JP3941207B2 - Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same - Google Patents

Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same Download PDF

Info

Publication number
JP3941207B2
JP3941207B2 JP05196398A JP5196398A JP3941207B2 JP 3941207 B2 JP3941207 B2 JP 3941207B2 JP 05196398 A JP05196398 A JP 05196398A JP 5196398 A JP5196398 A JP 5196398A JP 3941207 B2 JP3941207 B2 JP 3941207B2
Authority
JP
Japan
Prior art keywords
diffuse reflector
liquid crystal
manufacturing
crystal display
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05196398A
Other languages
Japanese (ja)
Other versions
JPH11248909A (en
Inventor
克宏 鈴木
孝夫 湊
章二 樋口
真由美 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP05196398A priority Critical patent/JP3941207B2/en
Publication of JPH11248909A publication Critical patent/JPH11248909A/en
Application granted granted Critical
Publication of JP3941207B2 publication Critical patent/JP3941207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、家庭用、事務用および携帯用の情報表示端末として用いられる反射型液晶ディスプレイ、拡散反射板及びその製造方法に関する。
【0002】
【従来の技術】
液晶ディスプレイ(LCD;Liquid Crystal Display)は、低消費電力、省スペースという特徴を有するので、ノートパソコンの表示部として広く用いられている。近年LCDは大型化が進んでおり、CRT(Cathod Ray Tube )の代替えとして期待されている。これらはバックライトと呼ばれる光源をLCD体背面に置き透過光を見る透過型形式を採用している。バックライトは、その消費電力がLCDモジュールの消費電力の大半を占めており、バックライトの分厚みが増す、重い、発熱するという欠点を持っている。
【0003】
これに対して、反射型LCDでは、表示面側から入射する外光を金属反射板により反射させて表示に利用するので厚みが薄く、軽く、発熱しない。このため、電池寿命や携帯性が問われる小型の電卓や携帯電話などの表示用として採用されてきた。近年、情報量の多い携帯電話やモバイル用コンピュータなどの携帯情報処理装置の発達と普及により、高画質、特にフルカラー表示の反射型LCDが求められている。しかしながら、従来の反射型LCDでは、まず第一に画面の明るさが足りず、高画質フルカラーLCDには適していない。
【0004】
反射型LCDの画面の明るさは、拡散反射板に大きく影響される。拡散反射板は、3つの方式が提案されている。一つ目は拡散反射板を液晶の背面に設ける方式で、これはさらに図1(a)に示す拡散反射板102をLCD101の背面に設けるものと図1(b)に示すLCD101の中に設けるものに分けられる。二つ目は図1(c)に示す液晶自身が拡散するもの、三つ目は図1(d)に示す背面反射板103と前面拡散板104を有するものである。液晶105自身が拡散するものは、強い拡散を得るために液晶層が厚くなり、結果として駆動電圧が高くなる。背面反射板と前面拡散板を有するものは、前面での拡散により画像がぼやける。これらに対し拡散反射板を有するものではこのような問題が発生しない。しかし、拡散反射板をLCDの背面に有するものは、反射光の光路が長いために視差の問題が発生し、コントラストの低下、色のにじみが起こる。拡散反射板をLCD内に有するものは、反射光の光路が最も短いため視差の問題を回避できる。
【0005】
さらに、背面基板の電極は光を透過する必要がないので金属を用いることが出来、これが拡散反射板機能をも兼ねると視差を最小にすることが出来る。このような拡散反射板は、凹凸表面に高反射率のアルミニウム、銀等の高反射率の金属薄膜を所定の電極形状に形成して製造する。このタイプのLCDの断面図を図3に載せた。
【0006】
反射型LCDの表示を明るくするためには、拡散反射板の反射率を上げなければいけない。しかしながら、単純に拡散反射板材料の反射率を上げても解決しない。拡散反射板が、屈折率の高い液晶及びガラスで覆われているため、空気と前面基板の界面で全反射を起こす入射角が比較的小さくなり、反射光の大半がパネル内に閉じこめられてしまうからである。よって、拡散反射板前面への反射光が多くなるよう、表面の凹凸の形状を制御する必要がある。また、反射光同士の干渉による色つきをを避けるために、凹凸形状はある程度乱雑である必要がある。
【0007】
【発明が解決しようとする課題】
こうした凹凸形状を形成する方法としては、ビーズ分散コーティング、エンボス法、スパッタ/蒸着法、フォトリソグラフィ法が考えられる。適当な形状のビーズをバインダー中に分散させてコーティングして得られる膜は、ビーズを大量に必要とするが、ビーズが大量になると均一な塗布が難しくなるという問題がある。エンボス法は、凹凸が微細で精度が高くかつ大きなエンボス版はコストが高い問題がある。スパッタ/蒸着法は、高真空を得るために設備が大規模になる問題がある。フォトリソグラフィ法は、これらの比べれば簡便な方法であるが、それでも現像液を使用する現像工程が必要なため、現像機スペースの確保、別途に純水設備を要すること、現像液の管理と廃棄の問題がある。いずれも工業的な実施に問題を抱えている。あるいは凹凸の形状を滑らかにするために、パターン形成後加熱して形状をだらけさせる必要がある。このため、凹凸のピッチが制限されるという問題もある。
【0008】
本発明は、以上の問題を鑑みてなされたものであり、その製造が極めて簡単な拡散反射板及びその製造方法、並びにそれを用いた反射型液晶ディスプレイを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、以上の問題を解決するために、
請求項1に記載の拡散反射板は、基板上に、露光、焼成により凹凸が形成された感光性樹脂と、金属膜を少なくとも有することを特徴とするものである。
請求項2に記載の拡散反射板は、請求項1記載の拡散反射板を前提とし、前記凹凸の大きさが10μm以下であり、かつ最大高さが500Å以上であることを特徴とするものである。
請求項3に記載の拡散反射板の製造方法は、基板上に感光性樹脂を塗布する工程、所定のフォトマスクで露光する工程、焼成により該感光性樹脂表面に凹凸を形成する工程、前記凹凸上に金属膜を形成する工程を少なくとも含むことを特徴とするものである。
請求項4に記載の反射型液晶ディスプレイは、前記拡散反射板を組み込んだことを特徴とするものである。
請求項5に記載の反射型液晶ディスプレイは、請求項4記載の反射型液晶ディスプレイを前提とし、前記拡散反射板が電極を兼ねることを特徴とするものである。
【0010】
【発明の実施の形態】
感光性樹脂を使ってフォトリソグラフィ法により凹凸を形成する方法と、本発明の違いは、現像工程を含むか含まないかである。本発明の特徴は、現像工程を含まないことである。以下、図2を用いて説明する。
【0011】
まず基板201上に感光性樹脂202を塗布する(図2(a)参照)。樹脂に要求される特性は、少なくとも焼成後の膜が、金属膜(アルミニウム、クロム、銀、銅等)形成時の加熱に耐えることと、液晶に対して化学的に安定であることであることである。本発明の現象は、ネガ型、ポジ型いずれの感光性樹脂においても発現する現象である。塗布方法は、スピンコート法、ロールコート法、印刷法等を、樹脂に応じて選択すればよい。塗布後、適当な温度で塗膜を乾燥させる。
【0012】
乾燥後、所定のフォトマスク203を用いて露光する(図2(b)参照)。フォトマスクのパターンは、ドット状のものが位置的に乱雑に分布しているのがよい。ドットの大きさは、直径10μmからサブミクロン程度が望ましい。露光量は、樹脂の感光性に応じて設定する。露光後は、現像をせずに、そのままオーブン206に入れ焼成する(図2(c)参照)。焼成条件は、樹脂が十分に熱硬化する条件でよい。焼成すると、露光部に対し未露光部が低くなり、その結果フォトマスクのパターンを反映した凹凸204が出来る(図2(d)参照)。
【0013】
露光部と未露光部で相対的な高低差が生じるのは、露光部では感光性樹脂の反応が進むが、未露光部では未反応物が多く加熱によりこれが蒸発霧散するためと考えられる。この方法では凹凸の断面は、SEM 観察によると正弦的な連続的曲線で構成されている。凹凸の段差は、膜厚を厚くしたり、露光量を増やすことによりある程度制御可能であるが、概ね50Å〜1μmで制御することが出来る。凹凸表面上に、アルミニウムや銀などの金属膜207を定法のスパッタ法や蒸着法により形成する(図2(e)参照)。
【0014】
凹凸のパターンの平均的な大きさは10μm以下望ましくは5μm、高さは500Å以上望ましくは2000Å以上である。パターンがこれより大きい、または低い場合、拡散が弱く金属膜の鏡面反射を解消できない。
【0015】
露光時にマスク位置を変え露光量を変えた多重露光を適用すると、さらに高低部分のピッチや高低差が入り混じった複雑な凹凸表面を得ることが出来る。
【0016】
こうして得られた拡散反射板は、金属膜により高い反射率を持ちながら、凹凸表面により基板前面への強い光拡散特性を有する。
【0017】
なお、金属膜をストライプ状あるいは適切な形状で、マスクパターニングあるいはフォトリソグラフィ法によるパターニングをすることで、電極を兼ねた拡散反射板を製造することが可能である。
【0018】
この場合には、拡散反射板304を背面基板とし、カラーフィルタ302を形成した前面基板とを微細な間隙を開けて接着し、その間隙に液晶303を封止すれば、反射型LCD301を得ることができる(図3参照)。
【0019】
【実施例】
[実施例1]
エポキシ樹脂(東都化成(株)製:「YDPN−601」)390gおよびアクリル酸108gを1,6−ヘキサンジオールアクリレート750g中に溶解させてハイドロキノン0.5gおよびメチルエチルアンモニウムアイオダイド3gの存在下に100〜150℃で2時間反応させた。ついで、無水ヘッド酸279gを添加し、100〜150℃で2時間反応させて、水溶性光重合性オリゴマーを得た。
【0020】
得られた水溶性光重合性オリゴマー100重量部、非水溶性光重合性オリゴマーとしてフェノールノボラック型エポキシ樹脂(東都化成(株)製:「YDCN−602」)40重量部、光重合性モノマーとしてトリメチロールプロパントリアクリレート(共栄社油脂(株)製:「TMP−A」)20重量部、光重合開始剤として(チバガイギー社製:「イルガキュア−651」)5重量部、光硬化用触媒前駆体としてジフェニルヨードニウムヘキサフルオロアンチモネート0.5重量部および重合禁止剤としてハイドロキノン0.1重量部を酢酸ブチルセロソルブ1000重量部中で混合して、ネガ型感光性樹脂材料(1)を得た。
【0021】
ガラス基板上にネガ型感光性樹脂材料(1)を、スピンコート法で塗布し、70℃で30分乾燥し膜厚1.6μmの樹脂膜を得た。直径8μmのドットパターンが一面に乱雑に配置されているフォトマスクを用いて、樹脂膜を50mJ/cm2 で露光し、150℃で1時間焼成した。焼成後、樹脂膜表面をSEM で観察したところ高さ2000Åのドット状の凹凸が形成されていた。この凹凸上に、スパッタ法によりアルミニウム膜を1500Å形成し、拡散反射板を得た。
【0022】
得られた拡散反射板は、上下左右30°以内に反射光の大半が集まった。金属膜自体はほぼ鏡面であったが、乱雑な凹凸による拡散で鏡面反射は完全に解消された。
【0023】
次に、拡散反射板を背面基板とし、カラーフィルタを形成した前面基板とを微細な間隙を開けて接着し、その間隙に液晶を封止して反射型LCDを得た。このようにして得られた反射型LCDは、視差が小さく、コントラストも良好であった。
【0024】
[実施例2]
ガラス基板上にポジ型感光性樹脂材料MP1400-31 (シプレイファーイースト製)を、スピンコート法で塗布し、90℃で30分乾燥し膜厚3μmの樹脂膜を得た。直径10μmのドットパターンが一面に乱雑に配置されているフォトマスクを用いて、樹脂膜を50mJ/cm2 で露光し、150℃で1時間焼成した。焼成後、樹脂膜表面をSEM で観察したところ高さ2200Åのドット状の凹凸が形成されていた。この凹凸上に、蒸着法によりアルミニウム膜を1500Å形成し、拡散反射板を得た。
【0025】
得られた拡散反射板は、上下左右30°以内に反射光の大半が集まった。金属膜自体はほぼ鏡面であったが、乱雑な凹凸による拡散で鏡面反射は完全に解消された。
【0026】
次に、拡散反射板を背面基板とし、カラーフィルタを形成した前面基板とを微細な間隙を開けて接着した後、その間隙に液晶を封止し、反射型LCDを得た。このようにして得られた反射型LCDは、視差が小さく、コントラストも良好であった。
【0027】
【発明の効果】
請求項1〜2に記載の発明によれば、高い反射率と前面への効果的な光拡散特性を有する拡散反射板を得ることができる。また、請求項3に記載の発明によれば、製造において、現像工程不要になり低コストで製造できる。さらに、請求項4に記載の発明によれば、良好な反射型LCDを得ることが可能となる。さらにまた、請求項5に記載の発明によれば、電極の機能を兼ね備えることで、視差を最小にすることができる。これにより、明るく高品質の反射型LCDを得ることが可能となる。
【0028】
【図面の簡単な説明】
【図1】反射型LCDにおける拡散反射板の設定形式を示した説明図である。
【図2】本発明の製造方法を説明した説明図である。
【図3】拡散反射板が電極を兼ねた反射型LCDの断面図である。
【符号の説明】
101 LCD
102 拡散反射板
103 背面反射板
104 前面拡散板
105 液晶
106 光
201 基板
202 感光性樹脂
203 フォトマスク
204 感光性樹脂膜表面の凹凸
205 露光
206 オーブン
207 金属膜
301 反射型LCD
302 カラーフィルタ
303 液晶
304 電極を兼ねた拡散反射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflective liquid crystal display used as a home, office, and portable information display terminal, a diffuse reflector, and a method for manufacturing the same.
[0002]
[Prior art]
A liquid crystal display (LCD) is widely used as a display unit of a notebook personal computer because it has features of low power consumption and space saving. In recent years, LCDs have been increasing in size and are expected to replace CRTs (Cathod Ray Tubes). These employ a transmission type in which a light source called a backlight is placed on the back of the LCD body and the transmitted light is viewed. The power consumption of the backlight occupies most of the power consumption of the LCD module, and has the disadvantages that the thickness of the backlight increases, is heavy, and generates heat.
[0003]
On the other hand, in the reflective LCD, the external light incident from the display surface side is reflected by the metal reflector and used for display, so the thickness is thin, light and does not generate heat. For this reason, it has been adopted as a display for small calculators, mobile phones, and the like that require battery life and portability. In recent years, with the development and popularization of portable information processing devices such as mobile phones and mobile computers with a large amount of information, a reflective LCD with high image quality, particularly full color display, has been demanded. However, the conventional reflective LCD is not suitable for a high-quality full-color LCD because the screen is not bright enough.
[0004]
The brightness of the reflective LCD screen is greatly affected by the diffuse reflector. Three types of diffuse reflectors have been proposed. The first is a method in which a diffuse reflector is provided on the back surface of the liquid crystal, which further includes a diffuse reflector 102 shown in FIG. 1A on the back surface of the LCD 101 and an LCD 101 shown in FIG. Divided into things. The second is the one in which the liquid crystal itself shown in FIG. 1 (c) diffuses, and the third is the one having the rear reflector 103 and the front diffuser 104 shown in FIG. 1 (d). In the case where the liquid crystal 105 itself diffuses, the liquid crystal layer becomes thick in order to obtain strong diffusion, and as a result, the driving voltage increases. An image having a back reflector and a front diffuser is blurred by diffusion at the front. On the other hand, such a problem does not occur in a case having a diffuse reflector. However, those having a diffuse reflector on the back of the LCD have a long optical path of the reflected light, which causes a parallax problem, resulting in a decrease in contrast and color bleeding. An LCD having a diffuse reflector in the LCD can avoid the parallax problem since the optical path of the reflected light is the shortest.
[0005]
Further, since the electrodes on the back substrate do not need to transmit light, a metal can be used. If this also serves as a diffuse reflector, the parallax can be minimized. Such a diffuse reflector is manufactured by forming a highly reflective metal thin film such as aluminum or silver having a high reflectance on a concavo-convex surface in a predetermined electrode shape. A cross-sectional view of this type of LCD is shown in FIG.
[0006]
In order to brighten the display on the reflective LCD, the reflectance of the diffuse reflector must be increased. However, simply increasing the reflectance of the diffuse reflector material does not solve the problem. Since the diffuse reflector is covered with high refractive index liquid crystal and glass, the incident angle causing total reflection at the interface between the air and the front substrate becomes relatively small, and most of the reflected light is confined in the panel. Because. Therefore, it is necessary to control the shape of the irregularities on the surface so that the amount of reflected light to the front surface of the diffuse reflector is increased. Moreover, in order to avoid coloring due to interference between reflected lights, the uneven shape needs to be somewhat messy.
[0007]
[Problems to be solved by the invention]
As a method for forming such a concavo-convex shape, a bead dispersion coating, an embossing method, a sputtering / vapor deposition method, and a photolithography method can be considered. A film obtained by coating beads having an appropriate shape dispersed in a binder requires a large amount of beads, but there is a problem that uniform application becomes difficult when the amount of beads is large. The embossing method has a problem that the unevenness is fine, the accuracy is high, and a large embossed plate is expensive. The sputtering / evaporation method has a problem that the equipment becomes large in order to obtain a high vacuum. Photolithography is a simple method compared to these methods, but it still requires a development process that uses a developer. Therefore, it is necessary to secure a space for the developing machine, separately require pure water equipment, and manage and discard the developer. There is a problem. Both have problems in industrial implementation. Alternatively, in order to make the uneven shape smooth, it is necessary to heat the pattern after forming it so that the shape becomes gentle. For this reason, there also exists a problem that the uneven | corrugated pitch is restrict | limited.
[0008]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a diffusive reflector that is extremely simple to manufacture, a manufacturing method thereof, and a reflective liquid crystal display using the same.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
The diffusive reflector according to claim 1 has at least a photosensitive resin on which unevenness is formed by exposure and baking on a substrate, and a metal film.
The diffusive reflector according to claim 2 is based on the diffusive reflector according to claim 1, wherein the unevenness is 10 μm or less and the maximum height is 500 mm or more. is there.
The method for producing a diffuse reflector according to claim 3 includes a step of applying a photosensitive resin on a substrate, a step of exposing with a predetermined photomask, a step of forming irregularities on the surface of the photosensitive resin by baking, the irregularities It includes at least a step of forming a metal film thereon.
According to a fourth aspect of the present invention, there is provided a reflective liquid crystal display in which the diffuse reflector is incorporated.
A reflective liquid crystal display according to a fifth aspect is based on the reflective liquid crystal display according to the fourth aspect, and is characterized in that the diffuse reflector also serves as an electrode.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The difference between the present invention and the method of forming irregularities by a photolithography method using a photosensitive resin is whether or not the development step is included. A feature of the present invention is that it does not include a development step. Hereinafter, a description will be given with reference to FIG.
[0011]
First, a photosensitive resin 202 is applied on the substrate 201 (see FIG. 2A). The required properties of the resin are that at least the film after firing should withstand the heating during the formation of a metal film (aluminum, chromium, silver, copper, etc.) and be chemically stable to the liquid crystal. It is. The phenomenon of the present invention is a phenomenon that appears in both negative and positive photosensitive resins. As a coating method, a spin coating method, a roll coating method, a printing method, or the like may be selected depending on the resin. After coating, the coating film is dried at an appropriate temperature.
[0012]
After drying, exposure is performed using a predetermined photomask 203 (see FIG. 2B). As for the pattern of the photomask, it is preferable that dot-like patterns are randomly distributed in position. The size of the dots is preferably about 10 μm to submicron in diameter. The exposure amount is set according to the photosensitivity of the resin. After exposure, without being developed, it is placed in an oven 206 and baked (see FIG. 2C). The firing condition may be a condition in which the resin is sufficiently thermoset. When baked, the unexposed part becomes lower than the exposed part, and as a result, irregularities 204 reflecting the pattern of the photomask are formed (see FIG. 2D).
[0013]
The reason why the relative height difference occurs between the exposed part and the unexposed part is considered to be that the reaction of the photosensitive resin proceeds in the exposed part, but there are many unreacted substances in the unexposed part, and this is evaporated by heating. In this method, the uneven cross-section is composed of a sinusoidal continuous curve according to SEM observation. The uneven step can be controlled to some extent by increasing the film thickness or increasing the amount of exposure, but can be generally controlled at 50 to 1 μm. A metal film 207 such as aluminum or silver is formed on the irregular surface by a regular sputtering method or vapor deposition method (see FIG. 2E).
[0014]
The average size of the uneven pattern is 10 μm or less, preferably 5 μm, and the height is 500 mm or more, preferably 2000 mm or more. When the pattern is larger or lower than this, the diffusion is weak and the specular reflection of the metal film cannot be eliminated.
[0015]
When multiple exposure is performed by changing the mask position and changing the exposure amount during exposure, it is possible to obtain a more complex uneven surface with mixed pitches and height differences.
[0016]
The diffusive reflector obtained in this way has a strong light diffusion property toward the front surface of the substrate due to the uneven surface while having a high reflectance by the metal film.
[0017]
In addition, it is possible to manufacture a diffuse reflector that also serves as an electrode by patterning a metal film in a stripe shape or an appropriate shape by mask patterning or photolithography.
[0018]
In this case, a reflective LCD 301 can be obtained by using a diffuse reflection plate 304 as a rear substrate, bonding the front substrate on which the color filter 302 is formed with a minute gap, and sealing the liquid crystal 303 in the gap. (See FIG. 3).
[0019]
【Example】
[Example 1]
390 g of epoxy resin (manufactured by Toto Kasei Co., Ltd .: “YDPN-601”) and 108 g of acrylic acid were dissolved in 750 g of 1,6-hexanediol acrylate, and in the presence of 0.5 g of hydroquinone and 3 g of methylethylammonium iodide. It was made to react at 100-150 degreeC for 2 hours. Subsequently, 279 g of anhydrous head acid was added and reacted at 100 to 150 ° C. for 2 hours to obtain a water-soluble photopolymerizable oligomer.
[0020]
100 parts by weight of the obtained water-soluble photopolymerizable oligomer, 40 parts by weight of a phenol novolac type epoxy resin (manufactured by Toto Kasei Co., Ltd .: “YDCN-602”) as a water-insoluble photopolymerizable oligomer, and trimethyl as a photopolymerizable monomer 20 parts by weight of methylolpropane triacrylate (manufactured by Kyoeisha Yushi Co., Ltd .: “TMP-A”), 5 parts by weight as a photopolymerization initiator (manufactured by Ciba Geigy: “Irgacure-651”), diphenyl as a photocuring catalyst precursor A negative photosensitive resin material (1) was obtained by mixing 0.5 parts by weight of iodonium hexafluoroantimonate and 0.1 parts by weight of hydroquinone as a polymerization inhibitor in 1000 parts by weight of butyl cellosolve.
[0021]
A negative photosensitive resin material (1) was applied on a glass substrate by a spin coating method and dried at 70 ° C. for 30 minutes to obtain a resin film having a thickness of 1.6 μm. The resin film was exposed at 50 mJ / cm 2 and baked at 150 ° C. for 1 hour using a photomask in which dot patterns with a diameter of 8 μm were randomly arranged on one surface. After firing, the resin film surface was observed with an SEM. As a result, dot-shaped irregularities having a height of 2000 mm were formed. On this unevenness, an aluminum film having a thickness of 1500 mm was formed by sputtering to obtain a diffuse reflector.
[0022]
In the obtained diffuse reflector, most of the reflected light gathered within 30 ° in the vertical and horizontal directions. Although the metal film itself was almost specular, the specular reflection was completely eliminated by diffusion due to rough irregularities.
[0023]
Next, a diffuse reflection plate was used as the back substrate, and the front substrate on which the color filter was formed was bonded with a fine gap, and liquid crystal was sealed in the gap to obtain a reflective LCD. The reflective LCD thus obtained had a small parallax and a good contrast.
[0024]
[Example 2]
A positive photosensitive resin material MP1400-31 (manufactured by Shipley Far East) was applied on a glass substrate by spin coating, and dried at 90 ° C. for 30 minutes to obtain a resin film having a thickness of 3 μm. The resin film was exposed at 50 mJ / cm 2 and baked at 150 ° C. for 1 hour using a photomask in which dot patterns with a diameter of 10 μm were randomly arranged on one surface. After firing, the resin film surface was observed with an SEM. As a result, dot-shaped irregularities having a height of 2200 mm were formed. On this unevenness, 1500 mm of aluminum film was formed by vapor deposition to obtain a diffuse reflector.
[0025]
In the obtained diffuse reflector, most of the reflected light gathered within 30 ° in the vertical and horizontal directions. Although the metal film itself was almost specular, the specular reflection was completely eliminated by diffusion due to rough irregularities.
[0026]
Next, a diffuse reflection plate was used as a back substrate, and a front substrate on which a color filter was formed was bonded with a fine gap, and then liquid crystal was sealed in the gap to obtain a reflective LCD. The reflective LCD thus obtained had a small parallax and a good contrast.
[0027]
【The invention's effect】
According to the first and second aspects of the present invention, it is possible to obtain a diffusive reflector having high reflectivity and effective light diffusion characteristics toward the front surface. Further, according to the invention described in claim 3, in the production, the development process is not required and the production can be performed at low cost. Furthermore, according to the invention described in claim 4, it is possible to obtain a good reflective LCD. Furthermore, according to the invention described in claim 5, the parallax can be minimized by combining the functions of the electrodes. This makes it possible to obtain a bright and high-quality reflective LCD.
[0028]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a setting format of a diffuse reflector in a reflective LCD.
FIG. 2 is an explanatory view explaining the manufacturing method of the present invention.
FIG. 3 is a cross-sectional view of a reflective LCD in which a diffuse reflector also serves as an electrode.
[Explanation of symbols]
101 LCD
102 Diffuse Reflector 103 Back Reflector 104 Front Diffuser 105 Liquid Crystal 106 Light 201 Substrate 202 Photosensitive Resin 203 Photomask 204 Irregularities 205 on Photosensitive Resin Film Exposure 206 Oven 207 Metal Film 301 Reflective LCD
302 Color filter 303 Liquid crystal 304 Diffuse reflector that also serves as an electrode

Claims (4)

基板上に感光性樹脂を塗布する工程、所定のフォトマスクで露光する工程、焼
成により該感光性樹脂表面に凹凸を形成する工程、前記凹凸上に金属膜を形成す
る工程を少なくとも含むことを特徴とする拡散反射板の製造方法。
It includes at least a step of applying a photosensitive resin on the substrate, a step of exposing with a predetermined photomask, a step of forming irregularities on the surface of the photosensitive resin by baking, and a step of forming a metal film on the irregularities. A manufacturing method of a diffuse reflector.
前記露光する工程において、多重露光を用いることを特徴とする請求項1に記載の拡散反射板の製造方法。2. The method of manufacturing a diffuse reflector according to claim 1, wherein multiple exposure is used in the exposing step. 請求項1又は請求項2の製造方法により製造された拡散反射板を組み込ことを特徴とする反射型液晶ディスプレイの製造方法 Claim 1 or method of manufacturing a reflective liquid crystal display according to claim claim 2 in production that write set a diffuse reflector made free by the process. 前記拡散反射板が電極を兼ねることを特徴とする請求項記載の反射型液晶ディスプレイの製造方法4. The method of manufacturing a reflective liquid crystal display according to claim 3, wherein the diffuse reflector also serves as an electrode.
JP05196398A 1998-03-04 1998-03-04 Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same Expired - Fee Related JP3941207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05196398A JP3941207B2 (en) 1998-03-04 1998-03-04 Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05196398A JP3941207B2 (en) 1998-03-04 1998-03-04 Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same

Publications (2)

Publication Number Publication Date
JPH11248909A JPH11248909A (en) 1999-09-17
JP3941207B2 true JP3941207B2 (en) 2007-07-04

Family

ID=12901531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05196398A Expired - Fee Related JP3941207B2 (en) 1998-03-04 1998-03-04 Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same

Country Status (1)

Country Link
JP (1) JP3941207B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281652A (en) * 2000-03-31 2001-10-10 Asahi Glass Co Ltd Method for manufacturing light diffusion reflection layer for liquid crystal display panel
JP2002014208A (en) 2000-04-26 2002-01-18 Sharp Corp Optical film, light reflecting film, liquid crystal display panel, method and apparatus for producing optical film, method for producing patterning roller, and method and apparatus for sticking optical film therefor
KR20020057228A (en) * 2000-12-30 2002-07-11 주식회사 현대 디스플레이 테크놀로지 Method for producing reflect lcd using of half tone patterning
JP2002296407A (en) * 2001-03-30 2002-10-09 Hitachi Chem Co Ltd Method for forming recess and projection, optical film which uses the same and its use
WO2003104899A1 (en) * 2002-06-06 2003-12-18 日立化成工業株式会社 Method of forming surface indent and use thereof
KR100907422B1 (en) 2002-12-31 2009-07-10 엘지디스플레이 주식회사 Reflective plate and the fabrication method for LCD
KR100705624B1 (en) * 2003-12-24 2007-04-11 비오이 하이디스 테크놀로지 주식회사 Method for fabricating reflective type LCD

Also Published As

Publication number Publication date
JPH11248909A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
KR100268006B1 (en) Reflective-type liquid crystal display device and method for producing a reflective film of that
US6888678B2 (en) Irregular-shape body, reflection sheet and reflection-type liquid crystal display element, and production method and production device therefor
TWI333103B (en) Reflector in liquid crystal display device and method of fabricating the same
CN101995595A (en) Optical sheet for controlling the direction of ray of light
CN101556397A (en) Color-film substrate, manufacture method thereof and liquid crystal display
JP3941207B2 (en) Diffuse reflector, manufacturing method thereof, and reflective liquid crystal display using the same
TW575785B (en) Mask, substrate with light reflecting film, method for manufacturing light reflecting film, optical display device, and electronic apparatus
JPH11237625A (en) Photomask and production of rugged body using the phtomask
JP3825782B2 (en) Anti-glare film, method for producing the same, and display device including the same
JP2005140890A (en) Anti-glare film and image display device
JP2008268692A (en) Display filter and manufacturing method thereof
JP3808212B2 (en) Production method of transfer film and diffuse reflector
JP3608609B2 (en) Production method of transfer film and diffuse reflector
JP2001188112A (en) Reflecting plate and its manufacturing method, and element and device for display
JPH09184927A (en) Light guide plate unit for liquid crystal display
JP2002296582A (en) Liquid crystal display device and manufacturing method therefor
JP3438771B2 (en) Light diffusion member, method of manufacturing light diffusion member, and transfer film
JP2003337209A (en) Diffusing reflector and its application
JP3247904B2 (en) Manufacturing method of black matrix substrate
JP2004198990A (en) Surface unevenness forming method, optical film obtained by the same, diffuse reflective plate, and film having unevenness on surface
JP2002350841A (en) Reflective liquid crystal display element and manufacturing method therefor
JP2000258762A (en) Production of liquid crystal display device
JP2004004750A (en) Method for manufacturing transfer film and diffusion reflection plate
JPH10133012A (en) Production of color filter
JPH06258520A (en) Black matrix substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees