JP3947192B2 - Underground continuous wall construction method - Google Patents

Underground continuous wall construction method Download PDF

Info

Publication number
JP3947192B2
JP3947192B2 JP2004318012A JP2004318012A JP3947192B2 JP 3947192 B2 JP3947192 B2 JP 3947192B2 JP 2004318012 A JP2004318012 A JP 2004318012A JP 2004318012 A JP2004318012 A JP 2004318012A JP 3947192 B2 JP3947192 B2 JP 3947192B2
Authority
JP
Japan
Prior art keywords
core material
drilling
soil
construction
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004318012A
Other languages
Japanese (ja)
Other versions
JP2006125141A (en
Inventor
秀隆 小野寺
Original Assignee
株式会社丸徳基業
秀隆 小野寺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社丸徳基業, 秀隆 小野寺 filed Critical 株式会社丸徳基業
Priority to JP2004318012A priority Critical patent/JP3947192B2/en
Publication of JP2006125141A publication Critical patent/JP2006125141A/en
Application granted granted Critical
Publication of JP3947192B2 publication Critical patent/JP3947192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

本発明は、ソイル柱壁等の土留め壁用の掘削孔を掘削機で掘削して地中連続壁を造成する地中連続壁方法に関するものである。   The present invention relates to an underground continuous wall method for creating an underground continuous wall by excavating an excavation hole for a retaining wall such as a soil column wall with an excavator.

ソイル柱壁の施工として、多軸掘削機による原位置土混合工法(Sile Mixing Wall、SMW)が知られている。これは、図19、図20に示すように油圧モータおよび減速機からなる駆動機構4に掘削軸5を下方に向けて連結し、かつ、この掘削軸5を複数本(図示では5本)並列させたものである。   As construction of the soil column wall, an in-situ soil mixing method using a multi-axis excavator (Sile Mixing Wall, SMW) is known. As shown in FIGS. 19 and 20, the excavation shaft 5 is connected downward to a drive mechanism 4 including a hydraulic motor and a speed reducer, and a plurality of (5 in the drawing) excavation shafts 5 are arranged in parallel. It has been made.

掘削軸5は先端に掘削ヘッド5aを設け、また、途中に断続するスクリュー羽根による攪拌翼兼用の掘削翼5bを設けたものである。また、図示は省略するが、この掘削軸5は中空軸で内部にセメントミルク等の固結液を通流させ、これを掘削ヘッド5aの吐出口より注出できる。   The excavation shaft 5 is provided with an excavation head 5a at the tip, and an excavation blade 5b that also serves as a stirring blade with screw blades interrupted in the middle. Although not shown, the excavation shaft 5 is a hollow shaft that allows a caking liquid such as cement milk to flow inside, and can be poured out from the discharge port of the excavation head 5a.

前記駆動機構4は掘削軸5を連結した状態で、クローラ等のベースマシーン1に起立するリーダーマスト2のトップシーブ3からワイヤーで吊り支する。さらに、駆動機構4は背面に設けた湾曲ブラケット6をリーダーマスト2に沿設したリーダー7に係合させる。図中8はリーダーマスト2の下端に設けた首かせ状の振れ止めで、掘削軸5が上下に貫通する。   The drive mechanism 4 is suspended from a top sheave 3 of a leader mast 2 standing on a base machine 1 such as a crawler with a wire while the excavation shaft 5 is connected. Furthermore, the drive mechanism 4 engages the curved bracket 6 provided on the back surface with the leader 7 provided along the leader mast 2. In the figure, reference numeral 8 denotes a neck-like steady rest provided at the lower end of the leader mast 2, and the excavation shaft 5 penetrates vertically.

駆動機構4により掘削軸5を回転駆動し、掘削ヘッド5aで錐揉み状に掘削を行うが、かかる掘削時に掘削ヘッド5aよりセメントミルク等の固結液を吐出させて、土中において原位置土と混合して図4に示すように先行エレメントaのソイルセメント壁体を造成する。   The excavation shaft 5 is rotationally driven by the drive mechanism 4 and excavation is carried out in the shape of a cone with the excavation head 5a. During the excavation, a caking liquid such as cement milk is discharged from the excavation head 5a, and the soil is in situ in the soil. 4 to form a soil cement wall body of the preceding element a as shown in FIG.

同様に後行エレメントbのソイルセメント壁体を前記先行エレメントaのソイルセメント壁体に完全にラップさせて(例えば掘削軸1軸分の軌跡)形成し、一体に連続して地中連続壁とする。   Similarly, the soil cement wall body of the succeeding element b is completely wrapped with the soil cement wall body of the preceding element a (for example, a trajectory corresponding to one excavation shaft), and is continuously and integrally formed with the underground continuous wall. To do.

そして、かかるソイルセメント壁体を建築・土木の地下工事における土留め壁として使用する場合は、図5に示すように応力負担材(芯材9)としてH形鋼を建て込む。   And when using such a soil cement wall body as a retaining wall in underground construction of construction and civil engineering, as shown in FIG. 5, H-section steel is built as a stress bearing material (core material 9).

この芯材9の建て込みは、セメントミルク等の固結液を吐出後、固結液が硬化する前にクレーンなどで吊り込むものであり、先行エレメントに芯材を建て込んだ後、後行エレメントの削孔を開始する(例えば特許文献1参照)。
特開平10−131174号公報
This core material 9 is suspended after a caking liquid such as cement milk is discharged and before the caking liquid hardens, and is suspended by a crane or the like. Drilling of the element is started (see, for example, Patent Document 1).
JP-A-10-131174

多軸掘削機での掘削は、図4に示すように各掘削軸5の掘削軌道が1軸分重合(オーバーラップ)するようになり、しかも、後行エレメントbを造成するため削孔するときには、先行エレメントaには芯材9が建て込んである状態であって、この芯材9は掘削孔内に没入している。   When excavating with a multi-axis excavator, as shown in FIG. 4, the excavation track of each excavation shaft 5 is overlapped by one axis (overlapping), and when drilling to form the trailing element b, The leading element a is in a state where the core material 9 is embedded, and the core material 9 is immersed in the excavation hole.

一方、芯材10として、H形鋼の他に図11〜図18に示すような硬質ウレタン樹脂をガラス長繊維で強化した新素材による受圧板(FFU)を使用することがある。これは、H形鋼10aのウエブの外側にテーパー鉄板10b、接着鉄板10c、締付鉄板10dによりFFU壁10eを取り付けて、全体の厚みをフランジの幅にほぼ等しくした、ガラス長繊維強化プラスチック発泡体である。   On the other hand, as the core material 10, a pressure receiving plate (FFU) made of a new material in which a hard urethane resin as shown in FIGS. This is because the FFU wall 10e is attached to the outside of the web of the H-shaped steel 10a by a tapered iron plate 10b, an adhesive iron plate 10c, and a fastening iron plate 10d, and the total thickness is made substantially equal to the width of the flange, and the glass long fiber reinforced plastic foam is used. Is the body.

そして、この受圧板は、コンクリートの3分の1の軽さで、機械的強度も十分備え、吸水・腐食がなく、耐食性・耐薬品性を備え、施工地の強度を長期間維持する特性を有する。   And this pressure plate is one-third lighter than concrete, has sufficient mechanical strength, has no water absorption / corrosion, has corrosion resistance / chemical resistance, and maintains the strength of the construction site for a long time. Have.

このような受圧板を芯材10として使用する場合、芯材10の幅が従来のH形鋼9による芯材9と比較して図6に示すように広くなるため、従来の施工方法では非常に高い削孔精度が必要(従来のH形鋼の施工の削孔精度は1/150〜1/200程度であるが、受圧板を使用する場合はクリアランスが非常に狭くなるため、芯材10長にもよるが、場合によっては1/1000以上の削孔精度が必要)とされ、これは、現状の掘削機では不可能な数値である。   When such a pressure receiving plate is used as the core material 10, the width of the core material 10 becomes wider as shown in FIG. 6 compared with the core material 9 made of the conventional H-shaped steel 9. High drilling accuracy is necessary (the drilling accuracy of conventional H-section steel is about 1/150 to 1/200, but when using a pressure receiving plate, the clearance becomes very narrow. Depending on the length, in some cases, a drilling accuracy of 1/1000 or more is necessary), which is a numerical value that is impossible with the current excavator.

また、仮に、高い削孔精度が得られたとしても、建て込まれた芯材10に誤差が生じて建て込み精度が確保されなければ、図7に示すように後行エレメントbの削孔のための掘削軸5の掘削ヘッド5aが前回施工分のエレメントの芯材10と接触して、削孔不能の状態となったり、芯材10を破損させるおそれがある。   Moreover, even if high drilling accuracy is obtained, if an error occurs in the built core material 10 and the build accuracy is not ensured, the drilling of the succeeding element b as shown in FIG. For this reason, the excavation head 5a of the excavation shaft 5 may come into contact with the core material 10 of the element for the previous construction, so that there is a possibility that the hole cannot be drilled or the core material 10 is damaged.

さらに、削孔順序も先行・後行の2ユニットを1組として施工するので、先に削孔された先行エレメントaに建て込まれる芯材10の建て込みの時期は、後行の施工時間分だけ先行の削孔終了より時間が経過している(通常先行削孔終了より1時間〜4時間程度)ため、セメント分の硬化や砂・礫分の沈降により、芯材10の挿入性が著しく低下して施工性がよくない。   Furthermore, since the drilling order is constructed as a set of the preceding and succeeding two units, the core 10 to be built in the preceding element a previously drilled is timed for the subsequent construction time. Since the time has passed since the end of the previous drilling (usually about 1 to 4 hours from the end of the previous drilling), the insertability of the core material 10 is remarkably increased due to hardening of the cement and sedimentation of sand and gravel. Declined and workability is not good.

芯材10の挿入性を高めるため、先行エレメントaに建て込む芯材10の建て込みの時期を早めるには、図8に示すように片押し(連続)施工とすれば、先行エレメントaの削孔終了後に2本の芯材10の建て込みを直ちに行い、その後、後行エレメントbの削孔を開始するから、先行エレメントaの芯材10の建て込みを早期に行え、セメント分の硬化や砂・礫分の沈降により、芯材10の挿入性が低下することを防止できる。   In order to improve the insertability of the core material 10, in order to advance the timing of the core material 10 to be built in the preceding element a, if one-press (continuous) construction is performed as shown in FIG. Since the two core members 10 are immediately built after the hole is finished, and the drilling of the succeeding element b is started thereafter, the core member 10 of the preceding element a can be built at an early stage. It can prevent that the insertability of the core material 10 falls by sedimentation of sand and gravel.

しかし、かかる方法では芯材10の建て込みは容易になっても、後行エレメントbを削孔する際に、先に施工された地盤の軟らかい先行エレメントaの方向に後行エレメントbの削孔部が逃げていき(図8で想像線で示す方向)曲がって削孔される。その結果、掘削軸5の掘削ヘッド5aが芯材10に接触してこれを破損するおそれがある。   However, in this method, even if the core material 10 can be easily built, when drilling the succeeding element b, the drilling of the succeeding element b is performed in the direction of the softer leading element a of the ground previously applied. The part escapes (the direction indicated by the imaginary line in FIG. 8) and is drilled. As a result, the excavation head 5a of the excavation shaft 5 may come into contact with the core member 10 and break it.

また、片押し連続施工を行うと、図9に示すように先行エレメントのソイルセメントの硬化前にすぐ隣を掘削することとなるため、掘削時の加圧によって建て込まれた芯材10が押されて開いてしまい、斜めに打設されることになる。   In addition, when one-pressing continuous construction is carried out, as shown in FIG. 9, the adjacent element is excavated immediately before the soil cement of the preceding element is hardened, so that the core material 10 built by pressurization at the time of excavation is pushed. It will be opened and will be placed diagonally.

さらに図10に示すように後行エレメントの掘削軸5の引上げ時には、前記とは反対に負圧によって先に打設した芯材10が掘削ヘッド5aの方向に引き込まれていく不都合がある。   Further, as shown in FIG. 10, when the excavation shaft 5 of the succeeding element is pulled up, there is a disadvantage that the core material 10 previously placed by the negative pressure is drawn in the direction of the excavation head 5a.

本発明の目的は前記従来例の不都合を解消し、高い削孔精度が得られなくても、また、芯材の建て込みに誤差が生じても、後行エレメント施工時に、先に施工し建て込んだ芯材に後行の削孔の掘削機の掘削ヘッドが接触して芯材を破損することを防止でき、また、片押し施工として削孔後に直ちに芯材を建て込むことができ芯材の挿入性の向上を図ることができ、しかもこのようにした場合であっても、芯材の建て込み精度および削孔精度を確保でき、さらに工期も短縮できる地中連続壁工法を提供することにある。   The object of the present invention is to eliminate the inconvenience of the conventional example, and even if high drilling accuracy cannot be obtained, or even if an error occurs in the construction of the core material, it is first constructed and constructed at the time of construction of the succeeding element. The core material can be prevented from coming into contact with the drilling head of the drilling machine of the subsequent drilling hole to the inserted core material, and the core material can be built immediately after drilling as a single-pressing work. To provide an underground continuous wall construction method that can improve the insertability of the core material, and even in such a case, it is possible to ensure the accuracy of laying and drilling the core material and shorten the construction period. It is in.

本発明は前記目的を達成するため、請求項1記載の発明は、柱列壁用の掘削機で地盤を掘削し、先行エレメントのソイルセメント壁を造成する、次ぎに後行エレメントのソイルセメント壁を前記先行エレメントのソイルセメント壁に順次ラップさせて連続一体の壁体を造成する地中連続壁工法において、前記壁体が造成される施工予定場所に無芯ソイルを打設するとともにこの施工予定場所の両側位置に少なくとも1本ずつ余分に無芯ソイルを打設し、最初の先行エレメントを、前記無芯ソイル打設場所の中央位置に造成し、後行エレメントを最初の先行エレメントの両側にセミラップさせて順次連続して広がるように片押し施工により造成することを要旨とするものである。 In order to achieve the above-mentioned object, the invention according to claim 1, the ground cement is excavated with a drilling machine for a column wall, and a soil cement wall of a preceding element is created. In the underground continuous wall construction method in which a continuous integral wall body is constructed by sequentially wrapping the above-mentioned element on the soil cement wall of the preceding element , a coreless soil is placed at a construction planned place where the wall body is constructed and this construction schedule At least one extra coreless soil is placed on each side of the location, the first leading element is created at the center of the centerless soil placement location, and the trailing element is placed on both sides of the first leading element. The gist is that it is semi-wrapped and is formed by one-push construction so that it spreads successively .

請求項1記載の本発明によれば、先行エレメントと後行エレメントとをセミラップさせて施工することで、削孔本数を低減できるから、結果として先行して打設した芯材の隣を削孔する本数も減らすことができ、削孔精度や芯材の建て込み精度を向上できる。また、施工予定場所とこの施工予定場所の両側に一本ずつ予め無芯ソイルを打設しておくことで、この無芯ソイルの打設場所を再度削孔することになるから、実質的には完全ラップとなり、止水性は確保できる。   According to the first aspect of the present invention, since the number of holes can be reduced by semi-wrapping the leading element and the trailing element, the hole adjacent to the core material placed in advance is drilled as a result. The number of drilling can be reduced, and the drilling accuracy and the accuracy of the core material can be improved. In addition, by placing a coreless soil in advance on each side of the planned construction site and one side of this planned construction site, the placement site of this coreless soil will be drilled again. Becomes a complete wrap, and can ensure water-stopping.

さらに、後行エレメントは最初の先行エレメントを中心にして両側に順次広がるような順で左右交互に片押し施工されるから、芯材建て込み箇所と、次のエレメントの削孔箇所とが最初の先行エレメントを中心にして左右位置に離れる。よって、芯材の建て込みと削孔とを同時進行で施工でき、施工期間の短縮を図れると同時に、削孔が建て込んだ芯材に影響を及ぼすこともない。   In addition, since the trailing element is alternately pushed left and right in the order that it spreads sequentially on both sides around the first preceding element, the location where the core material is built and the drilling location of the next element are the first Move left and right around the preceding element. Therefore, the construction of the core material and the drilling can be performed at the same time, the construction period can be shortened, and the drilling does not affect the core material built in.

請求項2記載の発明は、前記掘削機の掘削ヘッドは、隣接の先行エレメントの芯材にビットが接触することを防止する手段として内側を向いたビット形状に形成したことを要旨とするものである。 The invention according to claim 2 is characterized in that the excavation head of the excavator is formed in a bit shape facing inward as means for preventing the bit from contacting the core material of the adjacent preceding element. is there.

請求項記載の本発明によれば、掘削ヘッドが隣接の先行エレメントの芯材に接触したとしても、掘削ヘッドにはビットが芯材に接触することを防止する手段として内側を向いたビット形状に形成したから、ビットが芯材に直接接触することはなく、芯材の破損を防止できる。また、掘削ヘッドにこのような手段を設けても、掘削ヘッドでの削孔は、無芯ソイルで一度削孔した後を再度削孔するものであるから、硬質地盤での削孔でも支障はなく施工できる。 According to the second aspect of the present invention, even if the excavation head contacts the core material of the adjacent preceding element, the excavation head has a bit shape facing inward as a means for preventing the bit from contacting the core material. since the formation, not the bit is in direct contact with the core material, the breakage of the core material can be prevented. Even if such a means is provided in the excavation head, drilling with the excavation head is performed once with a coreless soil, and then drilling again with hard core. Can be installed without any problems.

以上述べたように本発明の地中連続壁工法は、施工箇所に予め無芯ソイルを打設し、この部分をセミラップ工法で再度削孔することにより、高い削孔精度が得られなくても、また、芯材の建て込みに誤差が生じても、後行エレメント施工時に、先に施工し建て込んだ芯材に後行の削孔の掘削機の掘削ヘッドが接触して芯材を破損することを防止でき、また、片押し施工として削孔後に直ちに芯材を建て込むことができ芯材の挿入性の向上を図ることができ、しかもこのようにした場合であっても、芯材の建て込み精度および削孔精度を確保でき、さらに工期も短縮できるものである。   As described above, the underground continuous wall construction method of the present invention can be used even if high drilling accuracy cannot be obtained by placing a core-free soil in advance in the construction site and drilling this part again by the semi-lap construction method. In addition, even if an error occurs in the construction of the core material, the drilling head of the drilling machine of the subsequent drilling hole touches the core material that has been constructed and built at the time of the subsequent element construction, and the core material is damaged. In addition, the core material can be built immediately after drilling as a one-press operation, and the core material can be inserted more easily. Even in this case, the core material As a result, it is possible to ensure the accuracy of embedment and drilling, and to shorten the construction period.

以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の地中連続壁工法の実施形態を示す削孔順序の説明図、図2は本発明の地中連続壁工法で使用するセミラップ工法の説明図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of a drilling sequence showing an embodiment of the underground continuous wall method of the present invention, and FIG. 2 is an explanatory diagram of a semi-lap method used in the underground continuous wall method of the present invention.

本発明は、施工例として削孔径φ900mm、削孔ピッチ@1200mmとした場合で、必要に応じて8箇所に先行削孔11する。次いで、新素材であるFFUを使用する芯材10の施工箇所に対応する箇所に無芯ソイル12を完全ラップ施工により図1において、1,2,3,4の番号順の順番で打設する。このようにして幅の大きい芯材10を打設する施工予定場所に無芯ソイル12を予め打設しておく。   The present invention is a case where the drilling diameter is φ900 mm and the drilling pitch is 1200 mm as a construction example, and the preceding drilling holes 11 are made at eight places as necessary. Next, the coreless soil 12 is placed in the order corresponding to the numbers 1, 2, 3, and 4 in FIG. 1 by complete lap construction at the location corresponding to the construction location of the core material 10 using the new material FFU. . In this way, the coreless soil 12 is placed in advance at a planned construction place where the core material 10 having a large width is placed.

次に、前記のようにして無芯ソイル12が打設されている箇所の中央位置を再度削孔して、最初の先行エレメント13aを施工する。この場合、削孔終了後、直ちに削孔部にセメントミルク等の固結液を注入してこれが固化する前に芯材10を建て込む。この間、先行エレメント13aの両側には無芯ソイル12が打設されているから、止水性を確保できる。その後、片押し施工法により、この先行エレメント13aの隣(図示の例では左隣)位置で無芯ソイル12が先行して打設されている箇所を再度削孔して後行エレメント13bを施工する。   Next, the central position of the portion where the coreless soil 12 is placed as described above is drilled again, and the first preceding element 13a is constructed. In this case, immediately after the drilling is completed, a caking liquid such as cement milk is poured into the drilled part and the core material 10 is built before it solidifies. During this time, since the coreless soil 12 is driven on both sides of the preceding element 13a, it is possible to ensure water-stopping. After that, by the one-pushing construction method, the succeeding element 13b is constructed by re-drilling the place where the coreless soil 12 has been placed in advance at the position adjacent to the preceding element 13a (left adjacent in the illustrated example). To do.

無芯ソイル12の打設から、先行エレメント13aの施工開始(本施工開始)までの期間は、例えば1週間以内とし、施工数量が多い場合は回数を分けて無芯ソイル12の打設と本施工とを必要回数繰り返す。   The period from the placement of the coreless soil 12 to the start of construction of the preceding element 13a (main construction start) is, for example, within one week. Repeat construction as many times as necessary.

この後行エレメント13bの施工はセミラップ工法で行い、後行エレメント13bの右端の削孔と、先行エレメント13aの左端の削孔とは完全にはラップせず、隣り合う部分の一部が重なるだけである。よって、後行エレメント13bを削孔する際に、削孔精度が十分でなくても、また、芯材10の建て込み精度が十分でなくても、掘削ヘッドが先行エレメント13aに挿入してある芯材10に接触するおそれはない。   The succeeding element 13b is constructed by a semi-lap method, and the right end drilling of the succeeding element 13b and the left end drilling of the preceding element 13a are not completely lapped, and only a part of the adjacent portions overlap. It is. Therefore, when drilling the trailing element 13b, the excavation head is inserted into the preceding element 13a even if the drilling accuracy is not sufficient or the core material 10 is not sufficiently built in. There is no risk of contact with the core material 10.

また、後行エレメント13bの左端には無芯ソイル12が予め打設されて削孔対象土の均一化が図られているから、後行エレメント13bの左右箇所での土質の強度差による削孔部の逃げ(曲がり)を防止でき、箇所の止水性も十分確保できる。   Further, since the coreless soil 12 is previously placed on the left end of the succeeding element 13b so that the soil to be drilled is made uniform, the drilling due to the difference in soil strength between the left and right portions of the succeeding element 13b. The escape (bending) of the part can be prevented, and the water stoppage of the part can be sufficiently secured.

後行エレメント13bの削孔時に掘削ヘッドのビットが先行エレメント13aの芯材に接触することをさらに防止するためには、掘削ヘッド5aの形状を、内側を向いたビット5cを取り付けたものにするか、または、仮に掘削ヘッド5aが芯材10に接触しても芯材10を破損することのないような構造として、図3に示すようにリング14を掘削ヘッド5aに巻いた形状にする。   In order to further prevent the bit of the excavation head from coming into contact with the core material of the preceding element 13a when drilling the trailing element 13b, the shape of the excavation head 5a is such that the bit 5c facing inward is attached. Alternatively, as shown in FIG. 3, the ring 14 is wound around the excavation head 5a so that the core material 10 is not damaged even if the excavation head 5a contacts the core material 10.

ちなみに、掘削ヘッド5aにリング14が装着されていても、削孔箇所は予め無芯ソイルを打設した箇所を再度削孔するものであるから、地盤が硬質であっても支障のない削孔が可能である。   By the way, even if the ring 14 is mounted on the excavation head 5a, the drilling site is to drill the site where the coreless soil has been previously placed, so there is no problem even if the ground is hard. Is possible.

ここで、削孔が完了して芯材10を建て込んだ先行エレメント13aに対して、後行エレメント13bの削孔は、芯材10の建て込み当日には行わないようにする。これは、削孔に注入したソイルセメントがまだ固化しない状態で隣を削孔すると、削孔時の負圧や加圧によってソイルセメントが流動するので、芯材10が精度よく建て込まれたとしてもソイルセメントの流動とともに動いてしまう(二次的誤差の発生)ためである。よって、この二次的誤差の発生を防止するため、建て込み完了箇所の隣は当日中には削孔(施工)しないようにする。   Here, with respect to the preceding element 13a in which the core material 10 is built after the drilling is completed, the drilling of the subsequent element 13b is not performed on the day of the core material 10 being built. This is because if the soil cement injected into the drilling hole is drilled next without solidifying, the soil cement flows due to negative pressure or pressurization during drilling, so that the core material 10 is accurately built. This is because it moves with the flow of the soil cement (occurrence of secondary error). Therefore, in order to prevent the occurrence of this secondary error, no drilling (construction) is performed next to the erection completion site during the day.

先行エレメント13aの左側の後行エレメント13bの削孔が終了したならば、続けて先行エレメント13aの右側のエレメント13cを削孔する。このとき同時に、後行エレメント13bは芯材10を建て込む。この芯材10の建て込みは、削孔後直ちに行えるから、挿入性がよい。   If the drilling of the succeeding element 13b on the left side of the preceding element 13a is completed, the element 13c on the right side of the preceding element 13a is drilled. At the same time, the trailing element 13b builds the core material 10. Since the core material 10 can be built immediately after drilling, the insertability is good.

このように、後行エレメント13bと次の施工エレメント13cとが、中央の先行エレメント13aを真中にして左右の離間位置にあるから、後行エレメント13bの芯材10の建て込みと、次のエレメント13cの削孔とを同時進行で施工しても支障はない。よって、施工期間を短縮できる。   Thus, since the succeeding element 13b and the next construction element 13c are in the left and right separated positions with the central preceding element 13a in the middle, the erection of the core material 10 of the succeeding element 13b and the next element There is no problem even if the drilling of 13c is performed simultaneously. Therefore, the construction period can be shortened.

かかる順序で中央の先行エレメント13aを中心にしてセミラップ工法によって左右交互に片押し施工で後行のエレメントを順次施工する。そして、セミラップ工法を採用することで、全体の削孔数を削減できるから、先に建て込んだ芯材10の横を掘削する回数が減り、掘削ヘッド5aが芯材10に接触する可能性を低減できる。   In this order, the succeeding elements are sequentially constructed by one-press construction alternately on the left and right by the semi-lap method with the center leading element 13a as the center. And, by adopting the semi-lap method, the total number of holes can be reduced, so the number of times of excavating the side of the core material 10 that has been previously built is reduced, and the possibility that the excavation head 5a contacts the core material 10 is reduced. Can be reduced.

本発明の地中連続壁工法における削孔順序を示す説明図である。It is explanatory drawing which shows the drilling order in the underground continuous wall construction method of this invention. 本発明の地中連続壁工法で使用するセミラップ工法の説明図である。It is explanatory drawing of the semi-lap construction method used with the underground continuous wall construction method of this invention. 本発明の地中連続壁工法で使用する掘削ヘッドの一例を示す正面図である。It is a front view which shows an example of the excavation head used with the underground continuous wall construction method of this invention. 通常のラップ工法の説明図である。It is explanatory drawing of a normal lap construction method. 芯材にH形鋼を使用した場合の建て込み状態を示す平面図である。It is a top view which shows the built-in state at the time of using H-section steel for a core material. 芯材に新素材を使用した場合の建て込み状態を示す平面図である。It is a top view which shows the embedding state at the time of using a new material for a core material. 通常のラップ工法による削孔順序を示す説明図である。It is explanatory drawing which shows the drilling order by a normal lapping method. 通常のラップ工法により方押し施工した場合の削孔順次を示す説明図である。It is explanatory drawing which shows the hole-drilling order at the time of carrying out a pressing work by the normal lapping method. 多軸工法による掘削時の芯材の建て込み精度の二次的誤差発生状況を示す正面図である。It is a front view which shows the secondary error generation | occurrence | production situation of the erection accuracy of the core material at the time of excavation by a multi-axis construction method. 多軸工法による引上げ時の芯材の建て込み精度の二次的誤差発生状況を示す正面図である。It is a front view which shows the secondary error generation | occurrence | production situation of the embedding precision of the core material at the time of the pulling by a multi-axis construction method. 新素材による芯材を使用した場合の建て込み状態を示す平面図である。It is a top view which shows the embedding state at the time of using the core material by a new material. 新素材による芯材の側面図である。It is a side view of the core material by a new material. 新素材による芯材の正面図である。It is a front view of the core material by a new material. 新素材による芯材の図13のA−A線断面図である。It is the sectional view on the AA line of FIG. 13 of the core material by a new material. 新素材による芯材の図13のB−B線断面図である。It is the BB sectional drawing of FIG. 13 of the core material by a new material. 新素材による芯材の図13のC−C線断面図である。It is CC sectional view taken on the line of FIG. 13 of the core material by a new material. 新素材による芯材の図13のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 13 of the core material by a new material. 新素材による芯材の図13のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 13 of the core material by a new material. 本発明の地中連続壁工法で使用する多軸掘削機の正面図である。It is a front view of the multi-axis excavator used with the underground continuous wall construction method of this invention. 本発明の地中連続壁工法で使用する多軸掘削機の側面図である。It is a side view of the multi-axis excavator used with the underground continuous wall construction method of this invention.

符号の説明Explanation of symbols

1 ベースマシーン 2 リーダーマスト
3 トップシーブ 4 駆動機構
5 掘削軸 5a 掘削ヘッド
5b 掘削翼 5c ビット
6 湾曲ブラケット
7 リーダー 8 振れ止め
9 芯材 10 芯材
10a H形鋼 10b テーパー鉄板
10c 接着鉄板 10d 締付鉄板
10e FFU壁
11 先行削孔 12 無芯ソイル
13a 先行エレメント 13b 後行エレメント
13c エレメント 14 リング
DESCRIPTION OF SYMBOLS 1 Base machine 2 Leader mast 3 Top sheave 4 Drive mechanism 5 Drilling shaft 5a Drilling head 5b Drilling blade 5c Bit 6 Curved bracket 7 Leader 8 Anti-rest 9 Core material 10 Core material 10a H-shaped steel 10b Tapered iron plate 10c Adhesive iron plate 10d Tightening Iron plate 10e FFU wall 11 Pre-drilled hole 12 Coreless soil
13a Leading element 13b Trailing element
13c Element 14 Ring

Claims (2)

柱列壁用の掘削機で地盤を掘削し、先行エレメントのソイルセメント壁を造成する、次ぎに後行エレメントのソイルセメント壁を前記先行エレメントのソイルセメント壁に順次ラップさせて連続一体の壁体を造成する地中連続壁工法において、前記壁体が造成される施工予定場所に無芯ソイルを打設するとともにこの施工予定場所の両側位置にも少なくとも1本ずつ余分に無芯ソイルを打設し、最初の先行エレメントを、前記無芯ソイル打設場所の中央位置に造成し、後行エレメントを最初の先行エレメントの両側にセミラップさせて順次連続して広がるように片押し施工により造成することを特徴とする地中連続壁工法。 The ground is excavated by the excavator for the column wall, and the soil cement wall of the preceding element is formed. Next, the soil cement wall of the succeeding element is sequentially wrapped with the soil cement wall of the preceding element, and the continuous integral wall body. In the underground continuous wall construction method, a coreless soil is cast at the planned construction site where the wall body is constructed, and at least one extra coreless soil is placed at both sides of the planned construction site. The first leading element is formed at the center position of the uncored soil placing place, and the trailing element is semi-wrapped on both sides of the first leading element and is formed by one-pressing construction so as to continuously spread. underground continuous wall method according to claim. 前記掘削機の掘削ヘッドは、隣接の先行エレメントの芯材にビットが接触することを防止する手段として内側を向いたビット形状に形成したことを特徴とする請求項1に記載の地中連続壁工法。 2. The underground continuous wall according to claim 1, wherein the excavating head of the excavator is formed in a bit shape facing inward as a means for preventing the bit from contacting a core material of an adjacent preceding element. Construction method.
JP2004318012A 2004-11-01 2004-11-01 Underground continuous wall construction method Active JP3947192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318012A JP3947192B2 (en) 2004-11-01 2004-11-01 Underground continuous wall construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318012A JP3947192B2 (en) 2004-11-01 2004-11-01 Underground continuous wall construction method

Publications (2)

Publication Number Publication Date
JP2006125141A JP2006125141A (en) 2006-05-18
JP3947192B2 true JP3947192B2 (en) 2007-07-18

Family

ID=36720140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318012A Active JP3947192B2 (en) 2004-11-01 2004-11-01 Underground continuous wall construction method

Country Status (1)

Country Link
JP (1) JP3947192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764593B2 (en) * 2016-10-11 2020-10-07 清水建設株式会社 Structure with synthetic underground wall
CN107476315A (en) * 2017-09-07 2017-12-15 东北大学 A kind of prefabricated component and its construction method being directed to close to type foundation ditch
JP6729902B1 (en) * 2019-04-02 2020-07-29 株式会社丸徳基業 Construction method of soil cement continuous wall

Also Published As

Publication number Publication date
JP2006125141A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4768747B2 (en) Pre-support tunnel construction method and equipment adapted to it
JP5274145B2 (en) Cast-in-place pile and its construction method
JP4623574B2 (en) How to build a pile
JP6987559B2 (en) Construction method of continuous underground wall and steel pipe pile
JP3947192B2 (en) Underground continuous wall construction method
JP4373824B2 (en) Joining method of cast-in-place pile and steel pipe column
JP5075094B2 (en) Construction method and foundation structure of foundation structure in structure
JP7104536B2 (en) How to build an impermeable wall
JP5893339B2 (en) Construction method of soil cement continuous wall
JP6336850B2 (en) Pile head reinforcement method for foundation pile
JP5028781B2 (en) Reinforcing and reinforcing method for existing quay and its reinforcing structure
ITTO20110913A1 (en) PROCEDURE FOR THE CONSTRUCTION OF LARGE DIAMETER POLES AND EXCAVATION TOOL
JP2008208599A (en) Auger device
JP4341029B2 (en) Pile foundation method
KR100494978B1 (en) concrete structure cutting device and structure dismantlement method thereby
JP2007308951A (en) Method of constructing outer peripheral column by inverted construction method
JP2007107233A (en) Construction method for earth retaining structure
JP2942779B1 (en) Underground wall construction method
JP7064832B2 (en) Ground stabilization method
JPH09119131A (en) Construction method of column row type underground continuous wall and guide plate structure of multishaft auger machine used therefor
JP4623577B2 (en) How to build cast-in-place piles
JP4413166B2 (en) Cast-in-place pile construction method and cast-in-place pile structure
JP2018028218A (en) Method for constructing soil cement continuous wall
JP5075092B2 (en) Construction method and foundation structure of foundation structure in structure
JP4439537B2 (en) Water stop method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3947192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250