JP2005519840A - Solid phase heating synthesis method of lithium cobaltate - Google Patents

Solid phase heating synthesis method of lithium cobaltate Download PDF

Info

Publication number
JP2005519840A
JP2005519840A JP2003578284A JP2003578284A JP2005519840A JP 2005519840 A JP2005519840 A JP 2005519840A JP 2003578284 A JP2003578284 A JP 2003578284A JP 2003578284 A JP2003578284 A JP 2003578284A JP 2005519840 A JP2005519840 A JP 2005519840A
Authority
JP
Japan
Prior art keywords
lithium
mixture
lithium cobaltate
solid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003578284A
Other languages
Japanese (ja)
Other versions
JP3943081B2 (en
Inventor
チャンドラセカラン ラマスワミィ
マニ アリヤナン
バスデバン シアガラジャン
ガンガドハラン ラマイアー
Original Assignee
カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ filed Critical カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ
Priority claimed from PCT/IN2002/000066 external-priority patent/WO2003080517A1/en
Publication of JP2005519840A publication Critical patent/JP2005519840A/en
Application granted granted Critical
Publication of JP3943081B2 publication Critical patent/JP3943081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】本発明の目的は、1ステップの加熱処理からなる新しいコバルト酸リチウム(LiCoO2)の合成方法を提供するにある。
【解決手段】酸化リチュームと硝酸コバルトとの混合物に尿素を発熱物質として添加し粉砕混合した後、炉中で650〜700℃で加熱する1ステップの固相加熱反応によりコバルト酸リチウムを合成する。
An object of the present invention is to provide a new method for synthesizing lithium cobaltate (LiCoO 2 ) comprising one-step heat treatment.
Lithium cobaltate is synthesized by a one-step solid-phase heating reaction in which urea is added to a mixture of oxidized lithium and cobalt nitrate as a pyrogen, pulverized and mixed, and then heated at 650 to 700 ° C. in a furnace.

Description

【0001】
【産業上の利用分野】
本発明はコバルト酸リチウムを合成する新しい固相加熱方法に関する。
【0002】
【従来の技術】
コバルト酸リチウムはリチウムイオン二次電池の正極材料及びリチウムポリマーニ次電池の陰極材料として有用である。コバルト酸リチウム(LiCoO2)は、高いリチウムイオンのドープ/脱ドープ性とLiNiO2及びLiMn2O4電極よりも放電容量の低減が少ないという観点から、リチウムイオン二次電池の正極またはリチウムポリマー二次電池の陰極として広く用いられている。コバルト酸リチウム(LiCoO2)の製造技術の分野においては、硝酸リチウム、水酸化リチウム、酢酸リチウムまたは他のリチウム塩とコバルトの硝酸塩、酸化塩、水酸化塩、硫酸塩とをゾル‐ゲル法などの穏やかな化学反応により、350〜500℃の温度で長時間または多ステップ反応により製造する方法が報告されている。通常、これら酸化物質の固相加熱方法は、反応の間長時間の加熱を要し、途中で冷却して粉砕する処理が必要となる。文献ではレーザーパルスによる蒸着やスパッタリング、静電スプレー蒸着などの他のコバルト酸リチウムの製法が報告されている。
【0003】
コバルト酸リチウムの合成に関する公知文献として下記がある。
1."Synthesis and electrochemical properties of LiCoO2 spinel cathodes"
S. Chol and A. Manthiram, Journal of the Electrochemical Society, Vol.
149(2) (2002) A162−166
2."X-ray absorption spectroscopic study of LiAlyCo1-yO2 cathode for lithium rechargeable batteries"Won-Sub Yoon, Kyung-Keun Lee and Kwang-Bum Kim, Journal of the Electrochemical Society,Vol. 149(2)(2002)A146-151
3."High temperature combustion synthesis and electrochemical characterization of LiNiO2, LiCoO2 and LiMn2O4 for lithium ion secondary batteries"M.M.Rao, C. Liebenow, M. Jayalakshimi, M. Wulff, U. Guth and F. Scholz,J. of Solid State Electrochemistry, Vol. 5, Issue 5(2001) 348-354
4."Fabrication of LiCoO2 thin films by solgel method and characterization as positive electrodes for Li/LiCoO2 cells"M.N. Kim,H.Chung, Y. Park, J.Kim, J. Son, K. Park and H. Kim, Journal of Power Sources, Vol. 99(2001)34-40
5."Preparation and characterization of high density spherical LiNi0.8CoO2 cathode material for lithium secondary batteries"Jierong Ying, Chunrong Wan, Changyin Jiang and Yangxing Li,J. of Power Sources, Vol. 99(2001)78-84
6."Electrochemical characterization of layered LiCoO2 films prepared by electrostatic deposition"Won-Sub Yoon, Sung-Ho Ban, Kyung-Keun Lee, Kwang-Bum Kim, Min-Dyu Kim and Jay Min Lee, J. of Power Sources, Vol. 97-98(2001)282-286
7."Emulsion-derived lithium manganese oxide powder for positive electrodes in lithium ion batteries"Chung-Hsin Lu and Shang-Wei Lin, J. of Power Sources, Vol. 93(2001)14-19
8."Cobalt doped chromium oxides as cathode materials for secondsry batteries for secondary lithium batteries",Dong Zhang, Branko N. Popov, Yury M. Poddrahnsky, Pankaj Arora and Ralph E. White,. J. of Power Sources, Vol. 83(1999)121-127
9."Synthesis and electrochemical studies of spinel phase LiMn2O4 cathodematerials prepared by the pechini process". W. Liu, G.C. Farringon, F.Chaput and B. Dunn, Journal of the Electrochemical Society, Vol. 143, No.3(1996)879-884
【0004】
上記文献に記載された従来方法には幾つかの不都合があり、一般的に、下記の不都合のどれかまたは全ての不都合を伴う。
【0005】
1.副反応が生じ、予期しない不必要な副生成物となる。
2.未反応物質が残り不純物となる。
3.不完全な反応を生ずる。
4.合成するために幾つかのステップと長い焼成時間を必要とする。
5.条件を制御する必要がある。
6.不必要な相が形成される。
【0006】
そのため、上に列挙した不都合を克服する方法の開発が重要である。
【0007】
【発明が解決しようとする課題】
本発明の主たる目的は、上述した欠陥を回避できる従来試みられなかった新しいコバルト酸リチウム(LiCoO2)の合成方法を提供するにある。
【0008】
先行技術に見られる多重ステップ方法や、不必要で予期しない副生成物及び不必要な相の生成を排除することが本発明の他の目的である。
【0009】
【課題を解決するための手段】
上記及びその他の本発明の目的は、酸化リチュームと硝酸コバルトとの1ステップの固相熱反応からなる本発明の新しい方法により達成される。
【0010】
従って、本発明は固相熱反応の1スッテプ処理によりコバルト酸リチウムを製造する方法に関し、該1スッテプ処理は、酸化リチューム(Li2O)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に熱発生物質を添加して粉砕し、粉砕した混合物を650〜700℃の温度範囲に加熱して所望のコバルト酸リチウムを得る、ことからなる。
【0011】
本発明の一実施形態においては、酸化リチュームと硝酸コバルト混合物と加熱物質との比率は1:3である。本発明の他の実施形態においては、粉砕した混合物を炉中で約8時間加熱する。本発明の一実施形態においては、酸化リチュームは下記の比率で硝酸コバルトと混合する。
【0012】
LiO2:Co(NO32 =1:2
【0013】
本発明の他の実施形態においては、発熱物質は尿素または硝酸アンモニウムから選択される。本発明の更なる他の実施形態においては、加熱に電気炉を使用する。本発明の更なる他の実施形態においては、反応に使用する材料は全て固体である。
【0014】
【発明の実施の形態】
本発明は、コバルト酸リチウムを合成する1ステップの固相加熱処理による方法に関し、該1スッテプ加熱処理は、酸化リチューム(Li2O)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に尿素または硝酸アンモニウムのような熱発生物質を添加して粉砕し、粉砕した混合物を650〜700℃の温度範囲に加熱して所望のコバルト酸リチウムを得る、ことからなる。LI2O+Co(NO32混合物と尿素の比率は1:3が好ましい。粉砕した混合物は炉中で約8時間加熱される。Li2Oは下記の好ましい比率でCo(NO32と混合される。
【0015】
LiO2:Co(NO32 =1:2
【0016】
加熱は好ましくは電気炉中で行われ、すべての原料は固体で使用される。加熱処理の間に下記反応が生ずる。
【0017】
LiO2+2Co(NO32+3O=2LiCoO2+4NO2+2O2
この反応は単一ステップで進行するものと見られ、生成物はX線回析によりコバルト酸リチウムと確認された。
【0018】
LiO2固体物質は制御された条件のもとで適度な温度でCo(NO32固体と反応し、優れたドーピング電極材料として有用な極めて良好なスピネル構造のサンプルを生成する。精製Co(NO32の必要量と精製LiO2の必要量とをモル比率2:1で混合し、重量パセーンテージで3倍の尿素と均一な混合物を形成する。均質な混合物を得るため、混合物を倍量の無水蒸留ジエチレンカーボネートと共に粉砕する。この混合物を300℃に加熱し、更に700℃で5時間連続的に加熱してコバルト酸リチウム(LiCoO2)を合成する。リチウムコバルトであることはX線解析により証明する。
【0019】
この反応は尿素を硝酸アンモニウムに変えても行うことができる。LiO2固体物質を制御された条件のもとで適度な温度でCo(NO32固体と反応させ、優れたドーピング電極材料として有用な極めて良好なスピネル構造のサンプルを生成する。精製Co(NO32の必要量を精製LiO2の必要量とモル比率2:1で混合し、重量パセーンテージで3倍の硝酸アンモニウムと均一な混合物を形成する。均質な混合物を得るため、混合物を倍量の無水蒸留ジエチレンカーボネートと共に粉砕する。この混合物を300℃に加熱し、更に700℃で5時間連続的に加熱してコバルト酸リチウム(LiCoO2)を合成する。コバルト酸リチウムであることはX線解析により証明する。
【0020】
以下の実施例は本発明を説明するためのものであり、本発明の技術的範囲を限定するものと解釈すべきではない。
【0021】
実施例1:LiCoO2の合成
【0022】
LiO2固体物質を、制御された条件のもとで適度な温度でCo(NO32固体と反応させ、優れたドーピング電極材料として有用な極めて良好なスピネル構造のサンプルを生成した。精製Co(NO32の必要量を精製LiO2の必要量とモル比率2:1で混合し、重量パセーンテージで3倍の尿素と均一な混合物を形成した。均質な混合物を得るため、混合物を倍量の無水蒸留ジエチレンカーボネートと共に粉砕した。この混合物を300℃で3時間加熱し、更に700℃で5時間連続的に加熱しコバルト酸リチウム(LiCoO2)を製造した。コバルト酸リチウムであることはX線解析により証明された(Fig.1a)。
【0023】
実施例2:LiCoO2の合成
【0024】
LiO2固体物質を、制御された条件のもとで適度な温度でCo(NO32固体と反応させ、優れたドーピング電極材料として有用な極めて良好なスピネル構造のサンプルを生成した。精製Co(NO32の必要量を精製LiO2の必要量とモル比率2:1で混合し、重量パセーンテージで3倍の硝酸アンモニウムと均一な混合物を形成した。均質な混合物を得るため、混合物を倍量の無水の蒸留ジエチレンカーボネートと共に粉砕した。この混合物を300℃で3時間加熱し、更に700℃で5時間連続的に加熱してコバルト酸リチウム(LiCoO2)を製造した。コバルト酸リチウムであることはX線解析により証明された(Fig.1b)。
【0025】
実施例3
【0026】
乾燥精製LiO2を乾燥精製Co(NO32と1:2で乳鉢と乳棒を用いて混合し、ついで、重量で3倍の尿素を混合し、電気炉内に入れた。この混合物を最初300℃で3時間加熱し、続いて700℃で5時間加熱した。
【0027】
成分 組成
LiO2 0.333g
Co(NO32 O.667g
尿素 3.00g
予備加熱温度 300℃
最終温度 700℃
時間 8時間
製品の粒度 10〜20μm
製品の性質 黒色
収率 80%以上
【0028】
実施例4
【0029】
乾燥純ARLiO2を乾燥純Co(NO32と1:2で乳鉢と乳棒を用いて混合し、ついで、重量で3倍の硝酸アンモニウムを混合し、最終混合物を電気炉内に入れ、この混合物を最初300℃で3時間加熱し、続いて700℃で5時間加熱した。
【0030】
成分 組成
LiO2 0.333g
Co(NO32 O.667g
硝酸アンモニウム 3.00g
予備加熱温度 300℃
最終温度 700℃
時間 8時間
製品の粒度 10〜20μm
製品の性質 黒色
収率 80%以上
【0031】
結論
【0032】
1.酸化リチウムはモル比1:2の割合のCo(NO32と反応しLiCoO2を形成する。
2.尿素や硝酸アンモニウムなどの熱発生物質を自己発熱物質として使用することができ、収率や生成品の組成に大きな変化はない。これらの物質はスピネル構造の形成に重要である。
3.合成温度は650〜700℃である。
4.加熱時間は約8時間のみである。
【0033】
【発明の効果】
本発明の主たる効果は以下の通りである。
1.本発明の合成方法は単一ステップの固相加熱処理である。
2.Co(NO32と反応させて高容量のドーピング極物質に適するLiCoO2を形成するためにLiO2を使用できる。
3.加熱時間は8時間のみで、従来に比しかなりの加熱時間が省略できる。
【図面の簡単な説明】
【図1】
Fig.1は本発明にかかる方法によって得られたコバルト酸リチウムのX線回析パターンである。
[0001]
[Industrial application fields]
The present invention relates to a new solid phase heating method for synthesizing lithium cobaltate.
[0002]
[Prior art]
Lithium cobaltate is useful as a cathode material for lithium ion secondary batteries and a cathode material for lithium polymer secondary batteries. Lithium cobalt oxide (LiCoO 2 ) is a positive electrode of lithium ion secondary battery or lithium polymer secondary battery from the viewpoint of high doping / undoping properties of lithium ions and less reduction in discharge capacity than LiNiO 2 and LiMn 2 O 4 electrodes. It is widely used as a cathode. In the field of manufacturing technology of lithium cobaltate (LiCoO 2 ), sol-gel method and the like using lithium nitrate, lithium hydroxide, lithium acetate or other lithium salt and cobalt nitrate, oxide, hydroxide, sulfate, etc. A method of producing by a mild chemical reaction at a temperature of 350 to 500 ° C. for a long time or by a multi-step reaction has been reported. Usually, these solid-phase heating methods for these oxidizing substances require heating for a long time during the reaction, and require a process of cooling and grinding in the middle. In the literature, other methods for producing lithium cobalt oxide such as vapor deposition by laser pulse, sputtering, and electrostatic spray deposition have been reported.
[0003]
There are the following as well-known documents concerning the synthesis of lithium cobaltate.
1. "Synthesis and electrochemical properties of LiCoO 2 spinel cathodes"
S. Chol and A. Manthiram, Journal of the Electrochemical Society, Vol.
149 (2) (2002) A162−166
2. "X-ray absorption spectroscopic study of LiAl y Co 1-y O 2 cathode for lithium rechargeable batteries" Won-Sub Yoon, Kyung-Keun Lee and Kwang-Bum Kim, Journal of the Electrochemical Society, Vol. 149 (2 (2002) A146-151
3. "High temperature combustion synthesis and electrochemical characterization of LiNiO 2 , LiCoO 2 and LiMn 2 O 4 for lithium ion secondary batteries" MMRao, C. Liebenow, M. Jayalakshimi, M. Wulff, U. Guth and F. Scholz, J of Solid State Electrochemistry, Vol. 5, Issue 5 (2001) 348-354
4. "Fabrication of LiCoO 2 thin films by solgel method and characterization as positive electrodes for Li / LiCoO 2 cells" MN Kim, H. Chung, Y. Park, J. Kim, J. Son, K. Park and H. Kim , Journal of Power Sources, Vol. 99 (2001) 34-40
5. "Preparation and characterization of high density spherical LiNi 0.8 CoO 2 cathode material for lithium secondary batteries" Jierong Ying, Chunrong Wan, Changyin Jiang and Yangxing Li, J. of Power Sources, Vol. 99 (2001) 78-84
6. "Electrochemical characterization of layered LiCoO 2 films prepared by electrostatic deposition" Won-Sub Yoon, Sung-Ho Ban, Kyung-Keun Lee, Kwang-Bum Kim, Min-Dyu Kim and Jay Min Lee, J. of Power Sources, Vol. 97-98 (2001) 282-286
7. "Emulsion-derived lithium manganese oxide powder for positive electrodes in lithium ion batteries" Chung-Hsin Lu and Shang-Wei Lin, J. of Power Sources, Vol. 93 (2001) 14-19
8. "Cobalt doped chromium oxides as cathode materials for secondsry batteries for secondary lithium batteries", Dong Zhang, Branko N. Popov, Yury M. Poddrahnsky, Pankaj Arora and Ralph E. White ,. J. of Power Sources, Vol. 83 (1999) 121-127
9. "Synthesis and electrochemical studies of spinel phase LiMn 2 O 4 cathodematerials prepared by the pechini process". W. Liu, GC Farringon, F. Chaput and B. Dunn, Journal of the Electrochemical Society, Vol. 143, No. 3 (1996) 879-884
[0004]
The conventional methods described in the above references have several disadvantages and generally involve any or all of the following disadvantages.
[0005]
1. Side reactions occur, leading to unexpected and unwanted side products.
2. Unreacted substances remain as impurities.
3. Incomplete reaction occurs.
4). It takes several steps and a long firing time to synthesize.
5. You need to control the conditions.
6). An unnecessary phase is formed.
[0006]
Therefore, it is important to develop a method that overcomes the disadvantages listed above.
[0007]
[Problems to be solved by the invention]
The main object of the present invention is to provide a new method for synthesizing lithium cobaltate (LiCoO 2 ), which has not been attempted in the past, and which can avoid the above-mentioned defects.
[0008]
It is another object of the present invention to eliminate the multi-step method found in the prior art and the generation of unnecessary and unexpected by-products and unnecessary phases.
[0009]
[Means for Solving the Problems]
These and other objectives of the present invention are achieved by the new process of the present invention which consists of a one-step solid state thermal reaction between an oxidation liquor and cobalt nitrate.
[0010]
Accordingly, the present invention relates to a method for producing lithium cobaltate by one step treatment of solid-phase thermal reaction, wherein the one step treatment solidifies oxide lithium (Li 2 O) and cobalt nitrate (Co (NO 3 ) 2 ). Mix uniformly in phase, add heat generating material to the mixture, grind, and heat the grinded mixture to a temperature range of 650-700 ° C. to obtain the desired lithium cobaltate.
[0011]
In one embodiment of the present invention, the ratio of the oxidized lithium, cobalt nitrate mixture and heating material is 1: 3. In another embodiment of the invention, the ground mixture is heated in an oven for about 8 hours. In one embodiment of the present invention, the oxidation liquor is mixed with cobalt nitrate in the following ratios.
[0012]
LiO 2 : Co (NO 3 ) 2 = 1: 2
[0013]
In another embodiment of the invention, the pyrogen is selected from urea or ammonium nitrate. In yet another embodiment of the invention, an electric furnace is used for heating. In yet another embodiment of the invention, the material used for the reaction is all solid.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of one-step solid-phase heat treatment for synthesizing lithium cobaltate, and the one-step heat treatment involves solid-phase oxidation of lithium (Li 2 O) and cobalt nitrate (Co (NO 3 ) 2 ). And mixing the mixture uniformly, adding a heat-generating substance such as urea or ammonium nitrate to the mixture and pulverizing, and heating the pulverized mixture to a temperature range of 650 to 700 ° C. to obtain the desired lithium cobalt oxide. Become. The ratio of the LI 2 O + Co (NO 3 ) 2 mixture to urea is preferably 1: 3. The ground mixture is heated in an oven for about 8 hours. Li 2 O is mixed with Co (NO 3 ) 2 in the following preferred ratio.
[0015]
LiO 2 : Co (NO 3 ) 2 = 1: 2
[0016]
Heating is preferably performed in an electric furnace and all raw materials are used in solid form. The following reactions occur during the heat treatment.
[0017]
LiO 2 + 2Co (NO 3 ) 2 + 3O = 2LiCoO 2 + 4NO 2 + 2O 2
This reaction appeared to proceed in a single step, and the product was identified as lithium cobaltate by X-ray diffraction.
[0018]
The LiO 2 solid material reacts with the Co (NO 3 ) 2 solid at moderate temperatures under controlled conditions to produce a very good spinel sample useful as an excellent doping electrode material. The required amount of purified Co (NO 3 ) 2 and the required amount of purified LiO 2 are mixed at a molar ratio of 2: 1 to form a uniform mixture with urea 3 times by weight percentage. In order to obtain a homogeneous mixture, the mixture is ground with double the amount of anhydrous distilled diethylene carbonate. This mixture is heated to 300 ° C., and further continuously heated at 700 ° C. for 5 hours to synthesize lithium cobaltate (LiCoO 2 ). It is proved by X-ray analysis that it is lithium cobalt.
[0019]
This reaction can also be performed by changing urea to ammonium nitrate. The LiO 2 solid material is reacted with the Co (NO 3 ) 2 solid at moderate temperature under controlled conditions to produce a very good spinel sample useful as an excellent doping electrode material. The required amount of purified Co (NO 3 ) 2 is mixed with the required amount of purified LiO 2 in a molar ratio of 2: 1 to form a uniform mixture with 3 times ammonium nitrate by weight percentage. In order to obtain a homogeneous mixture, the mixture is ground with double the amount of anhydrous distilled diethylene carbonate. This mixture is heated to 300 ° C., and further continuously heated at 700 ° C. for 5 hours to synthesize lithium cobaltate (LiCoO 2 ). It is proved by X-ray analysis that it is lithium cobaltate.
[0020]
The following examples are intended to illustrate the present invention and should not be construed to limit the technical scope of the present invention.
[0021]
Example 1: Synthesis of LiCoO 2
The LiO 2 solid material was reacted with the Co (NO 3 ) 2 solid at moderate temperatures under controlled conditions to produce a sample with a very good spinel structure useful as an excellent doping electrode material. The required amount of purified Co (NO 3 ) 2 was mixed with the required amount of purified LiO 2 in a molar ratio of 2: 1 to form a homogeneous mixture with 3 times the urea by weight percentage. In order to obtain a homogeneous mixture, the mixture was ground with double the amount of anhydrous distilled diethylene carbonate. This mixture was heated at 300 ° C. for 3 hours, and further continuously heated at 700 ° C. for 5 hours to produce lithium cobaltate (LiCoO 2 ). The lithium cobaltate was proved by X-ray analysis (FIG. 1a).
[0023]
Example 2: Synthesis of LiCoO 2
The LiO 2 solid material was reacted with the Co (NO 3 ) 2 solid at moderate temperatures under controlled conditions to produce a sample with a very good spinel structure useful as an excellent doping electrode material. The required amount of purified Co (NO 3 ) 2 was mixed with the required amount of purified LiO 2 in a molar ratio of 2: 1 to form a uniform mixture with 3 times ammonium nitrate by weight percentage. In order to obtain a homogeneous mixture, the mixture was ground with double the amount of anhydrous distilled diethylene carbonate. This mixture was heated at 300 ° C. for 3 hours, and further continuously heated at 700 ° C. for 5 hours to produce lithium cobaltate (LiCoO 2 ). The lithium cobaltate was proved by X-ray analysis (FIG. 1b).
[0025]
Example 3
[0026]
Dry purified LiO 2 was mixed with dry purified Co (NO 3 ) 2 in a 1: 2 ratio using a mortar and pestle, and then 3 times the weight of urea was mixed and placed in an electric furnace. The mixture was first heated at 300 ° C. for 3 hours, followed by heating at 700 ° C. for 5 hours.
[0027]
Ingredient Composition LiO 2 0.333 g
Co (NO 3 ) 2 O. 667 g
Urea 3.00 g
Preheating temperature 300 ℃
Final temperature 700 ° C
Time 8 hours Product particle size 10-20μm
Product properties Black yield 80% or more 【0028】
Example 4
[0029]
Dry pure ARLiO 2 was mixed with dry pure Co (NO 3 ) 2 in a 1: 2 ratio using a mortar and pestle, then 3 times by weight of ammonium nitrate was mixed, and the final mixture was placed in an electric furnace. Was initially heated at 300 ° C. for 3 hours, followed by heating at 700 ° C. for 5 hours.
[0030]
Ingredient Composition LiO 2 0.333 g
Co (NO 3 ) 2 O. 667 g
Ammonium nitrate 3.00 g
Preheating temperature 300 ℃
Final temperature 700 ° C
Time 8 hours Product particle size 10-20μm
Product properties Black yield 80% or more 【0031】
Conclusion [0032]
1. Lithium oxide reacts with Co (NO 3 ) 2 in a molar ratio of 1: 2 to form LiCoO 2 .
2. Heat generating substances such as urea and ammonium nitrate can be used as self-heating substances, and there is no significant change in yield and product composition. These materials are important for the formation of spinel structures.
3. The synthesis temperature is 650-700 ° C.
4). The heating time is only about 8 hours.
[0033]
【The invention's effect】
The main effects of the present invention are as follows.
1. The synthesis method of the present invention is a single-step solid phase heat treatment.
2. LiO 2 can be used to react with Co (NO 3 ) 2 to form LiCoO 2 suitable for high capacity doping electrode materials.
3. The heating time is only 8 hours, and a considerable heating time can be omitted as compared with the conventional case.
[Brief description of the drawings]
[Figure 1]
FIG. 1 is an X-ray diffraction pattern of lithium cobaltate obtained by the method according to the present invention.

Claims (8)

コバルト酸リチウムを合成する方法において、酸化リチウム(LiO2)と硝酸コバルト(Co(NO32)とを固相で均一に混合し、該混合物に発熱物質を添加して粉砕し、粉砕した前記混合物を650〜700℃に加熱してコバルト酸リチウムを得る、ことからなる1ステップ固相加熱反応を特徴とする製造方法。In a method for synthesizing lithium cobaltate, lithium oxide (LiO 2 ) and cobalt nitrate (Co (NO 3 ) 2 ) are uniformly mixed in a solid phase, and a pyrogen is added to the mixture, followed by pulverization. A production method characterized by a one-step solid-phase heating reaction comprising heating the mixture to 650 to 700 ° C. to obtain lithium cobaltate. 前記酸化リチウムと硝酸コバルト混合物と熱発物質との混合比は1:3であることを特徴とする請求項1記載の製造方法。The manufacturing method according to claim 1, wherein a mixing ratio of the lithium oxide / cobalt nitrate mixture and the pyrogen is 1: 3. 前記粉砕した混合物は、炉中で8時間加熱されることを特徴とする請求項1記載の製造方法。The manufacturing method according to claim 1, wherein the pulverized mixture is heated in a furnace for 8 hours. 前記酸化リチウムと硝酸コバルトの混合比は1:2であることを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein the mixing ratio of lithium oxide and cobalt nitrate is 1: 2. 前記発熱物質は尿素または硝酸アンモニウムから選択されることを特徴とする請求項1記載の製造方法。The method according to claim 1, wherein the exothermic substance is selected from urea or ammonium nitrate. 前記加熱には電気炉を使用することを特徴とする請求項1記載の製造方法。The manufacturing method according to claim 1, wherein an electric furnace is used for the heating. 前記酸化リチウム、硝酸コバルト、熱発物質は全て固体であることを特徴とする請求項1記載の製造方法。2. The manufacturing method according to claim 1, wherein the lithium oxide, cobalt nitrate, and the heat generating substance are all solid. 副反応を生じないことを特徴とする請求項1記載の製造方法。The production method according to claim 1, wherein no side reaction occurs.
JP2003578284A 2002-03-26 2002-03-26 Solid phase heating production method of lithium cobaltate Expired - Fee Related JP3943081B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2002/000066 WO2003080517A1 (en) 2002-03-26 2002-03-26 Solid state thermal synthesis of lithium cobaltate

Publications (2)

Publication Number Publication Date
JP2005519840A true JP2005519840A (en) 2005-07-07
JP3943081B2 JP3943081B2 (en) 2007-07-11

Family

ID=32922920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003578284A Expired - Fee Related JP3943081B2 (en) 2002-03-26 2002-03-26 Solid phase heating production method of lithium cobaltate

Country Status (3)

Country Link
JP (1) JP3943081B2 (en)
AU (1) AU2002249547A1 (en)
DE (1) DE10296745T5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744871A (en) * 2019-10-31 2021-05-04 天津国安盟固利新材料科技股份有限公司 Lithium cobaltate positive electrode material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744871A (en) * 2019-10-31 2021-05-04 天津国安盟固利新材料科技股份有限公司 Lithium cobaltate positive electrode material and preparation method thereof
CN112744871B (en) * 2019-10-31 2022-12-13 天津国安盟固利新材料科技股份有限公司 Lithium cobaltate cathode material and preparation method thereof

Also Published As

Publication number Publication date
DE10296745T5 (en) 2004-04-29
AU2002249547A1 (en) 2003-10-08
JP3943081B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
Malik et al. Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries
Hao et al. Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method
Kim et al. Layered xLiMO2·(1− x) Li2M′ O3 electrodes for lithium batteries: a study of 0.95 LiMn0. 5Ni0. 5O2· 0.05 Li2TiO3
Myung et al. Nano-crystalline LiNi0. 5Mn1. 5O4 synthesized by emulsion drying method
Kalyani et al. A new solution combustion route to synthesize LiCoO2 and LiMn2O4
US8022009B2 (en) Process for synthesizing LixFeMZO4/ carbon and LixMZO4/ carbon composite materials
CN100369302C (en) Method for preparing positive electrode material for lithium cell, and lithium cell
Baudrin et al. Synthesis and electrochemical properties of cobalt vanadates vs. lithium
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
KR100578447B1 (en) Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method
Fu et al. Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2− xCrxO4 powders and their electrochemical properties
Yang et al. Urea combustion synthesis of LiNi0. 5Mn1. 5O4 as a cathode material for lithium ion batteries
US6953566B2 (en) Process for preparing cathode material for lithium batteries
Song et al. Electrochemical characterizations of Fe-substituted LiNiO2 synthesized in air by the combustion method
Prabaharan et al. New NASICON-type Li2Ni2 (MoO4) 3 as a positive electrode material for rechargeable lithium batteries
Fu et al. LiMn2− yMyO4 (M= Cr, Co) cathode materials synthesized by the microwave-induced combustion for lithium ion batteries
Fu et al. Comparison of the microwave-induced combustion and solid-state reaction for the synthesis of LiMn2O4 powder and their electrochemical properties
Fu et al. Electrochemical properties of LiMn2O4 synthesized by the microwave-induced combustion method
JP2001185148A5 (en)
US6737037B2 (en) Solid state thermal synthesis of lithium cobaltate
KR100679380B1 (en) Low temperature lithiation of cobalt, nickel and manganese containning hydroxides using a wet process
Rangasamy et al. Influence of sol-gel precursors on the electrochemical performance of NaMn 0.33 Ni 0.33 Co 0.33 O 2 positive electrode for sodium-ion battery
JP2005519840A (en) Solid phase heating synthesis method of lithium cobaltate
Kong et al. Improvement in the electrochemical properties of LiNi0. 5Mn1. 5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees