回用の操作機構が備えられている。
つまり、回動操作自在な旋回指令手段(ステアリングハンドル)が備えられ、その旋回指令手段と一対の静油圧式無段変速装置夫々の変速用の被操作体(トラニオン軸)とを機械的に連動連係するリンク機構が備えられる構成となっており、旋回指令手段を直進指令位置から旋回指令操作領域において左右の旋回方向に向けて回動操作させることにより、一対の静油圧式無段変速装置にて変速される左右の走行装置の走行速度の速度差が予め定められた特定の相関関係に従って連続的に変化するように、言い換えると、操作量が大きいほど大きい旋回力に変更させる構成である。しかも、旋回指令手段の操作位置の単位量当たりの変化に対する旋回力の変化量は、旋回指令用操作領域の全域にわたって同一となる状態で旋回操作が行われる構成となっていた。
具体的には、旋回指令手段を旋回指令用操作領域にて直進指令位置から移動操作させるに伴って、旋回側の走行装置が反対側の走行装置と同一方向に駆動される状態であって、且つ、旋回側の走行装置の速度が反対側の走行装置の速度より低速となりその速度差が徐々に大きくなる旋回状態、旋回側の走行装置が回転停止状態となる旋回状態、旋回側の走行装置が反対側の走行装置と逆方向に駆動される旋回状態、の夫々に順次切り換わる構成となっていた。
【0003】
【発明が解決しようとする課題】
上記従来構成では、旋回指令手段を移動操作してその操作位置を変化させることで任意の旋回力による旋回状態を現出させることができるが、旋回指令手段の操作位置の単位量当たりの変化に対する旋回力の変化量は、旋回指令用操作領域の全域にわたって同一となる状態で旋回操作が行われる構成であるから、次のような面で未だ改善の余地があった。
【0004】
上記従来構成では、旋回指令手段を、前記旋回指令用操作領域における直進指令位置から離れる方向への移動量が最も大きい最大操作位置に操作した状態においては、旋回側の走行装置が反対側の走行装置と逆方向に駆動されて大きな旋回力が得られる急旋回可能な旋回状態に切り換わるので、このような大きな旋回力を必要とするときには使い勝手がよいのであるが、作業車の旋回操作を行う場合に、常に、このような大きな旋回力を必要とするものではなく、小さい旋回力での旋回操作が必要とされる場合がある。例えば、コンバイン等のように植付け作物を収穫するような場合であれば、車体を作物の植付け列に沿わせるために旋回操作を行うような場合には、小さい旋回力で微調節しながら緩やかな旋回を行う必要がある。
【0005】
しかし、上記従来構成においては、旋回指令手段の操作位置の単位量当たりの変化に対する旋回力の変化量は、旋回指令用操作領域の全域にわたって同一となっており、しかも、最大操作位置では大きな旋回力を得られる構成となっているので、上記したような緩やかな旋回操作を行う場合に、旋回指令手段を旋回指令用操作領域における直進指令位置から離れる方向へ少しだけ移動操作させるようにしても、旋回力が大きく変化してしまい、小さ目の旋回力にて微調節しながら緩やかに旋回を行うことが適正に行えないものになる不利があった。
【0006】
このような不利を回避するための1つの方法として、旋回指令手段が最大操作位置に操作されたときの目標とする旋回力を小さめのものに抑制することが考えられるが、このように構成すると、例えば、車体の進行方向を大きく変化させる等、大きな旋回力を必要とするような場合において、旋回指令手段を前記最大操作位置まで操作してもそのとき小さめの旋回力しか得ることができないという不都合がある。
【0007】
又、上記不利を回避するための別の方法として、前記旋回指令用操作領域における旋回指令手段が移動操作可能な範囲を広くさせて、旋回指令手段の操作位置の単位量当たりの変化に対する旋回力の変化量を旋回指令用操作領域の全域にわたり小さいものにすることも考えられるが、この構成では、直進状態から上記したように車体の進行方向を大きく変化させるために大きな旋回力を必要とする状態に変化するような場合に、旋回指令手段を大きく移動操作させる必要があり、旋回のための操作が煩わしいものとなる不利がある。
【0008】
本発明はかかる点に着目してなされたものであり、その目的は、旋回指令手段の移動操作範囲を不必要に広くして操作を煩わしくさせる不利がなく、しかも、大きな旋回力を得ることが可能でありながら、微調節しながら緩やかに旋回を行うことを適正に行うことが可能となる作業車の旋回制御装置を提供する点にある。
【0009】
【課題を解決するための手段】
請求項1に記載の作業車の旋回制御装置は、左右一対の走行装置の走行状態を直進状態及び旋回状態に切り換え自在で、且つ、前記旋回状態において前記一対の走行装置夫々の走行速度を異ならせて旋回力を変更自在に構成されている旋回操作手段と、前記直進状態を指令する直進指令位置及び前記旋回状態を指令する旋回指令用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回状態として、前記旋回指令操作領域において直進指令位置から離れる方向への移動量が大きいほど大きな旋回力となる旋回状態を指令する旋回指令手段とを備えたものであって、前記旋回操作手段が、前記旋回指令操作領域のうち、前記旋回指令手段による前記直進指令位置から離れる方向への移動量が小である小側操作域においては、前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量が小さい鈍感操作状態となり、且つ、前記旋回指令用操作領域のうち前記移動量が前記小側操作域よりも大きい大側操作域においては、前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量が、前記小側操作域における前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量よりも大きい敏感操作状態となる形態で、目標とする旋回力を求めて、前記旋回指令手段の指令情報に基づいて、前記目標とする旋回力となるように、旋回側とは反対側に位置する前記走行装置の走行速度を一定に維持しながら旋回側の前記走行装置の走行速度を漸次減速させる形態で、前記一対の走行装置夫々の走行速度の速度差を異ならせるように構成され、前記小側操作域においては前記旋回指令手段の操作位置と前記目標とする旋回力との相関関係を同じとし、前記大側操作域においては前記相関関係を異なる相関関係とする複数の旋回モードに人為操作指令に基づいて切り換え自在な旋回力設定手段が備えられ、前記旋回操作手段が、前記旋回指令手段の指令情報及び前記旋回力設定手段の設定情報に基づいて、前記目標とする旋回力を求めるように構成されていることを特徴とする。
【0010】
すなわち、前記旋回指令手段は、旋回指令操作領域において直進指令位置から離れる方向への移動量が大きいほど大きな旋回力となる旋回状態を指令することになり、前記旋回操作手段が、旋回指令手段の指令情報に基づいて、目標とする旋回力となるように一対の走行装置夫々の走行速度の速度差を異ならせる状態で旋回操作を行うことになる。この走行速度とは走行装置が駆動されることによって走行するときの速度である。
そして、旋回操作手段は、旋回指令手段を前記小側操作域内において移動させて旋回力を変更調整させる場合には前記鈍感操作状態となり、旋回指令手段の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が小さいものとなる。従って、旋回指令手段を直進指令位置から離れる方向に移動操作させても、その操作位置の変化に対して目標とする旋回力の変化が小さいので、小さ目の旋回力にて微調節しながら緩やかに旋回を行うことを適正に行い易いものになる。
【0011】
又、旋回操作手段は、旋回指令手段を前記小側操作域よりも移動量が大きい大側操作域内において移動させて旋回力を変更調整させる場合には、前記敏感操作状態となり、旋回指令手段の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が、前記小側操作域における前記旋回指令手段の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量よりも大きいものとなる。つまり、旋回指令手段を、前記小側操作域を越えて大側操作域にまで移動させ、この大側操作域内で移動操作させると、操作位置の変化に対して目標とする旋回力の変化が大きくなるから、旋回指令手段を旋回指令用操作領域における直進指令位置から離れる方向への移動量が最も大きい最大操作位置に操作した状態における目標とする旋回力を、例えば急旋回させることが可能な大きなものに設定しても、大側操作域内における旋回指令手段の移動操作範囲を広幅にする必要がなく、旋回指令用操作領域における旋回指令手段を移動操作させるための移動操作範囲を不必要に広幅にさせることがない。
【0012】
従って、旋回指令手段の移動操作範囲を不必要に広くして操作を煩わしくさせる不利がなく、しかも、最大操作位置に操作した状態では大きな旋回力を得ることが可能でありながら、微調節しながら緩やかに旋回を行うことを適正に行うことが可能となる作業車の旋回制御装置を提供できるに至った。
【0023】
請求項記載の作業車の旋回制御装置は、請求項において、前記旋回力設定手段が、前記旋回指令手段が前記旋回指令用操作領域のうち前記移動量が最も大きい最大操作位置に操作されたときの旋回力を増減変化させる状態で、前記複数の旋回モードに切換え自在に構成されていることを特徴とする。
【0024】
すなわち、旋回力設定手段が、人為操作指令に基づいて、旋回指令手段が旋回指令範囲のうち移動量が最も大きい最大操作位置に操作されたときの旋回力が増減変化する状態で、旋回指令手段の操作位置と前記目標とする旋回力との相関関係を設定することになる。
【0025】
従って、操作者が大きな旋回力が必要であると感じて旋回指令手段を最大操作位置に操作させた場合であっても、旋回指令手段が最大操作位置に操作されたときの旋回力は、旋回力設定手段にて操作者が適正なものとして任意に変更設定された旋回力になるので、適正な旋回力にて旋回操作を行うことが可能となり、請求項を実施するのに好適な手段が得られる。
【0026】
請求項記載の作業車の旋回制御装置は、請求項1又は2において、前記旋回操作手段が、前記左右一対の走行装置の夫々の走行速度を各別に無段階に変速する一対の無段変速装置と、その一対の無段変速装置を夫々各別に変速操作する一対のアクチュエータと、そのアクチュエータの動作を制御する制御手段とを備えて構成され、前記制御手段が、前記一対のアクチュエータを制御することにより、前記旋回力を変更させるよう構成されていることを特徴とする。
【0027】
すなわち、一対のアクチュエータによって一対の無段変速装置を夫々各別に変速操作することで、左右一対の走行装置の夫々の走行速度を各別に無段階に変速することができる。従って、左右一対の走行装置の夫々の走行速度の速度差を無段階に異ならせることで、旋回力を無段階に変更させることが可能となり、段階的に旋回力を切り換えるような構成のものに比べて、旋回操作を極力滑らかに行うときができるとともに、目標とする旋回力を無段階に変化させることができるので、操作者の操作感覚に合う最も適切な旋回力にて旋回操作を行うことが可能となり、請求項1又は2を実施するのに好適な手段が得られる。
【0028】
【発明の実施の形態】
下、本発明に係る作業車の旋回制御装置を、作業車の一例としてのコンバインに適用した場合について図面に基づいて説明する。
【0029】
図1に作業車の一例であるコンバインの全体側面が示されており、このコンバインは、走行装置の一例である左右一対のクローラ式走行装置1R,1Lの駆動で走行する走行機体2の前部に、植立穀稈を刈り取って後方に向けて搬送する刈取搬送装置3を昇降可能に連結し、走行機体2に、刈取搬送装置3からの刈取穀稈を受け取って脱穀・選別処理を施す脱穀装置4と、脱穀装置4からの穀粒を貯留する穀粒タンク5とを搭載するとともに、穀粒タンク5の前方箇所に搭乗運転部6を形成することによって構成されている。
【0030】
図2に示すように、このコンバインは、エンジン7からの動力を、ベルトテンション式の主クラッチ8を介してミッションケース9の入力軸10に伝達し、この入力軸10から走行用の一対の静油圧式無段変速装置11R,11L(無段変速装置の一例)に分配伝達し、走行用の一方の静油圧式無段変速装置11Lによる変速後の動力を左側のギヤ式副変速装置13Lを介して左側のクローラ式走行装置1Lに伝達し、走行用の他方の静油圧式無段変速装置11Rによる変速後の動力を、右側のギヤ式副変速装置13Rを介して右側のクローラ式走行装置1Rに伝達するようにして走行駆動用の伝動機構を構成している。一方、エンジン7からの動力が作業用の静油圧式無段変速装置12にも供給され、その作業用の静油圧式無段変速装置12による変速後の動力を、ベルトテンション式の刈取クラッチ14を介して刈取搬送装置3に伝達するようにして刈取作業用の伝動機構を構成している。
【0031】
左右のギヤ式副変速装置13R,13Lは、前記各静油圧式無段変速装置11R、11Lの変速後の動力を高低2段に切り換え自在並びに動力遮断状態に切り換え自在な副変速機構として構成されている。又、それらの伝動軸15R,15L同士を断続させることで、左右のクローラ式走行装置1R,1Lを一体的に連結して等速駆動する状態と、左右のクローラ式走行装置1R,1Lを各別に変速操作することを許容する状態とに切り換える多板式の油圧クラッチ16が介装されている。
【0032】
そして、図3に示すように、走行用の各静油圧式無段変速装置11R,11Lを各別に変速操作する油圧式の走行用操作機構30と、作業用の静油圧式無段変速装置12を変速操作する油圧式の作業用操作機構36と、油圧クラッチ16に対する作動油の流動状態を切り換える電磁切換弁32とが夫々備えられている。前記走行用操作機構30は、走行用の各静油圧式無段変速装置11R,11Lの夫々におけるトラニオン軸29,29に連動連結された一対の複動型の油圧シリンダ33R,33L(アクチュエータの一例)と、これらの各油圧シリンダ33R,33Lに対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用の油圧電磁弁34Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用の油圧電磁弁34Bとを備えて構成されている。前記各油圧シリンダ33R,33Lは、内装されるバネの付勢力により中立位置に復帰付勢される構成となっている。
【0033】
前記作業用操作機構36も同様に、作業用の静油圧式無段変速装置12におけるトラニオン軸37に連動連結されるとともに、内装されるバネの付勢力により中立位置に復帰付勢される構成の複動型の油圧シリンダ40と、この油圧シリンダ40に対する正逆方向夫々の操作に対応する一対の油室に作動油を供給する状態と供給を停止する状態とに切り換え自在な一対の2位置切換式の給油用の油圧電磁弁41Aと、前記一対の油室から作動油を排出する状態と排出を停止する状態とに切り換え自在な一対の2位置切換式の排油用の油圧電磁弁41Bとを備えて構成されている。
【0034】
前記各給油用の油圧電磁弁34A,41Aは、バネの付勢力によってスプールを給油停止状態に移動付勢する構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油を供給する状態に切り換える構成となっており、又、前記各排油用の油圧電磁弁34B,41Bは、バネの付勢力によってスプールを排出状態に移動付勢される構成となっており、ソレノイドによる電磁力によってバネの付勢力に抗してスプールを移動操作して作動油の排出を停止する状態に切り換わる構成となっている。
又、搭乗運転部6には、前後方向に揺動操作可能な単一の副変速レバー25が設けられ、この副変速レバー25は、ギヤ式副変速装置13R、13Lに連係されており、副変速レバー25の操作によって、走行用の各静油圧式無段変速装置11R,11Lによる変速後の動力を高低2段に変速できるようになっている。
【0035】
上記したような静油圧式無段変速装置11R,11Lの変速動作について説明を加えると、例えば図4に示すように、トラニオン軸29の変速位置が中立位置Nを含む所定幅を有する中立域にあれば変速出力(走行速度)は零となり、トラニオン軸29の変速位置がその中立域から所定方向に回動操作されると前進方向への走行速度が無段階に増速操作され、トラニオン軸29が中立域から所定方向と反対方向に回動操作されると後進方向への走行速度が無段階に増速操作される構成となっている。
【0036】
搭乗運転部6には、前後方向に沿って所定の前後操作範囲にわたり揺動操作可能な主変速レバー24、及び、左右方向に沿って所定の左右操作範囲にわたり揺動操作可能な旋回指令手段としての旋回レバー26などが装備されている。そして、図3に示すように、主変速レバー24の操作位置を検出する変速レバーセンサ27と、旋回レバー26の操作位置を検出する旋回レバーセンサ28とが夫々設けられ、それらは共に回転式のポテンショメータにて構成されている。
【0037】
又、一対の静油圧式無段変速装置11R,11Lには、それらの出力回転速度を各別に検出する変速出力検出手段としての回転速度センサ44,45と、夫々の静油圧式無段変速装置11R,11Lの変速位置、すなわち、一対の油圧シリンダ33R,33Lによる夫々のトラニオン軸29の操作角度を検出する変速位置検出手段としての変速位置センサ46,47とが夫々備えられている。
【0038】
そして、前記油圧シリンダ33R,33L,40の動作を制御するマイクロコンピュータ利用の制御装置31が備えられ、この制御装置31は、前記変速レバーセンサ27及び前記旋回レバーセンサ28の検出情報に基づいて、一対の静油圧式無段変速装置11R,11Lの夫々の目標回転速度を求めて、その求めた目標回転速度に対応する前記各トラニオン軸29の目標変速位置を設定して、前記各変速位置センサ46,47の検出値が前記各目標変速位置になるように前記一対の油圧シリンダ33R,33Lの作動を制御する走行制御を実行するよう構成されている。
【0039】
すなわち、旋回レバー26が直進指令位置に操作されて直進が指令されている状態で、主変速レバー24が操作可能範囲のほぼ中間に位置する中立位置(停止指令位置に対応する)に操作されると走行停止状態となり、中立位置から前進側へ揺動操作されるとそれに伴って前進側への走行速度が無段階で増速され、中立位置から後進側へ操作されるとそれに伴って後進側への走行速度が無段階で増速されるように、一対の油圧シリンダ33R,33Lの作動を制御する構成となっており、主変速レバー24が所定位置で固定されると、その位置にて指令される目標走行速度で車体が直進走行するように、一対の油圧シリンダ33R,33Lの作動を制御するのである。
又、制御装置31は、主変速レバー24が操作されて所定速度で走行しているときに、旋回レバー26が直進指令位置から左右いずれかの旋回指令用操作領域において揺動操作されると、前記直進指令位置から離れる側に操作されるほど旋回半径が小さくなる、言い換えると、大きな旋回力となる旋回状態が指令され、その旋回状態となるように各油圧シリンダ33R,33Lの作動を制御するよう構成されている。
【0040】
そして、制御装置31は、旋回指令操作領域のうち、旋回レバー26による直進指令位置から離れる方向への移動量が小である小側操作域においては、旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が小さい鈍感操作状態となり、且つ、旋回指令用操作領域のうち、旋回レバー26による直進指令位置から離れる方向への移動量が前記小側操作域よりも大きい大側操作域においては、旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が、前記小側操作域における旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量よりも大きい敏感操作状態となる形態で、目標とする旋回力を求めるよう構成されている。
【0041】
又、前記小側操作域においては、旋回レバー26の操作位置の単位量当たりの変化に対する旋回力の変化量が小側の設定値にて一定に維持され、且つ、前記大側操作域においては、旋回レバー26の操作位置の単位量当たりの変化に対する旋回力の変化量が、前記小側の設定値よりも大きい大側の設定値にて一定に維持される形態で、目標とする旋回力を求めるように構成され、更に、旋回レバー26の操作位置と目標とする旋回力との相関関係を人為操作指令に基づいて変更設定自在に構成され、旋回レバー26の指令情報、及び、設定された旋回レバー26の操作位置と目標とする旋回力との相関関係の情報に基づいて、目標とする旋回力を求めるよう構成されている。そして、目標とする旋回力となるように一対のクローラ走行装置1R、1L夫々の走行速度の速度差を異ならせべく、各油圧シリンダ33R、33Lの作動を制御するよう構成されている。
【0042】
説明を加えると、旋回レバー26の操作位置に対する左右クローラ走行装置1R、1Lの速度差による旋回力の大きさ、具体的には、旋回側のクローラ走行装置の速度の反対側のクローラ走行装置の速度に対する速度比率の相関関係が設定されている。つまり、図6に示すように、旋回レバー26による直進指令位置から離れる方向への移動量が小である小側操作域W1においては、旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が小側の設定値にて一定に維持されるような直線状態となり、旋回レバー26による直進指令位置から離れる方向への移動量が前記小側操作域よりも大きい大側操作域W2においては、旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量が、小側の設定値よりも大きい大側の設定値にて一定に維持されるように直線状態となる形態で、目標とする旋回力、具体的には、一対のクローラ走行装置1R、1Lの速度比率を設定するようになっている。
【0043】
そして、上述したような相関関係を人為操作指令に基づいて変更設定自在に構成されている。
つまり、旋回レバー26が前記旋回指令用操作領域のうち前記移動量が最も大きい最大操作位置に操作されたときの旋回力を増減変化させる状態で、大側操作域における前記相関関係を、基本的には3種類の異なる旋回モードに切り換えることができ、しかも、前記小側操作域W1における旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量、および、前記小側操作域における操作領域の幅の夫々について増減調節を行える構成となっている。
【0044】
先ず、旋回モードの切り換えについて説明する。
搭乗運転部6には、前記大側操作域W2における上記したような相関関係を、図6のラインL2に示す緩旋回モード、図6のラインL3に示す信地旋回モード、図6のラインL4に示す超信地旋回モードの3つ旋回モードに切り換えるための3接点式のモード切換スイッチ42が設けられており、このモード切換スイッチ42による切換指令が制御装置31に与えられて、制御装置31は、その切換指令に基づいて、次のように旋回モードを切り換えるように構成されている。但し、このモード切換スイッチ42を切り換え操作しても、前記小側操作域W1の相関関係は変化しない。
【0045】
図中のラインL1は、旋回側とは反対側のクローラ走行装置の速度を示している。ラインL2は緩旋回モードでの旋回側のクローラ走行装置の走行速度の変化を示している。つまり、旋回レバー26の操作位置が直進指令位置から旋回側に離れるほど、旋回側のクローラ走行装置の走行速度が徐々に減速され、旋回レバー26が最大操作位置にまで操作されると、反対側のクローラ走行装置の走行速度Vの約1/3の速度にまで減速されるように、旋回レバー26の操作位置に対する、左右のクローラ走行装置1R、1Lの速度比率の変化特性が予め設定されている。
又、ラインL3に示す信地旋回モードにおいては、旋回レバー26が最大操作位置にまで操作されると、旋回側のクローラ走行装置の走行速度が零となるまで減速されるように、旋回レバー26の操作位置に対する、左右のクローラ走行装置1R,1Lの速度比率が予め設定されている。
又、ラインL4に示す超信地旋回モードにおいては、旋回レバー26が最大操作位置にまで操作されると、旋回側のクローラ走行装置の走行速度が反対側のクローラ走行装置の駆動回転方向とは逆回転方向で、反対側のクローラ走行装置の速度の約1/3の速度になるように、旋回レバー26の操作位置に対する、左右のクローラ走行装置の速度比率が予め設定されている。
【0046】
そして、搭乗運転部6には、2つのポテンショメータ式の人為操作式の調節操作具43a,43bが備えられており、これらの情報も制御装置31に入力される構成となっている。そして、制御装置31は、減速量調節用の調節操作具43aが操作されると、前記小側操作域W1における旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量を変更設定する構成となっている。具体的には、小側操作域W1の終点位置(図6中の点P)を車速増減方向(Y方向)に移動調整することができる構成となっている。又、操作幅変更用の調節操作具43bが操作されると、前記小側操作域W1における操作領域の幅の増減調節する構成となっている。具体的には、小側操作域W1の終点位置(点P)を操作位置変更方向(X方向)に移動調整することができる構成となっている。
但し、これらの調節操作具43a、43bによる調節操作を行っても、小側操作域W1における、旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量は、大側操作域W2のものよりも小である状態を維持することになる。
【0047】
従って、モード切換スイッチ42の操作及び前記各調節操作具43a、43bの操作によって、旋回レバー26の旋回指令用操作領域での操作位置と目標とする旋回力との相関関係、すなわち、旋回レバー26の操作による左右のクローラ走行装置1R、1Lの速度比率の特性として1本のラインが特定されることになる。
尚、上記相関関係において、旋回レバー26の直進指令位置としては、所定幅に設定された不感帯域も含むものであり、旋回状態が指令されていない操作位置にあることを直進指令位置と称する。
【0048】
従って、前記制御装置31を利用して、上記したような旋回レバー26の旋回指令用操作領域での操作位置と目標とする旋回力との相関関係を人為操作指令に基づいて変更設定自在な旋回力設定手段100と、前記旋回指令手段の指令情報及び前記旋回力設定手段の設定情報に基づいて、前記目標とする旋回力を求めて、その目標とする旋回力となるように、一対のクローラ走行装置夫々の走行速度の速度差を異ならせるべく、前記各油圧シリンダ33R、33Lの動作を制御する制御手段としての走行制御手段101が構成されている。
【0049】
一方、図5に示すように、主変速レバー24の操作位置に対する目標車速の変化の特性が予め設定されて記憶されており、制御装置31は、上記したような旋回レバー26の操作による左右のクローラ走行装置1R,1Lの速度比率の特性と、図5に示される主変速レバー24の操作位置にて定まる目標車速とに基づいて、左右一対のクローラ走行装置1R,1Lに対する静油圧式無段変速装置11R,11Lの夫々の目標回転速度を求める処理を実行する。
そして、図7に示すように、各目標回転速度に対応するトラニオン軸29、29の目標変速位置を求めるために設定された基準情報に基づいて、上記したようにして求めた目標回転速度に対応するようなトラニオン軸29,29の目標変速位置を夫々設定して、各変速位置センサ46,47にて検出される一対のトラニオン軸29,29の変速位置が夫々の目標変速位置になるように、対応する油圧シリンダ33R,33Lを制御する。すなわち、目標とする旋回力となるように、左右一対の静油圧式無段変速装置11R,11L夫々の走行速度の速度差を異ならせるように制御する。
【0050】
以下、制御フローチャートに基づいて、制御装置31による走行制御動作について具体的に説明する。
つまり、制御装置31は、図8に示すように、変速レバーセンサ27にて検出される主変速レバー24の操作位置、並びに、旋回レバー26センサ28にて検出される旋回レバー26の操作位置の検出結果に基づいて、左右一対の静油圧式無段変速装置11R,11Lの夫々の目標回転速度を求める(ステップ1、2)。そして、その求めた夫々の目標回転速度に対応させて一対のトラニオン軸29、29に対する夫々の目標変速位置を設定する(ステップ3)。
次に、変速位置センサ46,47にて検出される各トラニオン軸29,29の変速位置が前記各目標変速位置になるように、前記各油圧電磁弁34A,34Bの作動を制御して走行用の各油圧シリンダ33R,33Lを作動させる変速操作を実行する(ステップ4)。つまり、変速位置の検出情報に基づくフィードバック制御を実行するのである。
このようにして、左右一対の静油圧式無段変速装置11R,11L夫々の走行速度をそのときの指令状態に対応するような速度にして、旋回操作状態では、目標とする旋回力となるように、左右一対の静油圧式無段変速装置11R,11L夫々の走行速度の速度差を異ならせるように制御することになる。
【0051】
上記左右一対の静油圧式無段変速装置11R,11L、一対の油圧シリンダ33R,33L、走行用操作機構30、及び、制御装置31の夫々により旋回操作手段が構成される。
【0057】
〔別実施形態〕
以下、別実施形態を列記する。
【0059】
)上記実施形態では、前記旋回モードの切り換えとして、図6の3つラインL2、L3、L4にて示される3つのモードを例示したが、旋回モードとしてはこのような構成に限らず、どのような構成としてもよい。例えば、旋回レバー26が最大操作位置にまで操作されたときに、旋回側のクローラ走行装置の走行速度が反対側のクローラ走行装置の駆動回転方向とは逆回転方向で、反対側のクローラ走行装置の速度と同速度になるように、旋回レバー26の操作位置に対する、左右のクローラ走行装置の速度比率が予め設定されるような旋回モードを設定してもよく、相関関係の設定は各種の状態に変更可能である
【0060】
)上記実施形態では、前記小側操作域W1における旋回レバー26の操作位置の単位量当たりの変化に対する目標とする旋回力の変化量、および、前記小側操作域における操作領域の幅の夫々について増減調節を行える構成としたが、それらのうちのいずれか一方だけを調整可能な構成としてもよく、又、そのような変更調整を行わない構成としてもよい。
【0061】
又、例えば、図に示すように、旋回モードを切り換えても前記小側操作域W1においては相関関係が変化せず、前記大側操作域W2でのみ相関関係が変化する構成としてもよい
【0063】
)上記実施形態では、旋回指令手段として、揺動操作式の旋回レバー26を例示したが、このような構成に限らず、回動操作自在なステアリングハンドルで構成してもよい。
【0064】
)上記実施形態では、旋回操作を行う場合、旋回側とは反対側に位置する走行装置の速度を一定に維持しながら旋回側の走行装置の速度を漸次減速させることで旋回を行う構成である。
【0065】
)上記実施形態では、前記旋回操作手段として、左右一対の走行装置の夫々の走行速度を各別に無段階に変速する静油圧式無段変速装置と、それらを各別に変速操作する一対のアクチュエータとしての油圧シリンダと、その油圧シリンダの動作を制御する制御手段とを備えて構成されるものを例示したが、このような構成に代えて、次の(イ)〜( ニ)に記載するような構成でもよい。
(イ)前記一対の無段変速装置として、静油圧式無段変速装置に代えて、例えば、ベルト式無段変速装置やテーパコーン型の無段変速装置、及び、走行方向を前後で切り換えるための前後進切換機構等を備える構成としてもよい。
(ロ)アクチュエータとして、前記油圧シリンダに代えて、電動モータや油圧モータ等、他のアクチュエータを用いるようにしてもよい。
(ハ)前記アクチュエータと制御手段とを備えるものに代えて、旋回指令手段としての旋回レバーの操作によって、前記一対の無段変速装置夫々の変速用の被操作体を速度差を付ける状態で一体的に連動操作させるリンク機構を備える構成として、そのリンク機構における機械的なリンク比率等を変更させることで、旋回レバーの前記旋回指令用操作領域内での操作位置と目標とする旋回力の相関関係を変更設定させるような構成としてもよい。
(ニ)上記したような無段変速装置を設ける構成に代えて、前記各クローラ走行装置に対する伝動系に介装したクラッチを電気的に短時間で入り切りさせる、所謂、パルス幅変調制御によって左右のクローラ走行装置の速度差を変更調整するような構成としてもよい。
要するに、旋回操作手段としては、一対の走行装置夫々の走行速度を異ならせて旋回力を変更することができる構成であればよい。
【0066】
)上記実施形態では、作業車としてコンバインを例示したが、本発明はコンバインに限らず、人参収穫機や大根収穫機など他の農作業車でもよく、又、農作業車に限らず建設機械等の作業車でもよい。
【図面の簡単な説明】
【図1】コンバインの全体側面図
【図2】伝動構造を示す概略構成図
【図3】制御ブロック図
【図4】変速位置と変速出力との関係を示す図
【図5】主変速レバー操作位置と目標車速との関係を示す図
【図6】旋回レバーの操作位置と左右走行装置の速度比の関係を示す図
【図7】目標回転速度と目標変速位置との関係を示す図
【図8】制御動作のフローチャート
【図9】実施形態の旋回レバーの操作位置と左右走行装置の速度比の関係を示す図
【符号の説明】
1R、1L 走行装置
11R、11L 無段変速装置
26 旋回指令手段
33R、33L アクチュエータ
100 旋回力設定手段
101 制御手段
W1 小側操作域
W2 大側操作域
[0001]
BACKGROUND OF THE INVENTION
The present invention is configured such that the traveling state of the pair of left and right traveling devices can be switched between a straight traveling state and a turning state, and the turning force can be changed by changing the traveling speed of each of the pair of traveling devices in the turning state. A turning operation means, a straight running command position for commanding the straight running state, and a swiveling command operation area for commanding the turning state. The present invention relates to a turning control device for a work vehicle including turning command means for instructing a turning state in which turning force becomes larger as the amount of movement in a direction away from a straight advance command position increases.
[0002]
[Prior art]
Conventionally, as a turning control device for a work vehicle having the above configuration, for example, there has been a configuration shown in Japanese Patent Laid-Open No. 10-84749.
That is, as the turning operation means, a pair of hydrostatic continuously variable transmissions (HST) that respectively drive a pair of left and right traveling devices are provided, and left and right traveling devices by the pair of hydrostatic continuously variable transmissions. The same traveling speed is used to switch to the straight traveling state, and the traveling speed of the left and right traveling devices is switched to the turning state by giving a speed difference. The following turning operation mechanism is provided. ing.
In other words, a turn command means (steering handle) that can be freely rotated is provided, and the turn command means and a pair of hydrostatic continuously variable transmission devices (transnion shafts) are mechanically linked to each other. A link mechanism that is linked is provided, and the pair of hydrostatic continuously variable transmissions can be operated by rotating the turn command means from the straight command position to the left and right turn directions in the turn command operation area. In other words, the difference in travel speed between the left and right traveling devices that are shifted in this manner is changed continuously according to a predetermined correlation, in other words, the larger the operation amount, the larger the turning force is changed. In addition, the amount of change in the turning force with respect to the change per unit amount of the operation position of the turning command means is configured to be the same in the entire turning command operation region.
Specifically, as the turning command means is moved from the straight command position in the turning command operation area, the turning side traveling device is driven in the same direction as the opposite side traveling device, Further, a turning state in which the speed of the traveling device on the turning side is lower than the speed of the traveling device on the opposite side and the speed difference gradually increases, a turning state in which the turning side traveling device is in a rotation stop state, a turning side traveling device Is configured to sequentially switch to a turning state driven in the opposite direction to the traveling device on the opposite side.
[0003]
[Problems to be solved by the invention]
In the above-described conventional configuration, a turning state by an arbitrary turning force can be revealed by moving the turning command means and changing its operation position. However, the change per unit amount of the operation position of the turning command means can be achieved. Since the turning operation is performed in a state where the amount of change in the turning force is the same over the entire turning command operation region, there is still room for improvement in the following aspects.
[0004]
In the above-described conventional configuration, when the turning command means is operated to the maximum operation position in which the movement amount in the direction away from the rectilinear command position in the turning command operation area is the largest, the turning-side traveling device travels on the opposite side. Since it switches to a turning state in which it can be turned rapidly and driven in the opposite direction to the device, it can be used easily when such a large turning force is required, but the turning operation of the work vehicle is performed. In some cases, such a large turning force is not always required, and a turning operation with a small turning force may be required. For example, in the case of harvesting planted crops such as a combine, etc., when performing a turning operation so that the vehicle body follows the planting row of crops, it is gentle while finely adjusting with a small turning force. It is necessary to make a turn.
[0005]
However, in the above-described conventional configuration, the amount of change in the turning force with respect to the change per unit amount of the operation position of the turn command means is the same over the entire turn command operation region, and a large turn at the maximum operation position. Since a force can be obtained, when performing a gentle turning operation as described above, the turning command means may be moved slightly in a direction away from the straight command position in the turning command operation area. The turning force is greatly changed, and there is a disadvantage that it is not possible to appropriately turn slowly while finely adjusting with a small turning force.
[0006]
As one method for avoiding such disadvantages, it is conceivable to suppress the target turning force when the turning command means is operated to the maximum operation position to a smaller one. For example, when a large turning force is required, for example, when the traveling direction of the vehicle body is greatly changed, even if the turning command means is operated to the maximum operation position, only a small turning force can be obtained at that time. There is an inconvenience.
[0007]
Further, as another method for avoiding the above disadvantage, a turning force with respect to a change per unit amount of the operation position of the turning command means is widened by widening a range in which the turning command means can be moved in the turning command operation area. Although it is conceivable that the change amount of the vehicle is small over the entire operation area for the turn command, this configuration requires a large turning force in order to greatly change the traveling direction of the vehicle body from the straight traveling state as described above. When changing to a state, it is necessary to move the turning command means greatly, which is disadvantageous in that the operation for turning is troublesome.
[0008]
The present invention has been made paying attention to such a point, and the purpose thereof is to unnecessarily widen the moving operation range of the turning command means without causing the troublesome operation, and to obtain a large turning force. It is possible to provide a turning control device for a work vehicle that is capable of appropriately turning gently while finely adjusting.
[0009]
[Means for Solving the Problems]
  The turning control device for a work vehicle according to claim 1 can switch the traveling state of the pair of left and right traveling devices between a straight traveling state and a turning state, and the traveling speeds of the pair of traveling devices are different in the turning state. A turning operation means configured to freely change the turning force, a straight running command position for commanding the straight running state, and a swiveling command operation area for commanding the turning state. A turning command means for commanding a turning state in which the turning force becomes a larger turning force as the amount of movement in a direction away from the straight-ahead command position is larger in the turning command operation area, In the turning command operation region, in the small side operation region in which the amount of movement in the direction away from the rectilinear command position by the turning command means is small, the turning command hand In the large-side operation area where the change amount of the turning force with respect to the change per unit amount of the operation position is small and the movement amount of the turning command operation area is larger than the small-side operation area. The amount of change in the turning force with respect to the change per unit amount of the operation position of the turning command means is the amount of change in the turning force with respect to the change per unit amount of the operation position of the turning command means in the small operation range. In a form that becomes a larger sensitive operation state, the target turning force is obtained, and based on the command information of the turning command means, the target turning force is obtained.In the form of gradually reducing the traveling speed of the traveling device on the turning side while keeping the traveling speed of the traveling device located on the opposite side of the turning side constant,The speed difference between the traveling speeds of each of the pair of traveling devices is made different, and in the small side operation area, the correlation between the operation position of the turning command means and the target turning force is the same, In the large-side operation area, there is provided a turning force setting means capable of switching to a plurality of turning modes having different correlations based on an artificial operation command, and the turning operation means includes command information of the turning command means. And the target turning force is determined based on the setting information of the turning force setting means.
[0010]
That is, the turning command means commands a turning state in which the turning force becomes larger as the amount of movement in the direction away from the straight command position in the turning command operation area increases. Based on the command information, the turning operation is performed in a state in which the speed difference between the traveling speeds of the pair of traveling devices is changed so as to obtain a target turning force. The traveling speed is a speed when traveling by driving the traveling device.
Then, when the turning command means is moved in the small side operation range to change and adjust the turning force, the turning operation means becomes the insensitive operation state, and the target for the change per unit amount of the operation position of the turning command means The amount of change in the turning force is small. Therefore, even if the turning command means is moved in a direction away from the straight running command position, the change in the target turning force is small relative to the change in the operation position. It becomes easy to perform turning appropriately.
[0011]
Further, when the turning command means is moved in the large-side operation area where the movement amount is larger than the small-side operation area and the turning force is changed and adjusted, the turning operation means becomes the sensitive operation state, and the turning command means The target amount of change of the turning force with respect to the change per unit amount of the operation position is larger than the target amount of change of the turning force with respect to the change per unit amount of the operation position of the turning command means in the small operation range. It will be a thing. That is, if the turning command means is moved to the large side operation range beyond the small side operation range, and the movement operation is performed within the large side operation range, the target turning force changes with respect to the change in the operation position. Therefore, the target turning force when the turning command means is operated to the maximum operation position where the movement amount in the direction away from the straight-ahead command position in the turning command operation area is the largest can be turned, for example, suddenly. Even if it is set to a large one, it is not necessary to widen the movement operation range of the turn command means in the large operation area, and the movement operation range for moving the turn command means in the turn command operation area is unnecessary. Do not make it wide.
[0012]
Accordingly, there is no disadvantage that the movement operation range of the turn command means is unnecessarily widened and the operation is troublesome, and a large turning force can be obtained in a state where the operation is performed at the maximum operation position, while fine adjustment is performed. Thus, it has become possible to provide a turning control device for a work vehicle that can appropriately turn gently.
[0023]
  Claim2The work vehicle turning control device described in claim1The turning force setting means,in frontIn a state in which the turning command means increases or decreases the turning force when the turning command means is operated to the maximum operation position where the movement amount is the largest in the turning command operation area,Switch to the multiple swivel modesIt is characterized by being freely configured.
[0024]
That is, when the turning force setting means is in a state in which the turning force is increased or decreased when the turning command means is operated to the maximum operation position where the movement amount is the largest in the turning command range based on the artificial operation command. The correlation between the operation position and the target turning force is set.
[0025]
  Therefore, even when the operator feels that a large turning force is required and operates the turning command means to the maximum operating position, the turning force when the turning command means is operated to the maximum operating position is Since the turning force is arbitrarily changed and set by the operator using the force setting means, the turning operation can be performed with the appropriate turning force.1A suitable means for carrying out is obtained.
[0026]
  Claim3The turning control device for a work vehicle according to claim 1 is provided.Or 2And the pair of continuously variable transmissions for each steplessly changing the respective traveling speeds of the pair of left and right traveling devices, and the pair of each of the pair of continuously variable transmissions for performing a shifting operation individually. And the control means for controlling the operation of the actuator, wherein the control means is configured to change the turning force by controlling the pair of actuators. To do.
[0027]
  That is, by individually shifting the pair of continuously variable transmissions by the pair of actuators, the traveling speeds of the pair of left and right traveling apparatuses can be varied steplessly. Therefore, it is possible to change the turning force steplessly by changing the speed difference between the respective traveling speeds of the pair of left and right traveling devices steplessly, and the configuration in which the turning force is switched stepwise. In comparison, the turning operation can be performed as smoothly as possible, and the target turning force can be changed steplessly, so the turning operation can be performed with the most appropriate turning force that matches the operation feeling of the operator. Is possible, and claim 1Or 2A suitable means for carrying out is obtained.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
  Less thanBelow, a turning control device for a work vehicle according to the present invention.PlaceA case where the present invention is applied to a combine as an example of a work vehicle will be described with reference to the drawings.
[0029]
FIG. 1 shows an entire side surface of a combine that is an example of a work vehicle. The combine is a front portion of a traveling machine body 2 that is driven by a pair of left and right crawler type traveling devices 1R and 1L that is an example of a traveling device. The chopping and conveying device 3 that cuts and conveys the planted cereal husk is connected so as to be able to move up and down. The apparatus 4 and the grain tank 5 that stores the grain from the threshing apparatus 4 are mounted, and the boarding operation unit 6 is formed at a location in front of the grain tank 5.
[0030]
As shown in FIG. 2, this combine transmits power from the engine 7 to the input shaft 10 of the transmission case 9 via the belt tension type main clutch 8, and a pair of traveling static electricity is transmitted from the input shaft 10. It distributes and transmits to the hydraulic continuously variable transmissions 11R and 11L (an example of a continuously variable transmission), and the power after shifting by one of the hydrostatic continuously variable transmissions 11L for traveling is transmitted to the left gear-type subtransmission 13L. To the left crawler type traveling device 1L, and the power after shifting by the other hydrostatic continuously variable transmission 11R for traveling is transferred to the right crawler type traveling device via the right gear type subtransmission 13R. A transmission mechanism for driving driving is configured to transmit to 1R. On the other hand, the power from the engine 7 is also supplied to the working hydrostatic continuously variable transmission 12, and the power after shifting by the working hydrostatic continuously variable transmission 12 is used as the belt tension type mowing clutch 14. The transmission mechanism for the cutting operation is configured so as to be transmitted to the cutting and conveying device 3 via the.
[0031]
The left and right gear-type sub-transmission devices 13R and 13L are configured as sub-transmission mechanisms that can switch the power after shifting of each of the hydrostatic continuously variable transmission devices 11R and 11L to a high and low two-stage and a power cutoff state. ing. Also, by connecting the transmission shafts 15R and 15L to each other, the left and right crawler type traveling devices 1R and 1L are integrally connected to each other, and the left and right crawler type traveling devices 1R and 1L are connected to each other. Separately, a multi-plate hydraulic clutch 16 that switches to a state in which shifting operation is allowed is provided.
[0032]
As shown in FIG. 3, a hydraulic travel operation mechanism 30 that shifts the hydrostatic continuously variable transmissions 11R and 11L for traveling separately, and a hydrostatic continuously variable transmission 12 for work. Are respectively provided with a hydraulic working operation mechanism 36 that performs a speed change operation and an electromagnetic switching valve 32 that switches a flow state of the hydraulic oil with respect to the hydraulic clutch 16. The travel operation mechanism 30 includes a pair of double-acting hydraulic cylinders 33R and 33L (an example of an actuator) coupled to the trunnion shafts 29 and 29 of the respective hydrostatic continuously variable transmissions 11R and 11L for travel. ) And a pair of two-position switching type that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers corresponding to respective operations in the forward and reverse directions for each of the hydraulic cylinders 33R and 33L and a state in which the supply is stopped. A hydraulic solenoid valve 34A for oil supply, and a pair of two-position switchable hydraulic solenoid valves 34B for switching oil that can be switched between a state of discharging hydraulic oil from the pair of oil chambers and a state of stopping discharging. Configured. Each of the hydraulic cylinders 33R and 33L is configured to be urged to return to the neutral position by the urging force of an internally mounted spring.
[0033]
Similarly, the work operation mechanism 36 is coupled to the trunnion shaft 37 in the work hydrostatic continuously variable transmission 12 and is urged to return to the neutral position by the urging force of an internal spring. A double-acting hydraulic cylinder 40 and a pair of two-position switches that can be switched between a state in which hydraulic oil is supplied to a pair of oil chambers corresponding to operations in the forward and reverse directions of the hydraulic cylinder 40 and a state in which the supply is stopped. A hydraulic solenoid valve 41A for refueling, and a pair of two-position switching hydraulic solenoid valves 41B that can be switched between a state of discharging hydraulic oil from the pair of oil chambers and a state of stopping discharging. It is configured with.
[0034]
Each of the hydraulic solenoid valves 34A and 41A for refueling is configured to move and urge the spool to a refueling stop state by the biasing force of the spring, and move the spool against the biasing force of the spring by the electromagnetic force of the solenoid. The hydraulic oil solenoid valves 34B and 41B for draining each oil are configured to be operated and switched to a state in which hydraulic oil is supplied, and the spool is moved and urged to a discharged state by a biasing force of a spring. In this configuration, the spool is moved by the electromagnetic force of the solenoid against the urging force of the spring to switch to a state where the discharge of the hydraulic oil is stopped.
The boarding operation unit 6 is provided with a single auxiliary transmission lever 25 that can be swung in the front-rear direction. The auxiliary transmission lever 25 is linked to the gear-type auxiliary transmission devices 13R and 13L. By operating the shift lever 25, the power after shifting by each of the hydrostatic continuously variable transmissions 11R, 11L for traveling can be shifted to high and low two stages.
[0035]
The shift operation of the hydrostatic continuously variable transmissions 11R and 11L as described above will be described. For example, as shown in FIG. 4, the shift position of the trunnion shaft 29 is in a neutral region having a predetermined width including the neutral position N. If there is, the shift output (travel speed) becomes zero, and when the shift position of the trunnion shaft 29 is rotated in a predetermined direction from its neutral range, the travel speed in the forward direction is increased steplessly, and the trunnion shaft 29 When the vehicle is rotated from the neutral region in the direction opposite to the predetermined direction, the traveling speed in the backward direction is increased steplessly.
[0036]
The boarding operation unit 6 includes a main transmission lever 24 that can be swung over a predetermined front-rear operation range along the front-rear direction, and a turn command means that can be swung over a predetermined left-right operation range along the left-right direction. The swivel lever 26 is provided. As shown in FIG. 3, a shift lever sensor 27 for detecting the operation position of the main shift lever 24 and a swing lever sensor 28 for detecting the operation position of the swing lever 26 are provided, both of which are rotary. It consists of a potentiometer.
[0037]
Further, the pair of hydrostatic continuously variable transmissions 11R and 11L includes rotational speed sensors 44 and 45 as shift output detecting means for detecting their output rotational speeds, and respective hydrostatic continuously variable transmissions. Shift position sensors 46 and 47 as shift position detecting means for detecting the shift positions of 11R and 11L, that is, the operation angles of the respective trunnion shafts 29 by the pair of hydraulic cylinders 33R and 33L are provided.
[0038]
A control device 31 using a microcomputer for controlling the operation of the hydraulic cylinders 33R, 33L, 40 is provided. The control device 31 is based on detection information of the shift lever sensor 27 and the turning lever sensor 28. Each target rotational speed of each of the pair of hydrostatic continuously variable transmissions 11R and 11L is obtained, a target speed change position of each trunnion shaft 29 corresponding to the obtained target rotational speed is set, and each speed change position sensor is set. Traveling control for controlling the operation of the pair of hydraulic cylinders 33R and 33L is executed so that the detected values of 46 and 47 become the respective target shift positions.
[0039]
That is, the main speed change lever 24 is operated to the neutral position (corresponding to the stop command position) located substantially in the middle of the operable range in a state where the turning lever 26 is operated to the straight travel command position and the straight travel is commanded. When the vehicle is stopped and the swinging operation is performed from the neutral position to the forward side, the traveling speed to the forward side is increased steplessly, and when operated from the neutral position to the reverse side, the reverse side is The operation of the pair of hydraulic cylinders 33R and 33L is controlled so that the traveling speed to the vehicle is steplessly increased. When the main transmission lever 24 is fixed at a predetermined position, The operation of the pair of hydraulic cylinders 33R and 33L is controlled so that the vehicle body travels straight at the commanded target travel speed.
Further, when the main shift lever 24 is operated and the control device 31 is traveling at a predetermined speed, when the swing lever 26 is swung in either the left or right turn command operation region from the straight drive command position, The turning radius becomes smaller as the operation is further away from the straight command position, in other words, a turning state with a large turning force is commanded, and the operation of each of the hydraulic cylinders 33R and 33L is controlled so as to enter the turning state. It is configured as follows.
[0040]
And in the small side operation area in which the movement amount in the direction away from the rectilinear command position by the turning lever 26 is small in the turning command operation area, the control device 31 per unit amount of the operation position of the turning lever 26. The change amount of the target turning force with respect to the change is insensitive operation state, and the movement amount in the direction away from the rectilinear command position by the turning lever 26 in the turning command operation region is larger than the small side operation region. In the large-side operation area, the target change amount of the turning force with respect to the change per unit amount of the operation position of the turning lever 26 is the target for the change per unit amount of the operation position of the turning lever 26 in the small-side operation area. The target turning force is obtained in a sensitive operation state that is larger than the amount of change in the turning force.
[0041]
Further, in the small side operation range, the amount of change in the turning force with respect to the change per unit amount of the operation position of the turning lever 26 is maintained constant at the set value on the small side, and in the large side operation region, The amount of change in the turning force with respect to the change in the operation position of the turning lever 26 per unit amount is kept constant at the large set value larger than the small set value, and the target turning force Further, the correlation between the operation position of the turning lever 26 and the target turning force can be changed and set based on an artificial operation command, and the command information and the setting of the turning lever 26 are set. The target turning force is obtained based on the correlation information between the operation position of the turning lever 26 and the target turning force. And it is comprised so that the action | operation of each hydraulic cylinder 33R, 33L may be controlled so that the speed difference of each traveling speed may differ so that it may become the target turning force.
[0042]
In other words, the magnitude of the turning force due to the speed difference between the left and right crawler travel devices 1R and 1L with respect to the operation position of the swivel lever 26, specifically, the speed of the crawler travel device opposite to the speed of the crawler travel device on the swivel side. A correlation of speed ratio to speed is set. That is, as shown in FIG. 6, in the small side operation area W1 in which the amount of movement in the direction away from the rectilinear command position by the turning lever 26 is small, the target for the change per unit amount of the operating position of the turning lever 26 is The amount of change in the turning force to be maintained is a straight line state that is maintained constant at the set value on the small side, and the amount of movement in the direction away from the rectilinear command position by the turning lever 26 is larger than the small side operation range. In the operation area W2, the target amount of change in the turning force with respect to the change per unit amount of the operation position of the turning lever 26 is kept constant at the larger set value than the smaller set value. The target turning force, specifically, the speed ratio of the pair of crawler travel devices 1R, 1L is set.
[0043]
The correlation as described above is configured to be freely changeable based on an artificial operation command.
That is, in the state where the turning force is increased or decreased when the turning lever 26 is operated to the maximum operation position where the movement amount is the largest in the turning command operation area, Can be switched to three different turning modes, and the amount of change in the target turning force with respect to the change per unit amount of the operation position of the turning lever 26 in the small side operation area W1, and the small side The configuration is such that the increase / decrease adjustment can be made for each width of the operation area in the operation area.
[0044]
First, switching of the turning mode will be described.
In the boarding operation part 6, the above-mentioned correlation in the large-side operation area W2 is represented by the gentle turning mode shown by the line L2 in FIG. 6, the belief turning mode shown by the line L3 in FIG. 6, and the line L4 in FIG. A three-contact mode changeover switch 42 for switching to the three turning modes of the super-trust turning mode shown in FIG. 3 is provided. A changeover command by the mode changeover switch 42 is given to the control device 31, and the control device 31. Is configured to switch the turning mode as follows based on the switching command. However, even when the mode changeover switch 42 is switched, the correlation of the small side operation area W1 does not change.
[0045]
A line L1 in the drawing indicates the speed of the crawler traveling device on the side opposite to the turning side. A line L2 indicates a change in the traveling speed of the crawler traveling device on the turning side in the slow turning mode. That is, as the operation position of the turning lever 26 moves away from the rectilinear command position to the turning side, the traveling speed of the crawler traveling device on the turning side is gradually reduced, and when the turning lever 26 is operated to the maximum operation position, the opposite side The change characteristic of the speed ratio of the left and right crawler travel devices 1R and 1L with respect to the operation position of the turning lever 26 is set in advance so that the speed is reduced to about 1/3 of the travel speed V of the crawler travel device. Yes.
In the belief turning mode indicated by the line L3, when the turning lever 26 is operated to the maximum operation position, the turning lever 26 is decelerated until the running speed of the crawler running device on the turning side becomes zero. The speed ratio of the left and right crawler travel devices 1R and 1L with respect to the operation position is set in advance.
Further, in the super-revolution turning mode shown by the line L4, when the turning lever 26 is operated to the maximum operation position, the traveling speed of the crawler traveling device on the turning side is the driving rotation direction of the crawler traveling device on the opposite side. The speed ratio of the left and right crawler travel devices with respect to the operation position of the turning lever 26 is set in advance so that the speed is about 1/3 of the speed of the opposite crawler travel device in the reverse rotation direction.
[0046]
The boarding operation unit 6 is provided with two potentiometer-type artificial operation-type adjustment operation tools 43 a and 43 b, and these pieces of information are also input to the control device 31. When the adjustment operation tool 43a for adjusting the deceleration amount is operated, the control device 31 changes the target turning force with respect to the change per unit amount of the operation position of the turning lever 26 in the small side operation area W1. Is configured to change. Specifically, the end point position (point P in FIG. 6) of the small side operation area W1 can be moved and adjusted in the vehicle speed increasing / decreasing direction (Y direction). When the adjustment operation tool 43b for changing the operation width is operated, the width of the operation area in the small operation area W1 is increased or decreased. Specifically, the end point position (point P) of the small side operation area W1 can be moved and adjusted in the operation position change direction (X direction).
However, even if the adjustment operation using these adjustment operation tools 43a and 43b is performed, the target change amount of the turning force with respect to the change per unit amount of the operation position of the turning lever 26 in the small side operation area W1 is large. The state of being smaller than that of the operation area W2 is maintained.
[0047]
Therefore, the correlation between the operation position of the turning lever 26 in the turning command operation area and the target turning force, that is, the turning lever 26 by the operation of the mode changeover switch 42 and the operation of the respective adjustment operating tools 43a and 43b. One line is specified as the characteristic of the speed ratio of the left and right crawler travel devices 1R, 1L by the operation of.
In the above correlation, the rectilinear command position of the turning lever 26 includes a dead band set to a predetermined width, and the fact that the turning state is in the operating position where no command is commanded is referred to as a rectilinear command position.
[0048]
Therefore, the control device 31 is used to change the correlation between the operation position of the turning lever 26 in the turning command operation area and the target turning force as described above based on the artificial operation command. Based on the force setting means 100, the command information of the turning command means and the setting information of the turning force setting means, a pair of crawlers is obtained so that the target turning force is obtained and the target turning force is obtained. A traveling control means 101 is configured as a controlling means for controlling the operation of each of the hydraulic cylinders 33R and 33L in order to vary the speed difference between the traveling speeds of the traveling devices.
[0049]
On the other hand, as shown in FIG. 5, the characteristic of the change in the target vehicle speed with respect to the operation position of the main transmission lever 24 is preset and stored, and the control device 31 controls the left and right by the operation of the turning lever 26 as described above. The hydrostatic continuously variable for the pair of left and right crawler travel devices 1R, 1L based on the characteristics of the speed ratio of the crawler travel devices 1R, 1L and the target vehicle speed determined by the operation position of the main transmission lever 24 shown in FIG. Processing for obtaining the respective target rotation speeds of the transmissions 11R and 11L is executed.
Then, as shown in FIG. 7, it corresponds to the target rotational speed obtained as described above based on the reference information set for obtaining the target shift position of the trunnion shafts 29 and 29 corresponding to each target rotational speed. Thus, the target shift positions of the trunnion shafts 29 and 29 are set so that the shift positions of the pair of trunnion shafts 29 and 29 detected by the shift position sensors 46 and 47 become the respective target shift positions. The corresponding hydraulic cylinders 33R and 33L are controlled. That is, control is performed so that the speed difference between the traveling speeds of the pair of left and right hydrostatic continuously variable transmissions 11R and 11L is different so as to achieve a target turning force.
[0050]
Hereinafter, based on a control flowchart, the traveling control operation by the control device 31 will be specifically described.
That is, as shown in FIG. 8, the control device 31 determines the operation position of the main transmission lever 24 detected by the transmission lever sensor 27 and the operation position of the turning lever 26 detected by the turning lever 26 sensor 28. Based on the detection result, the respective target rotational speeds of the pair of left and right hydrostatic continuously variable transmissions 11R and 11L are obtained (steps 1 and 2). Then, the respective target shift positions for the pair of trunnion shafts 29 and 29 are set in correspondence with the obtained respective target rotational speeds (step 3).
Next, the operation of the hydraulic solenoid valves 34A and 34B is controlled so that the shift positions of the trunnion shafts 29 and 29 detected by the shift position sensors 46 and 47 become the target shift positions. A shift operation for operating the hydraulic cylinders 33R, 33L is executed (step 4). That is, feedback control based on the shift position detection information is executed.
In this manner, the traveling speed of each of the pair of left and right hydrostatic continuously variable transmissions 11R and 11L is set to a speed corresponding to the command state at that time so that the target turning force is obtained in the turning operation state. In addition, the control is performed such that the difference in traveling speed between the pair of left and right hydrostatic continuously variable transmissions 11R and 11L is different.
[0051]
The pair of left and right hydrostatic continuously variable transmissions 11R and 11L, the pair of hydraulic cylinders 33R and 33L, the travel operation mechanism 30, and the control device 31 constitute a turning operation means.
[0057]
[Another embodiment]
Hereinafter, other embodiments are listed.
[0059]
(1)UpRealIn the embodiment, the three modes indicated by the three lines L2, L3, and L4 in FIG. 6 are exemplified as switching of the turning mode. However, the turning mode is not limited to such a configuration, and any configuration is possible. It is good. For example, when the turning lever 26 is operated to the maximum operation position, the traveling speed of the crawler traveling device on the turning side is opposite to the driving rotation direction of the crawler traveling device on the opposite side, and the crawler traveling device on the opposite side. The turning mode may be set such that the speed ratio of the left and right crawler travel devices with respect to the operation position of the turning lever 26 is set in advance so that the speed is the same as the speed of Can be changed to.
[0060]
(2)UpRealIn the embodiment, increase / decrease adjustment is performed for each of the target amount of change of the turning force with respect to the change per unit amount of the operation position of the turning lever 26 in the small side operation area W1 and the width of the operation area in the small side operation area. However, only one of them may be adjustable, or such a change adjustment may not be performed.
[0061]
(3)or,For example, the figure9As shown in FIG. 3, the correlation does not change in the small operation area W1 even when the turning mode is switched, and the correlation may change only in the large operation area W2..
[0063]
(4)UpRealIn the embodiment, the swing operation type swing lever 26 is exemplified as the swing command means. However, the present invention is not limited to such a configuration, and a steering handle that can be rotated is also possible.
[0064]
(5In the above embodiment, when performing a turning operation, the turning is performed by gradually reducing the speed of the turning-side traveling device while keeping the speed of the traveling device located on the opposite side of the turning side constant.It is.
[0065]
(6)UpRealIn an embodiment, as the turning operation means, a hydrostatic continuously variable transmission that continuously changes the traveling speed of each of the pair of left and right traveling devices, and a hydraulic pressure that serves as a pair of actuators that perform gear shifting operations individually. Although an example having a cylinder and a control means for controlling the operation of the hydraulic cylinder has been illustrated, instead of such a configuration, the following configurations (a) to (d) are also possible. Good.
(A) Instead of the hydrostatic continuously variable transmission as the pair of continuously variable transmissions, for example, a belt-type continuously variable transmission or a tapered cone type continuously variable transmission, and for switching the traveling direction back and forth It is good also as a structure provided with the forward / reverse switching mechanism etc.
(B) Instead of the hydraulic cylinder, another actuator such as an electric motor or a hydraulic motor may be used as the actuator.
(C) Instead of the actuator and the control means, instead of operating the turning lever as the turning command means, the speed change target bodies of the pair of continuously variable transmission devices are integrated in a state where a speed difference is provided. As a configuration having a link mechanism that is operated in conjunction with each other, by changing a mechanical link ratio or the like in the link mechanism, the correlation between the operation position of the turning lever in the turning command operation area and the target turning force It is good also as a structure which changes and sets a relationship.
(D) Instead of providing the continuously variable transmission as described above, the clutches interposed in the transmission system for the respective crawler traveling devices are electrically turned on and off in a short time by so-called pulse width modulation control. It is good also as a structure which changes and adjusts the speed difference of a crawler traveling apparatus.
  In short, the turning operation means may be configured so that the turning force can be changed by changing the traveling speed of each of the pair of traveling devices.
[0066]
(7) In the above embodiment, a combine is illustrated as a work vehicle. However, the present invention is not limited to a combine, and may be another agricultural vehicle such as a carrot harvester or a radish harvester. A car may be used.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is a schematic configuration diagram showing a transmission structure.
FIG. 3 is a control block diagram.
FIG. 4 is a diagram showing a relationship between a shift position and a shift output.
FIG. 5 is a diagram showing a relationship between a main shift lever operation position and a target vehicle speed.
FIG. 6 is a diagram showing the relationship between the operation position of the turning lever and the speed ratio of the left and right traveling devices.
FIG. 7 is a diagram showing a relationship between a target rotation speed and a target shift position.
FIG. 8 is a flowchart of the control operation.
FIG. 9AnotherThe figure which shows the relationship between the operation position of the turning lever of embodiment, and the speed ratio of a left-right traveling apparatus.
[Explanation of symbols]
1R, 1L traveling device
11R, 11L continuously variable transmission
26 Turning command means
33R, 33L Actuator
100 Turning force setting means
101 Control means
W1 Small side operation area
W2 Large side operation area

Claims (3)

左右一対の走行装置の走行状態を直進状態及び旋回状態に切り換え自在で、且つ、前記旋回状態において前記一対の走行装置夫々の走行速度を異ならせて旋回力を変更自在に構成されている旋回操作手段と、
前記直進状態を指令する直進指令位置及び前記旋回状態を指令する旋回指令用操作領域の全範囲にわたり移動操作自在で、且つ、前記旋回状態として、前記旋回指令操作領域において直進指令位置から離れる方向への移動量が大きいほど大きな旋回力となる旋回状態を指令する旋回指令手段とを備えた作業車の旋回制御装置であって、
前記旋回操作手段が、
前記旋回指令操作領域のうち、前記旋回指令手段による前記直進指令位置から離れる方向への移動量が小である小側操作域においては、前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量が小さい鈍感操作状態となり、
且つ、前記旋回指令用操作領域のうち前記移動量が前記小側操作域よりも大きい大側操作域においては、前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量が、前記小側操作域における前記旋回指令手段の操作位置の単位量当たりの変化に対する前記旋回力の変化量よりも大きい敏感操作状態となる形態で、目標とする旋回力を求めて、
前記旋回指令手段の指令情報に基づいて、前記目標とする旋回力となるように、旋回側とは反対側に位置する前記走行装置の走行速度を一定に維持しながら旋回側の前記走行装置の走行速度を漸次減速させる形態で、前記一対の走行装置夫々の走行速度の速度差を異ならせるように構成され、
前記小側操作域においては前記旋回指令手段の操作位置と前記目標とする旋回力との相関関係を同じとし、前記大側操作域においては前記相関関係を異なる相関関係とする複数の旋回モードに人為操作指令に基づいて切り換え自在な旋回力設定手段が備えられ、
前記旋回操作手段が、前記旋回指令手段の指令情報及び前記旋回力設定手段の設定情報に基づいて、前記目標とする旋回力を求めるように構成されている作業車の旋回制御装置。
A turning operation in which the traveling state of the pair of left and right traveling devices can be switched between a straight traveling state and a turning state, and the turning force can be changed by changing the traveling speed of each of the pair of traveling devices in the turning state. Means,
It can be moved over the entire range of the rectilinear command position for commanding the straight travel state and the swivel command operation region for commanding the swivel state. A turn control device for a work vehicle comprising a turn command means for instructing a turning state in which the turning force becomes larger as the movement amount of
The turning operation means is
Of the turning command operation region, in a small side operation region in which the amount of movement in the direction away from the rectilinear command position by the turning command means is small, the change per unit amount of the operation position of the turning command means It becomes insensitive operation state with small amount of change of turning force,
In the turning command operation area, in the large operation area where the movement amount is larger than the small operation area, the amount of change in the turning force with respect to the change per unit amount of the operation position of the turning command means is The target turning force is determined in a form that becomes a sensitive operation state larger than the amount of change of the turning force with respect to the change per unit amount of the operation position of the turning command means in the small side operation area,
Based on the command information of the turning command means, the traveling device of the turning side is kept constant while maintaining the traveling speed of the traveling device located on the opposite side of the turning side so that the target turning force is obtained . In a form in which the traveling speed is gradually reduced, the speed difference between the traveling speeds of each of the pair of traveling devices is made different,
In the small-side operation area, the correlation between the operation position of the turn command means and the target turning force is the same, and in the large-side operation area, the plurality of turning modes have different correlations. A turning force setting means that can be switched based on a human operation command is provided.
A turning control device for a work vehicle, wherein the turning operation means is configured to obtain the target turning force based on command information of the turning command means and setting information of the turning force setting means.
前記旋回力設定手段が、
前記旋回指令手段が前記旋回指令用操作領域のうち前記移動量が最も大きい最大操作位置に操作されたときの旋回力を増減変化させる状態で、前記複数の旋回モードに切り換え自在に構成されている請求項1記載の作業車の旋回制御装置。
The turning force setting means is
The turning command means is configured to be capable of switching to the plurality of turning modes in a state where the turning force is increased or decreased when the turning command means is operated to the maximum operation position where the movement amount is the largest in the turning command operation area . The turning control device for a work vehicle according to claim 1.
前記旋回操作手段が、
前記左右一対の走行装置の夫々の走行速度を各別に無段階に変速する一対の無段変速装置と、その一対の無段変速装置を夫々各別に変速操作する一対のアクチュエータと、そのアクチュエータの動作を制御する制御手段とを備えて構成され、
前記制御手段が、前記一対のアクチュエータを制御することにより、前記旋回力を変更させるよう構成されている請求項1又は2に記載の作業車の旋回制御装置。
The turning operation means is
A pair of continuously variable transmissions that steplessly change the respective traveling speeds of the pair of left and right traveling devices, a pair of actuators that respectively shift the pair of continuously variable transmissions individually, and operations of the actuators And a control means for controlling
The turning control device for a work vehicle according to claim 1 or 2 , wherein the control means is configured to change the turning force by controlling the pair of actuators .
JP2002075941A 2002-03-19 2002-03-19 Work vehicle turning control device Expired - Fee Related JP3850322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075941A JP3850322B2 (en) 2002-03-19 2002-03-19 Work vehicle turning control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075941A JP3850322B2 (en) 2002-03-19 2002-03-19 Work vehicle turning control device

Publications (2)

Publication Number Publication Date
JP2003267254A JP2003267254A (en) 2003-09-25
JP3850322B2 true JP3850322B2 (en) 2006-11-29

Family

ID=29204879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075941A Expired - Fee Related JP3850322B2 (en) 2002-03-19 2002-03-19 Work vehicle turning control device

Country Status (1)

Country Link
JP (1) JP3850322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096357A (en) * 2007-10-17 2009-05-07 Kubota Corp Steering operation structure of work vehicle
JP2016019540A (en) * 2015-09-28 2016-02-04 井関農機株式会社 Seedling transplanter

Also Published As

Publication number Publication date
JP2003267254A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP4353953B2 (en) Drive control device for work vehicle
JP3850322B2 (en) Work vehicle turning control device
JP3782030B2 (en) Work vehicle turning control device
JP2003269608A (en) Travel control device of work vehicle
JP3786629B2 (en) Work vehicle travel control device
JP2007082450A (en) Operation apparatus for working vehicle
JP3176237B2 (en) Work vehicle steering system
JP4537923B2 (en) Shift control device for work equipment
JP3883484B2 (en) Work vehicle turning control device
JP4476234B2 (en) Drive control device for work vehicle
JP3949041B2 (en) Work vehicle turning control device
JP4681394B2 (en) Drive control device for mowing machine
JP2007091090A (en) Travel controlling device for working vehicle
JP4023686B2 (en) Work vehicle turning control device
JP4346499B2 (en) Work vehicle
JP3782064B2 (en) Mowing harvester drive
JP3765754B2 (en) Work machine operation structure
JP4297826B2 (en) Work vehicle turning control device
JP3763756B2 (en) Work machine operation structure
JP2004116728A (en) Shift controller and work vehicle provided therewith
JP2004116756A (en) Running control device of working vehicle
JP2009078773A (en) Traveling transmission for combine harvester
JP2004114797A (en) Turning control apparatus for working vehicle
JP2005247154A (en) Traveling control device of working vehicle
JP3766420B2 (en) Combine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees