JP3945764B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP3945764B2
JP3945764B2 JP2002254908A JP2002254908A JP3945764B2 JP 3945764 B2 JP3945764 B2 JP 3945764B2 JP 2002254908 A JP2002254908 A JP 2002254908A JP 2002254908 A JP2002254908 A JP 2002254908A JP 3945764 B2 JP3945764 B2 JP 3945764B2
Authority
JP
Japan
Prior art keywords
core substrate
wiring
hole
conductor
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002254908A
Other languages
Japanese (ja)
Other versions
JP2004095851A (en
Inventor
幸樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2002254908A priority Critical patent/JP3945764B2/en
Publication of JP2004095851A publication Critical patent/JP2004095851A/en
Application granted granted Critical
Publication of JP3945764B2 publication Critical patent/JP3945764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コア基板に電子部品を内蔵し且つこのコア基板を貫通する凹溝導体を有する配線基板に関する。
【0002】
【従来の技術】
近年における配線基板の小型化および配線基板内における配線の高密度化に対応するため、配線基板の第1主面上にICチップなどの電子部品を搭載するだけでなく、コア基板の内部に電子部品を内蔵する配線基板が提案されている。
例えば、図9(A)に示す配線基板40は、絶縁性のコア基板41に穿孔した貫通孔44内に埋込樹脂45を介して複数のチップ状の電子部品50を内蔵している。この電子部品50は、図9(A),(B)に示すように、一対の側辺から上・下に突出する電極51,52をそれぞれ対称に複数個有している。電極51,52は、コア基板42の表面42および裏面43に個別に形成された所定パターンの配線層56,57と接続されている。
【0003】
また、図9(A),(B)に示すように、コア基板41における貫通孔44の周囲には、当該コア基板41を貫通する複数のスルーホール46内にスルーホール導体47が貫通孔44に沿って個別に形成されている。かかる導体47は、内部に充填樹脂48を有する。更に、図9(A)に示すように、コア基板41の表面42上と裏面43下には、樹脂製の絶縁層54,55が形成されると共に、所定パターンを有し且つ電子部品50の電極51,52と接続する前記配線層56,57が形成される。尚、絶縁層54,55には、これを貫通し且つ配線層56,57と接続するビア導体58,59が形成され、その上・下端には別の配線層62,63が形成されると共に、これらの上下には絶縁層60,61が形成されている。また、絶縁層60,61には、これを貫通し且つ配線層62,63と接続するビア導体64,65が形成され、その上・下端には別の配線層66,67が形成されている。
【0004】
ところで、図9(B)に示すように、貫通孔44とこの周囲に配置されたスルーホール導体47との間には、幅Sのスペースがコア基板41に設けられている。かかるスペースは、コア基板41をパンチングして貫通孔44を穿孔する際、貫通孔44の各側面とスルーホール導体47との間を結ぶクラックが生じる事態を防ぐために設けられている。
しかしながら、上記幅Sのスペースが貫通孔44の周囲に存在するため、電子部品50の電極51,52とスルーホール導体47とを導通する際に、接続配線が長くなるので導通時の抵抗やインダクタンスが増大する。この結果、電子部品50への給電や電子部品50からの接地が不十分になりその機能が不十分になると共に、配線基板40内の電気的特性も不安定になる、という問題があった。
【0005】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、コア基板に内蔵する電子部品を十分に機能させ得る共に、基板内部の電気的特性も安定化する配線基板を提供する、ことを課題とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するため、電子部品を内蔵するコア基板の貫通孔または凹部の側面に凹溝導体を配置する、ことに着想して成されたものである。
即ち、本発明の配線基板(請求項1)は、表面および裏面を有するコア基板と、このコア基板において表面と裏面との間を貫通する貫通孔、あるいはコア基板において表面または裏面に開口する凹部と、この貫通孔または凹部に埋込樹脂を介して内蔵され且つ上記コア基板の表面および裏面の少なくとも一方に電極を有する電子部品と、上記貫通孔または凹部の側面に上記コア基板の厚さ方向に沿い且つ外向きに突出して設けられた凹溝と、この凹溝の内壁表面に形成された凹溝導体と、を含む、ことを特徴とする。
【0007】
これによれば、コア基板の貫通孔または凹部内において、埋込樹脂を介して内蔵された電子部品の電極と凹部導体とを短い接続配線により導通することが容易となる。これにより、かかる接続配線の抵抗やインダクタンスが小さくなるため、電子部品への給電や電子部品からの接地が十分に行えるので、電子部品の機能を十分に活用できると共に、配線基板の内部における電気的特性も安定化させることが可能となる。しかも、コア基板を高密度に有効活用することも可能になる。
更に、前記電子部品の機能発揮や電気的特性の安定化に加えて、電子部品を埋込樹脂により埋設し且つ凹溝を介してコア基板に一層強固に内蔵できるため、電子部品を凹溝導体や基板内の配線層と正確に接続し且つ所要の動作を確実に発揮させることも可能となる
【0008】
尚、前記電子部品には、コンデンサ、インダクタ、抵抗、フィルタなどの受動部品や、ローノイズアンプ ( LNA ) 、トランジスタ、半導体素子、ICチップ、FETなどの能動部品、或いはこれらのチップ状のものが含まれると共に、これらの異種の電子部品同士を同じ貫通孔や凹部内に内蔵しても良い
また、前記電子部品には、コア基板の表面または裏面の一方にのみ電極を有する形態も含まれる
更に、前記凹溝は、平面視で断面ほぼ半円形または半楕円形を呈する共に、その内壁表面に形成される凹溝導体も上記断面形状にほぼ倣った断面を有する
【0009】
また、本発明には、前記凹溝導体と前記電子部品の電極とは、前記コア基板の表面または裏面に形成された配線を介して接続されている、配線基板(請求項2)も含まれる
これによれば、前記貫通孔または凹部に埋込樹脂を介して内蔵された電子部品の電極と上記凹溝導体とが、一層短い配線により接続されるため、上記電子部品の機能を十二分に発揮させることが可能となる
更に、本発明には、前記貫通孔または凹部の側面を挟んで隣接する前記凹溝導体と電子部品の電極とは、互いに逆の電源電位またはグランド電位に接続されている、配線基板(請求項3)も含まれる
これによれば、隣接する電子部品の電極と凹溝導体とには、互いに逆向きの電流が通電されため、これらの電極と凹溝導体との間における相互インダクタンスを増加させ、且つ両者に跨る全体のループインダクタンスを低減することが可能となるこれにより、配線基板内の電子部品と配線層との間の通電や、配線層同士間の通電を安定させ且つ確実に行わしめ得る尚、上記「隣接する」とは「間近」、即ち「一番近い」ことを指す
【0010】
付言すれば、本発明には、前記凹溝および凹溝導体は、前記貫通孔または凹部の各側面において複数個ずつが互いに平行に形成されている、配線基板も含まれ得るこれによる場合、前記貫通孔または凹部に内蔵された複数の電子部品の多数の電極と上記凹溝導体とが、個別に短い配線により接続される。このため、上記複数の電子部品の機能をそれぞれ十分発揮させることが可能となる
【0011】
また、本発明には、表面および裏面を有するコア基板において、表面と裏面との間を貫通する複数のスルーホールあるいは表面または裏面から厚さ方向の中間で止まる複数のスルーホールを形成する工程と、かかる複数のスルーホール内にスルーホール導体を形成する工程と、上記複数のスルーホールの中心をそれぞれ通過するように、コア基板をパンチングして表面と裏面との間を貫通する貫通孔あるいは表面または裏面に開口する凹部を形成する工程と、を含む、配線基板の製造方法も含まれ得る。これによる場合、コア基板の貫通孔または凹部の側面において、当該コア基板の厚さ方向に沿った凹溝およびその内壁表面の凹溝導体を所要数有する配線基板を確実に製造することが可能となる。
【0012】
【発明の実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明の一形態の配線基板1における主要部の断面を示す。
配線基板1は、図1に示すように、絶縁性のコア基板2と、その表面3上と裏面4下とに形成した配線層14,20,26,15,21,27と、絶縁層16,22,28,17,23,29とからなるビルドアップ層とを有する多層基板である。上記配線層14などの厚さは約15μm程度であり、絶縁層16などの厚さは約30μm程度である。
コア基板2は、平面視がほぼ正方形で厚さ約0.8mmのガラス布入りのエポキシ樹脂からなり、その中央部をパンチングすることにより、図2(A)に示すように、平面視がほぼ正方形で一辺が12mmの貫通孔5が穿孔されている。
【0013】
コア基板2の貫通孔5内には、シリカフィラなどの無機フィラを含むエポキシ系の埋込樹脂13を介して、複数のチップコンデンサ(電子部品)10が内蔵されている。チップコンデンサ10は、両側面10aにおいて上下端に突出し且つコア基板2の表面3または裏面4に位置する電極11,12を対称に複数有している。かかるチップコンデンサ10は、例えばチタン酸バリウムを主成分とする誘電層と内部電極となるNi層とを交互に積層したセラミックスコンデンサであって、3.2mm×1.6mm×0.7mmのサイズを有する。
図1,図2(A)に示すように、貫通孔5の側面には、コア基板2の厚さ方向に沿っており且つ外向きに突出する断面ほぼ半円形の凹溝7が複数設けられる。また、図2(B),(C)に示すように、凹溝7の内壁表面には当該凹溝7の断面形状に倣った断面半円形で且つ円弧形の凹溝導体8が個別に形成されている。かかる凹溝導体8は、後述する銅メッキにより形成されるCuからなる。
【0014】
図1,図2(A)に示すように、貫通孔5の周囲には、所要のスペースを置いてコア基板2の表面3と裏面4との間を貫通する複数のスルーホール9a,9aが穿孔され、それらの内部に銅メッキからなるスルーホール導体9b,9bおよびシリカフィラを含む充填樹脂9c,9cがそれぞれ形成されている。尚、充填樹脂9cに替え、多量の金属粉末を含む導電性樹脂、または金属粉末を含む非導電性樹脂を用いても良い。
図1に示すように、コア基板2の表面3上には、銅メッキからなる配線層14および配線14aと、シリカフィラを含むエポキシ樹脂からなる絶縁層16とが形成される。図1に示すように、配線14aは、左端のチップコンデンサ10の電極11と凹溝導体8の上端とを接続している。図2(B)に示すように、凹溝導体8と電極11とは、配線14aを介して最短距離で接続される。
【0015】
また、図1に示すように、絶縁層16内の所定の位置には、配線層14、配線14a、またはスルーホール導体9bの上端と接続する複数のフィルドビア導体18が形成され、これらビア導体18の上端と絶縁層16との上には配線層20が形成される。同様にして、配線層20の上には絶縁層22が形成され、且つフィルドビア導体24が上記ビア導体18の真上にスタックドビア(積み上げビア)として形成されると共に、フィルドビア導体24の上端と絶縁層22との上には配線層26が形成される。
【0016】
図1に示すように、配線層26の上には、ソルダーレジスト層(絶縁層)28と、これを貫通し且つ第1主面30よりも高く突出する複数のハンダバンプ(IC接続端子(Pb−Sn系、Sn−Ag系、Sn−Sb系、Sn−Zn系など))32とが形成される。ハンダバンプ32は、第1主面30上に搭載されるICチップ(半導体素子)34の底面に突設された接続端子36と個別に接続される。尚、接続端子36およびハンダバンプ32の周囲には、これらを埋設するようにICチップ34と第1主面30との間に図示しないアンダーフィル材が充填される。
【0017】
図1に示すように、コア基板2の裏面4下にも、銅メッキからなる配線層15および配線15aとシリカフィラ入りのエポキシ樹脂からなる絶縁層17とが形成される。配線15aは、前記図2(B)に示した形態であって、図1における右端のチップコンデンサ10の電極12と凹溝導体8の下端との間を接続している。また、絶縁層17の所定の位置には、配線層15、配線15a、またはスルーホール導体9bに上端が接続する複数のフィルドビア導体19が形成され、これらのビア導体19の下端と絶縁層17の下には配線層21が形成される。
【0018】
同様にして配線層21の下には絶縁層23およびフィルドビア導体25が形成されると共に、当該ビア導体25の下端と絶縁層23の下には配線層27が形成される。この配線層27の下には、ソルダーレジスト層(絶縁層)29が形成され、第2主面31側に開口する開口部33内に露出する配線層27内の配線35は、その表面にNiメッキおよびAuメッキが被覆され、当該配線基板1自体を搭載する図示しないプリント基板などのマザーボードとの接続端子となる。
【0019】
以上のような配線基板1によれば、凹溝導体8と貫通孔5に内蔵されたチップコンデンサ10の電極11,12とを短い配線14a,15aにより接続することができる。この結果、配線14a,15aの抵抗やインダクタンスが小さくなるため、チップコンデンサ10への給電や該コンデンサ10からの接地が十分に行えるので、該コンデンサ10の機能を十分に活用できると共に、配線基板1の内部における電気的特性も安定化させることが可能となる。しかも、凹溝導体8を用いることにより、コア基板2を高密度に活用することも可能になる。
【0020】
図3乃至図4は、前記配線基板1の製造方法における主要な工程に関する。
図3(A)に示すように、表・裏面3,4に厚さ数10μmの銅箔2cを貼り付けた厚さ0.8mmのガラスーエポキシ樹脂からなるコア基板2を用意する。
次に、図3(B)に示すように、コア基板2における所定の位置にドリルまたはレーザを用いて、表面3と裏面4との間を貫通する直径約0.3mmのスルーホール7a,9aを内外2重にして穿孔する。尚、スルーホール7a,9aは、平面視でほぼ正方形を形成する位置にある。
次いで、図3(C)に示すように、スルーホール7a,9a内に予めPdなどのメッキ用触媒を付着し無電解銅メッキを施した後、コア基板2の銅箔2cを含めて電解銅メッキを施し、銅メッキ層(導体)3c,4c,7b,9bを形成する。この結果、図3(C)に示すように、外周側のスルーホール9a内に円筒形で且つコア基板2の表面3および裏面4に延びるスルーホール導体9bが形成される。
【0021】
そして、内周側のスルーホール7a,7aの中心を通過するように、コア基板2の表面3と裏面4との間をパンチングまたはルータ加工する。その結果、図3(D)に示すように、縦×横12mmずつの貫通孔5が形成される。同時に、前記図2(B),(C)に示したように、断面ほぼ半円形の凹溝7とその内壁表面に位置する凹溝導体8とが、貫通孔5の各側面においてコア基板2の厚さ方向に沿って複数個形成される。次に、スルーホール導体9bの内部に充填樹脂9cを充填し、図示しないエッチングレジストを表面3および裏面4の銅メッキ層3c,4c上に形成して、紫外線などで露光し且つ現像を施した後、エッチング処理を施すことにより、スルーホール導体9bの両端を蓋メッキ(密封)する。
次いで、図4(A)に示すように、コア基板2の裏面4に、テープTを貼り付けて貫通孔5の裏面4側を封止する。かかるテープTの粘着面は、貫通孔5側に向けられている。尚、テープTは、上記コア基板2を含む多数のコア基板からなる多数個取り用のパネルにおける裏面の全体に渉って貼り付けられる。
【0022】
かかる状態で、図4(A)に示すように、複数のチップコンデンサ10を図示しないチップマウンタを用いて貫通孔5内に挿入すると共に、各チップコンデンサ10の電極12をテープTの粘着面における所定の位置に接着する。図示のように、各チップコンデンサ10における電極11,12の端面は、コア基板2の表・裏面3,4と同じ位置に位置している。
次いで、図4(B)に示すように、コア基板2の表面3側から貫通孔5内に、エポキシ樹脂を主成分とする溶けた樹脂13を充填した後、約100℃に加熱し且つ約60分保持するキュア処理を施す。この結果、図示のように、樹脂13は固化して複数のチップコンデンサ10を貫通孔5内に埋設する埋込樹脂13となる。この際、埋込樹脂13は、凹溝導体8,8の湾曲部にも進入して固化する。
【0023】
次に、埋込樹脂13の盛り上がった表面13aを、例えばバフ研磨などによって平坦に整面する。この結果、図4(C)に示すように、各チップコンデンサ10の電極11が露出する平坦な表面13bが形成される。この表面13bは、コア基板2の表面3と同一平面にある。また、図4(C)に示すように、テープTを剥離すると、埋込樹脂13の裏面13cには各チップコンデンサ10の電極12がそれぞれ露出する。尚、裏面13cも上記同様に整面すると各電極12を確実に露出させ得る。かかる裏面13cは、コア基板2の離面4と同一平面にある。
そして、コア基板2の表・裏面3,4と埋込樹脂13の表・裏面13b,13cに、メッキ用触媒を付着して無電解銅メッキおよび電解銅メッキを施す。その後、所定パターンの図示しないエッチングレジストを表・裏面3,13b,4,13cのメッキ層上に形成して、露光し且つ現像を施す。
【0024】
この結果、図4(D)に示すように、コア基板2の表面3上には、各チップコンデンサ10の電極11と接続される所要パターンの配線層14と、左端のチップコンデンサ10の電極11と左側の凹溝導体8の上端とを接続する配線14aとが形成される。また、図4(D)に示すように、コア基板2の裏面4下には、各チップコンデンサ10の電極12と接続される所要パターンの配線層15と、右端のチップコンデンサ10の電極12と凹溝導体8の下端とを接続する配線15aとが形成される。
これ以降は、配線層20,26,21,27、絶縁層16,22,28,17,23,29、および、ビア導体18,24,19,25を、公知のビルドアップ工程(セミアディティブ法、フルアディティブ法、サブトラクティブ法、フィルム状樹脂材料のラミネートによる絶縁層の形成、フォトリソグラフィ技術、レーザ加工によるビアホールの穿孔等)により形成する。これにより、前記図1に示した配線基板1を得ることができる。
【0025】
図5(A)は、前記図2(A)と同様な断面図であり、コア基板2の貫通孔5に複数のチップコンデンサ10が埋込樹脂13を介して内蔵されている。各チップコンデンサ10は、一対の側面に電源用回路に接続され電源電位(+)を有する電極11aとグランド(接地)用回路に接続されグランド電位(−)を有する電極11bとを交互に設けている。また、図5(A)に示すように、貫通孔5の各側面に沿って、電源用回路に接続され電源電位(+)を有する凹溝導体8aとグランド用回路に接続されグランド電位(−)を有する凹溝導体8bとが交互に形成されている。
【0026】
図5(B)に示すように、貫通孔5の各側面を挟んで隣接する凹溝導体8aおよび電極11bと凹溝導体8bおよび電極11aとには、それぞれ逆向きに電流が通電される。この結果、隣接する凹溝導体8aと電極11b、および凹溝導体8bと電極11aとの間におけるそれぞれの相互インダクタンス(2×M)が大きくなる。このため、両者の自己インダクタンスL,Lの合計値から上記相互インダクタンスを差し引いた全体のループインダクタンスLを低減することができる。従って、チップコンデンサ10と凹溝導体8a,8bとの間の導通が安定して取れ、同時スイッチングノイズや放射ノイズを防止することも可能となる。
【0027】
図6は、異なる形態の配線基板1aの主要部の断面を示す。尚、以下において前記形態と同じ部分や要素には共通する符号を用いるものとする。
図6に示すように、配線基板1aのコア基板2には、その表面3側に開口し且つ平面視が正方形で12mm×12mmの凹部6がルータ加工により形成されている。図6に示すように、凹部6には、その左右に位置する前記と同じチップコンデンサ10と共に、凹部6の中間に位置し且つコア基板2の表面3に露出する電極11のみを有するチップコンデンサ10bが挿入され、且つ前記同様のエポキシ系の埋込樹脂13中に埋設されることにより、凹部6に内蔵されている。
図6に示すように、コア基板2の表面3上には、前記同様の配線層14および配線14a,14aが形成されている。配線14a,14aは、凹部6の側面に形成された凹溝導体8c,8cの上端とそれぞれ個別に接続されている。
【0028】
図8(A)に示すように、凹溝導体8cは、凹部6の各側面に形成された前記と同じ凹溝7内に形成され、その下端には凹部6の底面上に延びる配線8dが接続されている。図6に示すように、かかる配線8dを介して凹溝導体8cの下端とチップコンデンサ10の電極12とが接続されている。尚、上記配線8dは、ルータ加工によりコア基板2に凹部6を形成した後、例えば凹部6の底面上に部分的に銅メッキなどを施すことにより形成される。
図6に示すように、凹部6の周囲にも、所要のスペースを置いてコア基板2の表面3と裏面4との間を貫通する複数のスルーホール9a,9aが穿孔され、その内部に銅メッキからなるスルーホール導体9b,9bおよびシリカフィラを含む充填樹脂9c,9cが形成されている。尚、充填樹脂9cに替え、多量の金属粉末を含む導電性樹脂、または金属粉末を含む非導電性樹脂を用いても良い。
【0029】
また、図6に示すように、コア基板2の表面3、配線層14、配線14a上には、配線層20,26、ビア導体18,24、および絶縁層16,22,28が前記同様に形成されている。配線層26の上には、第1主面30よりも高く突出する複数のハンダバンプ32が形成され、これらは、第1主面30上に搭載されるICチップ34の底面に突設された接続端子36と個別に接続される。尚、ハンダバンプ32と接続端子36の周囲には、これらを埋設するようにICチップ34の底面と第1主面30との間にアンダーフィル材38が充填される。
【0030】
更に、図6に示すように、コア基板2の裏面4下には、前記同様に配線層15,21,27、ビア導体19,25、および絶縁層17,23が形成されている。配線層27の下には、ソルダーレジスト層(絶縁層)29が形成され、その開口部33内に露出する上記配線層27内の配線35は、表面にNiおよびAuメッキが被覆された接続端子である。コア基板2を挟んだ配線層14,15は、スルーホール導体9b,9bを介して接続されるが、チップコンデンサ10,10bは凹溝導体8c、配線層14、配線14a、およびスルーホール導体9bを介して下側の配線層15,21,27や接続端子35と導通されている。
【0031】
図7は、配線基板1aの製造方法における主要な工程に関する。
図7(A)に示すように、表面3と裏面4とに前記同様の銅箔2cを貼り付けたコア基板2における所定の位置に、ドリルまたはレーザを用いて、表面3からコア基板2の中間で止まるスルーホール7cとその外周側で表面3と裏面4との間を貫通するスルーホール9aとを内外2重にしてを穿孔する。スルーホール7c,9aは、平面視でほぼ正方形を形成する位置にある。
次に、図7(B)に示すように、スルーホール7c,9a内に予めPdなどのメッキ用触媒を付着して無電解銅メッキを施した後、コア基板2の銅箔2cを含めて電解銅メッキを施し、銅メッキ層(導体)3c,4c,7b,9bを形成する。
【0032】
次いで、図7(C)に示すように、内周側のスルーホール7c,7cの中心を通過するように、コア基板2をその表面3側からルータ加工を施して、表面3側に開口する縦×横12mmずつの凹部6を形成する。その結果、図7(C)に示すように、断面ほぼ半円形の凹溝7とこの内壁表面に位置する凹溝導体8cとが、凹部6の各側面においてコア基板2の厚さ方向に沿って複数個形成される。
その後、前記同様に凹部6内にチップコンデンサ10,10bを挿入した後、凹部6内に溶けた樹脂13を充填し且つこれを固化すると共に、かかる埋込樹脂13の表面を整面する。これにより、図7(D)に示すように、複数のチップコンデンサ10,10bは、埋込樹脂13を介して凹部6に内蔵される。
尚、凹溝導体8cの下端には、凹部6の底面上に延びる配線8dを予め形成しておく。また、スルーホール9a内のスルーホール導体9bには、前記同様に樹脂9cを充填し且つ両端を蓋メッキが施されている。
【0033】
本発明は以上において説明した各形態に限定されるものではない。
図8(B)に示すように、コア基板2の貫通孔5の凹溝7における内壁表面に、かかる凹溝7よりも内側面が浅いカーブで且つ厚肉の凹溝導体8eを形成したり、図8(C)に示すように、貫通孔5の凹溝7内の全体を満たす断面ほぼ半円形の凹溝導体8fを形成しても良い。凹溝導体8e,8fは、前記スルーホール7a内で銅メッキを更に追加して施したり、あるいは多量の金属粉末を含む導電性樹脂を充填することにより形成できる。尚、凹溝導体8e,8fは、前記凹部6の各側面に形成することもできる。
また、前記配線基板1において、電極11のみを有するチップコンデンサ10bをコア基板2の前記貫通孔5に埋込樹脂13を介して内蔵することもできる。
【0034】
更に、配線基板1aにおいて、電極11,12を有するチップコンデンサ10をコア基板2の凹部6に埋込樹脂13を介して内蔵する場合、下側の電極12は凹部6の底面とコア基板2の裏面4との間を貫通する短いスルーホール導体を介して配線層15と接続しても良い。
また、前記貫通孔5や凹部6に内蔵する電子部品は、1つのみでも良い。逆に、多数のコア基板2を含む多数個取りの基板(パネル)内における製品単位1個内に、複数の貫通孔5や凹部6を形成しても良い。
更に、複数のチップ状電子部品を互いの側面間で予め接着したユニットとし、これを前記貫通孔5または凹部6内に挿入して内蔵することもできる。
【0035】
更に、チップ状電子部品には、前記チップコンデンサ10,10bの他、チップ状にしたインダクタ、抵抗、フィルタなどの受動部品や、トランジスタ、半導体素子、ICチップ、FET、ローノイズアンプ(LNA)などの能動部品も含まれると共に、互いに異種の電子部品同士を、コア基板の同じ貫通孔または凹部内に併せて内蔵することも可能である。
また、コア基板2の材質は、前記エポキシ樹脂の他、ビスマレイミド・トリアジン(BT)樹脂、ガラス−エポキシ樹脂複合材料、同様の耐熱性、機械強度、可撓性、加工容易性などを有するガラス織布や、ガラス織布などのガラス繊維とエポキシ樹脂、ポリイミド樹脂、またはBT樹脂などの樹脂との複合材料であるガラス繊維−樹脂材料を用いても良い。あるいは、ポリイミド繊維などの有機繊維と樹脂との複合材料や、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂複合材料などを用いることも可能である。
【0036】
更に、前記凹溝導体8,8a〜8cなど、スルーホール導体9b、配線14a,15a、および配線層14,15などの材質は、前記Cu(銅)の他、Ag、Ni、Ni−Au系合金などにしても良く、あるいは、これら金属のメッキ膜を用いず、導電性樹脂を塗布するなどの方法により形成しても良い。
また、前記ビア導体18などは、ビアホール内を埋め尽くす形態の前記フィルドビアに限らず、ビアホールの断面形状に倣った円錐形状の形態としても良い。
更に、絶縁層16,17などの材質は、前記エポキシ樹脂を主成分とするもののほか、同様の耐熱性、パターン成形性などを有するポリイミド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂複合材料などを用いても良い。尚、絶縁層の形成には、絶縁性の樹脂フィルムを熱圧着する方法のほか、液状の樹脂をロールコータにより塗布する方法を用いることもできる。
【0037】
【発明の効果】
以上に説明した本発明の配線基板(請求項1)によれば、コア基板の貫通孔または凹部内において、埋込樹脂を介して内蔵された電子部品の電極と凹溝導体とを短い配線により導通できるため、かかる配線の抵抗やインダクタンスが小さくなる。従って、電子部品への給電や電子部品からの接地が十分に行えるので、電子部品の機能を十分に活用できると共に、配線基板の内部における電気的特性も安定化させることが可能となる。しかも、コア基板を高密度に有効活用することも可能になる。更に、前記電子部品の機能発揮や電気的特性の安定化に加えて、電子部品を埋込樹脂により埋設し且つ凹溝を介してコア基板に一層強固に内蔵できるため、電子部品を凹溝導体や基板内の配線層と正確に接続し且つ所要の動作を確実に発揮させることも可能となる
また、請求項2の配線基板によれば、前記貫通孔または凹部に埋込樹脂を介して内蔵された電子部品の電極と前記凹溝導体とが、一層短い配線により接続されるため、上記電子部品の機能を十二分に発揮させることが可能となる
更に、請求項3の配線基板によれば、隣接する電子部品の電極と凹溝導体とには、互いに逆向きの電流が通電されため、これらの電極と凹溝導体との間における相互インダクタンスを増加させ、且つ両者に跨る全体のループインダクタンスを低減することが可能となるこの結果、配線基板内の電子部品と配線層との間の通電や、配線層同士間の通電を安定させ且つ確実に行わしめられる
【図面の簡単な説明】
【図1】本発明の配線基板における1形態の配線基板の主要部を示す断面図。
【図2】 (A)は図1中のA−A線に沿った矢視における断面図、(B)は(A)中の一点鎖線部分Bの拡大図、(C)は凹溝導体を示す斜視図。
【図3】 (A)〜(D)は図1の配線基板の製造方法における主要な工程を示す概略図。
【図4】 (A)〜(D)は図3(D)に続く上記製造方法における主要な工程を示す概略図。
【図5】 (A)は図1の配線基板における変形形態を示す図2(A)と同様な断面図、(B)は(A)における電気的な配置関係を示す概略図。
【図6】本発明の異なる形態の配線基板における主要部を示す断面図。
【図7】 (A)〜(D)は図6の配線基板の製造方法における主要な工程を示す概略図。
【図8】 (A)は図6の配線基板における凹溝導体の付近を示す斜視図、(B),(C)は異なる形態の凹溝導体を示す概略図。
【図9】 (A)は従来の配線基板における主要部を示す断面図、(B)は(A)中のB−B線線に沿った矢視における断面図。
【符号の説明】
1,1a………………………配線基板
2………………………………コア基板
3………………………………表面
4………………………………裏面
5………………………………貫通孔
6………………………………凹部
7………………………………凹溝
8,8a〜8f………………凹溝導体
10,10b…………………チップコンデンサ(電子部品)
11,11a,11b,12…電極
14a,15a………………配線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board in which an electronic component is built in a core board and a concave groove conductor that penetrates the core board.
[0002]
[Prior art]
In order to cope with the recent miniaturization of the wiring board and the high density of wiring in the wiring board, not only electronic components such as IC chips are mounted on the first main surface of the wiring board, but also the electronics inside the core board. A wiring board with a built-in component has been proposed.
For example, a wiring board 40 shown in FIG. 9A has a plurality of chip-like electronic components 50 built in through holes 44 formed in an insulating core substrate 41 through an embedded resin 45. As shown in FIGS. 9A and 9B, the electronic component 50 has a plurality of symmetrical electrodes 51 and 52 that protrude upward and downward from a pair of sides. The electrodes 51 and 52 are connected to wiring layers 56 and 57 having a predetermined pattern formed individually on the front surface 42 and the back surface 43 of the core substrate 42.
[0003]
Further, as shown in FIGS. 9A and 9B, through-hole conductors 47 are formed in the plurality of through-holes 46 that penetrate the core substrate 41 around the through-holes 44 in the core substrate 41. Are individually formed along. The conductor 47 has a filling resin 48 inside. Further, as shown in FIG. 9A, resin-made insulating layers 54 and 55 are formed on the front surface 42 and the back surface 43 of the core substrate 41, and have a predetermined pattern and the electronic component 50. The wiring layers 56 and 57 connected to the electrodes 51 and 52 are formed. The insulating layers 54 and 55 are formed with via conductors 58 and 59 that pass through the insulating layers 54 and 55 and connect to the wiring layers 56 and 57, and other wiring layers 62 and 63 are formed on the upper and lower ends thereof. Insulating layers 60 and 61 are formed above and below these. Insulating layers 60 and 61 are formed with via conductors 64 and 65 that pass through the insulating layers 60 and 61 and connect to the wiring layers 62 and 63, and other wiring layers 66 and 67 are formed on the upper and lower ends thereof. .
[0004]
Incidentally, as shown in FIG. 9B, a space having a width S is provided in the core substrate 41 between the through hole 44 and the through-hole conductor 47 disposed around the through hole 44. Such a space is provided in order to prevent a situation in which a crack connecting each side surface of the through hole 44 and the through hole conductor 47 is generated when the core substrate 41 is punched to punch the through hole 44.
However, since the space having the width S exists around the through-hole 44, when the electrodes 51 and 52 of the electronic component 50 and the through-hole conductor 47 are electrically connected, the connection wiring becomes long. Will increase. As a result, there is a problem in that power supply to the electronic component 50 and grounding from the electronic component 50 are insufficient, the function becomes insufficient, and the electrical characteristics in the wiring board 40 become unstable.
[0005]
[Problems to be Solved by the Invention]
The present invention solves the problems in the conventional techniques described above, and provides a wiring board that can sufficiently function electronic components incorporated in a core board and also stabilize the electrical characteristics inside the board. Is an issue.
[0006]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the present invention has been conceived in that a grooved conductor is disposed on the side surface of a through hole or a recessed portion of a core substrate incorporating an electronic component.
  That is, the wiring board of the present invention(Claim 1)Is a core substrate having a front surface and a back surface, a through hole penetrating between the front surface and the back surface of the core substrate, or a recess opening in the front surface or the back surface of the core substrate, and the through hole or the recessThrough embedded resinAn electronic component built in and having an electrode on at least one of the front surface and the back surface of the core substrate, and a concave groove provided on the side surface of the through hole or the recess along the thickness direction of the core substrate and projecting outward And a grooved conductor formed on the inner wall surface of the groove.
[0007]
  According to this, in the through hole or recess of the core substrate,Through embedded resinIt becomes easy to connect the electrode of the built-in electronic component and the recessed conductor with a short connection wiring. As a result, the resistance and inductance of the connection wiring are reduced, so that the power supply to the electronic component and the grounding from the electronic component can be sufficiently performed, so that the functions of the electronic component can be fully utilized and the electrical circuit inside the wiring board can be used. The characteristics can also be stabilized. In addition, the core substrate can be effectively used at a high density.
  Further, in addition to functioning of the electronic component and stabilization of electrical characteristics, the electronic component can be embedded in the embedded resin and embedded in the core substrate more firmly through the concave groove, so that the electronic component can be embedded in the concave groove conductor. It is also possible to accurately connect to the wiring layer in the board and to ensure that the required operation is performed..
[0008]
  The electronic components include passive components such as capacitors, inductors, resistors, filters, and low noise amplifiers. ( LNA ) Active components such as transistors, semiconductor elements, IC chips, FETs, or chip-shaped components thereof, and these different types of electronic components may be incorporated in the same through hole or recess..
  The electronic component also includes a form having electrodes only on one of the front surface and the back surface of the core substrate..
  Further, the concave groove has a substantially semicircular or semi-elliptical cross section in plan view, and the concave groove conductor formed on the inner wall surface thereof also has a cross section substantially following the cross sectional shape..
[0009]
  In the present invention,The wiring board (Claim 2) is also included, in which the concave groove conductor and the electrode of the electronic component are connected via wiring formed on the front surface or the back surface of the core substrate..
  According to this, since the electrode of the electronic component built in the through hole or the concave portion via the embedded resin and the concave groove conductor are connected by a shorter wiring, the function of the electronic component is more than sufficient. Can be demonstrated.
  Furthermore,According to the present invention, a wiring board in which the grooved conductor adjacent to the side surface of the through-hole or the recessed part and the electrode of the electronic component are connected to opposite power supply potential or ground potential (Claim 3). Also included.
  According to this, since currents in opposite directions are passed through the electrodes and the grooved conductor of the adjacent electronic component, the mutual inductance between these electrodes and the grooved conductor is increased and straddles both. It becomes possible to reduce the overall loop inductance..As a result, it is possible to stably and reliably perform energization between the electronic component and the wiring layer in the wiring board and between the wiring layers..The term “adjacent” means “close”, that is, “closest”..
[0010]
  In other words, the present invention may include a wiring board in which a plurality of the recessed grooves and the recessed groove conductors are formed in parallel with each other on each side surface of the through hole or the recessed portion..In this case, a large number of electrodes of a plurality of electronic components built in the through holes or the recesses and the recessed groove conductors are individually connected by short wires. For this reason, it becomes possible to fully exhibit the functions of the plurality of electronic components..
[0011]
Further, the present invention includes a step of forming a plurality of through holes penetrating between the front surface and the back surface or a plurality of through holes stopping in the middle of the thickness direction from the front surface or the back surface in the core substrate having the front surface and the back surface. A step of forming a through-hole conductor in the plurality of through-holes, and a through-hole or surface penetrating between the front and back surfaces by punching the core substrate so as to pass through the centers of the plurality of through-holes, respectively. Alternatively, a method of manufacturing a wiring board including a step of forming a recess opening on the back surface may be included. In this case, it is possible to reliably manufacture a wiring board having a required number of concave grooves along the thickness direction of the core substrate and concave groove conductors on the inner wall surface thereof on the side surface of the through hole or the concave portion of the core substrate. Become.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross section of a main part of a wiring board 1 according to an embodiment of the present invention.
As shown in FIG. 1, the wiring substrate 1 includes an insulating core substrate 2, wiring layers 14, 20, 26, 15, 21, 27 formed on the front surface 3 and the back surface 4, and an insulating layer 16. , 22, 28, 17, 23, 29, and a multilayer substrate having a build-up layer. The wiring layer 14 has a thickness of about 15 μm, and the insulating layer 16 has a thickness of about 30 μm.
The core substrate 2 is made of an epoxy resin with a glass cloth having a substantially square shape and a thickness of about 0.8 mm in a plan view. By punching the center portion, the plan view is almost as shown in FIG. A through hole 5 having a square shape and a side of 12 mm is drilled.
[0013]
In the through hole 5 of the core substrate 2, a plurality of chip capacitors (electronic components) 10 are built in via an epoxy-based embedded resin 13 containing an inorganic filler such as a silica filler. The chip capacitor 10 has a plurality of symmetrical electrodes 11 and 12 that protrude from the upper and lower ends on both side surfaces 10 a and are located on the front surface 3 or the back surface 4 of the core substrate 2. The chip capacitor 10 is a ceramic capacitor in which, for example, dielectric layers mainly composed of barium titanate and Ni layers serving as internal electrodes are alternately stacked, and has a size of 3.2 mm × 1.6 mm × 0.7 mm. Have.
As shown in FIGS. 1 and 2A, a plurality of concave grooves 7 having a substantially semicircular cross section are provided on the side surface of the through-hole 5 so as to extend outward in the thickness direction of the core substrate 2. . Further, as shown in FIGS. 2 (B) and 2 (C), a concave groove conductor 8 having a semicircular cross section and an arc shape following the sectional shape of the concave groove 7 is individually formed on the inner wall surface of the concave groove 7. Is formed. The recessed groove conductor 8 is made of Cu formed by copper plating described later.
[0014]
As shown in FIGS. 1 and 2A, around the through hole 5, a plurality of through holes 9a and 9a penetrating between the front surface 3 and the back surface 4 of the core substrate 2 with a required space are provided. The through-hole conductors 9b and 9b made of copper plating and the filling resins 9c and 9c containing silica filler are respectively formed in the holes. Instead of the filling resin 9c, a conductive resin containing a large amount of metal powder or a non-conductive resin containing metal powder may be used.
As shown in FIG. 1, on the surface 3 of the core substrate 2, a wiring layer 14 and a wiring 14a made of copper plating and an insulating layer 16 made of an epoxy resin containing silica filler are formed. As shown in FIG. 1, the wiring 14 a connects the electrode 11 of the leftmost chip capacitor 10 and the upper end of the grooved conductor 8. As shown in FIG. 2B, the recessed groove conductor 8 and the electrode 11 are connected through the wiring 14a at the shortest distance.
[0015]
Further, as shown in FIG. 1, a plurality of filled via conductors 18 connected to the upper end of the wiring layer 14, the wiring 14a, or the through-hole conductor 9b are formed at predetermined positions in the insulating layer 16, and these via conductors 18 are formed. A wiring layer 20 is formed on the upper end of the insulating layer 16 and the insulating layer 16. Similarly, an insulating layer 22 is formed on the wiring layer 20, and a filled via conductor 24 is formed as a stacked via (stacked via) immediately above the via conductor 18, and the upper end of the filled via conductor 24 and the insulating layer are formed. A wiring layer 26 is formed on the upper surface 22.
[0016]
As shown in FIG. 1, on the wiring layer 26, a solder resist layer (insulating layer) 28 and a plurality of solder bumps (IC connection terminals (Pb--) penetrating therethrough and projecting higher than the first main surface 30 are formed. Sn-based, Sn-Ag-based, Sn-Sb-based, Sn-Zn-based, etc.) 32). The solder bumps 32 are individually connected to connection terminals 36 projecting from the bottom surface of an IC chip (semiconductor element) 34 mounted on the first main surface 30. An underfill material (not shown) is filled between the IC chip 34 and the first main surface 30 so as to embed the connection terminals 36 and the solder bumps 32 around them.
[0017]
As shown in FIG. 1, a wiring layer 15 made of copper plating and a wiring 15a and an insulating layer 17 made of an epoxy resin containing silica filler are also formed under the back surface 4 of the core substrate 2. The wiring 15a is in the form shown in FIG. 2B, and connects the electrode 12 of the rightmost chip capacitor 10 and the lower end of the grooved conductor 8 in FIG. A plurality of filled via conductors 19 whose upper ends are connected to the wiring layer 15, the wiring 15a, or the through-hole conductor 9b are formed at predetermined positions of the insulating layer 17, and the lower ends of these via conductors 19 and the insulating layer 17 A wiring layer 21 is formed below.
[0018]
Similarly, an insulating layer 23 and a filled via conductor 25 are formed below the wiring layer 21, and a wiring layer 27 is formed below the lower end of the via conductor 25 and the insulating layer 23. Under this wiring layer 27, a solder resist layer (insulating layer) 29 is formed, and the wiring 35 in the wiring layer 27 exposed in the opening 33 opening on the second main surface 31 side has Ni on the surface thereof. Plating and Au plating are covered to serve as connection terminals for a mother board such as a printed board (not shown) on which the wiring board 1 itself is mounted.
[0019]
According to the wiring board 1 as described above, the recessed groove conductor 8 and the electrodes 11 and 12 of the chip capacitor 10 built in the through hole 5 can be connected by the short wirings 14a and 15a. As a result, since the resistance and inductance of the wirings 14a and 15a are reduced, the power supply to the chip capacitor 10 and the grounding from the capacitor 10 can be sufficiently performed, so that the function of the capacitor 10 can be fully utilized and the wiring board 1 It is also possible to stabilize the electrical characteristics in the interior. In addition, by using the recessed groove conductor 8, the core substrate 2 can be used at a high density.
[0020]
3 to 4 relate to main steps in the method of manufacturing the wiring board 1.
As shown in FIG. 3A, a core substrate 2 made of a glass-epoxy resin having a thickness of 0.8 mm, in which a copper foil 2c having a thickness of several tens of micrometers is attached to the front and back surfaces 3 and 4, is prepared.
Next, as shown in FIG. 3B, through holes 7a and 9a having a diameter of about 0.3 mm that penetrate between the front surface 3 and the back surface 4 using a drill or laser at a predetermined position in the core substrate 2. Is drilled with the inside and outside doubled. Note that the through holes 7a and 9a are in positions where a substantially square is formed in plan view.
Next, as shown in FIG. 3 (C), a plating catalyst such as Pd is deposited in advance in the through holes 7a, 9a and electroless copper plating is performed, and then the electrolytic copper including the copper foil 2c of the core substrate 2 is added. Plating is performed to form copper plating layers (conductors) 3c, 4c, 7b, 9b. As a result, as shown in FIG. 3C, a through-hole conductor 9b that is cylindrical and extends to the front surface 3 and the back surface 4 of the core substrate 2 is formed in the through-hole 9a on the outer peripheral side.
[0021]
Then, punching or router processing is performed between the front surface 3 and the back surface 4 of the core substrate 2 so as to pass through the center of the through holes 7a, 7a on the inner peripheral side. As a result, as shown in FIG. 3D, through-holes 5 of length × width 12 mm are formed. At the same time, as shown in FIGS. 2B and 2C, the concave groove 7 having a substantially semicircular cross section and the concave groove conductor 8 positioned on the inner wall surface are formed on the core substrate 2 on each side surface of the through hole 5. A plurality are formed along the thickness direction. Next, a filling resin 9c is filled in the through-hole conductor 9b, and an etching resist (not shown) is formed on the copper plating layers 3c and 4c on the front surface 3 and the back surface 4 and exposed to ultraviolet light and developed. Thereafter, by performing an etching process, both ends of the through-hole conductor 9b are lid-plated (sealed).
Next, as shown in FIG. 4A, the tape T is attached to the back surface 4 of the core substrate 2 to seal the back surface 4 side of the through hole 5. The adhesive surface of the tape T is directed to the through hole 5 side. The tape T is attached to the entire back surface of the multi-piece panel including a number of core substrates including the core substrate 2.
[0022]
In this state, as shown in FIG. 4A, a plurality of chip capacitors 10 are inserted into the through holes 5 using a chip mounter (not shown), and the electrodes 12 of each chip capacitor 10 are placed on the adhesive surface of the tape T. Glue in place. As illustrated, the end surfaces of the electrodes 11 and 12 in each chip capacitor 10 are located at the same positions as the front and back surfaces 3 and 4 of the core substrate 2.
Next, as shown in FIG. 4 (B), after the melted resin 13 mainly composed of epoxy resin is filled into the through-hole 5 from the surface 3 side of the core substrate 2, it is heated to about 100 ° C. and about A curing process is performed for 60 minutes. As a result, as shown, the resin 13 is solidified to become an embedded resin 13 in which the plurality of chip capacitors 10 are embedded in the through holes 5. At this time, the embedded resin 13 also enters the curved portions of the recessed groove conductors 8 and 8 and is solidified.
[0023]
Next, the raised surface 13a of the embedded resin 13 is leveled by, for example, buffing. As a result, as shown in FIG. 4C, a flat surface 13b from which the electrode 11 of each chip capacitor 10 is exposed is formed. This surface 13 b is in the same plane as the surface 3 of the core substrate 2. Further, as shown in FIG. 4C, when the tape T is peeled off, the electrodes 12 of the respective chip capacitors 10 are exposed on the back surface 13c of the embedded resin 13. In addition, if the back surface 13c is leveled similarly to the above, each electrode 12 can be exposed reliably. The back surface 13 c is in the same plane as the separation surface 4 of the core substrate 2.
Then, a plating catalyst is attached to the front / back surfaces 3 and 4 of the core substrate 2 and the front / back surfaces 13b and 13c of the embedded resin 13 to perform electroless copper plating and electrolytic copper plating. Thereafter, an etching resist (not shown) having a predetermined pattern is formed on the plating layers of the front and back surfaces 3, 13b, 4, 13c, and is exposed and developed.
[0024]
As a result, as shown in FIG. 4D, on the surface 3 of the core substrate 2, a wiring layer 14 having a required pattern connected to the electrode 11 of each chip capacitor 10 and the electrode 11 of the leftmost chip capacitor 10 are provided. And a wiring 14a that connects the upper end of the left grooved conductor 8 is formed. Further, as shown in FIG. 4D, below the back surface 4 of the core substrate 2, a wiring layer 15 having a required pattern connected to the electrode 12 of each chip capacitor 10, and an electrode 12 of the rightmost chip capacitor 10 are provided. A wiring 15a that connects the lower end of the recessed groove conductor 8 is formed.
Thereafter, the wiring layers 20, 26, 21, 27, the insulating layers 16, 22, 28, 17, 23, 29, and the via conductors 18, 24, 19, 25 are subjected to a known build-up process (semi-additive method). , A full additive method, a subtractive method, formation of an insulating layer by laminating a film-like resin material, photolithography technique, drilling of a via hole by laser processing, etc.). Thereby, the wiring board 1 shown in FIG. 1 can be obtained.
[0025]
FIG. 5A is a cross-sectional view similar to FIG. 2A, and a plurality of chip capacitors 10 are embedded in the through holes 5 of the core substrate 2 via the embedded resin 13. Each chip capacitor 10 is alternately provided with electrodes 11a having a power supply potential (+) connected to a power supply circuit and electrodes 11b having a ground potential (−) connected to a ground (ground) circuit on a pair of side surfaces. Yes. Further, as shown in FIG. 5A, along each side surface of the through hole 5, a concave groove conductor 8a having a power supply potential (+) connected to a power supply circuit and a ground potential (− ) Having concave groove conductors 8b.
[0026]
As shown in FIG. 5 (B), a current is passed through the groove conductor 8a and the electrode 11b, the groove conductor 8b and the electrode 11a adjacent to each other with the side surfaces of the through hole 5 in opposite directions. As a result, the mutual inductance (2 × M) between the adjacent recessed groove conductor 8a and the electrode 11b and between the recessed groove conductor 8b and the electrode 11a is increased. For this reason, both self-inductance L1, L2The total loop inductance L obtained by subtracting the mutual inductance from the total value can be reduced. Therefore, the conduction between the chip capacitor 10 and the grooved conductors 8a and 8b can be stably taken, and simultaneous switching noise and radiation noise can be prevented.
[0027]
FIG. 6 shows a cross section of the main part of a wiring board 1a of a different form. In the following description, the same reference numerals are used for the same parts and elements as those in the above embodiment.
As shown in FIG. 6, the core substrate 2 of the wiring substrate 1a is formed with a recess 6 having a square shape in a plan view and having a size of 12 mm × 12 mm that is open on the surface 3 side. As shown in FIG. 6, in the recess 6, a chip capacitor 10 b having only the electrodes 11 located in the middle of the recess 6 and exposed on the surface 3 of the core substrate 2 together with the same chip capacitor 10 located on the left and right of the recess 6. Is embedded and embedded in the recess 6 by being embedded in the same epoxy-based embedded resin 13 as described above.
As shown in FIG. 6, on the surface 3 of the core substrate 2, the same wiring layer 14 and wirings 14a and 14a as those described above are formed. The wirings 14a and 14a are individually connected to the upper ends of the recessed groove conductors 8c and 8c formed on the side surfaces of the recessed portion 6, respectively.
[0028]
As shown in FIG. 8A, the concave groove conductor 8c is formed in the same concave groove 7 formed on each side surface of the concave portion 6, and a wiring 8d extending on the bottom surface of the concave portion 6 is formed at the lower end thereof. It is connected. As shown in FIG. 6, the lower end of the grooved conductor 8c and the electrode 12 of the chip capacitor 10 are connected via the wiring 8d. The wiring 8d is formed by forming a recess 6 in the core substrate 2 by router processing and then partially performing copper plating or the like on the bottom surface of the recess 6, for example.
As shown in FIG. 6, a plurality of through holes 9a and 9a penetrating between the front surface 3 and the back surface 4 of the core substrate 2 with a required space are also formed around the recess 6 and copper is formed in the inside thereof. Filled resins 9c and 9c including through-hole conductors 9b and 9b made of plating and silica filler are formed. Instead of the filling resin 9c, a conductive resin containing a large amount of metal powder or a non-conductive resin containing metal powder may be used.
[0029]
Further, as shown in FIG. 6, on the surface 3 of the core substrate 2, the wiring layer 14, and the wiring 14a, the wiring layers 20 and 26, the via conductors 18 and 24, and the insulating layers 16, 22, and 28 are the same as described above. Is formed. A plurality of solder bumps 32 projecting higher than the first main surface 30 are formed on the wiring layer 26, and these are connected to the bottom surface of the IC chip 34 mounted on the first main surface 30. The terminal 36 is individually connected. An underfill material 38 is filled between the bottom surface of the IC chip 34 and the first main surface 30 so as to embed the solder bumps 32 and the connection terminals 36 around them.
[0030]
Further, as shown in FIG. 6, under the back surface 4 of the core substrate 2, wiring layers 15, 21, 27, via conductors 19, 25, and insulating layers 17, 23 are formed in the same manner as described above. A solder resist layer (insulating layer) 29 is formed under the wiring layer 27, and the wiring 35 in the wiring layer 27 exposed in the opening 33 is a connection terminal whose surface is coated with Ni and Au plating. It is. The wiring layers 14 and 15 sandwiching the core substrate 2 are connected through the through-hole conductors 9b and 9b, but the chip capacitors 10 and 10b are connected to the recessed groove conductor 8c, the wiring layer 14, the wiring 14a, and the through-hole conductor 9b. Are connected to the lower wiring layers 15, 21, 27 and the connection terminal 35.
[0031]
FIG. 7 relates to main steps in the method of manufacturing the wiring board 1a.
As shown in FIG. 7A, a drill or laser is used to place the core substrate 2 from the front surface 3 at a predetermined position on the core substrate 2 in which the same copper foil 2c is attached to the front surface 3 and the back surface 4. A through-hole 7c that stops in the middle and a through-hole 9a that penetrates between the front surface 3 and the back surface 4 on the outer periphery thereof are doubled inside and outside to be drilled. The through holes 7c and 9a are at positions where a square is formed in plan view.
Next, as shown in FIG. 7B, a plating catalyst such as Pd is applied in advance in the through holes 7c and 9a and electroless copper plating is performed, and then the copper foil 2c of the core substrate 2 is included. Electrolytic copper plating is applied to form copper plating layers (conductors) 3c, 4c, 7b, 9b.
[0032]
Next, as shown in FIG. 7C, the core substrate 2 is subjected to router processing from the surface 3 side so as to pass through the center of the through holes 7c, 7c on the inner peripheral side, and is opened to the surface 3 side. Concave portions 6 of length × width 12 mm are formed. As a result, as shown in FIG. 7C, the concave groove 7 having a substantially semicircular cross section and the concave groove conductor 8 c located on the inner wall surface are formed along the thickness direction of the core substrate 2 on each side surface of the concave portion 6. Are formed.
After that, after inserting the chip capacitors 10 and 10b into the recess 6 as described above, the resin 13 melted in the recess 6 is filled and solidified, and the surface of the embedded resin 13 is leveled. As a result, as shown in FIG. 7D, the plurality of chip capacitors 10 and 10 b are built in the recess 6 through the embedded resin 13.
A wiring 8d extending in advance on the bottom surface of the recessed portion 6 is formed in advance at the lower end of the recessed groove conductor 8c. Further, the through-hole conductor 9b in the through-hole 9a is filled with the resin 9c as described above, and both ends are plated with a lid.
[0033]
The present invention is not limited to the embodiments described above.
As shown in FIG. 8B, on the inner wall surface of the concave groove 7 of the through hole 5 of the core substrate 2, a thick concave groove conductor 8e having a shallow inner surface than the concave groove 7 is formed. As shown in FIG. 8C, a groove conductor 8f having a substantially semicircular cross section that fills the entire groove 7 of the through hole 5 may be formed. The recessed groove conductors 8e and 8f can be formed by further applying copper plating in the through hole 7a or by filling a conductive resin containing a large amount of metal powder. The recessed groove conductors 8e and 8f can also be formed on each side surface of the recessed portion 6.
In the wiring board 1, the chip capacitor 10 b having only the electrodes 11 can be built in the through hole 5 of the core substrate 2 through the embedded resin 13.
[0034]
Further, when the chip capacitor 10 having the electrodes 11 and 12 is built in the recess 6 of the core substrate 2 via the embedded resin 13 in the wiring substrate 1 a, the lower electrode 12 is connected to the bottom surface of the recess 6 and the core substrate 2. You may connect with the wiring layer 15 through the short through-hole conductor which penetrates between the back surfaces 4.
Further, only one electronic component may be incorporated in the through hole 5 or the recess 6. Conversely, a plurality of through holes 5 and recesses 6 may be formed in one product unit in a multi-piece substrate (panel) including a large number of core substrates 2.
Further, a unit in which a plurality of chip-shaped electronic components are bonded in advance between the side surfaces can be inserted into the through-hole 5 or the recess 6 and incorporated.
[0035]
In addition to the chip capacitors 10 and 10b, chip-shaped electronic components include passive components such as chip-shaped inductors, resistors, and filters, transistors, semiconductor elements, IC chips, FETs, low noise amplifiers (LNA), and the like. In addition to including active components, it is also possible to incorporate different types of electronic components together in the same through hole or recess of the core substrate.
In addition to the epoxy resin, the core substrate 2 is made of bismaleimide / triazine (BT) resin, glass-epoxy resin composite material, glass having the same heat resistance, mechanical strength, flexibility, and processability. A glass fiber-resin material that is a composite material of glass fiber such as woven fabric or glass woven fabric and resin such as epoxy resin, polyimide resin, or BT resin may be used. Alternatively, a composite material of an organic fiber such as polyimide fiber and a resin, or a resin-resin composite material obtained by impregnating a resin such as an epoxy resin with a three-dimensional network fluorine resin such as PTFE having continuous pores may be used. Is possible.
[0036]
Further, the material of the through-hole conductor 9b, the wirings 14a and 15a, and the wiring layers 14 and 15 such as the recessed groove conductors 8 and 8a to 8c is not limited to the Cu (copper), but is Ag, Ni, Ni-Au system It may be an alloy, or may be formed by a method such as applying a conductive resin without using a plating film of these metals.
Further, the via conductor 18 and the like are not limited to the filled via that fills the via hole, and may have a conical shape that follows the cross-sectional shape of the via hole.
Further, the insulating layers 16 and 17 are made of the above-mentioned epoxy resin as a main component, polyimide resin having the same heat resistance and pattern formability, BT resin, PPE resin, or PTFE having continuous pores. A resin-resin composite material obtained by impregnating a resin such as an epoxy resin with a fluorine-based resin having a three-dimensional network structure may be used. The insulating layer can be formed by a method of applying a liquid resin with a roll coater in addition to a method of thermocompression bonding an insulating resin film.
[0037]
【The invention's effect】
  The wiring board of the present invention described above(Claim 1)In the through hole or recess of the core substrate,Through embedded resinSince the electrode of the built-in electronic component and the grooved conductor can be conducted with a short wiring, the resistance and inductance of the wiring are reduced. Accordingly, since the power supply to the electronic component and the grounding from the electronic component can be performed sufficiently, the function of the electronic component can be fully utilized and the electrical characteristics inside the wiring board can be stabilized. In addition, the core substrate can be effectively used at a high density.Further, in addition to functioning of the electronic component and stabilization of electrical characteristics, the electronic component can be embedded in the embedded resin and embedded in the core substrate more firmly through the concave groove, so that the electronic component can be embedded in the concave groove conductor. It is also possible to accurately connect to the wiring layer in the board and to ensure that the required operation is performed..
  According to the wiring board of claim 2, since the electrode of the electronic component built in the through hole or the recess through the embedded resin and the concave groove conductor are connected by a shorter wiring, the electronic It is possible to fully demonstrate the function of the parts.
  Furthermore, according to the wiring board of claim 3, since currents in opposite directions are applied to the electrodes of the adjacent electronic component and the grooved conductor, mutual inductance between these electrodes and the grooved conductor is reduced. It is possible to increase and reduce the overall loop inductance across both.As a result, the energization between the electronic components in the wiring board and the wiring layer and the energization between the wiring layers can be stably and reliably performed..
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of one form of a wiring board in a wiring board according to the present invention.
2A is a cross-sectional view taken along the line AA in FIG. 1, FIG. 2B is an enlarged view of an alternate long and short dash line portion B in FIG. 1A, and FIG. FIG.
FIGS. 3A to 3D are schematic views showing main steps in the method of manufacturing the wiring board of FIG.
FIGS. 4A to 4D are schematic views showing main steps in the manufacturing method following FIG. 3D. FIGS.
5A is a cross-sectional view similar to FIG. 2A showing a modification of the wiring board of FIG. 1, and FIG. 5B is a schematic view showing an electrical arrangement relationship in FIG.
FIG. 6 is a cross-sectional view showing a main part in a wiring board of a different form of the present invention.
7A to 7D are schematic views showing main steps in the method for manufacturing the wiring board of FIG. 6;
8A is a perspective view showing the vicinity of a recessed groove conductor in the wiring board of FIG. 6, and FIGS. 8B and 8C are schematic views showing recessed groove conductors of different forms.
9A is a cross-sectional view showing a main part of a conventional wiring board, and FIG. 9B is a cross-sectional view taken along the line BB in FIG.
[Explanation of symbols]
1,1a ………………………… Wiring board
2 ……………………………… Core substrate
3 ……………………………… Surface
4 ……………………………… Back side
5 ……………………………… Through hole
6 ……………………………… Recess
7 ………………………………
8, 8a ~ 8f ……………… Concave groove conductor
10, 10b …………………… Chip capacitors (electronic components)
11, 11a, 11b, 12 ... electrodes
14a, 15a ……………… Wiring

Claims (3)

表面および裏面を有するコア基板と、
上記コア基板において表面と裏面との間を貫通する貫通孔、あるいはコア基板において表面または裏面に開口する凹部と、
上記貫通孔または凹部に埋込樹脂を介して内蔵され且つ上記コア基板の表面および裏面の少なくとも一方に電極を有する電子部品と、
上記貫通孔または凹部の側面に上記コア基板の厚さ方向に沿い且つ外向きに突出して設けられた凹溝と、
上記凹溝の内壁表面に形成された凹溝導体と、を含む、
ことを特徴とする配線基板。
A core substrate having a front surface and a back surface;
A through hole penetrating between the front surface and the back surface of the core substrate, or a recess opening on the front surface or the back surface of the core substrate;
An electronic component that is embedded in the through hole or recess through an embedded resin and has an electrode on at least one of the front surface and the back surface of the core substrate;
A concave groove provided on the side surface of the through hole or the concave portion along the thickness direction of the core substrate and protruding outward;
A grooved conductor formed on the inner wall surface of the groove,
A wiring board characterized by that.
前記凹溝導体と前記電子部品の電極とは、前記コア基板の表面または裏面に形成された配線を介して接続されている
ことを特徴とする請求項1に記載の配線基板
The recessed groove conductor and the electrode of the electronic component are connected via a wiring formed on the front surface or the back surface of the core substrate .
The wiring board according to claim 1 .
前記貫通孔または凹部の側面を挟んで隣接する前記凹溝導体と電子部品の電極とは、互いに逆の電源電位またはグランド電位に接続されている
ことを特徴とする請求項1または2に記載の配線基板
The concave groove conductor and the electrode of the electronic component adjacent to each other across the side surface of the through hole or the concave portion are connected to a power supply potential or a ground potential opposite to each other .
The wiring board according to claim 1 or 2, wherein
JP2002254908A 2002-08-30 2002-08-30 Wiring board Expired - Fee Related JP3945764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254908A JP3945764B2 (en) 2002-08-30 2002-08-30 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254908A JP3945764B2 (en) 2002-08-30 2002-08-30 Wiring board

Publications (2)

Publication Number Publication Date
JP2004095851A JP2004095851A (en) 2004-03-25
JP3945764B2 true JP3945764B2 (en) 2007-07-18

Family

ID=32060573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254908A Expired - Fee Related JP3945764B2 (en) 2002-08-30 2002-08-30 Wiring board

Country Status (1)

Country Link
JP (1) JP3945764B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100598275B1 (en) 2004-09-15 2006-07-10 삼성전기주식회사 Embedded passive-device printed circuit board and method for manufacturing the same
JP2007318089A (en) * 2006-04-25 2007-12-06 Ngk Spark Plug Co Ltd Wiring board
JP4975655B2 (en) * 2007-02-01 2012-07-11 日本特殊陶業株式会社 Wiring board, semiconductor package
US8945329B2 (en) 2011-06-24 2015-02-03 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
US9078373B1 (en) 2014-01-03 2015-07-07 International Business Machines Corporation Integrated circuit structures having off-axis in-hole capacitor and methods of forming

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327272A (en) * 1992-05-21 1993-12-10 Matsushita Electric Ind Co Ltd Electronic circuit apparatus
JP3809053B2 (en) * 2000-01-20 2006-08-16 新光電気工業株式会社 Electronic component package
JP2001237551A (en) * 2000-02-23 2001-08-31 Alps Electric Co Ltd Structure for mounting electronic unit on multilayered substrate
JP3727260B2 (en) * 2000-09-19 2005-12-14 日本特殊陶業株式会社 Wiring board

Also Published As

Publication number Publication date
JP2004095851A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US7102085B2 (en) Wiring substrate
JP4387231B2 (en) Capacitor-mounted wiring board and manufacturing method thereof
US6577490B2 (en) Wiring board
JP4079699B2 (en) Multilayer wiring circuit board
US9478343B2 (en) Printed wiring board
WO2006082838A1 (en) Multilayer wiring board, method for manufacturing such multilayer wiring board, and semiconductor device and electronic device using multilayer wiring board
JP2003031719A (en) Semiconductor package, production method therefor and semiconductor device
JP4829998B2 (en) Capacitor-mounted wiring board
JP2002016327A (en) Wiring board and its manufacturing method
JP3945764B2 (en) Wiring board
JP3810296B2 (en) Wiring board
JP4778148B2 (en) Multilayer wiring board
KR20150065029A (en) Printed circuit board, manufacturing method thereof and semiconductor package
JP2001274555A (en) Printed wiring board, blank board for printed wiring, semiconductor device, manufacturing method for printed wiring board and manufacturing method for semiconductor device
JP3727260B2 (en) Wiring board
JP5066311B2 (en) Wiring board
JP2004241583A (en) Wiring board
JP2003229661A (en) Wiring board and its manufacturing method
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP4179407B2 (en) Wiring board
JP2003046255A (en) Wiring board
JP2003008219A (en) Wiring board
JP5913535B1 (en) Component built-in substrate and manufacturing method thereof
JP2002290032A (en) Method of manufacturing wiring board
JP3786894B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees