JP3947824B2 - Processing method and apparatus using magnetic powder - Google Patents

Processing method and apparatus using magnetic powder Download PDF

Info

Publication number
JP3947824B2
JP3947824B2 JP2004161501A JP2004161501A JP3947824B2 JP 3947824 B2 JP3947824 B2 JP 3947824B2 JP 2004161501 A JP2004161501 A JP 2004161501A JP 2004161501 A JP2004161501 A JP 2004161501A JP 3947824 B2 JP3947824 B2 JP 3947824B2
Authority
JP
Japan
Prior art keywords
processing
powder
magnetic powder
magnetic
superconducting bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004161501A
Other languages
Japanese (ja)
Other versions
JP2005342792A (en
Inventor
徹 雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004161501A priority Critical patent/JP3947824B2/en
Publication of JP2005342792A publication Critical patent/JP2005342792A/en
Application granted granted Critical
Publication of JP3947824B2 publication Critical patent/JP3947824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨、研削、切削などの精密加工方法に係り、特に磁性粉を使った精密加工方法及びその装置に関するものである。   The present invention relates to a precision processing method such as polishing, grinding, and cutting, and more particularly to a precision processing method and apparatus using magnetic powder.

研磨、研削、切削などの精密加工に際しては、その目的に合わせて研磨用砥石、刃先、ドリルなどの加工具を選び、その加工端を振動、超音波発生、直線あるいは回転運動させながら、被加工物に対して摺動させる。   For precision processing such as polishing, grinding, cutting, etc., select a processing tool such as a grinding wheel, cutting edge, drill, etc. according to the purpose, and work the workpiece while vibrating, generating ultrasonic waves, linearly or rotating it. Slide against the object.

その際、特に比較的小さな部位を精密加工する場合、加工端と被加工物の接触箇所の内の摺動面に砥粒粉を介在させるのが一般的である。
砥粒粉としては、アルミナやタングステンカーバイドを主成分とする、いわゆる超硬粉が使われる。
At this time, when a relatively small portion is precisely machined, it is common to place abrasive powder on the sliding surface of the contact portion between the machining end and the workpiece.
As the abrasive powder, a so-called super hard powder mainly composed of alumina or tungsten carbide is used.

砥粒粉は加工運動により飛散し、その飛散の程度は砥粒粉をゲル状又はペースト状のバインダとともに接触箇所の近傍に供給すると、これを軽減できるが、それでも砥粒粉とバインダを摺動面に絶えず存在させるためには、砥粒粉とバインダ、もしくは砥粒粉入りバインダを連続的に補給する必要がある。   Abrasive powder is scattered by processing movement, and the degree of scattering can be reduced by supplying the abrasive powder to the vicinity of the contact point together with the gel or paste binder, but it still slides between the abrasive powder and the binder. In order to continuously exist on the surface, it is necessary to continuously supply abrasive powder and binder, or binder containing abrasive powder.

そのため、砥粒粉の消費量が多くなるだけでなく、接触箇所における砥粒粉の有無、多少による加工品質のバラツキ、不安定性、不均一性などの問題がある。   Therefore, not only the consumption of the abrasive powder is increased, but there are problems such as presence / absence of the abrasive powder at the contact location, variation in processing quality due to some, instability, and non-uniformity.

しかも、バインダの飛散防止能力を上げると、砥粒粉の2次的結合が進み、その粉径サイズが過大となり砥粒粉としての加工性能が低下するという問題がある。
また、飛散した砥粒粉の、人体や環境に対する影響も懸念される。
In addition, when the ability of the binder to prevent scattering is increased, secondary bonding of the abrasive grains proceeds, and the size of the powder becomes excessive, resulting in a problem that the processing performance as the abrasive grains decreases.
Moreover, there is a concern about the influence of the scattered abrasive powder on the human body and the environment.

特許文献1には、砥石の洗浄に関連して、接触箇所を覆うカバーを設けて吸引することにより、飛散した砥粒粉を回収する技術が開示されている。
しかしながら、このように砥粒粉を回収したとしても、砥粒粉とバインダとの連続的補給が必要であり、上記の問題は解決されない。
特開平06−091531号公報
Patent Document 1 discloses a technique for collecting scattered abrasive powder by providing and sucking a cover that covers a contact location in relation to cleaning of a grindstone.
However, even if the abrasive powder is collected in this way, continuous replenishment of the abrasive powder and the binder is necessary, and the above problem cannot be solved.
Japanese Patent Laid-Open No. 06-091531

従って本発明は、砥粒粉を使った、研磨、研削、切削などの精密加工方法における上記の諸問題を解決するためになされたものであり、特に比較的小さい部位に精密加工する場合に、バインダと砥粒粉との連続的補給を不要にする、磁性粉を使った加工方法及びその装置を提供することを目的とする。   Accordingly, the present invention has been made to solve the above problems in precision processing methods such as polishing, grinding, cutting, etc. using abrasive powder, particularly when precision processing is performed on relatively small parts, It is an object of the present invention to provide a processing method using magnetic powder and an apparatus thereof that eliminate the need for continuous replenishment of a binder and abrasive powder.

また本発明は、バインダを不要にして、砥粒粉の2次的結合を抑制し、砥粒粉の加工性能の低下が防止できる、また、砥粒粉の飛散による人体や環境に対する影響を抑制できる、磁性粉を使った加工方法及びその装置を提供することを目的とする。   In addition, the present invention eliminates the need for a binder, suppresses secondary bonding of the abrasive powder, prevents deterioration of the processing performance of the abrasive powder, and suppresses the influence on the human body and the environment due to the scattering of the abrasive powder. An object of the present invention is to provide a processing method and apparatus using magnetic powder.

上記目的を達成するために、本発明による磁性粉を使った加工方法は、加工具の摺動する加工端と被加工物の加工部の間隙に砥粒粉を介在させる加工方法において、前記砥粒粉が磁性を帯びた磁性粉であり、前記間隙を含む部分に集中する磁場を印加するために、着磁された超電導バルク磁石を使用することを特徴とする。 In order to achieve the above object, a processing method using magnetic powder according to the present invention is a processing method in which abrasive powder is interposed in a gap between a processing end on which a processing tool slides and a processing portion of a workpiece. The granular powder is a magnetic powder having magnetism, and a magnetized superconducting bulk magnet is used to apply a magnetic field concentrated on a portion including the gap .

更に、前記超電導バルク磁石を真空容器内部の最上部に略平行に設置し、前記加工部を前記超電導バルク磁石の直上部の中央部に設置することを特徴とする。 Furthermore, the superconducting bulk magnet is installed substantially parallel to the uppermost part inside the vacuum vessel, and the processed part is installed in the central part immediately above the superconducting bulk magnet .

好ましくは、請求項2に記載のとおり、前記磁性粉がコバルト(Co)を含むタングステンカーバイド(WC)であることを特徴とする。 Preferably, as described in claim 2, the magnetic powder is tungsten carbide (WC) containing cobalt (Co) .

また、請求項3に記載のとおり、前記磁性を帯びた超硬粉が、廃棄回収された超硬粉あるいは超硬加工端からリサイクル製造されたものであるであることを特徴とする。 According to a third aspect of the present invention, the magnetized cemented carbide powder is a discarded and collected cemented carbide powder or recycled from a cemented carbide processing end .

上記目的を達成するために、本発明の請求項4に係る磁性粉を使った加工装置は、摺動する加工端を有する加工具と被加工物の加工部の間隙に砥粒粉を介在させる加工装置において、前記砥粒粉が磁性を帯びた磁性粉であり、前記間隙を含む部分に集中する磁場を印加するために、着磁された超電導バルク磁石を使用することを特徴とする。 In order to achieve the above object, a processing apparatus using magnetic powder according to claim 4 of the present invention interposes abrasive powder in a gap between a processing tool having a sliding processing end and a processing portion of a workpiece. In the processing apparatus, the abrasive powder is magnetic powder, and a magnetized superconducting bulk magnet is used to apply a magnetic field concentrated on a portion including the gap .

更に、前記超電導バルク磁石を真空容器内部の最上部に略平行に設置し、前記加工部を前記超電導バルク磁石の直上部の中央部に設置し、前記被加工物が着磁された超電導バルク磁石の直上部の中央部に載置されていることを特徴とする。 Furthermore, the superconducting bulk magnet is installed substantially parallel to the uppermost part inside the vacuum vessel, the processing part is installed in the central part immediately above the superconducting bulk magnet, and the workpiece is magnetized. It is mounted in the center part of the direct upper part of .

また、請求項に記載のとおり、前記磁性粉が、コバルト(Co)を含むタングステンカーバイド(WC)であることを特徴とする。 According to a fifth aspect of the present invention, the magnetic powder is tungsten carbide (WC) containing cobalt (Co).

また、請求項に記載のとおり、前記磁性粉が、廃棄された超硬粉あるいは超硬加工端からリサイクル製造されたものであることを特徴とする。 According to a sixth aspect of the present invention, the magnetic powder is recycled from a discarded super hard powder or a super hard processing end.

研磨、研削、切削などの精密加工に際して、特に比較的小さい部位に精密加工する場合、加工具の摺動する加工端と被加工物の加工部の間隙に介在させる砥粒粉としての磁性粉の飛散が防止され、砥粒粉が常に摺動面間に保持されるので、バインダが不要で、しかも砥粒粉の連続的補給が不要になる、磁性粉を使った加工方法及びその装置を提供することができる。   In precision processing such as polishing, grinding, and cutting, especially when precision processing is performed on a relatively small part, magnetic powder as abrasive powder that is interposed in the gap between the processing end where the processing tool slides and the processing part of the workpiece is used. Providing a processing method and apparatus using magnetic powder that prevents scattering and keeps the abrasive powder between the sliding surfaces, eliminating the need for a binder and eliminating the need for continuous supply of abrasive powder. can do.

特に、本発明を適用してなる砥粒粉がコバルト(Co)を含むタングステンカーバイド(WC)である場合、従来の加工工程において廃棄回収されたタングステンカーバイド(WC)などの超硬材は通常微量のコバルトを含み強磁性体となるので、そのまま、あるいは最小限の調製だけで容易にリサイクル使用可能になる。   In particular, when the abrasive grain powder to which the present invention is applied is tungsten carbide (WC) containing cobalt (Co), the amount of cemented carbide such as tungsten carbide (WC), which is discarded and collected in the conventional processing process, is usually small. Therefore, it can be easily recycled as it is or with minimal preparation.

以下、本発明に係る実施の形態を、図面を参照して具体的に説明する。   Embodiments according to the present invention will be specifically described below with reference to the drawings.

図1を参照すると、一般に精密加工方法においては被加工物10を支持台41に載置し、被加工物10の加工部に砥粒粉25を含むペースト20を塗布し、加工具31の加工端30を被加工物10の加工部に当てて、摺動させる。   Referring to FIG. 1, in general, in a precision machining method, a workpiece 10 is placed on a support base 41, a paste 20 containing abrasive powder 25 is applied to a machining portion of the workpiece 10, and a machining tool 31 is machined. The end 30 is slid against the processed part of the workpiece 10.

その際、本発明による磁性粉を使った加工方法においては、砥粒粉25として磁性粉を用い、一方支持台41の被加工物の載置面の直下に磁石40を組み込んでおく。   At that time, in the processing method using the magnetic powder according to the present invention, the magnetic powder is used as the abrasive powder 25, and the magnet 40 is incorporated immediately below the work surface of the support base 41.

砥粒粉の材料としては、超硬度と強磁性を有する、コバルト(Co)を含むタングステンカーバイド(WC)を使う。   As the material of the abrasive powder, tungsten carbide (WC) containing cobalt (Co) having super hardness and ferromagnetism is used.

コバルトを含むタングステンカーバイドは、従来廃棄されていた使用済みの超硬粉や超硬材をリサイクルして入手してもよい。   Tungsten carbide containing cobalt may be obtained by recycling used cemented carbide powder or cemented carbide material that has been conventionally discarded.

本実施例では、磁石40として永久磁石、電磁ソレノイドを用いた電磁石、又は超伝導コイルを用いた磁石を使っているので、発生する磁力線50は、被加工物10の加工部である磁石40の直上部に集中している。
即ち、磁束密度は磁石40の直上部で最も大きい。
In the present embodiment, a permanent magnet, an electromagnet using an electromagnetic solenoid, or a magnet using a superconducting coil is used as the magnet 40, so that the generated magnetic force lines 50 are generated by the magnet 40 that is a processing part of the workpiece 10. It is concentrated directly above.
That is, the magnetic flux density is the highest directly above the magnet 40.

図2(A)を参照すると、永久磁石の場合の、磁束密度の分布を示す。
円板型の磁石は、円板面を水平(x、y方向)に取った場合、両側の円板面がN、Sの極になり、磁束は円板面を貫いてz方向に延びており(図2(A)及び、次の(B)では図の上下方向)、このz方向の磁束密度Bをテスラ(T)単位で計った値をBz(T)として、円板面の各点に対して示したものである。
Referring to FIG. 2A, a magnetic flux density distribution in the case of a permanent magnet is shown.
When the disk-shaped magnet is horizontally (x, y direction), the disk surfaces on both sides become N and S poles, and the magnetic flux extends in the z direction through the disk surface. And (b) in FIG. 2 (A) and the next (B) in the vertical direction of the figure, and the value obtained by measuring the magnetic flux density B in the z direction in units of Tesla (T) is represented by Bz (T). Shown for points.

磁束密度は磁石の直上部では中央部から周辺部の全体にわたってほぼ均一な値、0.3T(テスラ)をとり、磁石の周縁部で急激に低下する。
これに対応して図1における磁力線50は、磁石40の直上部では等間隔で密に存在する。
The magnetic flux density takes a substantially uniform value, 0.3 T (Tesla), from the central portion to the entire peripheral portion immediately above the magnet, and rapidly decreases at the peripheral portion of the magnet.
Correspondingly, the lines of magnetic force 50 in FIG. 1 are densely present at equal intervals immediately above the magnet 40.

電磁ソレノイドを用いた電磁石、又は超伝導コイルを用いた磁石の場合も同様な磁束密度分布を示す。磁石直上部の磁束密度は各々最大、2テスラ、3テスラになる。   A similar magnetic flux density distribution is shown in the case of an electromagnet using an electromagnetic solenoid or a magnet using a superconducting coil. The maximum magnetic flux density directly above the magnet is 2 tesla and 3 tesla, respectively.

一般に磁性粉は、磁束密度だけではなく、磁束密度と磁束密度勾配の積の大きい箇所に引き付けられる。   In general, the magnetic powder is attracted not only to the magnetic flux density but also to a location where the product of the magnetic flux density and the magnetic flux density gradient is large.

即ち本実施例の場合は磁性粉25が磁石の周縁部に集まり、それ以上外部には飛散しないので、砥粒粉である磁性粉の連続的補充が不要になる、もしくは補充頻度を下げられるという効果がある。   That is, in the case of the present embodiment, the magnetic powder 25 gathers at the periphery of the magnet and does not scatter to the outside any longer, so that it is not necessary to continuously replenish the magnetic powder as abrasive powder or the replenishment frequency can be reduced. effective.

ここで、図2(B)を参照すると、着磁された超伝導バルク磁石の場合の、磁束密度の分布の例を示す。磁束密度は磁石の直上部の中央部に急峻なピーク、1.7テスラがあり、周辺部に向かって急激に低下する。本例のピーク値1.7テスラは液体窒素冷却(77°K)の場合のものであり、ヘリウム冷却(35°K)の場合は3テスラ以上のピーク値が得られる。   Here, with reference to FIG. 2B, an example of distribution of magnetic flux density in the case of a magnetized superconducting bulk magnet is shown. The magnetic flux density has a steep peak of 1.7 Tesla in the central part immediately above the magnet, and decreases rapidly toward the peripheral part. The peak value of 1.7 Tesla in this example is for liquid nitrogen cooling (77 ° K), and in the case of helium cooling (35 ° K), a peak value of 3 Tesla or more is obtained.

従って、超伝導バルク磁石の場合には磁石の中心部、正確には中心の極く近傍の円周上で磁束密度と磁束密度勾配の積が急峻なピークを示すので、複数の磁石を組み合わせなくても一体の磁石で、磁性粉に対する所望の吸着力が得られる。   Therefore, in the case of a superconducting bulk magnet, the product of the magnetic flux density and the magnetic flux density gradient shows a steep peak on the center of the magnet, more precisely on the circumference very close to the center. Even if it is an integral magnet, the desired attractive force for the magnetic powder can be obtained.

図3を参照すると、本発明による第2の実施例では、超伝導バルク磁石の持つ上記の特性を活用する。
即ち、超伝導バルク磁石40は、真空容器42に収容され、真空容器42は延伸されて真空ポート44が連結されると共に、冷凍機46に連接され、冷凍機46にはヘリウム配管48が連結される。
Referring to FIG. 3, in the second embodiment of the present invention, the above-mentioned characteristics of the superconducting bulk magnet are utilized.
That is, the superconducting bulk magnet 40 is accommodated in a vacuum vessel 42, the vacuum vessel 42 is extended and connected to a vacuum port 44 and connected to a refrigerator 46, and a helium pipe 48 is connected to the refrigerator 46. The

真空ポート44、ヘリウム配管48は各々、図示していない真空ポンプ、コンプレッサに接続されて、超伝導バルク磁石40は所定の真空度において、所定の温度に冷却され、図2(B)のような形状の磁場(ただし、冷凍機冷却であるので、磁束密度Bのピーク値は1.7テスラではなく3テスラを越える。)を発生する。   The vacuum port 44 and the helium pipe 48 are connected to a vacuum pump and a compressor (not shown), respectively, and the superconducting bulk magnet 40 is cooled to a predetermined temperature at a predetermined degree of vacuum, as shown in FIG. A magnetic field having a shape (however, because of refrigerator cooling, the peak value of the magnetic flux density B exceeds 3 Tesla instead of 1.7 Tesla).

超伝導バルク磁石40により発生する磁場の磁力線50は、上記の磁束密度分布に対応して磁石40の直上部でも中心付近ほど密であり、中心を離れるにつれ急激に疎になる。   Magnetic field lines 50 of the magnetic field generated by the superconducting bulk magnet 40 are denser in the vicinity of the center just above the magnet 40 corresponding to the above magnetic flux density distribution, and become rapidly sparse as they leave the center.

この結果、砥粒粉である磁性粉25は磁石40の中心の極く近傍に集中し、そこで加工作業が進んでも飛散しない。
なお、本実施例は研磨加工に係るものであり、加工具である超音波振動発生器33の加工端である振動ヘッド32を被加工物10の加工部に当てて、磁性粉25が介在した状態で摺動させる。
As a result, the magnetic powder 25, which is abrasive powder, concentrates in the very vicinity of the center of the magnet 40, and does not scatter even if the processing operation proceeds there.
In addition, a present Example is related to a grinding | polishing process, the vibration head 32 which is a process end of the ultrasonic vibration generator 33 which is a processing tool is applied to the process part of the workpiece 10, and the magnetic powder 25 intervened. Slide in the state.

図4を参照すると、本発明による第3の実施例は、着磁された超伝導バルク磁石を使った場合の研削加工に係るものであり、加工具である回転機構35により加工端である回転砥石34を回転しながら被加工物10の加工部に当てて、磁性粉25が介在した状態で摺動させる。   Referring to FIG. 4, the third embodiment according to the present invention relates to a grinding process when a magnetized superconducting bulk magnet is used, and a rotation which is a processing end by a rotating mechanism 35 which is a processing tool. The grindstone 34 is rotated and applied to the processed portion of the workpiece 10 and is slid with the magnetic powder 25 interposed.

図5を参照すると、本発明による第4の実施例は、着磁された超伝導バルク磁石を使った場合の切削加工に係るものであり、加工具である回転機構37により加工端であるドリル刃36を回転しながら被加工物10の加工部に当てて、磁性粉25が介在した状態で摺動させる。   Referring to FIG. 5, a fourth embodiment according to the present invention relates to cutting when a magnetized superconducting bulk magnet is used, and a drill which is a processing end by a rotating mechanism 37 which is a processing tool. While rotating the blade 36, the blade 36 is applied to the processed portion of the workpiece 10 and is slid with the magnetic powder 25 interposed therebetween.

本発明によれば、超硬粉を実質的に追加補給なしで連続運転が可能な、超硬粉の介在下で研磨、研削、切削などを行う精密加工方法と加工装置が得られる。しかも超硬粉である磁性粉、特にコバルトを含むタングステンカーバイドは、従来廃棄されていた使用済みの超硬粉や超硬材をリサイクルしても入手できる。
従って、産業のあらゆる分野の工作機械、特に精密工作機械において活用が期待できる。
ADVANTAGE OF THE INVENTION According to this invention, the precision processing method and processing apparatus which perform grinding | polishing, grinding, cutting, etc. under the intervention of a cemented carbide powder which can be operated continuously without additional replenishment of the cemented carbide powder are obtained. In addition, magnetic powder that is super hard powder, particularly tungsten carbide containing cobalt, can be obtained by recycling used super hard powder or super hard material that has been conventionally discarded.
Therefore, it can be expected to be utilized in machine tools in all fields of industry, particularly precision machine tools.

本発明による磁性粉を使った加工装置を示し、加工方法を説明する図である。It is a figure which shows the processing apparatus using the magnetic powder by this invention, and explains a processing method. (A)は永久磁石の磁束密度分布の例を示す図であり、(B)は着磁された超伝導バルク磁石の磁束密度分布の例を示す図である。(A) is a figure which shows the example of the magnetic flux density distribution of a permanent magnet, (B) is a figure which shows the example of the magnetic flux density distribution of the superconducting bulk magnet magnetized. 本発明による、着磁された超伝導バルク磁石を使った場合の、磁性粉を使った加工装置(超音波研磨加工装置)を示し、加工方法を説明する図である。It is a figure which shows the processing apparatus (ultrasonic polishing apparatus) using magnetic powder at the time of using the magnetized superconducting bulk magnet by this invention, and explains a processing method. 本発明による、着磁された超伝導バルク磁石を使った場合の、磁性粉を使った加工装置(研削加工装置)を示し、加工方法を説明する図である。It is a figure which shows the processing apparatus (grinding apparatus) using a magnetic powder at the time of using the superconducting bulk magnet magnetized by this invention, and is a figure explaining a processing method. 本発明による、着磁された超伝導バルク磁石を使った場合の、磁性粉を使った加工装置(切削加工装置)を示し、加工方法を説明する図である。It is a figure which shows the processing apparatus (cutting apparatus) using a magnetic powder at the time of using the magnetized superconducting bulk magnet by this invention, and explains a processing method.

符号の説明Explanation of symbols

10 被加工物
20 ペースト
25 砥粒粉、磁性粉
30 加工端
31 加工具
32 振動ヘッド
33 超音波振動発生器
34 回転砥石
35 回転機構
36 ドリル刃
37 回転機構
40 磁石、着磁された超伝導バルク磁石
41 支持台
42 真空容器
44 真空ポート
46 冷凍機
48 ヘリウム配管
50 磁力線
DESCRIPTION OF SYMBOLS 10 Workpiece 20 Paste 25 Abrasive powder, magnetic powder 30 Processing end 31 Processing tool 32 Vibration head 33 Ultrasonic vibration generator 34 Rotary grindstone 35 Rotating mechanism 36 Drill blade 37 Rotating mechanism 40 Magnet, magnetized superconducting bulk Magnet 41 Support base 42 Vacuum vessel 44 Vacuum port 46 Refrigerator 48 Helium piping 50 Magnetic field lines

Claims (6)

加工具の摺動する加工端と被加工物の加工部の間隙に砥粒粉を介在させる加工方法において、前記砥粒粉が磁性を帯びた磁性粉であり、前記間隙を含む部分に集中する磁場を印加するために、着磁された超電導バルク磁石を使用し、前記超電導バルク磁石を真空容器内部の最上部に略平行に設置し、前記加工部を前記超電導バルク磁石の直上部の中央部に設置することを特徴とする磁性粉を使った加工方法。 In a processing method in which abrasive powder is interposed in a gap between a processing end on which a processing tool slides and a processing portion of a workpiece, the abrasive powder is magnetic powder having magnetic properties and is concentrated on a portion including the gap. In order to apply a magnetic field , a magnetized superconducting bulk magnet is used, and the superconducting bulk magnet is installed substantially parallel to the uppermost part inside the vacuum vessel, and the processing part is a central part immediately above the superconducting bulk magnet. A processing method using magnetic powder, characterized by being installed in 前記磁性粉がコバルト(Co)を含むタングステンカーバイド(WC)であることを特徴とする請求項1に記載の磁性粉を使った加工方法。 The processing method using magnetic powder according to claim 1, wherein the magnetic powder is tungsten carbide (WC) containing cobalt (Co). 前記磁性粉が、廃棄回収された超硬粉あるいは超硬加工端からリサイクル製造されたものであることを特徴とする請求項2に記載の磁性粉を使った加工方法。 The processing method using magnetic powder according to claim 2, wherein the magnetic powder is a discarded and collected super hard powder or a recycle manufactured from a super hard processing end. 摺動する加工端を有する加工具と被加工物の加工部の間隙に砥粒粉を介在させる加工装置において、前記砥粒粉が磁性を帯びた磁性粉であり、前記間隙を含む部分に集中する磁場を印加するために、着磁された超電導バルク磁石を使用し、前記超電導バルク磁石を真空容器内部の最上部に略平行に設置し、前記加工部を前記超電導バルク磁石の直上部の中央部に設置し、前記被加工物が着磁された超電導バルク磁石の部の中央部に載置されていることを特徴とする磁性粉を使った加工装置。 In a processing apparatus in which abrasive powder is interposed in a gap between a processing tool having a sliding processing end and a processing portion of a workpiece, the abrasive powder is magnetic powder with magnetism and concentrated on a portion including the gap In order to apply a magnetic field to be magnetized, a magnetized superconducting bulk magnet is used, the superconducting bulk magnet is installed substantially parallel to the uppermost part inside the vacuum vessel, and the processing unit is located at the center immediately above the superconducting bulk magnet. installed in parts, the machining apparatus workpiece with magnetic powder, characterized in that mounted on the central portion of the straight upper portion of the magnetized superconducting bulk magnet. 前記磁性粉が、コバルト(Co)を含むタングステンカーバイド(WC)であることを特徴とする請求項に記載の磁性粉を使った加工装置。 The processing apparatus using magnetic powder according to claim 4 , wherein the magnetic powder is tungsten carbide (WC) containing cobalt (Co) . 前記磁性粉が、廃棄された超硬粉あるいは超硬加工端からリサイクル製造されたものであることを特徴とする請求項5に記載の磁性粉を使った加工装置。 The processing apparatus using magnetic powder according to claim 5 , wherein the magnetic powder is a discarded super hard powder or a recycle manufactured from a super hard processing end .
JP2004161501A 2004-05-31 2004-05-31 Processing method and apparatus using magnetic powder Expired - Fee Related JP3947824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161501A JP3947824B2 (en) 2004-05-31 2004-05-31 Processing method and apparatus using magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161501A JP3947824B2 (en) 2004-05-31 2004-05-31 Processing method and apparatus using magnetic powder

Publications (2)

Publication Number Publication Date
JP2005342792A JP2005342792A (en) 2005-12-15
JP3947824B2 true JP3947824B2 (en) 2007-07-25

Family

ID=35495631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161501A Expired - Fee Related JP3947824B2 (en) 2004-05-31 2004-05-31 Processing method and apparatus using magnetic powder

Country Status (1)

Country Link
JP (1) JP3947824B2 (en)

Also Published As

Publication number Publication date
JP2005342792A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
Mulik et al. Magnetic abrasive finishing of hardened AISI 52100 steel
Umehara et al. Magnetic fluid grinding–a new technique for finishing advanced ceramics
JP4423425B2 (en) Vibration magnetic polishing method and apparatus, and tool
Wu et al. Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field
SG177099A1 (en) Method for multiple cutoff machining of rare earth magnet
Judal et al. Electrochemical magnetic abrasive machining of AISI304 stainless steel tubes
WO2006030854A1 (en) Complex profile body polishing method and polishing apparatus
JP3947824B2 (en) Processing method and apparatus using magnetic powder
Singh et al. Performance of abrasives used in magnetically assisted finishing: a state of the art review
Naveen et al. Ultra-precision finishing by magnetic abrasive finishing process
CN100384590C (en) Liquid magnetic grinding and it preparation method
JP2007045878A (en) Magnetic abrasive grain
JP4185986B2 (en) Magnetic deburring method
Patil et al. Magnetic abrasive finishing–A Review
KR100323065B1 (en) A poplshing apparatus based on the magnetic field forming principale of electromagnet
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JP2005186239A (en) Grinding method using magnetic abrasive grain, and grinder
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
CN112222956A (en) Polishing device, polishing method and application based on dynamic magnetic field
JP4471197B2 (en) Polishing method that does not require processing pressure control
CN109759966A (en) A kind of production method of flexible polishing particle magnetism arrangement polishing disk
Majeed et al. Study of the Effect of Magnetic Abrasive Finishing on the Material Removal of AA1100 Aluminum Alloy
Vahdati et al. Measurement and simulation of magnetic field strenght in the nano magnetic abrasive finishing process
JP2019030924A (en) Magnetic polishing method and magnetic polishing device
Patil et al. Magnetic abrasive finishing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees