JP3943081B2 - Solid phase heating production method of lithium cobaltate - Google Patents

Solid phase heating production method of lithium cobaltate Download PDF

Info

Publication number
JP3943081B2
JP3943081B2 JP2003578284A JP2003578284A JP3943081B2 JP 3943081 B2 JP3943081 B2 JP 3943081B2 JP 2003578284 A JP2003578284 A JP 2003578284A JP 2003578284 A JP2003578284 A JP 2003578284A JP 3943081 B2 JP3943081 B2 JP 3943081B2
Authority
JP
Japan
Prior art keywords
mixture
lithium
lithium cobaltate
solid
motomeko
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003578284A
Other languages
Japanese (ja)
Other versions
JP2005519840A (en
Inventor
チャンドラセカラン ラマスワミィ
マニ アリヤナン
バスデバン シアガラジャン
ガンガドハラン ラマイアー
Original Assignee
カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ filed Critical カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ
Priority claimed from PCT/IN2002/000066 external-priority patent/WO2003080517A1/en
Publication of JP2005519840A publication Critical patent/JP2005519840A/en
Application granted granted Critical
Publication of JP3943081B2 publication Critical patent/JP3943081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Description

【0001】
【産業上の利用分野】
本発明は、非水状態におけるカソード材料、ロッキングチェア型二次電池またはインターカレーション型二次電池(secondary rock in chair or intercalated batteries)のための固相及びポリマー電解質として有用な、コバルト酸リチウム(LiCoO2 )の製造のための新しい固相熱方法に関する。
【0002】
【従来の技術】
コバルト酸リチウム(LiCoO2)は、リチウムイオンに対するその高い可逆性と、LiNiO2及びLiMn4電極よりも放電容量の低減が少ないという観点から、リチウム二次電池の正極として広く用いられている。コバルト酸リチウム(LiCoO2)のカソードを製造するための技術分野において報告されている方法は、長い継続時間で350〜500℃の温度範囲でのゾル‐ゲル法などの穏やかな化学反応による、硝酸リチウム、水酸化リチウム、酢酸リチウムまたは他のリチウム塩と、コバルトの硝酸塩、酸化塩、酢酸塩、水酸化塩、硫酸塩との反応及び、多段階の製造方法を開示する。通常、これら酸化物の合成における固相での熱的方法で、反応は、長時間の加熱、断続的な冷却及び粉砕処理により継続される。パルスレーザー蒸着、スパッタリング及び、静電スプレー蒸着などのコバルト酸リチウムの合成のために、他の製造方法がまた文献で入手できる。
【0003】
〔参考文献〕
1."Synthesis and electrochemical properties of LiCoO2 spinel cathodes"S. Chol and A. Manthiram, Journal of the Electrochemical Society, Vol.149(2) (2002) A162−166
2."X-ray absorption spectroscopic study of LiAlyCo1-yO2cathode for lithium rechargeable batteries"Won-Sub Yoon, Kyung-Keun Lee and Kwang-Bum Kim, Journal of the Electrochemical Society,Vol. 149(2)(2002)A146-151
3."High temperature combustion synthesis and electrochemical characterization of LiNiO2, LiCoO2 and LiMn2O4for lithium ion secondary batteries"M.M.Rao, C. Liebenow, M. Jayalakshimi, M. Wulff, U. Guth and F. Scholz,J. of Solid State Electrochemistry, Vol. 5, Issue 5(2001) 348-354
4."Fabrication of LiCoO2 thin films by solgel method and characterization as positive electrodes for Li/LiCoO2cells"M.N. Kim,H.Chung, Y. Park, J.Kim, J. Son, K. Park and H. Kim, Journal of Power Sources, Vol. 99(2001)34-40
5."Preparation and characterization of high density spherical LiNi0.8CoO2cathode material for lithium secondary batteries"Jierong Ying, Chunrong Wan, Changyin Jiang and Yangxing Li,J. of Power Sources, Vol. 99(2001)78-84
6."Electrochemical characterization of layered LiCoO2 films prepared by electrostatic deposition"Won-Sub Yoon, Sung-Ho Ban, Kyung-Keun Lee, Kwang-Bum Kim, Min-Dyu Kim and Jay Min Lee, J. of Power Sources, Vol. 97-98(2001)282-286
7."Emulsion-derived lithium manganese oxide powder for positive electrodes in lithium ion batteries"Chung-Hsin Lu and Shang-Wei Lin, J. of Power Sources, Vol. 93(2001)14-19
8."Cobalt doped chromium oxides as cathode materials for secondsry batteries for secondary lithium batteries",Dong Zhang, Branko N. Popov, Yury M. Poddrahnsky, Pankaj Arora and Ralph E. White,. J. of Power Sources, Vol. 83(1999)121-127
9."Synthesis and electrochemical studies of spinel phase LiMn2O4cathodematerials prepared by the pechini process". W. Liu, G.C. Farringon, F.Chaput and B. Dunn, Journal of the Electrochemical Society, Vol. 143, No.3(1996)879-884
【0004】
上記で報告された従来の方法には幾つかの不都合がある。一般的に、つぎのいずれか1つまたは全てが見られる。
【0005】
1.例えば予期しない組成及び望まれない副生成物等の副反応が生じる。
2.未反応物質が残り、不純物として作用する。
3.不完全な反応を生ずる。
4.幾つかの段階と長い焼成時間とが、製造のために必要とされる。
5.制御された条件が必要とされる。
6.望まれない相が形成される。
【0006】
そのため、上に列挙した不都合を克服する方法の開発が重要である。
【0007】
【発明が解決しようとする課題】
本発明の主たる目的は、上述した欠陥を回避する、従来試みられなかったコバルト酸リチウム(LiCoO2)の製造のための新しい方法を提供するにある。
【0008】
本発明の他の目的は、多段階での処理、望まれず予期しない副生成物及び先行技術に報告される望まれない相の形成を回避することである。
【0009】
【課題を解決するための手段】
上記及びその他の本発明の目的は、酸化リチウムと硝酸コバルトとの1段階の固相熱反応からなる本発明の新しい方法により達成される。
【0010】
従って、本発明は、酸化リチウム(LiO2)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に熱発生物質を添加して粉砕し、粉砕した前記混合物を650〜700℃の範囲の温度に加熱してコバルト酸リチウムを得ることからなる1段階の固相熱反応によるコバルト酸リチウムの製造方法に関する。
【0011】
本発明の一実施形態において、酸化リチウム及び硝酸コバルトの混合物と、熱発生物質との比率は1:3である。
本発明の他の実施形態において、粉砕した混合物を炉中で約8時間加熱する。
本発明の一実施形態において、酸化リチウムは下記の比率で硝酸コバルトと混合される。
【0012】
LiO2:Co(NO32 =1:2
【0013】
本発明の他の実施形態において、熱発生物質は尿素または硝酸アンモニウムから選択される。
本発明の更なる他の実施形態において、電気炉が加熱のために使用される。
本発明の更なる他の実施形態において、用いられる原料は全て固体である。
【0014】
【発明の実施の形態】
本発明は、酸化リチウム(LiO2)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に尿素または硝酸アンモニウムのような熱発生物質を添加して粉砕し、粉砕した前記混合物を650〜700℃の範囲の温度に加熱して、所望のコバルト酸リチウムを得ることからなるコバルト酸リチウムの製造のための1段階の固相熱反応を含む。LI2O+Co(NO32混合物と尿素の比率は好ましくは1:3である。粉砕した混合物は炉中で約8時間加熱される。Li2Oは下記の好ましい比率でCo(NO32と混合される。
【0015】
LiO2:Co(NO32 =1:2
【0016】
加熱は、固相である用いられるすべての原料と共に、好ましくは電気炉中で行われる。は固体で使用される。
熱反応の間に下記反応が起きる。
【0017】
LiO2+2Co(NO32+3(O) → 2LiCoO2+4NO2+2O2
この反応は単一段階で進行するものと見られ、生成物はX線回折によりコバルト酸リチウムと確認された。
【0018】
固相材料のLiO2 は、制御された条件下、穏やかな温度で、固体のCo(NO3 2 と反応せしめられ、非常に優れたインターカレーション型の正極として有用なまさしく非常に優れたスピネル構造のサンプルを得る。純粋な分析試薬のCo(NO3 2のサンプルを、純粋な分析試薬のLiO2 のサンプルと、2:1のモル比で混合し、重量パーセントで3倍の尿素と均一な混合物を形成する。より良い均質な混合物を得るために、この混合物を2回蒸留した無水ジエチレンカーボネート(DEC)と共に十分に粉砕する。この混合物を300℃に加熱し、更に700℃で5時間連続的に加熱して、X線解析(図1a)により証明されるコバルト酸リチウム(LiCoO2 )を得る。
【0019】
この反応は、尿素を硝酸アンモニウムに代えても行うことができる。固相材料のLiO2 は、制御された条件下、穏やかな温度で、固体のCo(NO3 2 と反応せしめられ、非常に優れたインターカレーション型の正極として有用なまさしく非常に優れたスピネル構造のサンプルを得る。純粋な分析試薬のCo(NO3 2のサンプルを、純粋な分析試薬のLiO2のサンプルと、2:1のモル比で混合し、重量パーセントで3倍の硝酸アンモニウムと均一な混合物を形成する。より良い均質な混合物を得るために、この混合物を2回蒸留した無水ジエチレンカーボネート(DEC)と共に十分に粉砕する。この混合物を300℃に加熱し、更に700℃で5時間連続的に加熱して、X線解析(図1b)により証明されるコバルト酸リチウム(LiCoO2 )を得る。
【0020】
以下の実施例は本発明を説明するためのものであり、本発明の技術的範囲を限定するものと解釈されるべきではない。
【0021】
実施例1:LiCoO2の製造
【0022】
固相材料のLiO2 は、制御された条件下、穏やかな温度で、固体のCo(NO3 2 と反応せしめられ、非常に優れたインターカレーション型の正極として有用なまさしく非常に優れたスピネル構造のサンプルを得る。純粋な分析試薬のCo(NO3 2のサンプルを、純粋な分析試薬のLiO2 のサンプルと、2:1のモル比で混合し、重量パーセントで3倍の尿素と均一な混合物を形成する。より良い均質な混合物を得るために、この混合物を2回蒸留した無水ジエチレンカーボネート(DEC)と共に十分に粉砕する。この混合物を300℃で3時間加熱し、次に700℃で5時間連続的に加熱して、コバルト酸リチウム(LiCoO2 )を得た。コバルト酸リチウムは、X線解析(図1a)により証明される。
【0023】
実施例2:LiCoO2の製造
【0024】
固相材料のLiO2 は、制御された条件下、穏やかな温度で、固体のCo(NO3 2 と反応せしめられ、非常に優れたインターカレーション型の正極として有用なまさしく非常に優れたスピネル構造のサンプルを得る。純粋な分析試薬のCo(NO3 2のサンプルを、純粋な分析試薬のLiO2のサンプルと、2:1のモル比で混合し、重量パーセントで3倍の硝酸アンモニウムと均一な混合物を形成する。より良い均質な混合物を得るために、この混合物を2回蒸留した無水ジエチレンカーボネート(DEC)と共に十分に粉砕する。この混合物を300℃に加熱し、次に700℃で5時間連続的に加熱して、コバルト酸リチウム(LiCoO2 )を得た。コバルト酸リチウムは、X線解析(図1b)により証明される。
【0025】
実施例3
【0026】
純粋で乾燥された分析試薬のLiO2 を、純粋で乾燥された分析試薬のCo(NO3 2と、乳鉢と乳棒とを用いて1:2のモル比で混合し、ついで、混合物に、さらに重量で3倍の尿素を混合し、電気炉内に入れた。この混合物を最初に300℃で3時間加熱し、続いて700℃で5時間加熱した。
【0027】
【表1】

Figure 0003943081
【0028】
実施例4
【0029】
純粋で乾燥された分析試薬のLiO2 を、純粋で乾燥された分析試薬のCo(NO3 2と、乳鉢と乳棒とを用いて1:2のモル比で混合し、ついで、混合物に、さらに重量で3倍の硝酸アンモニウムを混合した。最終的な混合物を最初に300℃で3時間加熱し、続いて700℃で5時間加熱した。
【0030】
【表2】
Figure 0003943081
【0031】
結論
【0032】
1.酸化リチウムは、1:2の等モル比でCo(NO3 2と反応し、LiCoO2を形成する。
2.尿素、硝酸アンモニウム及び同様の熱発生物質は、効率または生成品の組成を大きく変えることなく、自己発熱物質として使用することができ、これらの物質はスピネル構造の形成に重要である。
3.形成温度は650℃乃至700℃の範囲である。
4.加熱時間は約8時間のみである。
【0033】
【発明の効果】
本発明の主たる効果は以下の通りである。
1.本発明の製造方法は単一段階の固相熱反応である。
2.LiO2 は、インターカレーションのための高容量正極のLiCoO2を形成するために、Co(NO3 2との反応に使用できる。
3.加熱時間は8時間のみで、この故に、かなりの加熱時間が節約できる。
【図面の簡単な説明】
【図1】 本発明にかかる方法によって得られたコバルト酸リチウムのX線回折パターンである。[0001]
[Industrial application fields]
The present invention relates to a lithium cobalt oxide (cathode material useful as a solid phase and polymer electrolyte for a non-aqueous cathode material, a rocking chair type secondary battery or an intercalated type secondary battery. It relates to a new solid phase thermal process for the production of LiCoO 2 ).
[0002]
[Prior art]
Lithium cobaltate (LiCoO 2 ) is widely used as the positive electrode of lithium secondary batteries from the viewpoint of its high reversibility to lithium ions and less reduction in discharge capacity than LiNiO 2 and LiMn 2 O 4 electrodes. . A method reported in the technical field for producing a lithium cobaltate (LiCoO 2 ) cathode is nitric acid by a mild chemical reaction such as a sol-gel process in the temperature range of 350-500 ° C. with a long duration. Reactions of lithium, lithium hydroxide, lithium acetate or other lithium salts with cobalt nitrates, oxides, acetates, hydroxides, sulfates and multi-step production processes are disclosed. Usually, the reaction is continued by heating for a long time, intermittent cooling and pulverization in a solid phase thermal method in the synthesis of these oxides. Other manufacturing methods are also available in the literature for the synthesis of lithium cobaltate, such as pulsed laser deposition, sputtering and electrostatic spray deposition.
[0003]
[References]
1. "Synthesis and electrochemical properties of LiCoO 2 spinel cathodes" S. Chol and A. Manthiram, Journal of the Electrochemical Society, Vol.149 (2) (2002) A162−166
2. "X-ray absorption spectroscopic study of LiAl y Co 1-y O 2 cathode for lithium rechargeable batteries" Won-Sub Yoon, Kyung-Keun Lee and Kwang-Bum Kim, Journal of the Electrochemical Society, Vol. 149 (2 (2002) A146-151
3. "High temperature combustion synthesis and electrochemical characterization of LiNiO 2, LiCoO 2 and LiMn 2 O 4 for lithium ion secondary batteries" MMRao, C. Liebenow, M. Jayalakshimi, M. Wulff, U. Guth and F. Scholz, J of Solid State Electrochemistry, Vol. 5, Issue 5 (2001) 348-354
4. "Fabrication of LiCoO 2 thin films by solgel method and characterization as positive electrodes for Li / LiCoO 2 cells" MN Kim, H. Chung, Y. Park, J. Kim, J. Son, K. Park and H. Kim , Journal of Power Sources, Vol. 99 (2001) 34-40
5. "Preparation and characterization of high density spherical LiNi 0.8 CoO 2 cathode material for lithium secondary batteries" Jierong Ying, Chunrong Wan, Changyin Jiang and Yangxing Li, J. of Power Sources, Vol. 99 (2001) 78-84
6. "Electrochemical characterization of layered LiCoO 2 films prepared by electrostatic deposition" Won-Sub Yoon, Sung-Ho Ban, Kyung-Keun Lee, Kwang-Bum Kim, Min-Dyu Kim and Jay Min Lee, J. of Power Sources, Vol. 97-98 (2001) 282-286
7. "Emulsion-derived lithium manganese oxide powder for positive electrodes in lithium ion batteries" Chung-Hsin Lu and Shang-Wei Lin, J. of Power Sources, Vol. 93 (2001) 14-19
8. "Cobalt doped chromium oxides as cathode materials for secondsry batteries for secondary lithium batteries", Dong Zhang, Branko N. Popov, Yury M. Poddrahnsky, Pankaj Arora and Ralph E. White ,. J. of Power Sources, Vol. 83 (1999) 121-127
9. "Synthesis and electrochemical studies of spinel phase LiMn 2 O 4 cathodematerials prepared by the pechini process". W. Liu, GC Farringon, F. Chaput and B. Dunn, Journal of the Electrochemical Society, Vol. 143, No. 3 (1996) 879-884
[0004]
There are several disadvantages to the conventional method reported above. In general, any one or all of the following are found:
[0005]
1. For example, side reactions such as unexpected compositions and unwanted side products occur.
2. Unreacted material remains and acts as an impurity.
3. Incomplete reaction occurs.
4). Several steps and long firing times are required for production.
5). Controlled conditions are required.
6). Undesirable phases are formed.
[0006]
Therefore, it is important to develop a method that overcomes the disadvantages listed above.
[0007]
[Problems to be solved by the invention]
The main object of the present invention is to provide a new method for the production of lithium cobaltate (LiCoO 2 ) which has not been tried before, avoiding the above-mentioned defects.
[0008]
Another object of the present invention is to avoid multi-stage processing, formation of unwanted and unexpected by-products and unwanted phases reported in the prior art.
[0009]
[Means for Solving the Problems]
These and other objects of the present invention are achieved by the new process of the present invention which comprises a one-step solid state thermal reaction of lithium oxide and cobalt nitrate.
[0010]
Accordingly, the present invention provides a mixture of lithium oxide (LiO 2 ) and cobalt nitrate (Co (NO 3 ) 2 ) that are uniformly mixed in a solid phase, pulverized by adding a heat generating material to the mixture, and pulverized The present invention relates to a method for producing lithium cobaltate by a one-step solid-phase thermal reaction comprising heating lithium to a temperature in the range of 650 to 700 ° C. to obtain lithium cobaltate.
[0011]
In one embodiment of the present invention, the ratio of the mixture of lithium oxide and cobalt nitrate to the heat generating material is 1: 3.
In another embodiment of the invention, the ground mixture is heated in an oven for about 8 hours.
In one embodiment of the present invention, lithium oxide is mixed with cobalt nitrate in the following ratios.
[0012]
LiO 2 : Co (NO 3 ) 2 = 1: 2
[0013]
In another embodiment of the invention, the heat generating material is selected from urea or ammonium nitrate.
In yet another embodiment of the invention, an electric furnace is used for heating.
In yet another embodiment of the invention, the raw materials used are all solid.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, lithium oxide (LiO 2 ) and cobalt nitrate (Co (NO 3 ) 2 ) are uniformly mixed in a solid phase, and a heat-generating substance such as urea or ammonium nitrate is added to the mixture and pulverized. Heating the pulverized mixture to a temperature in the range of 650-700 ° C. to include a one-step solid state thermal reaction for the production of lithium cobaltate comprising obtaining the desired lithium cobaltate. The ratio of LI 2 O + Co (NO 3 ) 2 mixture to urea is preferably 1: 3. The ground mixture is heated in an oven for about 8 hours. Li 2 O is mixed with the Co (NO 3) 2 in a preferred ratio of below.
[0015]
LiO 2 : Co (NO 3 ) 2 = 1: 2
[0016]
Heating is preferably performed in an electric furnace with all raw materials used in solid phase. Is used in solids.
The following reactions occur during the thermal reaction:
[0017]
LiO 2 + 2Co (NO 3 ) 2 +3 (O) → 2LiCoO 2 + 4NO 2 + 2O 2
This reaction appeared to proceed in a single step, and the product was confirmed to be lithium cobaltate by X-ray diffraction.
[0018]
The solid-state material LiO 2 is reacted with solid Co (NO 3 ) 2 under controlled conditions at moderate temperatures and is very excellent as a very good intercalation type positive electrode A sample with a spinel structure is obtained. A sample of pure analytical reagent Co (NO 3 ) 2 is mixed with a sample of pure analytical reagent LiO 2 in a 2: 1 molar ratio to form a homogeneous mixture with 3 times weight percent of urea. . In order to obtain a better homogeneous mixture, this mixture is thoroughly ground with double distilled anhydrous diethylene carbonate (DEC). The mixture is heated to 300 ° C. and then continuously heated at 700 ° C. for 5 hours to obtain lithium cobaltate (LiCoO 2 ) as evidenced by X-ray analysis (FIG. 1a).
[0019]
This reaction can also be performed by replacing urea with ammonium nitrate. The solid-state material LiO 2 is reacted with solid Co (NO 3 ) 2 under controlled conditions at moderate temperatures and is very excellent as a very good intercalation type positive electrode A sample with a spinel structure is obtained. A sample of pure analytical reagent Co (NO 3 ) 2 is mixed with a sample of pure analytical reagent LiO 2 in a 2: 1 molar ratio to form a homogeneous mixture with three times the weight percent ammonium nitrate. . In order to obtain a better homogeneous mixture, this mixture is thoroughly ground with double distilled anhydrous diethylene carbonate (DEC). The mixture is heated to 300 ° C. and then continuously heated at 700 ° C. for 5 hours to obtain lithium cobaltate (LiCoO 2 ) as evidenced by X-ray analysis (FIG. 1b).
[0020]
The following examples are intended to illustrate the present invention and should not be construed to limit the technical scope of the present invention.
[0021]
Example 1: Production of LiCoO 2
LiO 2 of solid phase material, under controlled conditions, at a moderate temperature, are reacted with solid Co (NO 3) 2, just very good useful as excellent intercalation-type positive electrode A sample with a spinel structure is obtained. A sample of pure analytical reagent Co (NO 3 ) 2 is mixed with a sample of pure analytical reagent LiO 2 in a 2: 1 molar ratio to form a homogeneous mixture with 3 times weight percent of urea. . In order to obtain a better homogeneous mixture, this mixture is thoroughly ground with double distilled anhydrous diethylene carbonate (DEC). This mixture was heated at 300 ° C. for 3 hours and then continuously at 700 ° C. for 5 hours to obtain lithium cobaltate (LiCoO 2 ). Lithium cobaltate is evidenced by X-ray analysis (FIG. 1a).
[0023]
Example 2: Production of LiCoO 2
The solid-state material LiO 2 is reacted with solid Co (NO 3 ) 2 under controlled conditions at moderate temperatures and is very excellent as a very good intercalation type positive electrode A sample with a spinel structure is obtained. A sample of pure analytical reagent Co (NO 3 ) 2 is mixed with a sample of pure analytical reagent LiO 2 in a 2: 1 molar ratio to form a homogeneous mixture with three times the weight percent ammonium nitrate. . In order to obtain a better homogeneous mixture, this mixture is thoroughly ground with double distilled anhydrous diethylene carbonate (DEC). This mixture was heated to 300 ° C. and then continuously heated at 700 ° C. for 5 hours to obtain lithium cobaltate (LiCoO 2 ). Lithium cobaltate is evidenced by X-ray analysis (FIG. 1b).
[0025]
Example 3
[0026]
The pure and dried analytical reagent LiO 2 was mixed with the pure and dried analytical reagent Co (NO 3 ) 2 in a 1: 2 molar ratio using a mortar and pestle, and the mixture was then Further, 3 times the weight of urea was mixed and placed in an electric furnace. The mixture was first heated at 300 ° C. for 3 hours, followed by heating at 700 ° C. for 5 hours.
[0027]
[Table 1]
Figure 0003943081
[0028]
Example 4
[0029]
The pure and dried analytical reagent LiO 2 was mixed with the pure and dried analytical reagent Co (NO 3 ) 2 in a 1: 2 molar ratio using a mortar and pestle, and the mixture was then Further, 3 times by weight of ammonium nitrate was mixed. The final mixture was first heated at 300 ° C. for 3 hours, followed by heating at 700 ° C. for 5 hours.
[0030]
[Table 2]
Figure 0003943081
[0031]
Conclusion [0032]
1. Lithium oxide reacts with Co (NO 3 ) 2 at an equimolar ratio of 1: 2 to form LiCoO 2 .
2. Urea, ammonium nitrate and similar heat generating materials can be used as self-heating materials without significantly changing efficiency or product composition, and these materials are important for the formation of spinel structures.
3. The forming temperature is in the range of 650 ° C to 700 ° C.
4). The heating time is only about 8 hours.
[0033]
【The invention's effect】
The main effects of the present invention are as follows.
1. The production method of the present invention is a single-stage solid-state thermal reaction.
2. LiO 2, to form a LiCoO 2 high capacity positive electrode for intercalation, can be used for reaction with Co (NO 3) 2.
3. The heating time is only 8 hours, and therefore considerable heating time can be saved.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of lithium cobaltate obtained by the method according to the present invention.

Claims (8)

化リチウム(LiO2)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に熱発生物質を添加して粉砕し、粉砕した前記混合物を650〜700℃の範囲の温度に加熱してコバルト酸リチウムを得ることからなる1段階の固相熱反応によるコバルト酸リチウムの製造方法。 Acid lithium (LiO 2) and cobalt nitrate (Co (NO 3) 2) and uniformly mixed in the solid phase, and pulverized by the addition of heat generating material to the mixture, 650 to 700 ° C. the mixture was milled the method for producing a range of lithium cobaltate by solid-phase thermal reaction of one stage consisting of heating to a benzalkonium obtain a lithium cobaltate temperature. 前記酸化リチウム及び硝酸コバルト混合物と、熱発生物質との混合比は1:3である請求項1記載の製造方法。Wherein a mixture of lithium oxide and cobalt nitrate, the mixing ratio of the heat generating material 1: 3 der Ru請 Motomeko 1 The method according. 前記粉砕した混合物は、炉中で8時間加熱される請求項1記載の製造方法。The ground mixture, Motomeko 1 method according that will be heated in an oven for 8 hours. 前記酸化リチウムは、硝酸コバルトと1:2の比で混合される請求項1記載の製造方法。The manufacturing method according to claim 1 , wherein the lithium oxide is mixed with cobalt nitrate at a ratio of 1 : 2. 前記熱発生物質は尿素または硝酸アンモニウムから選択される請求項1記載の製造方法。Manufacturing method of the heat generating material Motomeko 1, wherein that will be selected from urea or ammonium nitrate. 電気炉が前記加熱に使用される請求項1記載の製造方法。The manufacturing method according to claim 1 , wherein an electric furnace is used for the heating . 用いられる原料は全て固体である請求項1記載の製造方法。Method for producing a raw material all solid der Ru請 Motomeko 1 wherein used. 副反応を生じない請求項1記載の製造方法。 I請 Motomeko 1 The process according such cause side reactions.
JP2003578284A 2002-03-26 2002-03-26 Solid phase heating production method of lithium cobaltate Expired - Fee Related JP3943081B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2002/000066 WO2003080517A1 (en) 2002-03-26 2002-03-26 Solid state thermal synthesis of lithium cobaltate

Publications (2)

Publication Number Publication Date
JP2005519840A JP2005519840A (en) 2005-07-07
JP3943081B2 true JP3943081B2 (en) 2007-07-11

Family

ID=32922920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003578284A Expired - Fee Related JP3943081B2 (en) 2002-03-26 2002-03-26 Solid phase heating production method of lithium cobaltate

Country Status (3)

Country Link
JP (1) JP3943081B2 (en)
AU (1) AU2002249547A1 (en)
DE (1) DE10296745T5 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744871B (en) * 2019-10-31 2022-12-13 天津国安盟固利新材料科技股份有限公司 Lithium cobaltate cathode material and preparation method thereof

Also Published As

Publication number Publication date
JP2005519840A (en) 2005-07-07
DE10296745T5 (en) 2004-04-29
AU2002249547A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
Baudrin et al. Synthesis and electrochemical properties of cobalt vanadates vs. lithium
US20060127750A1 (en) Method for preparing positive cathode material for lithium cell, and lithium cell
Risthaus et al. Synthesis of spinel LiNi0. 5Mn1. 5O4 with secondary plate morphology as cathode material for lithium ion batteries
CN107108260B (en) The preparation of spinel
JP7230515B2 (en) Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body
JPH10158017A (en) Lithium-nickel-multiple oxide, its production and its use
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
Jeong et al. Electrochemical studies on cathode blends of LiMn2O4 and Li [Li1/15Ni1/5Co2/5Mn1/3O2]
JP2022174094A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
KR20010077415A (en) Preparation methode of cathode materials for Li-secondary battery
JP5011518B2 (en) Method for producing positive electrode material for secondary battery, and secondary battery
US6953566B2 (en) Process for preparing cathode material for lithium batteries
Prabaharan et al. New NASICON-type Li2Ni2 (MoO4) 3 as a positive electrode material for rechargeable lithium batteries
Arof et al. Electrochemical properties of LiMn 2 O 4 prepared with tartaric acid chelating agent
US6737037B2 (en) Solid state thermal synthesis of lithium cobaltate
Fu et al. LiMn2− yMyO4 (M= Cr, Co) cathode materials synthesized by the microwave-induced combustion for lithium ion batteries
Kitajou et al. Cathode properties of Mn-doped inverse spinels for Li-ion battery
Fu et al. Electrochemical properties of LiMn2O4 synthesized by the microwave-induced combustion method
JP3943081B2 (en) Solid phase heating production method of lithium cobaltate
Fu et al. Comparison of the microwave-induced combustion and solid-state reaction for the synthesis of LiMn2O4 powder and their electrochemical properties
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2001064020A (en) Production of lithium manganate
Fu et al. Comparison of microwave-induced combustion and solid-state reaction method for synthesis of LiMn 2− x Co x O 4 powders and their electrochemical properties
EP1494969B1 (en) Process for preparing cathode material for lithium batteries
Periasamy et al. Electrochemical performance behavior of combustion-synthesized LiNi0. 5Mn0. 5O2 lithium-intercalation cathodes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees