JP3949028B2 - Battery forklift charger - Google Patents

Battery forklift charger Download PDF

Info

Publication number
JP3949028B2
JP3949028B2 JP2002234015A JP2002234015A JP3949028B2 JP 3949028 B2 JP3949028 B2 JP 3949028B2 JP 2002234015 A JP2002234015 A JP 2002234015A JP 2002234015 A JP2002234015 A JP 2002234015A JP 3949028 B2 JP3949028 B2 JP 3949028B2
Authority
JP
Japan
Prior art keywords
charging
voltage
time
battery
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234015A
Other languages
Japanese (ja)
Other versions
JP2004079215A (en
Inventor
隆 福田
Original Assignee
日本輸送機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本輸送機株式会社 filed Critical 日本輸送機株式会社
Priority to JP2002234015A priority Critical patent/JP3949028B2/en
Publication of JP2004079215A publication Critical patent/JP2004079215A/en
Application granted granted Critical
Publication of JP3949028B2 publication Critical patent/JP3949028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリフォークリフトに搭載されるバッテリを充電するための充電器に関する。
【0002】
【従来の技術】
従来、バッテリフォークリフトには、車体に搭載されているバッテリを外部電源により充電するための充電器を備えたものがあり、この充電器としては準定電圧方式充電器や定電流方式充電器が採用されている。
【0003】
図6は準定電圧方式充電器の一例を示す機能ブロック図であり、この準定電圧方式充電器は、外部交流電源101をオン/オフするマグネットスイッチ102と、準定電圧トランス103と、整流器104と、充電制御器105とを備える。充電制御器105は整流器104からバッテリ106に印加される充電電圧を検出し、例えば図7に示す充電経過時間と充電電圧との関係で表される充電特性に従って、充電終了までの残り充電時間を演算する。そして、充電開始からこの残り充電時間が0となるまでマグネットスイッチ102をオンにして充電を継続させ、残り充電時間が0となった時点でマグネットスイッチ102をオフにして充電を終了させる。
【0004】
この準定電圧方式充電器によれば、バッテリ容量の低下を少なくするために電流密度を一定以下に抑えてバッテリ106を充電することができるが、長時間(例えば8〜10時間)掛けて充電しなければならない。
【0005】
一方、図8は定電流方式充電器の一例を示す機能ブロック図であり、この定電流方式充電器は、外部交流電源201をオン/オフするマグネットスイッチ202と、このマグネットスイッチ202とバッテリ205との間に接続されたスイッチングレギュレータ203と、充電制御器204とを備える。充電制御器204は、スイッチングレギュレータ203からバッテリ205に印加される充電電圧を検出し、例えば図9に示す充電経過時間と充電電圧との関係で表される充電特性に従って、充電終了までの残り充電時間を演算する。そして、充電開始からこの残り充電時間が0となるまでマグネットスイッチ202をオンにして充電を継続させ、残り充電時間が0となった時点でマグネットスイッチ202をオフにして充電を終了させる。
【0006】
この定電流方式充電器によれば、充電の進行に拘わらず一定電流でバッテリ205を充電することができるので、短時間で充電を完了させる、いわゆる急速充電を行うことができる。
【0007】
【発明が解決しようとする課題】
上述した準定電圧方式充電器と定電流方式充電器とでは構成が異なっているため、従来はいずれかの充電方式の充電器を選択してバッテリフォークリフトに搭載することが行われている。従って、準定電圧方式充電器を搭載すると定電流方式のような急速充電ができず、定電流方式充電器を搭載すると準定電圧方式のようなバッテリ容量の低下を抑えながらの充電ができないことになっていた。
【0008】
そこで、例えば、既に準定電圧方式充電器が搭載されているバッテリフォークリフトに対し準定電圧方式から定電流方式に変更して急速充電ができるようにしようとすると、準低電圧トランス103及び整流器104をスイッチングレギュレータ203に置換えるだけでなく、過充電を避けるためには充電制御器も準定電圧方式用充電制御器105から定電流方式用充電制御器204に置換える必要が生じ、充電方式の変更にかかる費用が大きいという問題があった。
【0009】
本発明は、この従来技術の課題を解決し、安価に充電方式の変更が可能なバッテリフォークリフトの充電器を提供することを目的とする。
【0010】
【課題を解決するための手段】
この目的を達成するため、外部電源に接続されるマグネットスイッチと、前記マグネットスイッチがオン状態のときに外部電源からの電力を調節してバッテリへ供給するスイッチングレギュレータと、前記マグネットスイッチのオン/オフを制御する充電制御器とを備え、前記スイッチングレギュレータには、このスイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出し、この実充電電圧に基づいて定電流方式充電を行う場合の充電終了までの残り充電時間を演算し、準定電圧方式充電を行う場合の、充電終了時点から前記残り充電時間と等しい時間だけ遡った時点でのバッテリに印加される想定充電電圧を演算して前記充電制御器に出力する電圧印加手段が設けられ、前記充電制御器は、前記電圧印加手段からの前記想定充電電圧に基づいて準定電圧方式充電を行う場合の充電終了までの残り充電時間を演算し、この残り充電時間がゼロとなるまで前記マグネットスイッチをオン状態に保持させ、この残り充電時間がゼロとなった時点で前記マグネットスイッチをオフさせることを特徴とする、という技術的手段を採用する。
【0011】
これによれば、バッテリはスイッチングレギュレータにより充電されるので、定電流方式で急速充電することができ、又、電圧印加手段により実際にバッテリに印加されている実充電電圧が準定電圧方式充電を行う場合に想定される充電電圧(想定充電電圧)に変換された上で充電制御器に印加されるので、準定電圧方式用として使用される充電制御器を用いてもバッテリが過充電になることはなくなる。
【0012】
又、充電方式を変更する際には、準定電圧トランス及び整流器と、スイッチングレギュレータとを置換えればよいので、例えば既に準定電圧方式充電器を搭載しているバッテリフォークリフトを容易に急速充電機能を備えるものに改造することができる。
【0013】
本発明において、前記電圧印加手段は、例えば、前記スイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出する電圧検出手段と、この電圧検出手段により検出された前記実充電電圧が所定の転極点電圧を上回るか否かを判定する電圧判定手段と、充電経過時間と充電電圧との関係で表される定電流方式充電を行う場合の充電特性データと、充電経過時間と充電電圧との関係で表される準低電圧方式充電を行う場合の充電特性データとを予め記憶させた記憶手段と、前記実充電電圧が前記転極点電圧を上回る場合に、前記記憶手段に記憶された定電流方式充電の充電特性データに従って、前記実充電電圧に基づき充電終了までの残り充電時間を求める残充電時間演算手段と、前記実充電電圧が前記転極点電圧を上回る場合には、前記記憶手段に記憶された準定電圧方式充電の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段で求めた残り充電時間と等しい時間を遡った時点での想定充電電圧を求め、前記実充電電圧が前記転極点電圧以下の場合には、前記想定充電電圧を所定値とする想定充電電圧演算手段と、この想定充電電圧演算手段により求められた前記想定充電電圧を前記充電制御器に印加する出力手段と、を備えるという構成を採用すればよい。
【0014】
【発明の実施の形態】
本発明の一実施例に係るバッテリフォークリフトの充電器を図面に基づいて具体的に説明すれば、以下の通りである。
【0015】
図1は本発明の一実施例に係るバッテリフォークリフトの充電器の機能ブロック図であり、この充電器は、外部交流電源1に接続されるマグネットスイッチ2と、外部交流電源1にマグネットスイッチ2を介して接続され、マグネットスイッチ2がオン状態のときに外部電源1からの電力を調節してバッテリ5へ供給するスイッチングレギュレータ3と、マグネットスイッチ2のオン/オフを制御する充電制御器4とを備え、図9に示すような定電流方式の充電特性でバッテリ5が充電されるようになっている。
【0016】
スイッチングレギュレータ3は、外部交流電源1からの電力を調節した上でバッテリ5に電圧を印加するスイッチングレギュレータ本体6と、充電制御器4に所定の電圧を印加する電圧印加手段7とから構成されている。ここで、電圧印加手段7は、図2に示すように、充電経過時間と充電電圧との関係で表される定電流方式の充電特性データ(図9参照)と、充電経過時間と充電電圧との関係で表される準低電圧方式の充電特性データ(図7参照)とを記憶させた記憶手段71、スイッチングレギュレータ本体6からバッテリ5に印加される実際の充電電圧V(バッテリ5の端子間電圧)を検出する電圧検出手段72、電圧検出手段72により検出された実充電電圧Vが所定の転極点電圧Vpを上回るか否かを判定する電圧判定手段73、を備える。更に、電圧印加手段7は、実充電電圧Vが転極点電圧Vpを上回る場合に、記憶手段71に記憶された定電流方式の充電特性データに従って、実充電電圧Vに基づき充電終了までの残り充電時間Trを求める残充電時間演算手段74、実充電電圧Vが転極点電圧Vpを上回る場合には、記憶手段71に記憶された準定電圧方式の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段74で求めた残り充電時間Trと等しい時間を遡った時点での想定充電電圧V´を求め、実充電電圧Vが転極点電圧Vp以下の場合には、想定充電電圧V´を所定値とする想定充電電圧演算手段75と、この想定充電電圧演算手段75により求められた想定充電電圧V´を前記充電制御器4に印加する出力手段76と、を備える。
【0017】
図3は電圧印加手段7の制御プログラムのフロー図であり、この電圧印加手段7においては、先ず電圧検出手段72が実充電電圧Vを検出し(S1)、この実充電電圧Vが電圧判定手段73において転極点電圧Vp以下であると判定されれば(S2のNo)、想定充電電圧演算手段75により想定充電電圧V´は一定値、例えば転極点電圧Vpとされ(S3)、この想定充電電圧V´が出力手段76から前記充電制御器4に印加される(S4)。
【0018】
一方、電圧判定手段73において実充電電圧Vが転極点電圧Vpを上回ると判定されると(S2のYes)、残充電時間演算手段74において記憶手段71に記憶された定電流方式の充電特性データに従って、実充電電圧Vに基づき充電電圧検出時点から充電終了までの残り充電時間Trが求められる(S5)。記憶手段71には図9に示す定電流方式の充電特性データが記憶されており、残充電時間演算手段74は、記憶手段71から実充電電圧Vに対応する充電電圧検出時点での充電経過時間tを読み出すと共に、充電終了時点での充電経過時間Tを読み出す。そして、充電終了時点での充電経過時間Tから充電電圧検出時点での充電経過時間tを差し引く演算を行うことで、残り充電時間Trを求める。
【0019】
更に、想定充電電圧演算手段75において、記憶手段71に記憶された準定電圧方式の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段74で求めた残り充電時間Trと等しい時間だけ遡った時点での想定される充電電圧V´が求められる(S6)。記憶手段71には図7に示す準定電圧方式の充電特性データが記憶されており、想定充電電圧演算手段75は、記憶手段71から充電終了時点での充電経過時間T´を読み出した上で、充電終了時点での充電経過時間T´から前記残充電時間演算手段74で求めた残り充電時間Trを差し引く演算を行うことで、充電経過時間t´を求める。そして、この充電経過時間t´に対応する充電電圧V´を記憶手段71から読み出すことで想定充電電圧V´を求める。このようにして想定充電電圧演算手段75により求められた想定充電電圧V´が、出力手段76から前記充電制御器4に印加される(S4)。
【0020】
図4は前記充電制御器4の機能ブロック図であり、この充電制御器4は、図7に示す充電経過時間と充電電圧との関係で表される準定電圧方式の充電特性データを記憶させた記憶手段41と、前記電圧印加手段7から印加される電圧V´を検出する電圧検出手段42と、記憶手段41の充電特性データに従って、この電圧検出手段42が検出した電圧V´に基づき残り充電時間Tr´を求める残充電時間演算手段43と、この残り充電時間Tr´が0よりも大か否かを判定する残充電時間判定手段44と、この残充電時間判定手段44の判定結果に従って前記マグネットスイッチ2をオン/オフさせるスイッチ駆動手段45とを備える。
【0021】
図5は充電制御器4の制御プログラムのフロー図であり、この充電制御器4では、先ず電圧検出手段42で前記電圧印加手段7から印加される電圧V´を検出し(S11)、残充電時間演算手段43により記憶手段41に記憶された準定電圧方式の充電特性データに従って、この電圧V´に基づき充電終了までの残り充電時間Tr´が求められる(S12)。記憶手段41には図7に示す準定電圧方式の充電特性データが記憶されており、残充電時間演算手段43は、記憶手段41から電圧V´に対応する充電経過時間t´を読み出すと共に、充電終了時点での充電経過時間T´を読み出す。そして、充電終了時点での充電経過時間T´から充電経過時間t´を差し引く演算を行うことで、残り充電時間Tr´を求める。尚、この残り充電時間Tr´は、電圧印加手段7の残充電時間演算手段74が求める残り充電時間Trと等しい値となる。
【0022】
そして、残充電時間判定手段44では、この残り充電時間Tr´が0より大か否かを判定し(S13)、0より大と判定されれば(S13のYes)、スイッチ駆動手段45がマグネットスイッチ2をオンにし(S14)、0以下であれば(S13のNo)、スイッチ駆動手段45がマグネットスイッチ2をオフにする(S15)。
【0023】
かくして、本来準定電圧方式充電用としてのみ使用される充電制御器4を用いながらも、スイッチングレギュレータ3を用いた定電流方式でバッテリ5を急速充電することができ、しかも、バッテリ5が過充電されるおそれもない。
【0024】
又、既にバッテリフォークリフトに搭載されている従来の準定電圧方式充電器の準定電圧トランス及び整流器を、前記電圧印加手段7を内蔵したスイッチングレギュレータ3に付替えるというすこぶる簡単な改造で急速充電可能とすることができ、充電制御器まで付替える必要がないので、安価に改造することができる。
【0025】
【発明の効果】
以上に説明したように、本発明によれば、準定電圧トランス及び整流器を、電圧印加手段を備えたスイッチングレギュレータに置換えるという簡単な改造で、準定電圧方式から定電流方式へ変更することができるという効果を得ることができる。又、充電方式の変更に際し充電制御器を付替える必要がないので、安価に行うことができる。
【図面の簡単な説明】
【図1】 本発明の充電器を示す機能ブロック図である。
【図2】 本発明の充電器が備えるスイッチングレギュレータを詳細に示す機能ブロック図である。
【図3】 スイッチングレギュレータの制御プログラムのフロー図である。
【図4】 本発明の充電器が備える充電制御器を詳細に示す機能ブロック図である。
【図5】 充電制御器の制御プラグラムのフロー図である。
【図6】 従来の準定電圧方式充電器の一例を示す機能ブロック図である。
【図7】 準定電圧方式の充電特性図である。
【図8】 従来の定電流方式充電器の一例を示す機能ブロック図である。
【図9】 定電流方式の充電特性図である。
【符号の説明】
1 外部交流電源
2 マグネットスイッチ
3 スイッチングレギュレータ
4 充電制御器
5 バッテリ
7 電圧印加手段
71 記憶手段
72 電圧検出手段
73 電圧判定手段
74 残充電時間演算手段
75 想定充電電圧演算手段
76 出力手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charger for charging a battery mounted on a battery forklift.
[0002]
[Prior art]
Conventionally, some battery forklifts are equipped with a charger for charging a battery mounted on the vehicle body with an external power source. As this charger, a quasi-constant voltage charger or a constant current charger is adopted. Has been.
[0003]
FIG. 6 is a functional block diagram showing an example of a quasi-constant voltage system charger. This quasi-constant voltage system charger includes a magnet switch 102 for turning on / off the external AC power supply 101, a quasi-constant voltage transformer 103, and a rectifier. 104 and a charge controller 105. The charging controller 105 detects the charging voltage applied to the battery 106 from the rectifier 104, and determines the remaining charging time until the end of charging according to the charging characteristics represented by the relationship between the charging elapsed time and the charging voltage shown in FIG. Calculate. Then, the charging is continued by turning on the magnet switch 102 from the start of charging until the remaining charging time becomes 0, and when the remaining charging time becomes 0, the magnet switch 102 is turned off to end the charging.
[0004]
According to this quasi-constant voltage system charger, the battery 106 can be charged with the current density kept below a certain level in order to reduce the decrease in battery capacity, but the battery 106 is charged over a long period of time (for example, 8 to 10 hours). Must.
[0005]
On the other hand, FIG. 8 is a functional block diagram showing an example of a constant current system charger. This constant current system charger includes a magnet switch 202 for turning on / off the external AC power supply 201, the magnet switch 202 and the battery 205. A switching regulator 203 and a charge controller 204 connected to each other. The charging controller 204 detects the charging voltage applied to the battery 205 from the switching regulator 203, and for example, according to the charging characteristics represented by the relationship between the elapsed charging time and the charging voltage shown in FIG. Calculate time. Then, from the start of charging, the magnet switch 202 is turned on until the remaining charging time becomes zero, and charging is continued. When the remaining charging time becomes zero, the magnet switch 202 is turned off to end the charging.
[0006]
According to this constant current system charger, the battery 205 can be charged with a constant current regardless of the progress of charging, so that so-called rapid charging can be performed in which charging is completed in a short time.
[0007]
[Problems to be solved by the invention]
Since the quasi-constant voltage system charger and the constant current system charger described above have different configurations, conventionally, a charger of any one of the charging systems is selected and mounted on the battery forklift. Therefore, if a quasi-constant voltage method charger is installed, rapid charging like the constant current method cannot be performed, and if a constant current method charger is installed, charging cannot be performed while suppressing a decrease in battery capacity as in the quasi-constant voltage method. It was.
[0008]
Therefore, for example, if a battery forklift that already has a quasi-constant voltage system charger is changed from a quasi-constant voltage system to a constant current system so that rapid charging can be performed, a quasi-low voltage transformer 103 and a rectifier 104 are used. In order to avoid overcharging, it is necessary to replace the charging controller from the quasi-constant voltage charging controller 105 with the constant current charging controller 204 in order to avoid overcharging. There was a problem that the cost for the change was large.
[0009]
An object of the present invention is to solve the problems of the prior art and to provide a battery forklift charger capable of changing the charging method at low cost.
[0010]
[Means for Solving the Problems]
To achieve this object, a magnet switch connected to an external power source, a switching regulator that adjusts power from the external power source and supplies the battery to the battery when the magnet switch is on, and on / off of the magnet switch A charge controller for controlling the charging, and the switching regulator detects an actual charging voltage applied to the battery by the switching regulator, and completes charging when performing constant current charging based on the actual charging voltage The remaining charging time is calculated, and when performing semi-constant voltage charging, the charging is performed by calculating an assumed charging voltage applied to the battery at a time point that is the same as the remaining charging time from the end of charging. Voltage application means for outputting to the controller is provided, and the charge controller is connected to the front of the voltage application means. Based on the assumed charging voltage, the remaining charging time until the end of charging in the case of performing quasi-constant voltage charging is calculated, the magnet switch is held on until this remaining charging time becomes zero, and this remaining charging time is The technical means is characterized in that the magnet switch is turned off when zero is reached.
[0011]
According to this, since the battery is charged by the switching regulator, it can be quickly charged by the constant current method, and the actual charging voltage actually applied to the battery by the voltage applying means is quasi-constant voltage charging. Since it is applied to the charge controller after being converted to a charge voltage (assumed charge voltage) that is assumed to be performed, the battery is overcharged even if a charge controller used for a semi-constant voltage method is used. Things will disappear.
[0012]
In addition, when changing the charging method, it is only necessary to replace the quasi-constant voltage transformer and rectifier and the switching regulator. For example, a battery forklift that already has a quasi-constant voltage method charger can be quickly charged. Can be modified to have
[0013]
In the present invention, the voltage applying means includes, for example, a voltage detecting means for detecting an actual charging voltage applied to the battery by the switching regulator, and the actual charging voltage detected by the voltage detecting means is a predetermined inversion point. Voltage determination means for determining whether or not the voltage is exceeded, charging characteristic data when performing constant current charging expressed by the relationship between the charging elapsed time and the charging voltage, and the relationship between the charging elapsed time and the charging voltage Storage means for storing charging characteristic data in the case of performing the quasi-low voltage system charging, and constant current system charging stored in the storage means when the actual charging voltage exceeds the inversion voltage A remaining charge time calculation means for obtaining a remaining charge time until the end of charging based on the actual charge voltage according to the charge characteristic data, and when the actual charge voltage exceeds the inversion point voltage. In the case of performing quasi-constant voltage charging in accordance with the charging characteristic data of quasi-constant voltage charging stored in the storage means, a time equal to the remaining charge time obtained by the remaining charge time calculation means from the end of charging. When the actual charging voltage is equal to or lower than the repolarization point voltage, an assumed charging voltage calculation means that sets the assumed charging voltage to a predetermined value, and this assumed charging voltage calculation means A configuration may be adopted in which output means for applying the obtained assumed charging voltage to the charging controller is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A battery forklift charger according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a functional block diagram of a battery forklift charger according to an embodiment of the present invention. This charger includes a magnet switch 2 connected to an external AC power source 1 and a magnet switch 2 connected to the external AC power source 1. A switching regulator 3 that adjusts the electric power from the external power source 1 to supply the battery 5 when the magnet switch 2 is in an on state, and a charge controller 4 that controls the on / off of the magnet switch 2. In addition, the battery 5 is charged with charging characteristics of a constant current method as shown in FIG.
[0016]
The switching regulator 3 is composed of a switching regulator body 6 that applies a voltage to the battery 5 after adjusting the electric power from the external AC power source 1, and a voltage applying means 7 that applies a predetermined voltage to the charging controller 4. Yes. Here, as shown in FIG. 2, the voltage applying means 7 is a constant-current charging characteristic data (see FIG. 9) expressed by the relationship between the elapsed charging time and the charging voltage, the elapsed charging time and the charging voltage. Storage means 71 storing the charge characteristic data (see FIG. 7) of the quasi-low voltage method expressed by the relationship of the above, the actual charging voltage V applied to the battery 5 from the switching regulator body 6 (between the terminals of the battery 5) Voltage detection means 72 for detecting the voltage), and voltage determination means 73 for determining whether or not the actual charging voltage V detected by the voltage detection means 72 exceeds a predetermined inversion point voltage Vp. Further, when the actual charging voltage V exceeds the inversion point voltage Vp, the voltage applying unit 7 performs the remaining charge until the end of charging based on the actual charging voltage V according to the constant current charging characteristics data stored in the storage unit 71. The remaining charge time calculation means 74 for obtaining the time Tr, and when the actual charge voltage V exceeds the reversal point voltage Vp, quasi-constant voltage charging is performed according to the quasi-constant voltage charging characteristic data stored in the storage means 71. In this case, an assumed charging voltage V ′ at a time point that is equal to the remaining charging time Tr obtained by the remaining charging time calculation means 74 from the charging end time is obtained, and the actual charging voltage V is less than or equal to the inversion point voltage Vp. Includes an assumed charge voltage calculation means 75 that makes the assumed charge voltage V ′ a predetermined value, and an output means 76 that applies the assumed charge voltage V ′ obtained by the assumed charge voltage calculation means 75 to the charge controller 4. , Comprising a.
[0017]
FIG. 3 is a flowchart of the control program of the voltage application means 7. In this voltage application means 7, first, the voltage detection means 72 detects the actual charge voltage V (S1), and this actual charge voltage V is the voltage determination means. If it is determined at 73 that it is equal to or less than the reversal point voltage Vp (No in S2), the assumed charging voltage calculation means 75 sets the assumed charging voltage V ′ to a constant value, for example, the reversing point voltage Vp (S3). The voltage V ′ is applied from the output means 76 to the charge controller 4 (S4).
[0018]
On the other hand, when the voltage determination means 73 determines that the actual charge voltage V exceeds the reversal point voltage Vp (Yes in S2), the charge characteristic data of the constant current method stored in the storage means 71 in the remaining charge time calculation means 74 Accordingly, based on the actual charging voltage V, the remaining charging time Tr from the charging voltage detection time to the end of charging is obtained (S5). The storage unit 71 stores charging characteristic data of the constant current method shown in FIG. 9, and the remaining charge time calculation unit 74 stores the elapsed charging time at the time of detection of the charging voltage corresponding to the actual charging voltage V from the storage unit 71. While reading t, the charging elapsed time T at the end of charging is read. Then, the remaining charging time Tr is obtained by performing an operation of subtracting the charging elapsed time t at the charging voltage detection time from the charging elapsed time T at the charging end time.
[0019]
Further, in the assumed charging voltage calculation means 75, the remaining charge time calculation means 74 obtains from the end of charging when performing quasi-constant voltage charging in accordance with the quasi-constant voltage charging characteristic data stored in the storage means 71. An assumed charging voltage V ′ at a time point that is the same as the remaining charging time Tr is obtained (S6). The storage means 71 stores the charge characteristic data of the quasi-constant voltage method shown in FIG. 7, and the assumed charge voltage calculation means 75 reads the elapsed charging time T ′ at the end of charging from the storage means 71. Then, the charging elapsed time t ′ is obtained by performing a calculation of subtracting the remaining charging time Tr obtained by the remaining charging time calculating means 74 from the charging elapsed time T ′ at the end of charging. Then, the assumed charging voltage V ′ is obtained by reading the charging voltage V ′ corresponding to the elapsed charging time t ′ from the storage means 71. The assumed charging voltage V ′ thus obtained by the assumed charging voltage calculation means 75 is applied from the output means 76 to the charging controller 4 (S4).
[0020]
FIG. 4 is a functional block diagram of the charging controller 4. The charging controller 4 stores the charge characteristic data of the quasi-constant voltage method represented by the relationship between the elapsed charging time and the charging voltage shown in FIG. The storage means 41, the voltage detection means 42 for detecting the voltage V ′ applied from the voltage application means 7, and the remaining voltage based on the voltage V ′ detected by the voltage detection means 42 according to the charging characteristic data of the storage means 41. According to the determination result of the remaining charge time calculating means 43 for determining the charge time Tr ′, the remaining charge time determining means 44 for determining whether or not the remaining charge time Tr ′ is greater than 0, and the determination result of the remaining charge time determining means 44. Switch driving means 45 for turning the magnet switch 2 on and off.
[0021]
FIG. 5 is a flowchart of the control program of the charge controller 4. In the charge controller 4, first, the voltage detecting means 42 detects the voltage V 'applied from the voltage applying means 7 (S11), and the remaining charge is detected. In accordance with the quasi-constant voltage charging characteristic data stored in the storage means 41 by the time calculating means 43, the remaining charging time Tr 'until the end of charging is obtained based on this voltage V' (S12). The storage means 41 stores the charge characteristic data of the quasi-constant voltage method shown in FIG. 7, and the remaining charge time calculation means 43 reads the elapsed charge time t ′ corresponding to the voltage V ′ from the storage means 41, and The charging elapsed time T ′ at the end of charging is read. Then, a remaining charging time Tr ′ is obtained by performing a calculation of subtracting the charging elapsed time t ′ from the charging elapsed time T ′ at the end of charging. The remaining charging time Tr ′ is equal to the remaining charging time Tr obtained by the remaining charging time calculating unit 74 of the voltage applying unit 7.
[0022]
Then, the remaining charge time determination means 44 determines whether or not the remaining charge time Tr ′ is greater than 0 (S13). If it is determined that the remaining charge time Tr ′ is greater than 0 (Yes in S13), the switch drive means 45 is magnetized. The switch 2 is turned on (S14), and if it is 0 or less (No in S13), the switch driving means 45 turns off the magnet switch 2 (S15).
[0023]
Thus, while using the charge controller 4 that is originally used only for quasi-constant voltage charging, the battery 5 can be rapidly charged by the constant current method using the switching regulator 3, and the battery 5 is overcharged. There is no fear of being done.
[0024]
In addition, quick charging can be achieved by a very simple modification in which the quasi-constant voltage transformer and rectifier of the conventional quasi-constant voltage charger already mounted on the battery forklift are replaced with the switching regulator 3 incorporating the voltage applying means 7. Since there is no need to replace the charge controller, it can be modified inexpensively.
[0025]
【The invention's effect】
As described above, according to the present invention, the quasi-constant voltage transformer and the rectifier can be changed from the quasi-constant voltage system to the constant current system with a simple modification by replacing the quasi-constant voltage transformer and rectifier with a switching regulator having a voltage applying means. The effect of being able to be obtained can be obtained. Further, since it is not necessary to replace the charge controller when changing the charging method, it can be performed at a low cost.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a charger according to the present invention.
FIG. 2 is a functional block diagram showing in detail a switching regulator provided in the charger of the present invention.
FIG. 3 is a flowchart of a switching regulator control program.
FIG. 4 is a functional block diagram showing in detail a charge controller provided in the charger of the present invention.
FIG. 5 is a flowchart of a control program of the charge controller.
FIG. 6 is a functional block diagram showing an example of a conventional quasi-constant voltage system charger.
FIG. 7 is a charge characteristic diagram of a quasi-constant voltage method.
FIG. 8 is a functional block diagram showing an example of a conventional constant current system charger.
FIG. 9 is a charge characteristic diagram of a constant current method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 External AC power supply 2 Magnet switch 3 Switching regulator 4 Charge controller 5 Battery 7 Voltage application means 71 Memory | storage means 72 Voltage detection means 73 Voltage determination means 74 Remaining charge time calculation means 75 Assumption charge voltage calculation means 76 Output means

Claims (1)

外部電源に接続されるマグネットスイッチと、前記マグネットスイッチがオン状態のときに外部電源からの電力を調節してバッテリへ供給するスイッチングレギュレータと、前記マグネットスイッチのオン/オフを制御する充電制御器とを備え、前記スイッチングレギュレータには、このスイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出し、この実充電電圧に基づいて定電流方式充電を行う場合の充電終了までの残り充電時間を求め、準定電圧方式充電を行う場合の、充電終了時点から前記残り充電時間と等しい時間だけ遡った時点でのバッテリに印加される想定充電電圧を求めて前記充電制御器に印加する電圧印加手段が設けられ、前記充電制御器は、前記電圧印加手段からの前記想定充電電圧に基づいて準定電圧方式充電を行う場合の充電終了までの残り充電時間を求め、この残り充電時間がゼロとなるまで前記マグネットスイッチをオン状態に保持させ、この残り充電時間がゼロとなった時点で前記マグネットスイッチをオフさせることを特徴とするバッテリフォークリフトの充電器。  A magnet switch connected to an external power source; a switching regulator that adjusts power from the external power source to supply the battery when the magnet switch is in an on state; and a charge controller that controls on / off of the magnet switch; The switching regulator detects an actual charging voltage applied to the battery by the switching regulator, and obtains a remaining charging time until the end of charging when performing constant current charging based on the actual charging voltage. In the case of performing quasi-constant voltage charging, voltage applying means for obtaining an assumed charging voltage applied to the battery at a time that is a time that is equal to the remaining charging time from the end of charging is applied to the charging controller. And the charging controller is quasi-constant based on the assumed charging voltage from the voltage applying means. The remaining charge time until the end of charging in the case of pressure-type charging is obtained, the magnet switch is kept on until the remaining charge time becomes zero, and when the remaining charge time becomes zero, the magnet switch Battery forklift charger characterized by turning off.
JP2002234015A 2002-08-09 2002-08-09 Battery forklift charger Expired - Fee Related JP3949028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234015A JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234015A JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Publications (2)

Publication Number Publication Date
JP2004079215A JP2004079215A (en) 2004-03-11
JP3949028B2 true JP3949028B2 (en) 2007-07-25

Family

ID=32018984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234015A Expired - Fee Related JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Country Status (1)

Country Link
JP (1) JP3949028B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533852B2 (en) * 2006-01-27 2010-09-01 三菱重工業株式会社 Overhead line-less traffic system and charging method for the overhead line-less traffic system
CN112172592B (en) * 2020-10-14 2021-10-15 安徽江淮汽车集团股份有限公司 Charging time determination method, charging time determination equipment, storage medium and device

Also Published As

Publication number Publication date
JP2004079215A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP6616902B2 (en) Electric vehicle drive circuit and control method thereof
JP2785316B2 (en) Charger
KR20200069416A (en) Supplementary charging sysemt and method for auxiliary battery of eco-friendly vehicle
JP5483588B2 (en) Charge control device
JP6711221B2 (en) Battery system
JP2007135375A (en) Controller for dc-dc converter
JP7119464B2 (en) Vehicle charging system and charging control method
JP3949028B2 (en) Battery forklift charger
JP2005312224A (en) Battery charging apparatus
JP2008125159A (en) Power supply apparatus
JP6024563B2 (en) Vehicle power supply control device
JP5316169B2 (en) Vehicle power supply control device
JPH0956080A (en) Battery charger
JP4560657B2 (en) Uninterruptible power system
JP7067033B2 (en) Power supply control device, power supply control method and computer program
JP2013070547A (en) Power conversion device
KR20200106592A (en) System and method for controlling battery charging or discharging
JP2780701B2 (en) Software notification type battery charging method
JP3036507B2 (en) Power management method and device in battery-powered portable terminal
CN114614521A (en) Method for prolonging service life of lithium battery
CN103262382A (en) Discharge controller
RU2717962C1 (en) Electrical accumulator charging method
JPH11113189A (en) Charging device
JP2002191136A (en) Battery charger
JP3182283B2 (en) Charger and method of charging battery to be charged

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Ref document number: 3949028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees