JP2004004750A - Method for manufacturing transfer film and diffusion reflection plate - Google Patents

Method for manufacturing transfer film and diffusion reflection plate Download PDF

Info

Publication number
JP2004004750A
JP2004004750A JP2003108913A JP2003108913A JP2004004750A JP 2004004750 A JP2004004750 A JP 2004004750A JP 2003108913 A JP2003108913 A JP 2003108913A JP 2003108913 A JP2003108913 A JP 2003108913A JP 2004004750 A JP2004004750 A JP 2004004750A
Authority
JP
Japan
Prior art keywords
film
thin film
layer
substrate
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108913A
Other languages
Japanese (ja)
Inventor
Nobuaki Takane
高根 信明
Yasuo Tsuruoka
鶴岡 恭生
Takeshi Yoshida
吉田 健
Kazuyuki Funahata
舟幡 一行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003108913A priority Critical patent/JP2004004750A/en
Publication of JP2004004750A publication Critical patent/JP2004004750A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer film used for the manufacture of a diffusion reflection plate for reflection type LCD having good reflection characteristics. <P>SOLUTION: Sand-blasted polyethylene terephthalate is used for a base film 4, and a thin film layer 2 is formed on the film by applying thin film layer forming solution and drying the solution, then, the layer 2 is coated with a polyethylene film as a cover film 5, thus, the transfer film is obtained. A substrate with a glass substrate, the thin film layer and a polyethylene terephthalate film (PET film) laminated is obtained by laminating so that the thin film layer comes into contact with the glass substrate while peeling off from the cover film of the transfer film. When the PET film is peeled off the substrate after the irradiation with light for making the thin film layer react by an exposure machine, the sand-blasted unevenness is transferred on the thin film layer, and the unevenness of good light diffusibility is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、バックライトを必要としない反射型液晶表示装置や高効率を必要とされる太陽電池の拡散反射板の製造等に使用される転写フィルム及びその転写フィルムを使用すた拡散反射板の製造法に関する。
【0002】
【従来の技術】
液晶ティスプレイ(以下LCDと略す)は、薄型、小型、低消費電力などの特長を生かし、現在、時計、電卓、TV、パソコン等の表示部に用いられている。更に近年、カラーLCDが開発されOA・AV機器を中心にナビゲーションシステム、ビュウファインダー、パソコンのモニター用など数多くの用途に使われ始めており、その市場は今後、急激に拡大するものと予想されている。特に、外部から入射した光を反射させて表示を行う反射型LCDは、バックライトが不要であるために消費電力が少なく、薄型、軽量化が可能である点で携帯用端末機器用途として注目されている。
【0003】
従来から反射型LCDにはツイステッドネマティック方式並びにスーパーツイステッドネマティック方式が採用されているが、これらの方式では直線偏光子により入射光の1/2が表示に利用されないことになり表示が暗くなってしまう。そこで、偏光子を1枚に減らし、位相差板と組み合わせた方式や相転移型ゲスト・ホスト方式の表示モードが提案されている。
【0004】
反射型LCDにおいて外光を効率良く利用して明るい表示を得るためには、更にあらゆる角度からの入射光に対して、表示画面に垂直な方向に散乱する光の強度を増加させる必要がある。そのために、反射板上の反射膜を適切な反射特性が得られるように制御することが必要である。基板に感光性樹脂を塗布しフォトマスクを用いてパターン化して凹凸を形成し、金属薄膜を形成して拡散反射板を形成する方法(特開平4−243226号公報)が提案されている。
【0005】
【発明が解決しようとする課題】
前記の方法では凹凸を形成するために、各基板ごとにフォトマスクで露光し、現像する工程があるため、工程が複雑であり、低コスト、高生産性とは言えなかった。またフォトマスクでは現像、ポストベーク等の工程によって凹凸形状が変化しやすく一定の反射特性を持つ拡散反射板を安定に生産することが難しい。さらに反射特性を向上させる目的で、凹凸の高さを複数もつ拡散反射板を得たい場合、前記の方法では複数回の感光性樹脂の塗布、露光、現像が必要であるため工程がより煩雑となる。本発明は、良好な反射特性を有する反射型LCD用拡散反射板等の製造に使用される転写フィルムを提供するものである。
【0006】
【課題を解決するための手段】
本発明の転写フィルムは、所定機能を賦与する形状面が形成された仮支持体に、薄膜層が積層されており、前記薄膜層の前記仮支持体に積層されていない面が被転写基板への接着面を構成している。所定機能を賦与する形状面が光を拡散反射し得る凹凸面であるようにして、拡散反射板の製造用の転写フィルムとすることができる。この場合、光を拡散反射し得る凹凸面と薄膜層の間に反射膜が積層された構成とすることができる。仮支持体としては、所定機能を賦与する形状面が形成されたベースフィルム又はベースフィルムと所定機能を賦与する形状面が形成された下塗り層よりなるものが使用される。
【0007】
所定機能を賦与する形状面が光を拡散反射し得る凹凸面となるようにした転写フィルムを使用し、転写フィルムの薄膜層の被転写基板への接着面を基板の表面に貼り合わせ、仮支持体を剥離して基板に薄膜層を転写し、更に薄膜層に反射膜を形成することにより拡散反射板を製造することができる。また、所定機能を賦与する形状面が光を拡散反射し得る凹凸面となるようにし、光を拡散反射し得る凹凸面と薄膜層の間に反射膜を積層した転写フィルムを使用し、転写フィルムの薄膜層の被転写基板への接着面を基板の表面に貼り合わせ、仮支持体を剥離して基板に薄膜層、反射膜を転写することにより拡散反射板を製造することができる。
【0008】
【発明の実施の形態】
図1、2は本発明の転写フィルムの一例を示す断面図、図3、4は本発明の転写フィルムを使用して製造された拡散反射板の一例を示す断面図、図5は反射型LCDの断面図であり、図中1はガラス基板、2は薄膜層、3は反射膜、4はベースフィルム、5はカバーフィルム、11はカラーフィルタ、12はブラックマトリクス、13は透明電極、14は平坦化膜、15は配向膜、16は液晶層、17はスペーサ、18は位相差フィルム、19は偏光板を示す。
【0009】
表面が多数の微細な凹凸を有する状態に加工処理されたベースフィルム、薄膜層、カバーフィルムが順次積層された転写フィルムを用いて、カバーフィルムを剥がしながら基板に薄膜層が接するようにラミネートして基板上に薄膜層とベースフィルムを積層し、前記ベースフィルムを剥離することで基板上に表面に多数の微細な凹凸を有する薄膜層を形成できる。これに更に金属薄膜等の反射膜を形成すれば所望の拡散反射板が得られる。また、あらかじめ薄膜層とベースフィルムの間に反射膜を積層した転写フィルムを用いて、カバーフィルムを剥がしながら基板に薄膜層が接するようにラミネートし、基板上に薄膜層、反射膜、ベースフィルムを積層し、前記ベースフィルムのみを剥離すると所望の拡散反射板が得られる。
【0010】
転写フィルムの仮支持体としては、表面に多数の微細な凹凸を有するベースフィルム又はベースフィルムと表面に多数の微細な凹凸を有する下塗り層よりなることができる。ベースフィルムは、表面に多数の微細な凹凸を有する状態に加工処理された原型を押し当てることによって製造されたものを用いることもできる。また、ベースフィルムに、変形可能な下塗り層を設け、この層に多数の微細な凹凸を有する状態に加工処理された原型を押し当てる工程、下塗り層を硬化する工程により形成したものが使用できる。またベースフィルムの表面がサンドブラスト処理されたものを用いることもできる。
【0011】
本発明の多数の微細な凹凸を有する状態に加工処理された仮支持体の作製方法の一例は、文献「続・わかりやすい光ディスク(オプトロニクス社、平成2年発行)」に示されている。すなわち、ガラス板上にフォトレジストを塗布後、所定のマスクパターンを有するフォトマスクを用いて露光し現像するか、またはレーザーカッティングした後、パターン形成面に真空蒸着法やスパッタリング法等により銀またはニッケル膜を形成(導電化処理)し、ニッケルを電鋳により積層して、ガラス板から剥離する工程によってファーザー原型を作製することができる。このファザー原型に剥離処理を行い再度ニッケル電鋳を行い、ファザー原型から剥離してマザー原型を作製し、このマザー原型を使用して多数の微細な凹凸を形成することができる。
【0012】
多数の微細な凹凸を有する仮支持体は、シート状、平板またはロール状または曲面の一部等の基材の表面に全面または必要な部分に多数の微細な凹凸が形成されたものを用いることができ、加圧装置に貼り付けたり、凹凸を形成する面と加圧装置との間に挟み込んで用いてもよい。押し当てる工程で熱、光等を与えてもよい。
【0013】
多数の微細な凹凸を有する仮支持体の凹凸の程度は、通常、薄膜層を硬化することで変形することを考慮し設計する必要がある。薄膜層の硬化による変形率をaとすると、薄膜層の硬化後の形状として、凹部と凸部の高さの差が0.1μm〜15μm、さらには、0.1μm〜5μm、凸部のピッチが0.7μm以上150μmあるいは画素ピッチのいずれか小さい方以下、さらには2μm以上150μmあるいは画素ピッチのいずれか小さい方以下であることが好ましい。
【0014】
図6に本発明の拡散反射板の反射特性の測定装置を示す。反射光線21と入射光線22のなす角度をθとすると、必要とされるθの範囲で拡散反射板の法線方向で観測される輝度すなわち反射強度を大きくすれば反射特性に優れる拡散反射板が得られる。必要とされるθの範囲が−60°〜60°である場合、図7に示すような凹曲面で凹凸が形成されている拡散反射板は、図8に示したように凹部と凸部の高さHと、凸部のピッチPの関係がP=7×Hの関係式で示される直線付近であれば、反射特性に優れる拡散反射板が得られる。また、θが−15°〜15°の場合は、P=30×Hの関係式で示される直線付近であれば反射特性に優れる拡散反射板が得られる。このことは、法線に対し拡散反射を60度の範囲の光源で得ようとし、さらに15度の範囲でより強く得ようとする場合、P=7×Hの関係式とP=30×Hの関係式で示される2つの直線付近の領域を複合した形状にできればよいことを示す。むろん、前述の2つの直線付近の範囲にすべての凹凸が含まれるとは限定しない。なぜなら凹凸形状作製プロセス上複数の形状が形成されることは当然であるからである。また、液晶層のギャップ均一性や光の干渉の影響を考慮しなければならない。
【0015】
したがって、仮支持体の凹凸の程度は、凸曲面で凹部と凸部の高さの差が0.1×aμm〜15×aμm、さらには、0.1×aμm〜5×aμm、凸部のピッチが0.7μm以上150μmあるいは画素ピッチのいずれか小さい方以下、さらには2μm以上150μmあるいは画素ピッチのいずれか小さい方以下であることが好ましい。aの値は、薄膜層の材質により異なり、例えば、2であったり、1あるいは0.7であることもある。以上は図7に示すような凹曲面で拡散反射板の凹凸を形成した場合の例であるが、図9に示すような凹凸複合の曲面で拡散反射板の凹凸を形成した場合、法線に対し60度以内の光源からの拡散反射は、図10に示すような凹部と凸部の高さHと、凸部のピッチPの関係がP=3.5×Hの関係式で示される直線付近であれば反射特性に優れる。凹凸形状は、面内に周期的に並んでいる必要はなく、不規則であってもよい。また反射型LCDの場合、画素ピッチと異なる周期性が凹凸形状にあるとモアレが発生するので、凹凸の周期性は、画素ピッチと同じかまたは整数で割れる周期、あるいは不規則な配列で凹凸が並んでいることが好ましい。
【0016】
また、凹凸の面形状は特に限定されないが、複合平面だけでなく凹曲面あるいは凸曲面、凹凸複合の曲面、さらには球面や放物面に近似した凹曲面あるいは凸曲面、凹凸複合の曲面であることが好ましい。なぜなら、曲面とすることで、より広範囲の光源位置からの拡散反射光を期待できるからである。
【0017】
本発明のベースフィルムとしては、化学的、熱的に安定であり、シートまたは板状に成形できるものを用いることができる。具体的には、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリハロゲン化ビニル類、セルロースアセテート、ニトロセルロース、セロハン等のセルロース誘導体、ポリアミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル、あるいはアルミ、銅等の金属類等である。これらの中で特に好ましいのは寸法安定性に優れた2軸延伸ポリエチレンテレフタレートである。
【0018】
薄膜層としては変形可能な有機重合体を含む組成物または無機化合物、金属を用いることができるが、好ましくは支持体上に塗布しフィルム状に巻き取ることが可能な有機重合体組成物を用いる。またこの中に必要に応じて、染料、有機顔料、無機顔料、粉体及びその複合物を単独または混合して用いてもよい。薄膜層には感光性樹脂組成物、熱硬化性樹脂組成物を用いることもできる。これら薄膜層の誘電率、硬度、屈折率、分光透過率は特に限定されない。
【0019】
そのようなものの中で、被転写基板に対する密着性が良好で、ベースフィルムからの剥離性がよいものを用いるのが好ましい。たとえばアクリル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン等のポリハロゲン化ビニル類、セルロースアセテート、ニトロセルロース、セロハン等のセルロース誘導体、ポリアミド、ポリスチレン、ポリカーボネート、ポリイミド、ポリエステル等を用いることができる。また感光性を有するものを用いることができる。場合によっては基板の凹凸が必要な部分だけを残し、不要な部分を除けるように、アルカリ等で現像可能な感光性樹脂を用いることもできる。耐熱性、耐溶剤性、形状安定性を向上させるために、凹凸形成後に熱または光によって硬化可能な樹脂組成物を用いることもできる。さらに、カップリング剤、接着性付与剤を添加することで基板との密着を向上させることもできる。接着を向上させる目的で基板または薄膜層の接着面に接着性付与剤を塗布することも含まれる。
【0020】
アルカリで現像可能な樹脂としては、酸価が20〜300、重量平均分子量が1,500〜200,000の範囲に入っているものが好ましく、例えばスチレン系単量体とマレイン酸との共重合体又はその誘導体(以下、SM系重合体という)、アクリル酸又はメタクリル酸等のカルボキシル基を有する不飽和単量体とスチレン系単量体、メチルメタクリレート、t−ブチルメタクリレート、ヒドロキシエチルメタクリレート等のアルキルメタクリレート、同様のアルキル基を有するアルキルアクリレート等の単量体との共重合体が好ましい。
【0021】
SM系共重合体は、スチレン、α−メチルスチレン、m又はp−メトキシスチレン、p−メチルスチレン、p−ヒドロキシスチレン、3−ヒドロキシメチル−4ヒドロキシ−スチレン等のスチレン又はその誘導体(スチレン系単量体)と無水マレイン酸、マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノ−n−プロピル、マレイン酸モノ−iso−プロピル、マレイン酸−n−ブチル、マレイン酸モノ−iso−ブチル、マレイン酸モノ−tert−ブチル等のマレイン酸誘導体を共重合させたもの(以下、共重合体(I)という)がある。共重合体(I)には、メチルメタクリレート、t−ブチルメタクリレート等のアルキルメタクリレート等、前記した共重合体(I)を反応性二重結合を有する化合物で、変性したものがある(共重合体(II))。
【0022】
上記共重合体(II)は、共重合体(I)中の酸無水物基又はカルボキシル基に不飽和アルコール、例えばアリルアルコール、2−ブラン−1−2−オールフルフリルアルコール、オレイルアルコール、シンナミルアルコール、2−ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、N−メチロールアクリアミド等の不飽和アルコール、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、α−エチルグリシジルアクリレート、イタコン酸モノアルキルモノグリシジルエステル等のオキシラン環及び反応性二重結合をそれぞれ1個有するエポキシ化合物と反応させることにより製造することができる。この場合、アルカリ現像を行うために必要なカルボキシル基が共重合体中に残っていることが必要である。SM系重合体以外のカルボキシル基を有する重合体も、上記と同様に反応性二重結合の付与は、感光度の点から好ましい。これらの共重合体の合成は特公昭47−25470号公報、特公昭48−85679号公報、特公昭51−21572号公報等に記載されている方法に準じて行うことができる。薄膜層の膜厚は、凹凸を有する仮支持体の凹凸の高低差より厚く形成すると凹凸形状を再現しやすい。膜厚が等しいあるいは薄いと凹凸形状が変形する。また、凹凸を形成する場合後述する問題が発生する場合がある。
【0023】
本発明の下塗り層としては、凹凸形成後は薄膜層よりも硬いものが好ましい。例えばポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル、エチレンとアクリル酸エステル、エチレンとビニルアルコールのようなエチレン共重合体、ポリ塩化ビニル、塩化ビニルと酢酸ビニルの共重合体、塩化ビニルとビニルアルコールの共重合体、ポリ塩化ビニリデン、ポリスチレン、スチレンと(メタ)アクリル酸エステルのようなスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステルのようなビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニルのような(メタ)アクリル酸エステルの共重合体、合成ゴム、セルローズ誘導体等から選ばれた、少なくとも1種類以上の有機高分子を用いることができる。凹凸形成後硬化させるために必要に応じて光開始剤やエチレン性二重結合を有するモノマ等を予め添加することができる。また感光タイプをネガ型材を利用することで示したが、ポジ型であっても問題はない。
【0024】
本発明の薄膜層や下塗り層の塗布方法としては、ロールコータ塗布、スピンコータ塗布、スプレー塗布、ホエラー塗布、ディップコータ塗布、カーテンフローコータ塗布、ワイヤバーコータ塗布、グラビアコータ塗布、エアナイフコータ塗布等がある。仮支持体上等に上記の方法で薄膜層または下塗り層組成物を塗布する。
【0025】
反射膜としては、反射したい波長領域によって材料を適切に選択すれば良く、例えば反射型LCD表示装置では、可視光波長領域である300nmから800nmにおいて反射率の高い金属、例えばアルミニウムや金、銀等、を真空蒸着法またはスパッタリング法等によって形成する。また反射増加膜(光学概論2(辻内順平、朝倉書店、1976年発行)に記載)を上記の方法で積層してもよい。反射膜の厚みは、0.01μm〜50μmが好ましい。また反射膜は、必要な部分だけフォトリソグラフィー法、マスク蒸着法等によりパターン形成してもよい。
【0026】
本発明の転写フィルムのカバーフィルムとしては、化学的および熱的に安定で、薄膜層との剥離が容易であるものが望ましい。具体的にはポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルアルコール等の薄いシート状のもので表面の平滑性が高いものが好ましい。剥離性を付与するために表面に離型処理をしたものも含まれる。
【0027】
また、それぞれの転写フィルムの基板への転写後の剥離面は、薄膜層とベースフィルムとの間、また反射膜がある場合には反射膜とベースフィルムあるいは反射膜と下塗り層の間となる。但し、目的によっては下塗り層と反射膜があるフィルム構造の場合で、下塗り層を基板に積層するため、下塗り層とベースフィルムの間を剥離面に設定することが出来る。下塗り層を基板に積層する目的として、反射膜を電極として用いる場合の電気絶縁層としての機能を下塗り層に持たせる場合、あるいは反射膜凹凸の平坦化層としての役割を下塗り層に持たせる場合、下塗り層に感光性樹脂を用いて、反射膜のエッチングレジストとしての役割を持たせる場合、更に下塗り層を着色し、反射膜の部分的な遮光層としての役割を持たせる場合等がある。
【0028】
仮支持体上の薄膜層、反射膜を基板に転写する方法としては、カバーフィルムを剥がし、基板上に加熱圧着すること等がある。さらに密着性を必要とする場合には基板を必要な薬液等で洗浄したり、基板に接着付与剤を塗布したり、基板に紫外線等を照射する等の方法を用いてもよい。本発明の転写フィルムをラミネートする装置としては基板を加熱、加圧可能なゴムロールとベースフィルムとの間に挟み、ロールを回転させて、転写フィルムを基板に押し当てながら基板を送りだすロールラミネータを用いることが好ましい。このようにして基板表面に形成した薄膜層の膜厚は、0.1μm〜50μmの範囲が好ましい。このとき凹凸形状の最大高低差より薄膜層の膜厚が厚い方が凹凸形状を再現しやすい。膜厚が等しいあるいは薄いと原型凸部で薄膜層を突き破ってしまい、平面部が発生し拡散反射を効率よく得にくくなる。
【0029】
この薄膜層にネガ型感光性樹脂を用いた場合には、その形状の安定性を付与するために露光機により露光を行い、感光部分を硬化させる。本発明に適用し得る露光機としては、カーボンアーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ、メタルハライドランプ、蛍光ランプ、タングステンランプ等が挙げられる。この露光装置は画素及びBM等のパターン形成用の平行露光機でも良いが、本発明では予め形成された凹凸を硬化させることで出来れば良く、このためには感光性樹脂が硬化する露光量以上の光量を与えておけばよい。従って、一般に基板洗浄装置として利用されているラインに組み込める散乱光を用いるUV照射装置を用いることが出来る。これらの装置を用いることによって、フォトマスクを用いる手法に比べて安価に作製でき、フォトマスクを用いる場合に比べ、露光量に対する裕度が大きい。また感光タイプをネガ型材を利用することで示したが、ポジ型であっても問題はない。露光は支持体を剥がす前、または剥がした後に行う。基板への密着性、追従性を向上させる目的で、ベースフィルムにクッション層を設けてもよい。
【0030】
以上反射型LCD表示装置で説明したが、本発明の転写フィルムで製造された拡散反射板は外部光線を拡散反射させることが必要なデバイスに用いることが出来る。例えば太陽電池の効率向上を目的とした拡散反射板がある。また本発明の転写フィルムは遮光板、装飾板、スリガラス、投影スクリ−ンの白色板、光学フィルタ、集光板、減光板等の製造に使用することができる。このように、本発明の転写フィルムはガラス板、合成樹脂板、合成樹脂フィルム、金属板、金属箔いかなるものにも転写することができ、被転写基板面は、平面のみならず曲面、立体面でも良い。
【0031】
【実施例】
実施例1
図1により説明する。ベースフィルム4に厚さ50μmのサンドブラスト処理したポリエチレンテレフタレートを用い、このフィルム上にコンマコータで6μmの膜厚となるように下記の薄膜層形成用溶液を塗布乾燥し薄膜層2を形成し、カバーフィルム5としてポリエチレンフィルムを被覆して図1に示すような転写フィルムを得た。
薄膜層形成用溶液:ポリマーとしてスチレン、メチルメタクリレート、エチルアクリレート、アクリル酸、グリシジルメタクリレート共重合樹脂を用いた(ポリマーA)。分子量は約35000、酸価は110である。部は重量部(以下同じ)。

Figure 2004004750
次に、この転写フィルムのカバーフィルムを剥がしながら、薄膜層がガラス基板に接するようにラミネータ(ロールラミネータHLM1500、日立化成テクノプラント社製)を用いて、基板温度100℃、ロール温度100℃、ロール圧力6kg/平方cm、速度0.5m/分でラミネートし、ガラス基板、薄膜層、ポリエチレンテレフタレートフィルム(PETフィルム)が積層された基板を得た。露光機(大型マニュアル露光機、MAP1200、大日本スクリーン社製)で薄膜層が反応する光線を500mJ/平方cm照射したのち、この基板からPETフィルムを剥がすと、薄膜層上にはサンドブラスト加工された凹凸が転写されており、光の拡散性にすぐれた凹凸形状であった。耐熱性を得るために240℃、20分間オーブン(クリーンオーブンCSO−402、楠本化成製)で熱硬化を行い、これにAl薄膜をスパッタリング法により0.1μmの厚みになるように反射膜を積層した。こうして作製した拡散反射板の反射強度(標準白色板に対する相対強度)の入射角度依存性を図11に示す(方位角(φ)を一定とした場合)。入射角度−60°〜60°の範囲で十分な反射強度が得られ、反射特性にすぐれた拡散反射板を得ることができた。図2に示すように、ベースフィルム4の凹凸面に予め反射膜3を形成しておき、反射膜3上に薄膜層2を形成し、カバーフィルム5としてポリエチレンフィルムを被覆して転写フィルムを得ることもできる。この場合はベースフィルム4を剥離することで拡散反射板を得ることができる。
【0032】
実施例2
図13に示すように、ベースフィルム4に厚さ50μmのポリエチレンテレフタレートフィルムを用い、このベースフィルム4上に下記組成の感光性樹脂組成物を溶剤(プロピレングリコールモノエチルエーテルアセテート)で溶解し、コンマコーターで1.5μmの膜厚になるよう塗布乾燥し下塗り層6とした。
感光性樹脂溶液(%は重量%):
アクリル酸ーブチルアクリレートービニルアセテート共重合樹脂 33%
ブチルアクリレート(モノマー)               53%
ビニルアセテート(モノマー)                 8%
アクリル酸(モノマー)                    2%
ヘキチンジオールアクレレート(モノマー)           1%
ベンゾインイソブチルエーテル(光開始剤)           3%
次に不規則なパターンを有するフォトマスクを介して、ベースフィルム上の感光性樹脂層(下塗り層6)を不規則なパターン(平均ピッチ15μm)に感光させた。露光機は大型マニュアル露光機(MAP1200、大日本スクリーン社製)を用い、500mJ/平方cm照射した。現像液(炭酸ナトリウム水溶液0.5%)を用い、1分間バットで現像することで、不規則な凹凸形状を感光性樹脂層(下塗り層6)の表面に形成した。次に感光性樹脂層(下塗り層6)上に実施例1と同様の薄膜層形成用溶液をコンマコーターで6μmの膜厚になるよう塗布乾燥し薄膜層2を形成し、カバーフィルム5としてポリエチレンフィルムを被覆して図5に示すような転写フィルムを得た。次に、この転写フィルムのカバーフィルムを剥がしながら、薄膜層2がガラス基板に接する様にラミネータ(ロールラミネータHLM1500、日立化成テクノプラント社製)を用いて基板温度20℃、ロール温度90℃、ロール圧力6kg/平方cm、速度0.5m/分でラミネートし、ガラス基板上に薄膜層、感光性樹脂層(下塗り層6)、ベースフィルム4が積層された基板を得た。露光機(大型マニュアル露光機、MAP1200、大日本スクリーン社製)で薄膜層が反応する光線を500mJ/平方cm照射したのち、次にベースフィルム4、感光性樹脂層(下塗り層6)を剥離し、ガラス基板上に不規則な凹凸形状の表面の薄膜層を得た。次に、オーブンで230℃、30minの熱硬化をし、真空蒸着法で、銀薄膜を0.2μmの膜厚になるよう積層し反射膜を形成した。これによって得られた拡散反射板は、反射特性に優れ、反射型LCD用拡散反射板として使用可能であった。これによって得られた拡散反射板の平均高低差は1.2μmであった。
【0033】
実施例3
ベースフィルムに厚さ100μmのポリエチレンテレフタレートフィルムを用い、このベースフィルム上に実施例2と同様な光硬化性樹脂溶液をコンマコーターで20μmの膜厚になるよう塗布乾燥した。次に不規則なパターンを有するロール状の原盤を押しあて紫外線を照射し光硬化性樹脂を硬化しロール原盤を分離し、不規則な凹凸形状を光硬化性樹脂層(下塗り層)の表面に形成した。次に光硬化性樹脂層(下塗り層)上に実施例1と同様な薄膜層形成用溶液をコンマコーターで2μmの膜厚になるよう塗布乾燥し、カバーフィルムとしてポリエチレンフィルムを被覆して転写フィルムを得た。次に、この転写フィルムのカバーフィルムを剥がしながら、薄膜層がガラス基板に接する様にラミネータ(ロールラミネータHLM1500、日立化成テクノプラント社製)を用いて基板温度90℃、ロール温度80℃、ロール圧力7kg/平方cm、速度0.5m/分でラミネートし、ガラス基板上に薄膜層、光硬化性樹脂層(下塗り層)、ベースフィルムが積層された基板を得た。次に、光硬化性樹脂層(下塗り層)、ベースフィルムを剥離し、ガラス基板上に不規則な凹凸形状の表面の薄膜層を得た。次に、オーブンで230℃、30minの熱硬化をし、真空蒸着法で、アルミニウム薄膜を0.2μmの膜厚になるよう積層し反射層を形成した。図12には方位角(φ)を一定とした場合の反射強度(標準白色板に対する相対強度)の入射角度依存性を示す。入射角度−60°〜60°の範囲で十分な反射強度が得られ、反射特性にすぐれた拡散反射板を得ることができることが分かった。
【0034】
実施例4
図14に示すように、ベースフィルム4に厚さ50μmのポリエチレンテレフタレートフィルムを用い、このベースフィルム4上に光硬化性樹脂溶液をコンマコーターで3μmの膜厚になるよう塗布乾燥した。次に不規則なパターンを有するロール状の原盤を押しあて紫外線を照射し光硬化性樹脂を硬化しロール原盤を分離し、不規則な凹凸形状を光硬化性樹脂層(下塗り層)6の表面に形成した。次にこの不規則な凹凸形状を光硬化性樹脂層(下塗り層)6の表面にスパッタ法でアルミニウム薄膜を0.1μmの膜厚になるよう積層し反射膜3を形成し、さらにこのアルミニウム薄膜の反射膜3上に薄膜層形成用溶液をコンマコーターで2μmの膜厚になるよう塗布乾燥し薄膜層2とした。薄膜層2上にカバーフィルム5としてポリエチレンフィルムを被覆して図14に示すような転写フィルムを得た。次に、図15に示すようにこの転写フィルムのカバーフィルムを剥がしながら、薄膜層がガラス基板に接する様にラミネータ(ロールラミネータHLM1500、日立化成テクノプラント社製)を用いて基板温度90℃、ロール温度80℃、ロール圧力7kg/平方cm、速度0.5m/分でラミネートし、ガラス基板上に薄膜層2、アルミニウム薄膜の反射膜3、光硬化性樹脂層(下塗り層)6、ベースフィルム4が積層された基板を得た。次にベースフィルム4のみを剥離し、不規則な凹凸形状の表面の層2、アルミニウム薄膜の反射膜3、光硬化性樹脂層(下塗り層)6が積層されたガラス基板を得た。次に、オーブンで230℃、30minの熱処理を行った。これによって得られた拡散反射板は、反射特性に優れ、反射型LCD用拡散反射板として使用可能であった。
【0035】
【発明の効果】
本発明の転写フィルムにより反射型液晶表示装置等に使用される良好な反射特性を有する拡散反射板を効率良く製造することができ、凹凸面をあらかじめ適切に設定しておくことによって、拡散反射板の反射特性を自由に制御でき、かつ再現性のよい反射特性が得られる。このように、本発明の転写フィルムにより所定機能をもつ表面形状を適宜の基板に容易に賦与することができる。
【図面の簡単な説明】
【図1】本発明の転写フィルムの一例を示す断面図。
【図2】本発明の転写フィルムの一例を示す断面図。
【図3】本発明の転写フィルムを使用して製造された拡散反射板の一例を示す断面図。
【図4】本発明の転写フィルムを使用して製造された拡散反射板の一例を示す断面図。
【図5】反射型LCDの断面図。
【図6】拡散反射板の反射特性の測定装置を示す斜視図。
【図7】本発明の転写フィルムを使用して製造された拡散反射板の一例を示す断面図。
【図8】図7に示す拡散反射板の正面と光源がなす角度と凹凸部の高さの差と凸部のピッチとの関係を示すグラフ。
【図9】本発明の転写フィルムを使用して製造された拡散反射板の一例を示す断面図。
【図10】図9に示す拡散反射板の正面と光源がなす角度と凹凸部の高さの差と凸部のピッチとの関係を示すグラフ。
【図11】実施例1の拡散反射板の反射特性の入射角依存性を示すグラフ。
【図12】
実施例3の拡散反射板の反射特性の入射角依存性を示すグラフ。
【図13】本発明の転写フィルムの一例を示す断面図。
【図14】本発明の転写フィルムの一例の製造工程を示す断面図。
【図15】本発明の転写フィルムを使用した拡散反射板の製造例を示す断面図。
【符号の説明】
1.ガラス基板
2.薄膜層
3.反射膜
4.ベースフィルム
5.カバーフィルム
6.下塗り層
11.カラーフィルタ
12.ブラックマトリクス
13.透明電極
14.平坦化膜
15.配向膜
16.液晶層
17.スペーサ
18.位相差フィルム
19.偏光板
20.試料
21.反射光線
22.入射光線
23.輝度計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transfer film used for manufacturing a reflection type liquid crystal display device which does not require a backlight or a diffusion reflection plate of a solar cell which requires high efficiency, and a diffusion reflection plate using the transfer film. Related to manufacturing method.
[0002]
[Prior art]
BACKGROUND ART Liquid crystal displays (hereinafter abbreviated as LCDs) are currently used for display units of watches, calculators, TVs, personal computers, and the like, taking advantage of features such as thinness, small size, and low power consumption. In recent years, color LCDs have been developed and used for a variety of applications, such as navigation systems, viewfinders, personal computer monitors, mainly OA / AV equipment, and the market is expected to expand rapidly in the future. . In particular, reflective LCDs that display by reflecting light incident from the outside are attracting attention as portable terminal equipment because they do not require a backlight, consume less power, and can be made thinner and lighter. ing.
[0003]
Conventionally, a twisted nematic system and a super twisted nematic system have been adopted for a reflective LCD, but in these systems, a half of incident light is not used for display by a linear polarizer, and the display becomes dark. . Therefore, a display mode of a system in which the number of polarizers is reduced to one and combined with a retardation plate or a phase change type guest-host system has been proposed.
[0004]
In order to obtain a bright display by efficiently using external light in a reflective LCD, it is necessary to further increase the intensity of light scattered in a direction perpendicular to the display screen with respect to incident light from all angles. Therefore, it is necessary to control the reflection film on the reflection plate so as to obtain appropriate reflection characteristics. A method has been proposed in which a photosensitive resin is applied to a substrate, patterned using a photomask to form irregularities, and a metal thin film is formed to form a diffuse reflection plate (Japanese Patent Application Laid-Open No. 4-243226).
[0005]
[Problems to be solved by the invention]
In the above method, since there is a step of exposing and developing with a photomask for each substrate in order to form irregularities, the process is complicated, and it cannot be said that the cost is low and the productivity is high. Further, in the case of a photomask, the uneven shape is easily changed by processes such as development and post-baking, and it is difficult to stably produce a diffuse reflection plate having a constant reflection characteristic. For the purpose of further improving the reflection characteristics, if it is desired to obtain a diffuse reflection plate having a plurality of uneven heights, the above method requires a plurality of times of application, exposure, and development of a photosensitive resin, so that the process is more complicated. Become. SUMMARY OF THE INVENTION The present invention provides a transfer film used for manufacturing a reflective LCD diffuse reflection plate having good reflection characteristics.
[0006]
[Means for Solving the Problems]
The transfer film of the present invention has a thin film layer laminated on a temporary support on which a shape surface imparting a predetermined function is formed, and a surface of the thin film layer which is not laminated on the temporary support is transferred to a substrate to be transferred. Constitute the adhesive surface. A transfer film for manufacturing a diffuse reflection plate can be obtained by setting the shape surface imparting the predetermined function to an uneven surface capable of diffusing and reflecting light. In this case, it is possible to adopt a configuration in which a reflective film is stacked between the uneven surface capable of diffusing and reflecting light and the thin film layer. As the temporary support, use is made of a base film having a shape surface imparting a predetermined function or an undercoat layer having a base film having a shape surface imparting a predetermined function.
[0007]
Using a transfer film in which the shape surface giving the predetermined function is an uneven surface capable of diffusing and reflecting light, the adhesive surface of the thin film layer of the transfer film to the substrate to be transferred is bonded to the surface of the substrate, and temporarily supported. The diffuse reflector can be manufactured by removing the body, transferring the thin film layer to the substrate, and further forming a reflective film on the thin film layer. In addition, a transfer film in which a reflection surface is laminated between the uneven surface capable of diffusing and reflecting light and the thin film layer is used, so that the shape surface imparting the predetermined function is an uneven surface capable of diffusing and reflecting light. By bonding the surface of the thin film layer to the substrate to be transferred to the surface of the substrate, peeling off the temporary support, and transferring the thin film layer and the reflective film to the substrate, a diffuse reflection plate can be manufactured.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 are cross-sectional views showing an example of the transfer film of the present invention, FIGS. 3 and 4 are cross-sectional views showing an example of a diffuse reflection plate manufactured using the transfer film of the present invention, and FIG. In the drawing, 1 is a glass substrate, 2 is a thin film layer, 3 is a reflective film, 4 is a base film, 5 is a cover film, 11 is a color filter, 12 is a black matrix, 13 is a transparent electrode, and 14 is A flattening film, 15 is an alignment film, 16 is a liquid crystal layer, 17 is a spacer, 18 is a retardation film, and 19 is a polarizing plate.
[0009]
Using a base film, a thin film layer, and a transfer film in which the cover film is sequentially laminated with the surface processed to have a large number of fine irregularities, peeling off the cover film and laminating so that the thin film layer contacts the substrate By laminating a thin film layer and a base film on a substrate and peeling the base film, a thin film layer having a large number of fine irregularities on the surface can be formed on the substrate. If a reflection film such as a metal thin film is further formed thereon, a desired diffuse reflection plate can be obtained. In addition, using a transfer film in which a reflective film is laminated between a thin film layer and a base film in advance, laminating so that the thin film layer is in contact with the substrate while peeling off the cover film, and forming the thin film layer, reflective film, and base film on the substrate By laminating and peeling only the base film, a desired diffuse reflection plate is obtained.
[0010]
The temporary support of the transfer film can be composed of a base film having a large number of fine irregularities on the surface or a base film having a large number of fine irregularities on the surface. As the base film, a film manufactured by pressing a prototype processed into a state having a large number of fine irregularities on the surface can also be used. Further, a base film may be provided with a deformable undercoat layer, and a layer formed by a step of pressing a prototype processed into a state having many fine irregularities on this layer and a step of curing the undercoat layer may be used. In addition, a base film whose surface has been subjected to sandblasting can also be used.
[0011]
An example of a method for producing a temporary support processed into a state having a large number of fine irregularities according to the present invention is described in the document “Optical Disks Easy to Understand (Optronics, Inc., 1990)”. That is, after applying a photoresist on a glass plate, exposing and developing using a photomask having a predetermined mask pattern, or after laser cutting, silver or nickel is formed on the pattern forming surface by a vacuum evaporation method, a sputtering method, or the like. A step of forming a film (conductivity treatment), laminating nickel by electroforming, and peeling off from the glass plate can produce a father prototype. This father prototype is subjected to a peeling treatment, nickel electroforming is performed again, and the mother prototype is peeled off from the father prototype to produce a mother prototype. A large number of fine irregularities can be formed using the mother prototype.
[0012]
A temporary support having a large number of fine irregularities should be a sheet, a flat plate, a roll, or a part of a curved surface having a large number of fine irregularities formed on the entire surface or on a necessary portion of the surface of the substrate. It may be attached to a pressing device or sandwiched between a surface on which unevenness is formed and the pressing device. Heat, light, or the like may be given in the pressing step.
[0013]
The degree of unevenness of the temporary support having a large number of fine unevenness usually needs to be designed in consideration of deformation due to curing of the thin film layer. Assuming that the deformation ratio due to the curing of the thin film layer is a, the difference in height between the concave portion and the convex portion is 0.1 μm to 15 μm, further 0.1 μm to 5 μm, and the pitch of the convex portion as the cured shape of the thin film layer. Is preferably 0.7 μm or more and 150 μm or the smaller of the pixel pitch, and more preferably 2 μm or more and 150 μm or the smaller of the pixel pitch.
[0014]
FIG. 6 shows an apparatus for measuring the reflection characteristics of the diffuse reflection plate of the present invention. Assuming that the angle between the reflected light beam 21 and the incident light beam 22 is θ, a diffuse reflector having excellent reflection characteristics can be obtained by increasing the luminance observed in the normal direction of the diffuse reflector, that is, the reflection intensity within the required θ range. can get. When the required range of θ is −60 ° to 60 °, the diffuse reflection plate in which the concave and convex portions are formed with the concave curved surface as shown in FIG. 7 has the concave and convex portions as shown in FIG. If the relationship between the height H and the pitch P of the projections is near a straight line represented by the relational expression of P = 7 × H, a diffuse reflector having excellent reflection characteristics can be obtained. When θ is −15 ° to 15 °, a diffuse reflector having excellent reflection characteristics can be obtained near a straight line represented by the relational expression of P = 30 × H. This means that if one wishes to obtain diffuse reflection with respect to the normal using a light source within a range of 60 degrees and further obtain a strong reflection within a range of 15 degrees, the relational expression of P = 7 × H and P = 30 × H It is sufficient that the area near the two straight lines represented by the relational expression can be formed into a composite shape. Of course, it is not limited that all the irregularities are included in the range near the above-mentioned two straight lines. This is because a plurality of shapes are naturally formed in the uneven shape forming process. In addition, it is necessary to consider the uniformity of the gap of the liquid crystal layer and the influence of light interference.
[0015]
Therefore, the degree of unevenness of the temporary support is such that the difference between the height of the concave portion and the convex portion on the convex curved surface is 0.1 × a μm to 15 × a μm, further 0.1 × a μm to 5 × a μm, The pitch is preferably 0.7 μm or more and 150 μm or the smaller of the pixel pitch, and more preferably 2 μm or more and 150 μm or the smaller of the pixel pitch. The value of a differs depending on the material of the thin film layer, and may be, for example, 2 or 1 or 0.7. The above is an example of the case where the unevenness of the diffuse reflection plate is formed by the concave curved surface as shown in FIG. 7. On the other hand, the diffuse reflection from the light source within 60 degrees is a straight line in which the relationship between the height H of the concave portion and the convex portion and the pitch P of the convex portion is represented by a relational expression of P = 3.5 × H as shown in FIG. In the vicinity, the reflection characteristics are excellent. The uneven shape does not need to be periodically arranged in the plane, and may be irregular. In the case of a reflection type LCD, moiré occurs when the periodicity different from the pixel pitch is in the uneven shape, so the periodicity of the unevenness is the same as the pixel pitch or a period divided by an integer, or the unevenness is irregular. Preferably, they are lined up.
[0016]
In addition, the surface shape of the unevenness is not particularly limited, but is not only a complex plane but also a concave or convex curved surface, a complex uneven surface, or a concave or convex curved surface approximating a spherical surface or a paraboloid, or a complex uneven surface. Is preferred. This is because, by making the surface curved, diffuse reflection light from a wider range of light source positions can be expected.
[0017]
As the base film of the present invention, a film that is chemically and thermally stable and can be formed into a sheet or a plate can be used. Specifically, polyethylene, polyolefins such as polypropylene, polyvinyl chloride, polyvinyl halides such as polyvinylidene chloride, cellulose acetate, nitrocellulose, cellulose derivatives such as cellophane, polyamide, polystyrene, polycarbonate, polyimide, polyester, or Metals such as aluminum and copper. Among them, particularly preferred is biaxially stretched polyethylene terephthalate having excellent dimensional stability.
[0018]
As the thin film layer, a composition containing a deformable organic polymer or an inorganic compound, a metal can be used, but preferably, an organic polymer composition that can be applied on a support and wound into a film is used. . If necessary, dyes, organic pigments, inorganic pigments, powders and composites thereof may be used alone or in combination. A photosensitive resin composition or a thermosetting resin composition can be used for the thin film layer. The dielectric constant, hardness, refractive index, and spectral transmittance of these thin film layers are not particularly limited.
[0019]
Among these, it is preferable to use one having good adhesion to the substrate to be transferred and good releasability from the base film. For example, acrylic resin, polyethylene, polyolefin such as polypropylene, polyvinyl chloride, polyvinyl halide such as polyvinylidene chloride, cellulose acetate, nitrocellulose, cellulose derivatives such as cellophane, polyamide, polystyrene, polycarbonate, polyimide, polyester and the like are used. be able to. Further, a photosensitive material can be used. In some cases, a photosensitive resin that can be developed with an alkali or the like can be used so as to leave only a portion of the substrate where irregularities are necessary and remove unnecessary portions. In order to improve heat resistance, solvent resistance, and shape stability, a resin composition that can be cured by heat or light after forming the unevenness may be used. Further, by adding a coupling agent and an adhesion-imparting agent, the adhesion to the substrate can be improved. This includes applying an adhesion-imparting agent to the adhesion surface of the substrate or the thin film layer for the purpose of improving the adhesion.
[0020]
As the alkali developable resin, those having an acid value in the range of 20 to 300 and a weight average molecular weight in the range of 1,500 to 200,000 are preferable. For example, copolymerization of a styrene monomer and maleic acid is preferable. Mercury or a derivative thereof (hereinafter, referred to as SM polymer), an unsaturated monomer having a carboxyl group such as acrylic acid or methacrylic acid and a styrene monomer, methyl methacrylate, t-butyl methacrylate, hydroxyethyl methacrylate, etc. Copolymers with monomers such as alkyl methacrylates and alkyl acrylates having similar alkyl groups are preferred.
[0021]
The SM copolymer is styrene such as styrene, α-methylstyrene, m or p-methoxystyrene, p-methylstyrene, p-hydroxystyrene, 3-hydroxymethyl-4hydroxy-styrene, or a derivative thereof (styrene-based monomer). Maleic anhydride, maleic acid, monomethyl maleate, monoethyl maleate, mono-n-propyl maleate, mono-iso-propyl maleate, n-butyl maleate, mono-iso-butyl maleate, There are copolymers of a maleic acid derivative such as mono-tert-butyl maleate (hereinafter referred to as copolymer (I)). Examples of the copolymer (I) include those obtained by modifying the above-mentioned copolymer (I) with a compound having a reactive double bond, such as alkyl methacrylate such as methyl methacrylate and t-butyl methacrylate (copolymer (II)).
[0022]
The copolymer (II) is obtained by adding an unsaturated alcohol to the acid anhydride group or the carboxyl group in the copolymer (I), for example, allyl alcohol, 2-bran-1-olfurfuryl alcohol, oleyl alcohol, cinna! Unsaturated alcohols such as mill alcohol, 2-hydroxyethyl acrylate, hydroxyethyl methacrylate, and N-methylol acrylamide; oxiranes such as glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, α-ethyl glycidyl acrylate, and monoalkyl monoglycidyl itaconate; It can be produced by reacting with an epoxy compound having one ring and one reactive double bond. In this case, it is necessary that a carboxyl group necessary for performing alkali development remains in the copolymer. The addition of a reactive double bond to a polymer having a carboxyl group other than the SM polymer is also preferable from the viewpoint of photosensitivity. The synthesis of these copolymers can be carried out according to the methods described in JP-B-47-25470, JP-B-48-85679, JP-B-51-21572 and the like. When the thickness of the thin film layer is formed thicker than the height difference of the unevenness of the temporary support having the unevenness, the uneven shape can be easily reproduced. If the film thicknesses are equal or thin, the uneven shape is deformed. In the case of forming unevenness, a problem described later may occur.
[0023]
The undercoat layer of the present invention is preferably one that is harder than the thin film layer after the formation of the irregularities. For example, polyolefins such as polyethylene and polypropylene, ethylene and vinyl acetate, ethylene and acrylate, ethylene copolymers such as ethylene and vinyl alcohol, polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, vinyl chloride and vinyl alcohol Copolymers, polyvinylidene chloride, polystyrene, styrene copolymers such as styrene and (meth) acrylate, polyvinyl toluene, vinyl toluene copolymers such as vinyl toluene and (meth) acrylate, poly ( Use of at least one organic polymer selected from (meth) acrylates, copolymers of (meth) acrylates such as butyl (meth) acrylate and vinyl acetate, synthetic rubber, cellulose derivatives, and the like. be able to. A photoinitiator, a monomer having an ethylenic double bond, or the like can be added in advance, if necessary, for curing after forming the irregularities. Although the photosensitive type is shown using a negative type material, there is no problem even if it is a positive type.
[0024]
Examples of the coating method of the thin film layer and the undercoat layer of the present invention include roll coater coating, spin coater coating, spray coating, whey coater coating, dip coater coating, curtain flow coater coating, wire bar coater coating, gravure coater coating, air knife coater coating, and the like. is there. The thin film layer or the undercoat layer composition is applied on the temporary support or the like by the above method.
[0025]
As the reflective film, a material may be appropriately selected according to a wavelength region to be reflected. For example, in a reflective LCD display device, a metal having a high reflectance in a visible light wavelength region of 300 nm to 800 nm, for example, aluminum, gold, silver, etc. Are formed by a vacuum evaporation method or a sputtering method. Further, a reflection increasing film (described in Optical Opinion 2 (Junhei Tsujiuchi, Asakura Shoten, issued in 1976)) may be laminated by the above method. The thickness of the reflection film is preferably 0.01 μm to 50 μm. The reflection film may be formed in a pattern only by a photolithography method, a mask evaporation method, or the like at a necessary portion.
[0026]
As the cover film of the transfer film of the present invention, a film that is chemically and thermally stable and that can be easily separated from the thin film layer is desirable. Specifically, a thin sheet made of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol or the like and having high surface smoothness is preferable. It also includes those whose surface has been subjected to a release treatment to impart releasability.
[0027]
In addition, the peeled surface of each transfer film after transfer to the substrate is between the thin film layer and the base film, and between the reflective film and the base film or between the reflective film and the undercoat layer when there is a reflective film. However, depending on the purpose, in the case of a film structure having an undercoat layer and a reflective film, since the undercoat layer is laminated on the substrate, a separation surface can be set between the undercoat layer and the base film. For the purpose of laminating the undercoat layer on the substrate, when the undercoat layer has a function as an electrical insulating layer when the reflection film is used as an electrode, or when the undercoat layer has a role as a flattening layer of the reflection film unevenness. In some cases, a photosensitive resin is used for the undercoat layer to provide a role as an etching resist for the reflective film, and in some cases, the undercoat layer is further colored to have a role as a partial light-shielding layer of the reflective film.
[0028]
As a method of transferring the thin film layer and the reflective film on the temporary support to the substrate, there is a method in which the cover film is peeled off and heated and pressed on the substrate. If further adhesion is required, a method of cleaning the substrate with a necessary chemical solution, applying an adhesion-imparting agent to the substrate, or irradiating the substrate with ultraviolet rays or the like may be used. As the apparatus for laminating the transfer film of the present invention, a roll laminator that heats and presses the substrate between a rubber roll capable of being pressed and a base film, rotates the roll, and feeds the substrate while pressing the transfer film against the substrate is used. Is preferred. The thickness of the thin film layer thus formed on the substrate surface is preferably in the range of 0.1 μm to 50 μm. At this time, when the thickness of the thin film layer is larger than the maximum height difference of the uneven shape, the uneven shape can be easily reproduced. When the film thickness is equal or thin, the thin film layer is broken through by the original convex portion, and a flat portion is generated, so that it is difficult to efficiently obtain diffuse reflection.
[0029]
When a negative photosensitive resin is used for the thin film layer, exposure is performed with an exposure machine to impart stability to the shape, and the photosensitive portion is cured. Examples of the exposure machine applicable to the present invention include a carbon arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, a fluorescent lamp, and a tungsten lamp. This exposure apparatus may be a parallel exposure machine for pattern formation of pixels and BMs, etc., but in the present invention, it is only necessary to be able to cure previously formed irregularities. Should be given. Therefore, a UV irradiation device using scattered light that can be incorporated in a line generally used as a substrate cleaning device can be used. By using these apparatuses, the device can be manufactured at a lower cost as compared with a method using a photomask, and the tolerance for the exposure amount is larger than in the case of using a photomask. Although the photosensitive type is shown using a negative type material, there is no problem even if it is a positive type. The exposure is performed before or after the support is peeled off. A cushion layer may be provided on the base film for the purpose of improving the adhesion to the substrate and the followability.
[0030]
Although the reflection type LCD display device has been described above, the diffuse reflection plate manufactured with the transfer film of the present invention can be used for a device that needs to diffusely reflect an external light beam. For example, there is a diffuse reflector for improving the efficiency of a solar cell. Further, the transfer film of the present invention can be used for manufacturing a light-shielding plate, a decorative plate, a ground glass, a white plate for a projection screen, an optical filter, a light-collecting plate, a light reducing plate, and the like. As described above, the transfer film of the present invention can be transferred to any glass plate, synthetic resin plate, synthetic resin film, metal plate, or metal foil. But it's fine.
[0031]
【Example】
Example 1
This will be described with reference to FIG. A 50 μm-thick sand-blasted polyethylene terephthalate is used for the base film 4, and the following thin film layer forming solution is applied and dried on the film with a comma coater to a thickness of 6 μm to form a thin film layer 2. As No. 5, a transfer film as shown in FIG. 1 was obtained by coating with a polyethylene film.
Thin film layer forming solution: Styrene, methyl methacrylate, ethyl acrylate, acrylic acid, glycidyl methacrylate copolymer resin was used as a polymer (polymer A). The molecular weight is about 35,000 and the acid value is 110. Parts are parts by weight (the same applies hereinafter).
Figure 2004004750
Next, while peeling off the cover film of the transfer film, a substrate temperature of 100 ° C., a roll temperature of 100 ° C., and a roll temperature were set using a laminator (roll laminator HLM1500, manufactured by Hitachi Chemical Technoplant) so that the thin film layer was in contact with the glass substrate. Lamination was performed at a pressure of 6 kg / square cm and a speed of 0.5 m / min to obtain a substrate on which a glass substrate, a thin film layer, and a polyethylene terephthalate film (PET film) were laminated. After irradiating the thin film layer with a light beam that reacts at 500 mJ / square cm with an exposure machine (large manual exposure machine, MAP1200, manufactured by Dainippon Screen Co., Ltd.), the PET film was peeled off from this substrate, and the thin film layer was sandblasted. The unevenness was transferred, and the unevenness was excellent in light diffusivity. In order to obtain heat resistance, heat curing is performed in an oven (clean oven CSO-402, manufactured by Kusumoto Kasei) at 240 ° C. for 20 minutes, and a reflective film is laminated on this to a thickness of 0.1 μm by sputtering with an Al thin film. did. FIG. 11 shows the incident angle dependence of the reflection intensity (relative intensity with respect to the standard white plate) of the thus produced diffuse reflection plate (when the azimuth angle (φ) is fixed). Sufficient reflection intensity was obtained in the range of the incident angle of −60 ° to 60 °, and a diffuse reflector excellent in reflection characteristics was obtained. As shown in FIG. 2, a reflective film 3 is previously formed on the uneven surface of the base film 4, a thin film layer 2 is formed on the reflective film 3, and a polyethylene film is coated as a cover film 5 to obtain a transfer film. You can also. In this case, a diffuse reflection plate can be obtained by peeling the base film 4.
[0032]
Example 2
As shown in FIG. 13, a polyethylene terephthalate film having a thickness of 50 μm was used for the base film 4, and a photosensitive resin composition having the following composition was dissolved on the base film 4 with a solvent (propylene glycol monoethyl ether acetate). It was applied and dried with a coater to a thickness of 1.5 μm to form an undercoat layer 6.
Photosensitive resin solution (% is% by weight):
Acrylic acid-butyl acrylate-vinyl acetate copolymer resin 33%
Butyl acrylate (monomer) 53%
8% of vinyl acetate (monomer)
Acrylic acid (monomer) 2%
Hectindiol acrylate (monomer) 1%
Benzoin isobutyl ether (photo initiator) 3%
Next, the photosensitive resin layer (undercoat layer 6) on the base film was exposed to an irregular pattern (average pitch 15 μm) through a photomask having an irregular pattern. As the exposure machine, a large-sized manual exposure machine (MAP1200, manufactured by Dainippon Screen Co., Ltd.) was used, and irradiation was performed at 500 mJ / cm 2. Irregular irregularities were formed on the surface of the photosensitive resin layer (undercoat layer 6) by developing with a vat for 1 minute using a developer (aqueous sodium carbonate solution 0.5%). Next, the same thin film layer forming solution as in Example 1 was applied on the photosensitive resin layer (undercoat layer 6) to a thickness of 6 μm by a comma coater and dried to form a thin film layer 2. The film was coated to obtain a transfer film as shown in FIG. Next, while peeling off the cover film of the transfer film, a substrate temperature of 20 ° C., a roll temperature of 90 ° C., and a roll temperature were set using a laminator (roll laminator HLM1500, manufactured by Hitachi Chemical Technoplant) so that the thin film layer 2 was in contact with the glass substrate. Lamination was performed at a pressure of 6 kg / square cm and a speed of 0.5 m / min to obtain a substrate in which a thin film layer, a photosensitive resin layer (undercoat layer 6), and a base film 4 were laminated on a glass substrate. After irradiating the thin film layer with a light beam that reacts at 500 mJ / square cm with an exposure machine (large manual exposure machine, MAP1200, manufactured by Dainippon Screen Co., Ltd.), the base film 4 and the photosensitive resin layer (undercoat layer 6) are peeled off. Then, a thin film layer having a surface with irregular irregularities was obtained on a glass substrate. Next, heat curing was performed in an oven at 230 ° C. for 30 minutes, and a silver thin film was laminated to a thickness of 0.2 μm by a vacuum evaporation method to form a reflective film. The diffuse reflector obtained thereby had excellent reflection characteristics and could be used as a diffuse reflector for a reflective LCD. The resulting diffuse reflector had an average height difference of 1.2 μm.
[0033]
Example 3
A 100 μm-thick polyethylene terephthalate film was used as a base film, and the same photocurable resin solution as in Example 2 was applied on the base film by a comma coater and dried to a thickness of 20 μm. Next, a roll-shaped master having an irregular pattern is pressed and irradiated with ultraviolet light to cure the photocurable resin, the roll master is separated, and irregular irregularities are formed on the surface of the photocurable resin layer (undercoat layer). Formed. Next, the same thin film layer forming solution as in Example 1 was applied on the photocurable resin layer (undercoat layer) with a comma coater to a thickness of 2 μm and dried. Got. Next, while peeling off the cover film of the transfer film, a substrate temperature of 90 ° C., a roll temperature of 80 ° C., and a roll pressure of 90 ° C. were applied using a laminator (roll laminator HLM1500, manufactured by Hitachi Chemical Technoplant) so that the thin film layer was in contact with the glass substrate. Lamination was performed at 7 kg / square cm at a speed of 0.5 m / min to obtain a substrate in which a thin film layer, a photocurable resin layer (undercoat layer), and a base film were laminated on a glass substrate. Next, the photocurable resin layer (undercoat layer) and the base film were peeled off to obtain a thin film layer having a surface with irregular irregularities on a glass substrate. Next, heat curing was performed in an oven at 230 ° C. for 30 minutes, and an aluminum thin film was laminated to a thickness of 0.2 μm by a vacuum evaporation method to form a reflective layer. FIG. 12 shows the incident angle dependence of the reflection intensity (relative intensity with respect to the standard white plate) when the azimuth (φ) is fixed. It was found that a sufficient reflection intensity was obtained in the range of the incident angle of −60 ° to 60 °, and that a diffuse reflector excellent in reflection characteristics could be obtained.
[0034]
Example 4
As shown in FIG. 14, a 50 μm-thick polyethylene terephthalate film was used for the base film 4, and a photo-curable resin solution was applied on the base film 4 with a comma coater to a thickness of 3 μm and dried. Next, a roll-shaped master having an irregular pattern is pressed and irradiated with ultraviolet rays to cure the photo-curable resin, the roll master is separated, and irregular irregularities are formed on the surface of the photo-curable resin layer (undercoat layer) 6. Formed. Next, an aluminum thin film is laminated on the surface of the photocurable resin layer (undercoat layer) 6 to a thickness of 0.1 μm by sputtering to form a reflection film 3. The thin film layer forming solution was applied to a thickness of 2 μm using a comma coater and dried on the reflective film 3 to form a thin film layer 2. A polyethylene film was coated as the cover film 5 on the thin film layer 2 to obtain a transfer film as shown in FIG. Next, as shown in FIG. 15, while the cover film of the transfer film was peeled off, a substrate temperature of 90 ° C. was applied using a laminator (roll laminator HLM1500, manufactured by Hitachi Chemical Technoplant) so that the thin film layer was in contact with the glass substrate. Laminated at a temperature of 80 ° C., a roll pressure of 7 kg / square cm and a speed of 0.5 m / min, and a thin film layer 2, a reflective film 3 of an aluminum thin film, a photocurable resin layer (undercoat layer) 6, a base film 4 on a glass substrate Was obtained. Next, only the base film 4 was peeled off to obtain a glass substrate on which the layer 2 having a surface with irregular irregularities, the reflective film 3 of an aluminum thin film, and the photocurable resin layer (undercoat layer) 6 were laminated. Next, heat treatment was performed in an oven at 230 ° C. for 30 minutes. The diffuse reflector obtained thereby had excellent reflection characteristics and could be used as a diffuse reflector for a reflective LCD.
[0035]
【The invention's effect】
By using the transfer film of the present invention, it is possible to efficiently produce a diffuse reflection plate having good reflection characteristics used for a reflection type liquid crystal display device and the like, and by appropriately setting the uneven surface in advance, the diffuse reflection plate Can be freely controlled, and a reflection characteristic with good reproducibility can be obtained. Thus, the transfer film of the present invention can easily impart a surface shape having a predetermined function to an appropriate substrate.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a transfer film of the present invention.
FIG. 2 is a sectional view showing an example of the transfer film of the present invention.
FIG. 3 is a cross-sectional view illustrating an example of a diffuse reflection plate manufactured using the transfer film of the present invention.
FIG. 4 is a cross-sectional view illustrating an example of a diffuse reflection plate manufactured using the transfer film of the present invention.
FIG. 5 is a sectional view of a reflective LCD.
FIG. 6 is a perspective view showing an apparatus for measuring the reflection characteristics of a diffuse reflection plate.
FIG. 7 is a sectional view showing an example of a diffuse reflection plate manufactured using the transfer film of the present invention.
8 is a graph showing the relationship between the angle formed by the light source and the front of the diffuse reflection plate shown in FIG. 7, the difference between the heights of the concave and convex portions, and the pitch of the convex portions.
FIG. 9 is a cross-sectional view illustrating an example of a diffuse reflection plate manufactured using the transfer film of the present invention.
FIG. 10 is a graph showing the relationship between the angle formed by the light source and the front of the diffuse reflection plate shown in FIG. 9, the difference between the heights of the concave and convex portions, and the pitch of the convex portions.
FIG. 11 is a graph showing the incident angle dependence of the reflection characteristics of the diffuse reflection plate of Example 1.
FIG.
13 is a graph showing the incident angle dependence of the reflection characteristics of the diffuse reflection plate of Example 3.
FIG. 13 is a sectional view showing an example of the transfer film of the present invention.
FIG. 14 is a cross-sectional view illustrating a manufacturing process of an example of the transfer film of the present invention.
FIG. 15 is a cross-sectional view showing a production example of a diffuse reflection plate using the transfer film of the present invention.
[Explanation of symbols]
1. Glass substrate
2. Thin film layer
3. Reflective film
4. Base film
5. Cover film
6. Undercoat layer
11. Color filter
12. Black matrix
13. Transparent electrode
14. Flattening film
15. Alignment film
16. Liquid crystal layer
17. Spacer
18. Retardation film
19. Polarizer
20. sample
21. Reflected rays
22. Incident light
23. Luminance meter

Claims (7)

所定機能を賦与する形状面が形成された仮支持体に、薄膜層が積層されており、前記薄膜層の前記仮支持体に積層されていない面が被転写基板への接着面を構成する転写フィルム。A thin film layer is laminated on a temporary support on which a shape surface imparting a predetermined function is formed, and a surface of the thin film layer that is not laminated on the temporary support forms a transfer surface that forms an adhesion surface to a transfer-receiving substrate. the film. 所定機能を賦与する形状面が、光を拡散反射し得る凹凸面である請求項1記載の転写フィルム。The transfer film according to claim 1, wherein the shape surface imparting the predetermined function is an uneven surface capable of diffusing and reflecting light. 光を拡散反射し得る凹凸面と薄膜層の間に反射膜が積層された請求項2記載の転写フィルム。3. The transfer film according to claim 2, wherein a reflection film is laminated between the uneven surface capable of diffusing and reflecting light and the thin film layer. 仮支持体が、所定機能を賦与する形状面が形成されたベースフィルムである請求項1〜3各項記載の転写フィルム。The transfer film according to any one of claims 1 to 3, wherein the temporary support is a base film on which a shape surface giving a predetermined function is formed. 仮支持体が、ベースフィルムと所定機能を賦与する形状面が形成された下塗り層よりなる請求項1〜3各項記載の転写フィルム。The transfer film according to any one of claims 1 to 3, wherein the temporary support comprises a base film and an undercoat layer formed with a surface having a predetermined function. 基板の表面に請求項2記載の転写フィルムの薄膜層の被転写基板への接着面を貼り合わせる工程、
前記仮支持体を剥離して、前記基板に前記薄膜層を転写する工程、
前記薄膜層に反射膜を形成する工程
を備える拡散反射板の製造法。
A step of attaching an adhesive surface of the thin film layer of the transfer film according to claim 2 to a substrate to be transferred on the surface of the substrate;
Peeling off the temporary support, transferring the thin film layer to the substrate,
A method for manufacturing a diffuse reflection plate, comprising a step of forming a reflection film on the thin film layer.
基板の表面に請求項3記載の転写フィルムの薄膜層の被転写基板への接着面を貼り合わせる工程、
前記仮支持体を剥離して、前記基板に前記薄膜層、前記反射膜を転写する工程を備える拡散反射板の製造法。
A step of bonding the thin film layer of the transfer film according to claim 3 to the transfer substrate, on the surface of the substrate.
A method for manufacturing a diffuse reflector, comprising a step of removing the temporary support and transferring the thin film layer and the reflective film to the substrate.
JP2003108913A 2003-04-14 2003-04-14 Method for manufacturing transfer film and diffusion reflection plate Pending JP2004004750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108913A JP2004004750A (en) 2003-04-14 2003-04-14 Method for manufacturing transfer film and diffusion reflection plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108913A JP2004004750A (en) 2003-04-14 2003-04-14 Method for manufacturing transfer film and diffusion reflection plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21693998A Division JP3808212B2 (en) 1998-07-31 1998-07-31 Production method of transfer film and diffuse reflector

Publications (1)

Publication Number Publication Date
JP2004004750A true JP2004004750A (en) 2004-01-08

Family

ID=30437965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108913A Pending JP2004004750A (en) 2003-04-14 2003-04-14 Method for manufacturing transfer film and diffusion reflection plate

Country Status (1)

Country Link
JP (1) JP2004004750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950766A (en) * 2010-08-11 2011-01-19 杭州龙吟光伏玻璃有限公司 Cover plate glass of solar photovoltaic cell
CN102794955A (en) * 2012-07-30 2012-11-28 夏训崇 Screen reflected light image carrier and manufacturing method thereof
CN106414057A (en) * 2014-01-22 2017-02-15 3M创新有限公司 Microoptics for glazing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717198A (en) * 1993-06-30 1995-01-20 Toppan Printing Co Ltd Transfer foil
JPH07199166A (en) * 1993-12-28 1995-08-04 Nec Corp Production of reflection electrode plate
JPH08142597A (en) * 1994-11-21 1996-06-04 Dainippon Printing Co Ltd Transfer foil and decorative glass therewith
WO1997034760A1 (en) * 1996-03-19 1997-09-25 Physical Optics Corporation Method of making liquid crystal dysplay system
JPH10726A (en) * 1996-06-17 1998-01-06 Dainippon Printing Co Ltd Reflection preventive film and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717198A (en) * 1993-06-30 1995-01-20 Toppan Printing Co Ltd Transfer foil
JPH07199166A (en) * 1993-12-28 1995-08-04 Nec Corp Production of reflection electrode plate
JPH08142597A (en) * 1994-11-21 1996-06-04 Dainippon Printing Co Ltd Transfer foil and decorative glass therewith
WO1997034760A1 (en) * 1996-03-19 1997-09-25 Physical Optics Corporation Method of making liquid crystal dysplay system
JPH10726A (en) * 1996-06-17 1998-01-06 Dainippon Printing Co Ltd Reflection preventive film and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950766A (en) * 2010-08-11 2011-01-19 杭州龙吟光伏玻璃有限公司 Cover plate glass of solar photovoltaic cell
CN102794955A (en) * 2012-07-30 2012-11-28 夏训崇 Screen reflected light image carrier and manufacturing method thereof
CN106414057A (en) * 2014-01-22 2017-02-15 3M创新有限公司 Microoptics for glazing
US10513881B2 (en) 2014-01-22 2019-12-24 3M Innovative Properties Company Microoptics for glazing
US10590697B2 (en) 2014-01-22 2020-03-17 3M Innovative Properties Company Microoptics for glazing
US10794114B2 (en) 2014-01-22 2020-10-06 3M Innovative Properties Company Microoptics for glazing
US10988979B2 (en) 2014-01-22 2021-04-27 3M Innovative Properties Company Microoptics for glazing
US11125406B2 (en) 2014-01-22 2021-09-21 3M Innovative Properties Company Microoptics for glazing

Similar Documents

Publication Publication Date Title
JP4213897B2 (en) Method of manufacturing transfer pattern of microlens array
JP3808212B2 (en) Production method of transfer film and diffuse reflector
JP4269196B2 (en) Manufacturing method and transfer film of diffuse reflector
JP2004004750A (en) Method for manufacturing transfer film and diffusion reflection plate
JP2001310334A (en) Transfer original mold, rugged mold, manufacturing method thereof, transferring laminate and diffuse reflecting plate
JP3608609B2 (en) Production method of transfer film and diffuse reflector
JP3646613B2 (en) Manufacturing method of light diffusing plate and light diffusing plate obtained thereby
JP2000284106A (en) Light diffusion member, its production and transfer film
JP2001188110A (en) Diffuse reflective plate, precursory substrate of same and method for producing those
JP2003191249A (en) Manufacturing methods of transfer master, transfer film and diffuse reflection plate
JP2001133614A (en) Diffused reflection plate, transfer master die thereof, method of producing the same, base film using the same, transfer film, and method of producing the diffused reflection plate using them
JP2001133608A (en) Diffused reflection plate and transfer original mold
JP3900909B2 (en) DIFFUSING REFLECTOR, TRANSFER DEPOSIT USED FOR PRODUCING THE SAME, TRANSFER BASE FILM, TRANSFER FILM, AND METHOD FOR PRODUCING THE Diffuse Reflecting
JP2001071379A (en) Transfer master, its production, uneven film using the same, transfer film and diffusion reflection plate
JP2001133609A (en) Diffused reflection plate, manufacturing method therefor, base film used for the same and transfer film
JP2003043477A (en) Diffuse reflection plate, transfer original pattern used to manufacture the same, transfer base film, transfer film, and method for manufacturing diffuse reflection plate
JP2009080506A (en) Method of manufacturing diffuse reflection plate and transfer film
JP3900908B2 (en) DIFFUSING REFLECTOR, TRANSFER DEPOSIT USED FOR PRODUCING THE SAME, TRANSFER BASE FILM, TRANSFER FILM, AND METHOD FOR PRODUCING THE Diffuse Reflecting
JP2001121547A (en) Transfer matrix, method for making the same and uneven film, transfer film and diffused reflection plate using transfer mold
JP2001121548A (en) Transfer matrix and base film, transfer film and diffused reflection plate using the same
JP3438771B2 (en) Light diffusion member, method of manufacturing light diffusion member, and transfer film
JP2003043228A (en) Diffuse reflection plate and its transfer pattern, method for manufacturing the same and base film using the same, transfer film, and diffuse reflection plate manufacturing method using these
JP4100350B2 (en) Method for producing antiglare film
JP3401720B2 (en) Light diffusion reflector for reflective liquid crystal display
TW200300512A (en) Diffusion reflection plate, transfer master, transfer base film and transfer film used for manufacturing the same, and method of manufacturing diffusion reflection plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924