JP2004079215A - Charger for battery forklift - Google Patents

Charger for battery forklift Download PDF

Info

Publication number
JP2004079215A
JP2004079215A JP2002234015A JP2002234015A JP2004079215A JP 2004079215 A JP2004079215 A JP 2004079215A JP 2002234015 A JP2002234015 A JP 2002234015A JP 2002234015 A JP2002234015 A JP 2002234015A JP 2004079215 A JP2004079215 A JP 2004079215A
Authority
JP
Japan
Prior art keywords
charging
voltage
time
charge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002234015A
Other languages
Japanese (ja)
Other versions
JP3949028B2 (en
Inventor
Takashi Fukuda
福田 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP2002234015A priority Critical patent/JP3949028B2/en
Publication of JP2004079215A publication Critical patent/JP2004079215A/en
Application granted granted Critical
Publication of JP3949028B2 publication Critical patent/JP3949028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger for a battery forklift capable of changing a charging system inexpensively. <P>SOLUTION: A switching regulator 3 is connected to an external ac power supply 1 via a magnet switch 2. The switching regulator 3 is provided with a voltage applying means 7 which detects charging voltage actually that is applied to a battery 5 with the switching regulator 3. Based on the actually applied charging voltage, the voltage applying means 7 calculates charging time that remains until the end of charging in the case of carrying out constant current charge, calculates assumed charging voltage to be applied to the battery 5 at a timing earlier by the time equal to the remaining charging time than the timing of the end of charging in the case of carrying out quasi-constant voltage charge and then outputs it to the charge controller 4. Consequently, the charge controller 4, which is originally used only for quasi-constant voltage charge, can be used for constant current charge. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリフォークリフトに搭載されるバッテリを充電するための充電器に関する。
【0002】
【従来の技術】
従来、バッテリフォークリフトには、車体に搭載されているバッテリを外部電源により充電するための充電器を備えたものがあり、この充電器としては準定電圧方式充電器や定電流方式充電器が採用されている。
【0003】
図6は準定電圧方式充電器の一例を示す機能ブロック図であり、この準定電圧方式充電器は、外部交流電源101をオン/オフするマグネットスイッチ102と、準定電圧トランス103と、整流器104と、充電制御器105とを備える。充電制御器105は整流器104からバッテリ106に印加される充電電圧を検出し、例えば図7に示す充電経過時間と充電電圧との関係で表される充電特性に従って、充電終了までの残り充電時間を演算する。そして、充電開始からこの残り充電時間が0となるまでマグネットスイッチ102をオンにして充電を継続させ、残り充電時間が0となった時点でマグネットスイッチ102をオフにして充電を終了させる。
【0004】
この準定電圧方式充電器によれば、バッテリ容量の低下を少なくするために電流密度を一定以下に抑えてバッテリ106を充電することができるが、長時間(例えば8〜10時間)掛けて充電しなければならない。
【0005】
一方、図8は定電流方式充電器の一例を示す機能ブロック図であり、この定電流方式充電器は、外部交流電源201をオン/オフするマグネットスイッチ202と、このマグネットスイッチ202とバッテリ205との間に接続されたスイッチングレギュレータ203と、充電制御器204とを備える。充電制御器204は、スイッチングレギュレータ203からバッテリ205に印加される充電電圧を検出し、例えば図9に示す充電経過時間と充電電圧との関係で表される充電特性に従って、充電終了までの残り充電時間を演算する。そして、充電開始からこの残り充電時間が0となるまでマグネットスイッチ202をオンにして充電を継続させ、残り充電時間が0となった時点でマグネットスイッチ202をオフにして充電を終了させる。
【0006】
この定電流方式充電器によれば、充電の進行に拘わらず一定電流でバッテリ205を充電することができるので、短時間で充電を完了させる、いわゆる急速充電を行うことができる。
【0007】
【発明が解決しようとする課題】
上述した準定電圧方式充電器と定電流方式充電器とでは構成が異なっているため、従来はいずれかの充電方式の充電器を選択してバッテリフォークリフトに搭載することが行われている。従って、準定電圧方式充電器を搭載すると定電流方式のような急速充電ができず、定電流方式充電器を搭載すると準定電圧方式のようなバッテリ容量の低下を抑えながらの充電ができないことになっていた。
【0008】
そこで、例えば、既に準定電圧方式充電器が搭載されているバッテリフォークリフトに対し準定電圧方式から定電流方式に変更して急速充電ができるようにしようとすると、準低電圧トランス103及び整流器104をスイッチングレギュレータ203に置換えるだけでなく、過充電を避けるためには充電制御器も準定電圧方式用充電制御器105から定電流方式用充電制御器204に置換える必要が生じ、充電方式の変更にかかる費用が大きいという問題があった。
【0009】
本発明は、この従来技術の課題を解決し、安価に充電方式の変更が可能なバッテリフォークリフトの充電器を提供することを目的とする。
【0010】
【課題を解決するための手段】
この目的を達成するため、外部電源に接続されるマグネットスイッチと、前記マグネットスイッチがオン状態のときに外部電源からの電力を調節してバッテリへ供給するスイッチングレギュレータと、前記マグネットスイッチのオン/オフを制御する充電制御器とを備え、前記スイッチングレギュレータには、このスイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出し、この実充電電圧に基づいて定電流方式充電を行う場合の充電終了までの残り充電時間を演算し、準定電圧方式充電を行う場合の、充電終了時点から前記残り充電時間と等しい時間だけ遡った時点でのバッテリに印加される想定充電電圧を演算して前記充電制御器に出力する電圧印加手段が設けられ、前記充電制御器は、前記電圧印加手段からの前記想定充電電圧に基づいて準定電圧方式充電を行う場合の充電終了までの残り充電時間を演算し、この残り充電時間がゼロとなるまで前記マグネットスイッチをオン状態に保持させ、この残り充電時間がゼロとなった時点で前記マグネットスイッチをオフさせることを特徴とする、という技術的手段を採用する。
【0011】
これによれば、バッテリはスイッチングレギュレータにより充電されるので、定電流方式で急速充電することができ、又、電圧印加手段により実際にバッテリに印加されている実充電電圧が準定電圧方式充電を行う場合に想定される充電電圧(想定充電電圧)に変換された上で充電制御器に印加されるので、準定電圧方式用として使用される充電制御器を用いてもバッテリが過充電になることはなくなる。
【0012】
又、充電方式を変更する際には、準定電圧トランス及び整流器と、スイッチングレギュレータとを置換えればよいので、例えば既に準定電圧方式充電器を搭載しているバッテリフォークリフトを容易に急速充電機能を備えるものに改造することができる。
【0013】
本発明において、前記電圧印加手段は、例えば、前記スイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出する電圧検出手段と、この電圧検出手段により検出された前記実充電電圧が所定の転極点電圧を上回るか否かを判定する電圧判定手段と、充電経過時間と充電電圧との関係で表される定電流方式充電を行う場合の充電特性データと、充電経過時間と充電電圧との関係で表される準低電圧方式充電を行う場合の充電特性データとを予め記憶させた記憶手段と、前記実充電電圧が前記転極点電圧を上回る場合に、前記記憶手段に記憶された定電流方式充電の充電特性データに従って、前記実充電電圧に基づき充電終了までの残り充電時間を求める残充電時間演算手段と、前記実充電電圧が前記転極点電圧を上回る場合には、前記記憶手段に記憶された準定電圧方式充電の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段で求めた残り充電時間と等しい時間を遡った時点での想定充電電圧を求め、前記実充電電圧が前記転極点電圧以下の場合には、前記想定充電電圧を所定値とする想定充電電圧演算手段と、この想定充電電圧演算手段により求められた前記想定充電電圧を前記充電制御器に印加する出力手段と、を備えるという構成を採用すればよい。
【0014】
【発明の実施の形態】
本発明の一実施例に係るバッテリフォークリフトの充電器を図面に基づいて具体的に説明すれば、以下の通りである。
【0015】
図1は本発明の一実施例に係るバッテリフォークリフトの充電器の機能ブロック図であり、この充電器は、外部交流電源1に接続されるマグネットスイッチ2と、外部交流電源1にマグネットスイッチ2を介して接続され、マグネットスイッチ2がオン状態のときに外部電源1からの電力を調節してバッテリ5へ供給するスイッチングレギュレータ3と、マグネットスイッチ2のオン/オフを制御する充電制御器4とを備え、図9に示すような定電流方式の充電特性でバッテリ5が充電されるようになっている。
【0016】
スイッチングレギュレータ3は、外部交流電源1からの電力を調節した上でバッテリ5に電圧を印加するスイッチングレギュレータ本体6と、充電制御器4に所定の電圧を印加する電圧印加手段7とから構成されている。ここで、電圧印加手段7は、図2に示すように、充電経過時間と充電電圧との関係で表される定電流方式の充電特性データ(図9参照)と、充電経過時間と充電電圧との関係で表される準低電圧方式の充電特性データ(図7参照)とを記憶させた記憶手段71、スイッチングレギュレータ本体6からバッテリ5に印加される実際の充電電圧V(バッテリ5の端子間電圧)を検出する電圧検出手段72、電圧検出手段72により検出された実充電電圧Vが所定の転極点電圧Vpを上回るか否かを判定する電圧判定手段73、を備える。更に、電圧印加手段7は、実充電電圧Vが転極点電圧Vpを上回る場合に、記憶手段71に記憶された定電流方式の充電特性データに従って、実充電電圧Vに基づき充電終了までの残り充電時間Trを求める残充電時間演算手段74、実充電電圧Vが転極点電圧Vpを上回る場合には、記憶手段71に記憶された準定電圧方式の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段74で求めた残り充電時間Trと等しい時間を遡った時点での想定充電電圧V´を求め、実充電電圧Vが転極点電圧Vp以下の場合には、想定充電電圧V´を所定値とする想定充電電圧演算手段75と、この想定充電電圧演算手段75により求められた想定充電電圧V´を前記充電制御器4に印加する出力手段76と、を備える。
【0017】
図3は電圧印加手段7の制御プログラムのフロー図であり、この電圧印加手段7においては、先ず電圧検出手段72が実充電電圧Vを検出し(S1)、この実充電電圧Vが電圧判定手段73において転極点電圧Vp以下であると判定されれば(S2のNo)、想定充電電圧演算手段75により想定充電電圧V´は一定値、例えば転極点電圧Vpとされ(S3)、この想定充電電圧V´が出力手段76から前記充電制御器4に印加される(S4)。
【0018】
一方、電圧判定手段73において実充電電圧Vが転極点電圧Vpを上回ると判定されると(S2のYes)、残充電時間演算手段74において記憶手段71に記憶された定電流方式の充電特性データに従って、実充電電圧Vに基づき充電電圧検出時点から充電終了までの残り充電時間Trが求められる(S5)。記憶手段71には図9に示す定電流方式の充電特性データが記憶されており、残充電時間演算手段74は、記憶手段71から実充電電圧Vに対応する充電電圧検出時点での充電経過時間tを読み出すと共に、充電終了時点での充電経過時間Tを読み出す。そして、充電終了時点での充電経過時間Tから充電電圧検出時点での充電経過時間tを差し引く演算を行うことで、残り充電時間Trを求める。
【0019】
更に、想定充電電圧演算手段75において、記憶手段71に記憶された準定電圧方式の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段74で求めた残り充電時間Trと等しい時間だけ遡った時点での想定される充電電圧V´が求められる(S6)。記憶手段71には図7に示す準定電圧方式の充電特性データが記憶されており、想定充電電圧演算手段75は、記憶手段71から充電終了時点での充電経過時間T´を読み出した上で、充電終了時点での充電経過時間T´から前記残充電時間演算手段74で求めた残り充電時間Trを差し引く演算を行うことで、充電経過時間t´を求める。そして、この充電経過時間t´に対応する充電電圧V´を記憶手段71から読み出すことで想定充電電圧V´を求める。このようにして想定充電電圧演算手段75により求められた想定充電電圧V´が、出力手段76から前記充電制御器4に印加される(S4)。
【0020】
図4は前記充電制御器4の機能ブロック図であり、この充電制御器4は、図7に示す充電経過時間と充電電圧との関係で表される準定電圧方式の充電特性データを記憶させた記憶手段41と、前記電圧印加手段7から印加される電圧V´を検出する電圧検出手段42と、記憶手段41の充電特性データに従って、この電圧検出手段42が検出した電圧V´に基づき残り充電時間Tr´を求める残充電時間演算手段43と、この残り充電時間Tr´が0よりも大か否かを判定する残充電時間判定手段44と、この残充電時間判定手段44の判定結果に従って前記マグネットスイッチ2をオン/オフさせるスイッチ駆動手段45とを備える。
【0021】
図5は充電制御器4の制御プログラムのフロー図であり、この充電制御器4では、先ず電圧検出手段42で前記電圧印加手段7から印加される電圧V´を検出し(S11)、残充電時間演算手段43により記憶手段41に記憶された準定電圧方式の充電特性データに従って、この電圧V´に基づき充電終了までの残り充電時間Tr´が求められる(S12)。記憶手段41には図7に示す準定電圧方式の充電特性データが記憶されており、残充電時間演算手段43は、記憶手段41から電圧V´に対応する充電経過時間t´を読み出すと共に、充電終了時点での充電経過時間T´を読み出す。そして、充電終了時点での充電経過時間T´から充電経過時間t´を差し引く演算を行うことで、残り充電時間Tr´を求める。尚、この残り充電時間Tr´は、電圧印加手段7の残充電時間演算手段74が求める残り充電時間Trと等しい値となる。
【0022】
そして、残充電時間判定手段44では、この残り充電時間Tr´が0より大か否かを判定し(S13)、0より大と判定されれば(S13のYes)、スイッチ駆動手段45がマグネットスイッチ2をオンにし(S14)、0以下であれば(S13のNo)、スイッチ駆動手段45がマグネットスイッチ2をオフにする(S15)。
【0023】
かくして、本来準定電圧方式充電用としてのみ使用される充電制御器4を用いながらも、スイッチングレギュレータ3を用いた定電流方式でバッテリ5を急速充電することができ、しかも、バッテリ5が過充電されるおそれもない。
【0024】
又、既にバッテリフォークリフトに搭載されている従来の準定電圧方式充電器の準定電圧トランス及び整流器を、前記電圧印加手段7を内蔵したスイッチングレギュレータ3に付替えるというすこぶる簡単な改造で急速充電可能とすることができ、充電制御器まで付替える必要がないので、安価に改造することができる。
【0025】
【発明の効果】
以上に説明したように、本発明によれば、準定電圧トランス及び整流器を、電圧印加手段を備えたスイッチングレギュレータに置換えるという簡単な改造で、準定電圧方式から定電流方式へ変更することができるという効果を得ることができる。又、充電方式の変更に際し充電制御器を付替える必要がないので、安価に行うことができる。
【図面の簡単な説明】
【図1】本発明の充電器を示す機能ブロック図である。
【図2】本発明の充電器が備えるスイッチングレギュレータを詳細に示す機能ブロック図である。
【図3】スイッチングレギュレータの制御プログラムのフロー図である。
【図4】本発明の充電器が備える充電制御器を詳細に示す機能ブロック図である。
【図5】充電制御器の制御プラグラムのフロー図である。
【図6】従来の準定電圧方式充電器の一例を示す機能ブロック図である。
【図7】準定電圧方式の充電特性図である。
【図8】従来の定電流方式充電器の一例を示す機能ブロック図である。
【図9】定電流方式の充電特性図である。
【符号の説明】
1 外部交流電源
2 マグネットスイッチ
3 スイッチングレギュレータ
4 充電制御器
5 バッテリ
7 電圧印加手段
71 記憶手段
72 電圧検出手段
73 電圧判定手段
74 残充電時間演算手段
75 想定充電電圧演算手段
76 出力手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charger for charging a battery mounted on a battery forklift.
[0002]
[Prior art]
Conventionally, some battery forklifts are equipped with a charger for charging the battery mounted on the vehicle body with an external power supply, and a quasi-constant-voltage charger or a constant-current charger is used as this charger. Have been.
[0003]
FIG. 6 is a functional block diagram showing an example of a quasi-constant voltage system charger. The quasi-constant voltage system charger includes a magnet switch 102 for turning on / off an external AC power supply 101, a quasi-constant voltage transformer 103, and a rectifier. 104 and a charge controller 105. The charging controller 105 detects the charging voltage applied from the rectifier 104 to the battery 106, and determines the remaining charging time until the end of charging, for example, according to a charging characteristic represented by the relationship between the charging elapsed time and the charging voltage shown in FIG. Calculate. Then, from the start of charging, the magnet switch 102 is turned on to continue charging until the remaining charging time becomes 0, and when the remaining charging time becomes 0, the magnet switch 102 is turned off to terminate charging.
[0004]
According to this quasi-constant voltage system charger, the battery 106 can be charged with the current density kept below a certain value in order to reduce the decrease in battery capacity, but it takes a long time (for example, 8 to 10 hours) to charge the battery 106. Must.
[0005]
On the other hand, FIG. 8 is a functional block diagram showing an example of a constant current type charger. The constant current type charger includes a magnet switch 202 for turning on / off an external AC power supply 201, a magnet switch 202 and a battery 205. And a charging controller 204 connected between them. The charging controller 204 detects a charging voltage applied from the switching regulator 203 to the battery 205, and according to a charging characteristic represented by a relationship between the charging elapsed time and the charging voltage shown in FIG. Calculate time. Then, the magnet switch 202 is turned on to continue charging until the remaining charge time becomes 0 from the start of charging, and when the remaining charge time becomes 0, the magnet switch 202 is turned off to end the charge.
[0006]
According to this constant current type charger, the battery 205 can be charged with a constant current regardless of the progress of charging, so that so-called rapid charging that completes charging in a short time can be performed.
[0007]
[Problems to be solved by the invention]
Since the above-described quasi-constant voltage system charger and the constant current system charger have different configurations, conventionally, a charger of one of the charging systems is selected and mounted on a battery forklift. Therefore, when a quasi-constant voltage system charger is installed, rapid charging like a constant current system cannot be performed, and when a constant current system charger is mounted, charging while suppressing a decrease in battery capacity like a quasi-constant voltage system cannot be performed. Had become.
[0008]
Therefore, for example, if it is attempted to change the quasi-constant voltage system to the constant current system for a battery forklift in which a quasi-constant voltage system charger is already mounted and to enable quick charging, the quasi-low voltage transformer 103 and the rectifier 104 Not only the switching regulator 203 but also the charge controller needs to be replaced from the semi-constant voltage system charge controller 105 to the constant current system charge controller 204 in order to avoid overcharging. There was a problem that the cost for the change was large.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems of the prior art and to provide a battery forklift charger that can change the charging method at low cost.
[0010]
[Means for Solving the Problems]
To achieve this object, a magnet switch connected to an external power supply, a switching regulator for adjusting power from the external power supply when the magnet switch is on and supplying the battery to a battery, and turning on / off the magnet switch The switching regulator detects an actual charging voltage applied to the battery by the switching regulator, and terminates charging when performing constant-current charging based on the actual charging voltage. Calculating the remaining charge time until the battery is charged, and calculating the assumed charge voltage applied to the battery at a point in time when the charge is completed by a time equal to the remaining charge time from the end of charging when performing semi-constant voltage charging. Voltage applying means for outputting to the controller is provided, and the charging controller Calculate the remaining charging time until the end of charging when performing quasi-constant voltage charging based on the assumed charging voltage, hold the magnet switch on until the remaining charging time becomes zero, and set the remaining charging time to A technical means is adopted in which the magnet switch is turned off at the time when the value becomes zero.
[0011]
According to this, since the battery is charged by the switching regulator, it can be rapidly charged by the constant current method, and the actual charging voltage actually applied to the battery by the voltage applying means performs the semi-constant voltage charging. Since the battery is converted into a charging voltage (assumed charging voltage) that is assumed when the charging is performed and is applied to the charging controller, the battery is overcharged even when the charging controller used for the quasi-constant voltage method is used. Will not be.
[0012]
Also, when changing the charging method, the quasi-constant voltage transformer and rectifier may be replaced with a switching regulator, so that, for example, a battery forklift that already has a quasi-constant voltage method charger can be quickly charged. Can be remodeled.
[0013]
In the present invention, for example, the voltage application unit includes a voltage detection unit that detects an actual charging voltage applied to the battery by the switching regulator, and the actual charging voltage detected by the voltage detection unit is a predetermined inversion point. Voltage determining means for determining whether the voltage exceeds the voltage, charging characteristic data when performing constant-current charging represented by the relationship between the charging elapsed time and the charging voltage, and the relationship between the charging elapsed time and the charging voltage. Storage means for storing in advance the charging characteristic data when performing the sub-low voltage charging represented, and constant current charging stored in the storage means when the actual charging voltage exceeds the inversion point voltage. Means for calculating the remaining charge time until the end of charging based on the actual charge voltage in accordance with the charge characteristic data of In the case where the semi-constant-voltage charging is performed in accordance with the charging characteristic data of the semi-constant-voltage charging stored in the storage unit, a time equal to the remaining charging time calculated by the remaining charging time calculating unit from the end of charging. Calculating the assumed charging voltage at the time of going back, and when the actual charging voltage is equal to or less than the inversion point voltage, an assumed charging voltage calculating means for setting the assumed charging voltage to a predetermined value; and Output means for applying the calculated assumed charging voltage to the charging controller may be adopted.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A battery forklift according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 is a functional block diagram of a battery forklift charger according to one embodiment of the present invention. The charger includes a magnet switch 2 connected to an external AC power supply 1 and a magnet switch 2 connected to the external AC power supply 1. A switching regulator 3 connected to the battery switch 5 for adjusting the power from the external power supply 1 to supply the battery 5 when the magnet switch 2 is on, and a charging controller 4 for controlling on / off of the magnet switch 2. The battery 5 is charged with a constant current charging characteristic as shown in FIG.
[0016]
The switching regulator 3 is composed of a switching regulator body 6 that adjusts the power from the external AC power supply 1 and applies a voltage to the battery 5, and a voltage application unit 7 that applies a predetermined voltage to the charge controller 4. I have. Here, as shown in FIG. 2, the voltage applying means 7 calculates the constant-current charging characteristic data (see FIG. 9) expressed by the relationship between the charging elapsed time and the charging voltage, and the charging elapsed time and the charging voltage. The storage means 71 storing the charging characteristic data of the quasi-low-voltage system (see FIG. 7) expressed by the following relationship: the actual charging voltage V applied between the switching regulator body 6 and the battery 5 (between the terminals of the battery 5 A voltage), and a voltage determination unit 73 that determines whether the actual charging voltage V detected by the voltage detection unit 72 exceeds a predetermined inversion point voltage Vp. Further, when the actual charging voltage V exceeds the inversion point voltage Vp, the voltage applying means 7 determines the remaining charge until the end of charging based on the actual charging voltage V in accordance with the constant current type charging characteristic data stored in the storage means 71. The remaining charge time calculating means 74 for obtaining the time Tr performs the semi-constant voltage charging in accordance with the semi-constant voltage charging characteristic data stored in the storage means 71 when the actual charging voltage V exceeds the inversion point voltage Vp. In this case, the assumed charging voltage V 'at the time when the time equal to the remaining charging time Tr calculated by the remaining charging time calculating means 74 is calculated from the charging end point, and the actual charging voltage V is equal to or less than the inversion point voltage Vp. An assumed charging voltage calculating means 75 for setting the assumed charging voltage V 'to a predetermined value, and an output means 76 for applying the assumed charging voltage V' obtained by the assumed charging voltage calculating means 75 to the charge controller 4. , Comprising a.
[0017]
FIG. 3 is a flow chart of a control program of the voltage applying means 7. In the voltage applying means 7, first, the voltage detecting means 72 detects the actual charging voltage V (S1), and the actual charging voltage V is used as the voltage determining means. If it is determined at 73 that the voltage is equal to or lower than the inversion point voltage Vp (No in S2), the assumed charging voltage V ′ is set to a constant value, for example, the inversion point voltage Vp by the assumed charging voltage calculating means 75 (S3), and the assumed charging is performed. The voltage V 'is applied from the output means 76 to the charge controller 4 (S4).
[0018]
On the other hand, if the voltage determination means 73 determines that the actual charging voltage V exceeds the inversion point voltage Vp (Yes in S2), the remaining charge time calculation means 74 stores the constant current charging characteristic data stored in the storage means 71. Thus, the remaining charging time Tr from the time of detection of the charging voltage to the end of charging is obtained based on the actual charging voltage V (S5). The storage means 71 stores constant-current charging characteristic data shown in FIG. 9, and the remaining charge time calculation means 74 stores the charge elapsed time at the time of detection of the charge voltage corresponding to the actual charge voltage V from the storage means 71. At the same time as reading t, the charging elapsed time T at the end of charging is read. Then, the remaining charge time Tr is obtained by performing a calculation by subtracting the charge elapsed time t at the time of detecting the charge voltage from the charge elapsed time T at the time of completion of the charge.
[0019]
Further, in the assumed charging voltage calculating means 75, the remaining charging time calculating means 74 calculates the charge time from the end of charging when performing the semi-constant voltage charging in accordance with the semi-constant voltage charging characteristic data stored in the storage means 71. An expected charging voltage V 'at a point in time that is equal to the remaining charging time Tr is calculated (S6). The storage unit 71 stores the charging characteristic data of the quasi-constant voltage method shown in FIG. 7. The assumed charging voltage calculation unit 75 reads the elapsed charging time T ′ at the end of charging from the storage unit 71, The remaining charge time Tr obtained by the remaining charge time calculation means 74 is subtracted from the charge elapsed time T 'at the end of charging to calculate the charge elapsed time t'. Then, by reading the charging voltage V 'corresponding to the elapsed charging time t' from the storage means 71, the assumed charging voltage V 'is obtained. The assumed charging voltage V 'obtained by the assumed charging voltage calculating means 75 in this way is applied from the output means 76 to the charging controller 4 (S4).
[0020]
FIG. 4 is a functional block diagram of the charge controller 4. The charge controller 4 stores semi-constant-voltage charge characteristic data represented by the relationship between charge elapsed time and charge voltage shown in FIG. Storage means 41, a voltage detection means 42 for detecting the voltage V 'applied from the voltage application means 7, and the remaining voltage based on the voltage V' detected by the voltage detection means 42 according to the charging characteristic data of the storage means 41. The remaining charge time calculating means 43 for obtaining the charge time Tr ', the remaining charge time determining means 44 for determining whether the remaining charge time Tr' is greater than 0, and the determination result of the remaining charge time determining means 44 A switch driving unit 45 for turning on / off the magnet switch 2.
[0021]
FIG. 5 is a flow chart of a control program of the charge controller 4. In the charge controller 4, first, the voltage V 'applied from the voltage application means 7 is detected by the voltage detection means 42 (S11), and the remaining charge is performed. According to the charging characteristic data of the quasi-constant voltage method stored in the storage means 41 by the time calculation means 43, the remaining charge time Tr 'until the end of charging is obtained based on this voltage V' (S12). The storage characteristic data of the quasi-constant voltage method shown in FIG. 7 is stored in the storage means 41, and the remaining charge time calculation means 43 reads the charge elapsed time t 'corresponding to the voltage V' from the storage means 41, The elapsed charging time T 'at the end of charging is read. Then, a remaining charge time Tr 'is obtained by performing a calculation by subtracting the charge elapsed time t' from the charge elapsed time T 'at the end of charging. Note that the remaining charge time Tr 'has a value equal to the remaining charge time Tr obtained by the remaining charge time calculation means 74 of the voltage applying means 7.
[0022]
Then, the remaining charge time determination means 44 determines whether or not the remaining charge time Tr 'is greater than 0 (S13). If the remaining charge time Tr' is greater than 0 (Yes in S13), the switch driving means 45 turns on the magnet. The switch 2 is turned on (S14), and if it is 0 or less (No in S13), the switch driving unit 45 turns off the magnet switch 2 (S15).
[0023]
Thus, the battery 5 can be rapidly charged by the constant current method using the switching regulator 3 while using the charge controller 4 which is originally used only for the quasi-constant voltage method charging. There is no danger.
[0024]
In addition, quick charging is possible by a very simple modification of replacing the quasi-constant voltage transformer and rectifier of the conventional quasi-constant voltage system charger already mounted on the battery forklift with the switching regulator 3 having the built-in voltage applying means 7. Since there is no need to replace the charge controller, it can be modified at low cost.
[0025]
【The invention's effect】
As described above, according to the present invention, the quasi-constant voltage transformer and the rectifier can be changed from the quasi-constant voltage system to the constant current system by a simple modification of replacing the quasi-constant voltage transformer and the rectifier with a switching regulator having a voltage application unit. Can be obtained. In addition, since there is no need to change the charging controller when changing the charging method, the charging can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a charger of the present invention.
FIG. 2 is a functional block diagram showing a switching regulator included in the charger of the present invention in detail.
FIG. 3 is a flowchart of a control program for a switching regulator.
FIG. 4 is a functional block diagram showing in detail a charge controller provided in the charger of the present invention.
FIG. 5 is a flowchart of a control program of a charge controller.
FIG. 6 is a functional block diagram showing an example of a conventional semi-constant voltage system charger.
FIG. 7 is a charging characteristic diagram of a semi-constant voltage system.
FIG. 8 is a functional block diagram showing an example of a conventional constant current type charger.
FIG. 9 is a charging characteristic diagram of a constant current method.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 external AC power supply 2 magnet switch 3 switching regulator 4 charge controller 5 battery 7 voltage application means 71 storage means 72 voltage detection means 73 voltage determination means 74 remaining charge time calculation means 75 assumed charge voltage calculation means 76 output means

Claims (2)

外部電源に接続されるマグネットスイッチと、前記マグネットスイッチがオン状態のときに外部電源からの電力を調節してバッテリへ供給するスイッチングレギュレータと、前記マグネットスイッチのオン/オフを制御する充電制御器とを備え、
前記スイッチングレギュレータには、このスイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出し、この実充電電圧に基づいて定電流方式充電を行う場合の充電終了までの残り充電時間を求め、準定電圧方式充電を行う場合の、充電終了時点から前記残り充電時間と等しい時間だけ遡った時点でのバッテリに印加される想定充電電圧を求めて前記充電制御器に印加する電圧印加手段が設けられ、
前記充電制御器は、前記電圧印加手段からの前記想定充電電圧に基づいて準定電圧方式充電を行う場合の充電終了までの残り充電時間を求め、この残り充電時間がゼロとなるまで前記マグネットスイッチをオン状態に保持させ、この残り充電時間がゼロとなった時点で前記マグネットスイッチをオフさせることを特徴とするバッテリフォークリフトの充電器。
A magnet switch connected to an external power supply, a switching regulator for adjusting power from the external power supply to supply the battery to the battery when the magnet switch is on, and a charging controller for controlling on / off of the magnet switch. With
The switching regulator detects the actual charging voltage applied to the battery by the switching regulator, determines the remaining charging time until the end of charging when performing the constant current charging based on the actual charging voltage, In the case of performing the voltage-based charging, a voltage application unit is provided that obtains an assumed charging voltage to be applied to the battery at a point in time that is equal to the remaining charging time from a charging end point and applies the charging voltage to the charging controller.
The charging controller obtains a remaining charging time until the end of charging when performing semi-constant voltage charging based on the assumed charging voltage from the voltage applying unit, and determines the magnet switch until the remaining charging time becomes zero. , And when the remaining charge time becomes zero, the magnet switch is turned off.
前記電圧印加手段は、
前記スイッチングレギュレータによりバッテリに印加される実際の充電電圧を検出する電圧検出手段と、
この電圧検出手段により検出された前記実充電電圧が所定の転極点電圧を上回るか否かを判定する電圧判定手段と、
充電経過時間と充電電圧との関係で表される定電流方式充電を行う場合の充電特性データと、充電経過時間と充電電圧との関係で表される準低電圧方式充電を行う場合の充電特性データとを予め記憶させた記憶手段と、
前記実充電電圧が前記転極点電圧を上回る場合に、前記記憶手段に記憶された定電流方式充電の充電特性データに従って、前記実充電電圧に基づき充電終了までの残り充電時間を求める残充電時間演算手段と、
前記実充電電圧が前記転極点電圧を上回る場合には、前記記憶手段に記憶された準定電圧方式充電の充電特性データに従って、準定電圧方式充電を行う場合の、充電終了時点から前記残充電時間演算手段で求めた残り充電時間と等しい時間を遡った時点での想定充電電圧を求め、前記実充電電圧が前記転極点電圧以下の場合には、前記想定充電電圧を所定値とする想定充電電圧演算手段と、
この想定充電電圧演算手段により求められた前記想定充電電圧を前記充電制御器に印加する出力手段と、を備えることを特徴とする請求項1に記載されたバッテリフォークリフトの充電器。
The voltage applying means,
Voltage detection means for detecting the actual charging voltage applied to the battery by the switching regulator,
Voltage determining means for determining whether the actual charging voltage detected by the voltage detecting means exceeds a predetermined inversion point voltage,
Charging characteristic data when performing constant-current charging represented by the relationship between charging elapsed time and charging voltage, and charging characteristics when performing sub-low-voltage charging represented by the relationship between charging elapsed time and charging voltage Storage means for storing data in advance;
When the actual charging voltage is higher than the inversion point voltage, a remaining charging time calculation for obtaining a remaining charging time until the end of charging based on the actual charging voltage in accordance with the charging characteristic data of the constant current charging stored in the storage means. Means,
When the actual charging voltage is higher than the inversion point voltage, the remaining charge from the end of charging when performing the semi-constant voltage charging in accordance with the charging characteristic data of the semi-constant voltage charging stored in the storage means. An assumed charging voltage at a point in time when the time equal to the remaining charging time obtained by the time calculating means is calculated, and when the actual charging voltage is equal to or less than the inversion point voltage, the assumed charging voltage is set to the predetermined charging voltage. Voltage calculation means,
2. The battery forklift charger according to claim 1, further comprising output means for applying the assumed charge voltage obtained by the assumed charge voltage calculation means to the charge controller.
JP2002234015A 2002-08-09 2002-08-09 Battery forklift charger Expired - Fee Related JP3949028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234015A JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234015A JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Publications (2)

Publication Number Publication Date
JP2004079215A true JP2004079215A (en) 2004-03-11
JP3949028B2 JP3949028B2 (en) 2007-07-25

Family

ID=32018984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234015A Expired - Fee Related JP3949028B2 (en) 2002-08-09 2002-08-09 Battery forklift charger

Country Status (1)

Country Link
JP (1) JP3949028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202335A (en) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd Transportation system, charging method for therein car, and charging management method
CN112172592A (en) * 2020-10-14 2021-01-05 安徽江淮汽车集团股份有限公司 Charging time determination method, charging time determination equipment, storage medium and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202335A (en) * 2006-01-27 2007-08-09 Mitsubishi Heavy Ind Ltd Transportation system, charging method for therein car, and charging management method
JP4533852B2 (en) * 2006-01-27 2010-09-01 三菱重工業株式会社 Overhead line-less traffic system and charging method for the overhead line-less traffic system
CN112172592A (en) * 2020-10-14 2021-01-05 安徽江淮汽车集团股份有限公司 Charging time determination method, charging time determination equipment, storage medium and device
CN112172592B (en) * 2020-10-14 2021-10-15 安徽江淮汽车集团股份有限公司 Charging time determination method, charging time determination equipment, storage medium and device

Also Published As

Publication number Publication date
JP3949028B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP6791386B2 (en) Charging time calculation method and charging control device
US20070188136A1 (en) Battery charging
US20110210695A1 (en) Charging apparatus, program
JP2003224901A (en) Method and apparatus for managing battery capacity, capacity managing apparatus of battery for vehicle power
JP2003303627A (en) Status detecting device and various devices using the same
TWI424656B (en) Method for controlling charging current
JP2000166109A (en) Charged state detecting device for battery
JP2011043460A (en) Characteristic detection method of secondary battery, and secondary battery device
KR20200069416A (en) Supplementary charging sysemt and method for auxiliary battery of eco-friendly vehicle
JP2008199860A (en) Targeted charged capacity calculating method, targeted charged capacity calculating device and charged capacity control unit
JPWO2019230130A1 (en) Charge control devices, transportation equipment, and programs
JP2005312224A (en) Battery charging apparatus
WO2004025930A1 (en) Multi-mode communication terminal
JP2006166641A (en) Battery charger
JP2004079215A (en) Charger for battery forklift
JP2006010501A (en) Battery status administration system
JPH07105981A (en) Charging method for secondary battery
JP2009159115A (en) Electronic apparatus, and its control method
JP2005010032A (en) Battery power detecting method, small electrical equipment using the method and battery pack
JP2020048318A (en) Secondary battery device
CN114614521A (en) Method for prolonging service life of lithium battery
JP3182283B2 (en) Charger and method of charging battery to be charged
KR20220021277A (en) Battery management system, battery management method, battery pakc, and electric vehicle
CN103262382A (en) Discharge controller
JP3785671B2 (en) Charging method and charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Ref document number: 3949028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees