JP3936979B2 - Equal charging method for lithium ion secondary battery - Google Patents

Equal charging method for lithium ion secondary battery Download PDF

Info

Publication number
JP3936979B2
JP3936979B2 JP24676298A JP24676298A JP3936979B2 JP 3936979 B2 JP3936979 B2 JP 3936979B2 JP 24676298 A JP24676298 A JP 24676298A JP 24676298 A JP24676298 A JP 24676298A JP 3936979 B2 JP3936979 B2 JP 3936979B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24676298A
Other languages
Japanese (ja)
Other versions
JP2000078768A (en
Inventor
健 野崎
明 根岸
清南 高野
正温 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP24676298A priority Critical patent/JP3936979B2/en
Publication of JP2000078768A publication Critical patent/JP2000078768A/en
Application granted granted Critical
Publication of JP3936979B2 publication Critical patent/JP3936979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、充電式リチウムイオン組電池の充電中の各単電池間の端子電圧差の発生是正、つまり、リチウムイオン二次電池の組電池(直列モジュール)の充電時における各単電池端子電圧の0.1V程度のバラツキ発生を是正し、過充電等のトラブルを未然に防ぐとともに、サイクル寿命を大幅に改善するようにしたリチウムイオン二次電池の均等充電方法に関するものである。
【0002】
【従来の技術】
現在、充電中に端子電圧が上限電圧4.5Vをオーバした単電池は、単電池内に組み込まれた電子スイッチによって充電電流をバイパス(シャント)させている。
【0003】
すなわち、リチウムイオン二次電池を高電圧,大電流で使用するパワーユニット分野,リチウムイオン二次電池を動力源とした純電気自動車,エンジンハイブリッドカー,各種カート,トンネル土砂運搬トロッコ,電動フォークリフト等の電池駆動車分野,バックアップ電源システム(通信施設,太陽光発電)等でそれが行われている。
【0004】
【発明が解決しようとする課題】
電気自動車等の一次動力源である蓄電池は、多数個を直・並列に接続した組電池で使用される。
【0005】
直列接続されたリチウムイオン二次電池は、他の二次電池同様、充放電を繰り返すうちに個体差により単電池特性にバラツキが生ずる。特性のずれた直列接続電池に通常充電を行うと、性能のよい電池の充電が先行し、性能の低下した電池のために性能のよい電池の端子電圧が上昇する。過電圧状態になった単電池は、電池に組込まれた電子スイッチにより電流がバイパスされ熱発生源と化す。特にハイパワーモジュールの場合、熱発生対策は安全上重要であるとともに、過度の温度上昇(60℃以上)では安全弁が作動し電池の機能が失われる。
【0006】
現在使用されているリチウムイオン二次電池は、28.8V(3.6V×8)を1モジュールとしたものを直列接続あるいは並列接続して、電気自動車,電波中継所,各種非常用電源,太陽光電池の出力平準化および雨天,夜間出力用として利用・検討されている。リチウムイオン二次電池は電解液がセル毎に独立しているため(バナジウム系レドックス型キャパシタは電解液が共通)、個々のセル特性のズレにより各単電池間で充電状態(=1−放電深度)のバラツキが起こり、そのままでは継続使用が困難となる。放電深度の浅いフロート充電で利用される場合においても単電池間のバラツキが問題となり、均等充電作業が必要となる。特に、深い放電と高出力を必要とする動力用リチウムイオン二次電池の放電でのバラツキ程度は大きく、このことが電池特性を悪化させリチウムイオン二次電池のサイクル寿命を短いものにしている。このため、組電池のバラツキを是正したり、一定の充電時間内に100%充電を達成させるべく何らかの均等充電作業を強いられている等の問題点があった。
【0007】
ところで、上記の問題点を解決するために用いる付加装置は、サイズ,重量が小型でなければならない。また、リチウムイオン二次電池は長寿命型高性能二次電池でもあるので、付加装置もこれを上まわった長期安定動作が確保されねばならない。付加装置の環境適応性もリチウムイオン二次電池のそれと同等以上でなければならない。
【0008】
本発明は、上記の点にかんがみなされたもので、その目的は直列接続したリチウムイオン二次電池の組電池の電気容量のバラツキを是正するために、バナジウム系レドックス型キャパシタモジュールを並列接続することにより、充電中および充電後1〜2時間で均等化を達成することにある。
【0009】
【課題を解決するための手段】
本発明にかかるリチウムイオン二次電池の均等充電方法は、組電池にしたリチウムイオン二次電池の組電池電圧にバランスさせたレドックス型キャパシタモジュールを付加構成する。なお、レドックスは、酸化(Oxidation)と還元(Reduction)のことであり、科学的にはこの対になる組み合わせは「鉄/クロム」をはじめ多数ある。代表的な対として「バナジウム/バナジウム」がある。レドックス型キャパシタモジュールのトリム端子を、リチウムイオン二次電池(単電池)の充電上限電圧にマッチさせ並列に接続する。電解液が共通なレドックス型キャパシタモジュールは、端子電圧の高いリチウムイオン二次電池の過電圧分を吸収し、反対に端子電圧の低いリチウムイオン二次電池では、高いところで吸収した過電圧分の電気量を放出する。そして、レドックス型キャパシタはその共通電解液を循環させることにより、リチウムイオン二次電池のアンバランス分の電気量を充電吸収あるいは放電放出し、並列接続されたリチウムイオン二次電池間の不均等分を是正する。電解液の循環移動速度は、リチウムイオン二次電池の充電電流とアンバランス電気量にマッチさせたものとする。すなわち、レドックス型キャパシタの電気容量は、並列接続するリチウムイオン二次電池の0.1V分の電気容量を吸収できる量となる。そのため、並列接続時のリチウムイオン二次電池(単電池)とレドックス型キャパシタモジュールのトリム端子間の内部抵抗は、充電時それぞれ並列に接続されたリチウムイオン二次電池どうしの充電状態が同じ勾配で進行するように調整する。このようにして、バナジウムレドックス型キャパシタと組み合わされたリチウム二次電池(単電池)は、0.1V分のアンバランス分の電気容量を充電中および充電後1〜2時間程度で均等化することができる。
【0010】
【発明の実施の形態】
リチウムイオン二次電池を直列接続の組電池として用いるには、単電池特性の揃ったもので構成する必要がある。2個以上の組電池で使用するときの充電時の端子電圧の違いは1〜3%程度に抑えなければならない。そのため、組電池の充電においては、現在、充電時の過充電を避けるため、リチウムイオン二次電池は電流制限付き定電流・定電圧充電が主に行われており、単電池毎の電圧監視をしながら、0.2CmA〜0.5CmA:(定格の0.2〜0.5倍で充放電するときの電流値)程度での充電をするのが好ましい。それでもサイクル使用により特性にズレが生じてくる。
【0011】
本発明による均等充電方法では、充電時における組電池をなすリチウムイオン二次電池の内部抵抗のバラツキ(1〜3%)による各単電池素子電圧の差(ΔV)に見合ったエネルギーを、並列接続したレドックス型キャパシタで吸収あるいは放出する。このエネルギーを組電池への均等化配分作用により、単電池特性のズレを是正し組電池機能を長期に亘って維持できる。このようにして、サイクル使用によって単電池特性にズレを生じた組電池のバラツキを充電中および充電後1〜2時間程度で是正する。上記の作用により単電池特性の大きくずれたリチウムイオン二次電池が混在した組電池の効率的、かつ経済的で安全な充電を可能とする。また、レドックス型キャパシタを初めから組合せて使用することにより、リチウムイオン組電池のバラツキの抑制効果を得ることができる。その結果、電池システムの長寿命化と充電時間の短縮が達成され、電子スイッチ等のシャント抵抗を使用する場合のような熱発生対策を回避することができる。
【0012】
【実施例】
図1は、本発明のリチウムイオン二次電池の均等充電方法に使用するリチウム二次電池の均等充電装置を示す構成図で、1はリチウムイオン二次電池直列モジュールで、リチウムイオン二次電池(単電池ともいう)1A,1B,1C,1D,1Eの5個が直列に接続された組電池として構成されている。2はバナジウム系レドックス型キャパシタモジュール(単にキャパシタともいう)で、3セルで1スタックが形成された5個の3セルモジュール2A,2B,2C,2D,2Eで構成されるとともに、各3セルモジュールにはそれぞれトリム(trim)端子(単電池1A〜1Eの電圧と釣合いをとるための電圧取出端子)3A,3B,3C,3D,3E,3Fが設けられている。そして、単電池1Aはトリム端子3Aと3Bによって3セルモジュール2Aと並列に接続されている。また、単電池1Bはトリム端子3Bと3Cによって、3セルモジュール2Bに並列に接続され、以下同様に単電池1C,1D,1Eはそれぞれトリム端子3Cと3D,3Dと3E,3Eと3Fによって3セルモジュール2C,2D,2Eと並列に接続されている。4は充電器で、出力側4aが単電池1Aの正極に、入力側4bが単電池1Eの負極に接続されている。5は前記充電器4の交流電源、6は前記キャパシタ2のバナジウム電解液を循環させる負極電解液循環ポンプ、7は同じく正極電解液循環ポンプ、8,9はいずれも前記各循環ポンプ6,7のポンプ電源回路である。
【0013】
なお、負極電解液と正極電解液はバナジウム系レドックス型キャパシタモジュール2の共通電解液で、この電解液は循環ポンプ6,7により常時または間欠的に循環する。
【0014】
次に、実施例として使用したバナジウム系レドックス型キャパシタモジュール2の仕様の一例を下記に示す。
【0015】
・バナジウム電解液:負極電解液(V3+1.5mol/l,H2 SO4 4mol/l);16.5ml/l(理論電気量:2388クーロン)
正極電解液(V4+1.5mol/l,H2SO 44mol/l);16.5ml(理論電気量:2388クーロン)
・電極:カーボンフェルト(目付量:400g/m2 ,電極サイズ:幅1cm×長さ5cm×厚み0.2cm)
・電極室電解液量:1cm(幅)×10cm(長)×0.2cm(厚み)×0.55(空隙率)=1.1ml(電気量:159クーロン)
・セル抵抗:(1セル抵抗率1.7Ω・cm2 /1セルの面積10cm2 )×3セル=510mΩ
・上限充電電圧:1.55V/1セル
・電解液利用率:約97%、充電器4の設定電圧は単電池1A〜1Eの上限値以上は上がらないため、キャパシタ2の電解液利用率は約97%で使用上安全領域である。
【0016】
・単電池1A〜1Eの5直列の定電圧充電電圧:4.5V×5セル=22.5V
・キャパシタ2の100%充電に必要な理論電圧:1.55V/1セル×3スタック×5直列=23.25V
したがって、(22.5V/23.25V)×100=96.7%(電解液利用率)
・本実施例におけるキャパシタ2のサイズは、幅2cm,高さ11cm,厚み10cmとなる。
【0017】
単電池1A〜1Eは、300サイクル位では0.1Vもの電位差が現れてこない。そこで、単電池1A〜1Eの5個のうち、充電終了電圧が0.1V高い単電池1B,1Eの2個を作り、定電圧充電後1〜2時間均等化させると0.1Vの電圧差が0.01Vになった。このことより、本発明のリチウムイオン二次電池の均等充電方法は十分機能することが確認された。
【0018】
図2,図3にリチウムイオン二次電池直列モジュール1の充電特性を、図4,図5にキャパシタ2の充放電特性を示す。
【0019】
図2は、リチウムイオン二次電池直列モジュール1を構成する単電池の1個についての連続充電する場合における充電電気量と無負荷時の開路電圧との関係を示す特性図、図3はリチウムイオン二次電池直列モジュール1を構成する単電池の1個について1V刻みでステップ充電する場合におけるステップ充電電気量を示す特性図、図4はキャパシタ2の充電特性を示す図、図5はキャパシタ2の放電特性を示す図である。
【0020】
まず、図2において、単電池1A〜1Eのうちの1個を一定電流で充電すると、一例として図2に示すように電圧が上昇する。この単電池が多数個直列に接続されていた場合、いずれの単電池も図2に示すような特性であれば、各単電池の充電推移にバラツキが生じないが、実際には、このような均質な単電池を製造することが困難である。
【0021】
このため、図3に示すように充電方法をいくつかのステップに区切って各単電池の充電状態に応じて各ステップでの充電を割り当てて充電する。このように充電することによって各単電池のバラツキを抑制して充電できる。なお、実際のシステムでは連続的に充電しても同様の効果が得られる。
【0022】
すなわち、リチウムイオン二次電池直列モジュール1のうち、充電先走りの電池からキャパシタ2に先走り分を放出(放電)し、充電後れの電池は送れ分をキャパシタ2から供給(充電)を受けるという方法である。この緩衝調整作用を発揮するためにこのキャパシタ2の特性と整合させてリチウムイオン電池直列モジュール1のステップ充電を行うものである。
【0023】
図4,図5はこの緩衝調整の役割をするキャパシタ2の基本充放電曲線を示すものである。
【0024】
次に、リチウムイオン二次電池の充電特性とバナジウム系レドックス型キャパシタの放電特性の均等化作用の詳細を説明する。
【0025】
単電池1A〜1Eを100mAで充電すると、充電完了までに14.85hの時間を要する。
【0026】
このとき、2.5V(放電下限電圧)〜4.5V(充電上限電圧)までの2V分を充電することになり、1時間当りでは、2V/14.85h=0.135V/hの電圧上昇となる。各単電池1A〜1Eのリチウムイオン二次電池直列モジュール1は充電の上限電圧が固定されているので、相対的に0.1V高い単電池があれば0.1V低い単電池もある。
【0027】
単電池1A〜1E間に約0.1Vの電圧上昇が生じると、図2の充電特性から最大245mA・hの電気量がアンバランスとなる。
【0028】
このとき、電解液共通なキャパシタ2を単電池1A〜1Eに並列接続させておきバナジウム電解液をキャパシタ2間で循環移動させれば、単電池1A〜1E間の相対的に電圧の高いセルでは充電状態に、あるいは電圧の低いセルでは放電状態になるというように、リチウムイオン二次電池直列モジュール1とキャパシタ2の内部抵抗の比、例えば1:10の場合に応じて、最大24.5mA・hの電気量を蓄えることができ、これは全充電時間14.85h内には十分バランスさせることができる量である。(245mA・h=24.5mA×10h、10h<14.85h)
このように、連続的動作によりリチウムイオン二次電池直列モジュール1の充電状態のズレ分を是正し均等化することができる。ここで用いたキャパシタ2の電位変化は±0.1Vで充電状態を約42%変化させる。
【0029】
したがって、単電池1A〜1Eの充電アンバランス分0.1Vを是正する場合、キャパシタ2の1セル当りの電位変化は0.1V/3セル=0.033Vで、充電深度変化約14%である。この充電深度14%は、キャパシタ2の自己放電およびシャントカレントを考慮しても十分大きな変化量でありリチウムイオン二次電池直列モジュール1の均等化動作が可能である。(なお、実施例に用いたキャパシタ2の体積は、1350mA・hのリチウムイオン二次電池5直列の約2倍となる。)
なお、キャパシタ2の内部抵抗は、リチウムイオン二次電池直列モジュール1の10〜15倍の内部抵抗(500〜600mΩ)になるように電極面積を変えて調整する。
【0030】
また、キャパシタ2の電気容量は、単電池1A〜1Eがその充電電気量の10〜20%を吸収したときに、キャパシタ2の充電深度が75%程度になるように電解液濃度と電解液量を調整する。そのときのキャパシタ2の電流密度は、20〜30mA/cm2 程度以下になるように電極を調整する。
【0031】
また、キャパシタ2の構成要件としては実施例に示した仕様の他に下記の構成のものが使用される。すなわち、
・負極電解液:バナジウム3価濃度0.5〜2.0mol/l,硫酸濃度1.0〜5.0mol/l
・正極電解液:バナジウム4価濃度0.5〜2.0mol/l,硫酸濃度1.0〜5.0mol/l
・電極:炭素繊維,鉛フェルト,ポーラスカーボン,ZSM−5膜一体型ポーラスカーボン
前記電極は単独または重ね合わせて用いる。そして、重ね合わせ時は正電極とも膜側から密電極,粗電極の順で組み合わせをする。
【0032】
・バイポーラプレート:ガラス状カーボン,フェノール結着カーボン板,プラスチックカーボン
・セパレーター:陰イオン交換膜,陽イオン交換膜,微多孔膜,ZSM−5膜一体型ポーラスカーボン
【0033】
【発明の効果】
以上説明したように本発明は、単電池を直列に接続して組電池に構成したリチウムイオン二次電池の組電池電圧とバランスさせるレドックス型キャパシタモジュールを付加構成し、電解液が共通な前記レドックス型キャパシタモジュールのトリム端子を、前記リチウムイオン二次電池の単電池の充電上限電圧にマッチさせて並列に接続し、前記レドックス型キャパシタモジュールで、前記トリム端子の端子電圧の高い前記リチウムイオン二次電池の過電圧分を吸収し、前記端子電圧の低い前記リチウムイオン二次電池では前記吸収した過電圧分の電気量を放出し、また、前記電解液を循環させて前記リチウムイオン二次電池のアンバランス分の電気量を充電吸収あるいは放電放出し、このとき、前記リチウムイオン二次電池の単電池と前記レドックス型キャパシタモジュールの前記トリム端子間の内部抵抗値とを充電時にそれぞれ前記リチウムイオン二次電池どうしの充電深度が同じ勾配で進行するように調整し、前記レドックスキャパシタと前記リチウムイオン二次電池間の不均等分を是正するようにしたので、組電池の充放電時の容量バラツキおよび特性劣化によるズレを充電作業で均等化し是正することができる。その結果、組電池使用で以下のような効果が得られる。
【0034】
放電容量の低下を防止することができる。すなわち、放電容量の低下を従来の1/2〜1/3にすることができる。
【0035】
また、長寿命化され、従来の2〜3倍(組電池で1000〜1500サイクル程度)になる。
【0036】
一定の充電時間内に100%充電が達成でき、充電時間の短縮化,充電上限電圧までの定電流充電時間の初期性能維持による単電池特性の長期維持ができるばかりでなく、特性劣化の是正により、単電池の過放電トラブルの解消ができ、従来の均等充電作業が不要である等の利点を有する。
【図面の簡単な説明】
【図1】本発明のリチウムイオン二次電池の均等充電方法に使用するリチウムイオン二次電池の均等充電装置を示す構成図である。
【図2】リチウムイオン二次電池直列モジュールを構成する単電池の1個について連続する充電の場合における充電電気量と無負荷時の開路電圧との関係を示す特性図である。
【図3】リチウムイオン二次電池直列モジュールを構成する単電池の1個についてステップ充電する場合におけるステップ充電電気量を示す特性図である。
【図4】バナジウムレドックスキャパシタの充電特性を示す図である。
【図5】バナジウムレドックスキャパシタの放電特性を示す図である。
【符号の説明】
1 リチウムイオン電池直列モジュール
1A〜1E リチウムイオン二次電池
2 バナジウム系レドックス型キャパシタ
2A〜2E 3セルモジュール
3A〜3F トリム端子
4 充電器
5 交流電源
6 負極電解液循環ポンプ
7 正極電解液循環ポンプ
8,9 ポンプ電源回路
[0001]
BACKGROUND OF THE INVENTION
The present invention corrects the occurrence of a terminal voltage difference between cells during charging of a rechargeable lithium ion battery, that is, the voltage of each battery terminal during charging of a battery (series module) of lithium ion secondary batteries. The present invention relates to a method for evenly charging a lithium ion secondary battery in which the occurrence of variations of about 0.1 V is corrected, troubles such as overcharging are prevented, and cycle life is greatly improved.
[0002]
[Prior art]
Currently, a unit cell whose terminal voltage exceeds the upper limit voltage of 4.5 V during charging bypasses (shunts) the charging current by an electronic switch incorporated in the unit cell.
[0003]
In other words, the power unit field that uses lithium-ion secondary batteries at high voltage and high current, batteries for pure electric vehicles, engine hybrid cars, various carts, tunnel sediment transport trucks, electric forklifts, etc. powered by lithium-ion secondary batteries This is done in the field of driving vehicles, backup power supply systems (communication facilities, solar power generation), etc.
[0004]
[Problems to be solved by the invention]
A storage battery, which is a primary power source such as an electric vehicle, is used in an assembled battery in which a large number are connected in series and parallel.
[0005]
As with other secondary batteries, series-connected lithium ion secondary batteries vary in unit cell characteristics due to individual differences while being repeatedly charged and discharged. When normal charging is performed on series-connected batteries having different characteristics, charging of a battery with good performance precedes, and the terminal voltage of the battery with good performance rises due to the battery with degraded performance. The unit cell that is in an overvoltage state is bypassed by an electronic switch incorporated in the battery and becomes a heat generation source. In particular, in the case of a high power module, heat generation countermeasures are important for safety, and if the temperature rises excessively (60 ° C. or higher), the safety valve is activated and the battery function is lost.
[0006]
Currently used lithium-ion secondary batteries are 28.8V (3.6V x 8) in one module connected in series or in parallel, electric vehicles, radio relay stations, various emergency power supplies, solar It is used and studied for output leveling of photovoltaic cells and for rainy and nighttime output. In lithium ion secondary batteries, the electrolyte is independent for each cell (the vanadium-based redox capacitor has the same electrolyte), so the state of charge between each single cell (= 1-depth of discharge) due to deviations in individual cell characteristics. ) Will occur, and it will be difficult to continue using the product as it is. Even when used in float charging with a shallow depth of discharge, the variation between single cells becomes a problem, and uniform charging work is required. In particular, there is a large variation in the discharge of a power lithium ion secondary battery that requires deep discharge and high output, which deteriorates the battery characteristics and shortens the cycle life of the lithium ion secondary battery. For this reason, there existed problems, such as correcting the variation of an assembled battery, and being forced to carry out some equal charge work in order to achieve 100% charge within a fixed charge time.
[0007]
By the way, the additional device used for solving the above-mentioned problems must be small in size and weight. Further, since the lithium ion secondary battery is also a long-life high-performance secondary battery, the additional device must ensure a long-term stable operation exceeding this. The environmental adaptability of the additional device must be equal to or better than that of the lithium ion secondary battery.
[0008]
The present invention has been considered in view of the above points, and its purpose is to connect vanadium-based redox capacitor modules in parallel in order to correct variation in electric capacity of assembled batteries of lithium ion secondary batteries connected in series. Thus, equalization is achieved during charging and in 1 to 2 hours after charging.
[0009]
[Means for Solving the Problems]
According to the present invention, there is provided an equal charging method for a lithium ion secondary battery, in which a redox capacitor module balanced with the assembled battery voltage of the lithium ion secondary battery made into an assembled battery is added. Redox refers to oxidation and reduction, and scientifically there are many combinations such as “iron / chromium” as a pair. A typical pair is “vanadium / vanadium”. The trim terminal of the redox capacitor module is matched with the charge upper limit voltage of the lithium ion secondary battery (unit cell) and connected in parallel. Redox capacitor modules with a common electrolyte absorb the overvoltage of a lithium ion secondary battery with a high terminal voltage.On the other hand, with a lithium ion secondary battery with a low terminal voltage, discharge. Then, the redox capacitor circulates the common electrolyte to charge-absorb or discharge the amount of unbalanced electricity of the lithium-ion secondary battery, and to disproportionately distribute the lithium-ion secondary batteries connected in parallel. Correct. The circulation movement speed of the electrolytic solution is assumed to match the charging current and the unbalanced electric quantity of the lithium ion secondary battery. That is, the electric capacity of the redox capacitor is an amount that can absorb the electric capacity of 0.1 V of the lithium ion secondary batteries connected in parallel. For this reason, the internal resistance between the lithium ion secondary battery (single cell) and the trim terminal of the redox capacitor module when connected in parallel has the same gradient of charge state between the lithium ion secondary batteries connected in parallel during charging. Adjust to progress. In this way, the lithium secondary battery (unit cell) combined with the vanadium redox type capacitor equalizes the electric capacity for imbalance of 0.1 V during charging and about 1 to 2 hours after charging. Can do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to use a lithium ion secondary battery as an assembled battery connected in series, it is necessary to configure the battery with uniform cell characteristics. The difference in terminal voltage during charging when using two or more assembled batteries must be suppressed to about 1 to 3%. For this reason, in order to avoid overcharging during charging, lithium-ion secondary batteries are currently mainly charged with constant current and constant voltage with current limitation. However, it is preferable to charge at about 0.2 CmA to 0.5 CmA: (current value when charging / discharging at 0.2 to 0.5 times the rating). Even so, deviations in characteristics occur due to cycle use.
[0011]
In the equal charge method according to the present invention, the energy corresponding to the difference (ΔV) of each single cell element voltage due to the variation (1 to 3%) in the internal resistance of the lithium ion secondary battery constituting the assembled battery at the time of charging is connected in parallel. Absorbed or released by the redox capacitor. Due to the equalizing and distributing action of this energy to the assembled battery, the deviation of the cell characteristics can be corrected and the assembled battery function can be maintained over a long period of time. In this way, the variation of the assembled battery in which the unit cell characteristics are deviated due to cycle use is corrected during charging and about 1 to 2 hours after charging. Due to the above-described action, it is possible to efficiently, economically and safely charge an assembled battery in which lithium ion secondary batteries having greatly deviated cell characteristics are mixed. Further, by using the redox type capacitors in combination from the beginning, it is possible to obtain the effect of suppressing variations in the lithium ion assembled battery. As a result, the life of the battery system can be extended and the charging time can be shortened, and countermeasures against heat generation such as when using a shunt resistor such as an electronic switch can be avoided.
[0012]
【Example】
FIG. 1 is a configuration diagram showing a lithium secondary battery equal charging device used in the lithium ion secondary battery equal charging method of the present invention, wherein 1 is a lithium ion secondary battery series module, and a lithium ion secondary battery ( (Also referred to as a single battery) 1A, 1B, 1C, 1D, and 1E are configured as an assembled battery in which five are connected in series. Reference numeral 2 denotes a vanadium-based redox capacitor module (also simply referred to as a capacitor), which is composed of five 3-cell modules 2A, 2B, 2C, 2D, and 2E in which one stack is formed by three cells, and each three-cell module. Each is provided with a trim terminal (voltage extraction terminal for balancing the voltages of the cells 1A to 1E) 3A, 3B, 3C, 3D, 3E, 3F. The single cell 1A is connected in parallel with the 3-cell module 2A by trim terminals 3A and 3B. The unit cell 1B is connected in parallel to the three-cell module 2B by trim terminals 3B and 3C. Similarly, the unit cells 1C, 1D, and 1E are connected by trim terminals 3C and 3D, 3D and 3E, and 3E and 3F, respectively. The cell modules 2C, 2D, and 2E are connected in parallel. Reference numeral 4 denotes a charger. The output side 4a is connected to the positive electrode of the single cell 1A, and the input side 4b is connected to the negative electrode of the single cell 1E. 5 is an AC power source for the charger 4, 6 is a negative electrolyte circulation pump for circulating the vanadium electrolyte of the capacitor 2, 7 is a positive electrolyte circulation pump, and 8 and 9 are the circulation pumps 6 and 7. This is a pump power supply circuit.
[0013]
The negative electrode electrolyte and the positive electrode electrolyte are common electrolytes of the vanadium redox capacitor module 2, and these electrolytes are circulated constantly or intermittently by circulation pumps 6 and 7.
[0014]
Next, an example of the specification of the vanadium redox capacitor module 2 used as an example is shown below.
[0015]
Vanadium electrolyte: negative electrode electrolyte (V 3+ 1.5 mol / l, H 2 SO 4 4 mol / l); 16.5 ml / l (theoretical electricity: 2388 coulombs)
Positive electrode electrolyte (V 4+ 1.5 mol / l, H 2 SO 4 4 mol / l); 16.5 ml (theoretical electricity: 2388 coulombs)
・ Electrode: Carbon felt (weight per unit area: 400 g / m 2 , electrode size: width 1 cm × length 5 cm × thickness 0.2 cm)
Electrode chamber electrolyte volume: 1 cm (width) x 10 cm (length) x 0.2 cm (thickness) x 0.55 (porosity) = 1.1 ml (amount of electricity: 159 coulombs)
Cell resistance: (1 cell resistivity of 1.7 ohm · cm 2/1 area of the cell 10 cm 2) × 3 cells = 510Emuomega
-Upper limit charging voltage: 1.55V / 1 cell-Electrolyte utilization rate: about 97%, the set voltage of the charger 4 does not rise above the upper limit value of the single cells 1A-1E. About 97% is safe for use.
[0016]
-5 series constant voltage charging voltage of single cells 1A to 1E: 4.5V × 5 cells = 22.5V
-Theoretical voltage required for 100% charge of capacitor 2: 1.55V / 1 cell x 3 stacks x 5 series = 23.25V
Therefore, (22.5V / 23.25V) × 100 = 96.7% (electrolyte utilization rate)
The size of the capacitor 2 in this embodiment is 2 cm wide, 11 cm high, and 10 cm thick.
[0017]
In the single cells 1A to 1E, a potential difference of 0.1 V does not appear at about 300 cycles. Therefore, out of the five cells 1A to 1E, when two cells 1B and 1E having a high charge end voltage of 0.1 V are made and equalized for 1 to 2 hours after constant voltage charging, a voltage difference of 0.1 V is obtained. Became 0.01V. From this, it was confirmed that the equal charge method of the lithium ion secondary battery of the present invention functions sufficiently.
[0018]
2 and 3 show the charging characteristics of the lithium ion secondary battery series module 1, and FIGS. 4 and 5 show the charging and discharging characteristics of the capacitor 2.
[0019]
FIG. 2 is a characteristic diagram showing the relationship between the amount of electricity charged and the open circuit voltage when there is no load when continuously charging one of the cells constituting the lithium ion secondary battery series module 1, and FIG. FIG. 4 is a characteristic diagram showing the charge capacity of the capacitor 2 when step charging is performed in increments of 1V for one of the cells constituting the secondary battery series module 1, FIG. It is a figure which shows a discharge characteristic.
[0020]
First, in FIG. 2, when one of the cells 1A to 1E is charged with a constant current, the voltage rises as shown in FIG. 2 as an example. When a large number of these single cells are connected in series, if each single cell has the characteristics as shown in FIG. 2, there is no variation in the charging transition of each single cell. It is difficult to produce a homogeneous cell.
[0021]
For this reason, as shown in FIG. 3, the charging method is divided into several steps, and charging is assigned at each step according to the charging state of each unit cell. By charging in this way, it is possible to charge while suppressing the variation of each unit cell. In the actual system, the same effect can be obtained even if the battery is continuously charged.
[0022]
That is, in the lithium ion secondary battery series module 1, the first battery is discharged (discharged) from the battery first charged, and the battery after charging is supplied (charged) from the capacitor 2. It is. In order to exhibit this buffering adjusting action, the lithium ion battery series module 1 is step-charged in conformity with the characteristics of the capacitor 2.
[0023]
4 and 5 show basic charge / discharge curves of the capacitor 2 that plays the role of buffering adjustment.
[0024]
Next, details of the equalizing action of the charging characteristics of the lithium ion secondary battery and the discharging characteristics of the vanadium redox capacitor will be described.
[0025]
When the cells 1A to 1E are charged at 100 mA, it takes 14.85 hours to complete charging.
[0026]
At this time, 2 V from 2.5 V (discharge lower limit voltage) to 4.5 V (charge upper limit voltage) is charged, and the voltage rises by 2 V / 14.85 h = 0.135 V / h per hour. It becomes. Since the lithium ion secondary battery series module 1 of each of the single cells 1A to 1E has a fixed upper limit voltage for charging, there is a single cell that is 0.1V lower if there is a single cell that is relatively higher by 0.1V.
[0027]
When a voltage increase of about 0.1 V occurs between the cells 1A to 1E, the maximum amount of electricity of 245 mA · h is unbalanced from the charging characteristics of FIG.
[0028]
At this time, if the capacitor 2 common to the electrolyte is connected in parallel to the cells 1A to 1E and the vanadium electrolyte is circulated between the capacitors 2, the cells having relatively high voltage between the cells 1A to 1E Depending on the ratio of the internal resistance of the lithium ion secondary battery series module 1 and the capacitor 2, for example, 1:10, such that the battery is in a charged state or discharged in a low voltage cell, the maximum is 24.5 mA · The amount of electricity of h can be stored, and this is an amount that can be well balanced within the total charging time of 14.85 h. (245 mA · h = 24.5 mA × 10 h, 10 h <14.85 h)
As described above, the deviation of the charged state of the lithium ion secondary battery series module 1 can be corrected and equalized by the continuous operation. The potential change of the capacitor 2 used here is ± 0.1 V, and the state of charge is changed by about 42%.
[0029]
Therefore, when correcting the charge imbalance 0.1V of the cells 1A to 1E, the potential change per cell of the capacitor 2 is 0.1V / 3 cell = 0.033V, and the charge depth change is about 14%. . This charging depth of 14% is a sufficiently large amount of change even when the self-discharge of the capacitor 2 and the shunt current are taken into account, and the equalization operation of the lithium ion secondary battery series module 1 is possible. (Note that the volume of the capacitor 2 used in the example is about twice that of the 1350 mA · h lithium ion secondary battery 5 in series.)
The internal resistance of the capacitor 2 is adjusted by changing the electrode area so that the internal resistance is 10 to 15 times that of the lithium ion secondary battery series module 1 (500 to 600 mΩ).
[0030]
Further, the electric capacity of the capacitor 2 is such that when the single cells 1A to 1E absorb 10 to 20% of the charged electric charge, the electrolytic solution concentration and the electrolytic solution amount so that the charging depth of the capacitor 2 is about 75%. Adjust. At this time, the electrodes are adjusted so that the current density of the capacitor 2 is about 20 to 30 mA / cm 2 or less.
[0031]
In addition to the specifications shown in the embodiment, the capacitor 2 having the following configuration is used as a component requirement. That is,
Negative electrode electrolyte: vanadium trivalent concentration 0.5 to 2.0 mol / l, sulfuric acid concentration 1.0 to 5.0 mol / l
Positive electrode electrolyte: vanadium tetravalent concentration of 0.5 to 2.0 mol / l, sulfuric acid concentration of 1.0 to 5.0 mol / l
Electrode: Carbon fiber, lead felt, porous carbon, ZSM-5 membrane integrated porous carbon The electrodes are used alone or in combination. During superposition, the positive electrode and the rough electrode are combined in this order from the membrane side.
[0032]
Bipolar plate: glassy carbon, phenolic carbon plate, plastic carbon separator: anion exchange membrane, cation exchange membrane, microporous membrane, ZSM-5 membrane integrated porous carbon
【The invention's effect】
As described above, the present invention additionally includes a redox capacitor module that balances the assembled battery voltage of a lithium ion secondary battery configured by connecting single cells in series to form an assembled battery, and the redox having a common electrolyte solution. The trim terminal of the type capacitor module is connected in parallel to match the charging upper limit voltage of the unit cell of the lithium ion secondary battery, and the lithium ion secondary having a high terminal voltage of the trim terminal is connected in the redox type capacitor module. The lithium ion secondary battery having a low terminal voltage absorbs an overvoltage of the battery and releases an amount of electricity corresponding to the absorbed overvoltage, and the electrolyte is circulated to unbalance the lithium ion secondary battery. The amount of electricity is absorbed and discharged or discharged, and at this time, the lithium ion secondary battery and the battery And adjusting the internal resistance value between the trim terminals of the ox-type capacitor module so that the charging depth of the lithium ion secondary batteries proceeds with the same gradient during charging, and between the redox capacitor and the lithium ion secondary battery. Since the non-uniformity of the battery is corrected, it is possible to equalize and correct the capacity variation during charging / discharging of the assembled battery and the deviation due to characteristic deterioration in the charging operation. As a result, the following effects can be obtained by using the assembled battery.
[0034]
A reduction in discharge capacity can be prevented. That is, the discharge capacity can be reduced to 1/2 to 1/3 of the conventional one.
[0035]
In addition, the service life is extended to 2 to 3 times that of the conventional one (about 1000 to 1500 cycles for the assembled battery).
[0036]
100% charging can be achieved within a certain charging time, and not only can shorten the charging time, maintain the initial performance of the constant current charging time up to the charging upper limit voltage, but also maintain the cell characteristics for a long time, and also correct the deterioration of the characteristics In addition, it is possible to eliminate the overdischarge trouble of the unit cell, and there is an advantage that the conventional equal charge operation is unnecessary.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a configuration diagram showing a lithium ion secondary battery equal charging device used in a method for equally charging lithium ion secondary batteries according to the present invention.
FIG. 2 is a characteristic diagram showing the relationship between the amount of charge and the open circuit voltage when there is no load in the case of continuous charging for one of the cells constituting the lithium ion secondary battery series module.
FIG. 3 is a characteristic diagram showing a step charge electricity amount in the case of performing step charge for one of the cells constituting the lithium ion secondary battery series module.
FIG. 4 is a diagram showing charging characteristics of a vanadium redox capacitor.
FIG. 5 is a diagram showing discharge characteristics of a vanadium redox capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion battery serial module 1A-1E Lithium ion secondary battery 2 Vanadium redox type capacitor 2A-2E 3 cell module 3A-3F Trim terminal 4 Charger 5 AC power supply 6 Negative electrode electrolyte circulation pump 7 Positive electrode electrolyte circulation pump 8 , 9 Pump power circuit

Claims (1)

単電池を直列に接続して組電池に構成したリチウムイオン二次電池の組電池電圧とバランスさせるレドックス型キャパシタモジュールを付加構成し、電解液が共通な前記レドックス型キャパシタモジュールのトリム端子を、前記リチウムイオン二次電池の単電池の充電上限電圧にマッチさせて並列に接続し、前記レドックス型キャパシタモジュールで、前記トリム端子の端子電圧の高い前記リチウムイオン二次電池の過電圧分を吸収し、前記端子電圧の低い前記リチウムイオン二次電池では前記吸収した過電圧分の電気量を放出し、また、前記電解液を循環させて前記リチウムイオン二次電池のアンバランス分の電気量を充電吸収あるいは放電放出し、このとき、前記リチウムイオン二次電池の単電池と前記レドックス型キャパシタモジュールの前記トリム端子間の内部抵抗値とを充電時にそれぞれ前記リチウムイオン二次電池どうしの充電状態が同じ勾配で進行するように調整し、前記レドックスキャパシタと前記リチウムイオン二次電池間の不均等分を是正することを特徴とするリチウムイオン二次電池の均等充電方法。A redox capacitor module that balances the assembled battery voltage of a lithium ion secondary battery that is configured as an assembled battery by connecting the cells in series is additionally configured, and the trim terminal of the redox capacitor module that has a common electrolyte is used as the trim terminal. Matching the charging upper limit voltage of the unit cell of the lithium ion secondary battery and connecting in parallel, the redox capacitor module absorbs the overvoltage component of the lithium ion secondary battery having a high terminal voltage of the trim terminal, and In the lithium ion secondary battery having a low terminal voltage, the absorbed amount of electricity is discharged, and the electrolyte is circulated to charge or absorb or discharge the amount of unbalanced electricity in the lithium ion secondary battery. At this time, the lithium ion secondary battery cell and the redox capacitor module The internal resistance value between the trim terminals of the lithium ion secondary battery is adjusted so that the charging state of the lithium ion secondary batteries proceeds with the same gradient during charging, and an uneven amount between the redox capacitor and the lithium ion secondary battery is adjusted. The method of equalizing a lithium ion secondary battery characterized by correcting the above.
JP24676298A 1998-09-01 1998-09-01 Equal charging method for lithium ion secondary battery Expired - Lifetime JP3936979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676298A JP3936979B2 (en) 1998-09-01 1998-09-01 Equal charging method for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676298A JP3936979B2 (en) 1998-09-01 1998-09-01 Equal charging method for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2000078768A JP2000078768A (en) 2000-03-14
JP3936979B2 true JP3936979B2 (en) 2007-06-27

Family

ID=17153295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676298A Expired - Lifetime JP3936979B2 (en) 1998-09-01 1998-09-01 Equal charging method for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3936979B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3809549B2 (en) * 2001-11-22 2006-08-16 株式会社日立製作所 Power supply device, distributed power supply system, and electric vehicle equipped with the same
US8030901B2 (en) 2008-04-16 2011-10-04 Nisshinbo Holdings Inc. Electric energy storage device
KR101634721B1 (en) * 2012-08-24 2016-06-29 주식회사 엘지화학 Lithium secondary battery assembly and control method for the same
JP6894649B1 (en) * 2019-12-20 2021-06-30 株式会社堤水素研究所 Fuel cell charge state maintenance device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671433A (en) * 1979-11-14 1981-06-15 Hitachi Ltd Floating charging type power source
JPH06319287A (en) * 1993-04-30 1994-11-15 Aqueous Res:Kk Electric power supply equipment for driving motor
JPH11329474A (en) * 1998-05-19 1999-11-30 Mitsui Eng & Shipbuild Co Ltd Redox battery or redox capacitor and manufacture thereof
JP2000315631A (en) * 1999-04-28 2000-11-14 Mitsubishi Chemicals Corp Electrolysis salt, its manufacture and electric/chemical capacitor using the same

Also Published As

Publication number Publication date
JP2000078768A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US7427450B2 (en) Hybrid fuel cell system with battery capacitor energy storage system
TWI472446B (en) Hybrid power supply system
CN101675555A (en) Battery pack and battery system
CN104993538A (en) Balancing application device and method for chargeable battery pack
US10720676B2 (en) Power storage pack having first and second power storage packs connected in parallel
WO2014038100A1 (en) Vehicular battery system and vehicle equipped with same
CN107369858A (en) A kind of battery pack Bi-objective equalizing circuit control strategy stage by stage
JP5705046B2 (en) Power system
EP0466496A2 (en) Battery chargers for secondary cells or batteries, which control the thermo response of the charge acceptor
JP3936979B2 (en) Equal charging method for lithium ion secondary battery
CN104272497B (en) Vehicle with Li-ion batteries piles
CN102544644B (en) Composite power source composed of lead-acid storage battery monomer and lithium-ion battery monomer connected in parallel
Singh et al. Comparative performance investigation of battery and ultracapacitor for electric vehicle applications
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
EP3975373A1 (en) Energy storage system using supercapacitors
Mahadevan et al. Battery Technologies
KR101599962B1 (en) Energe storage system
CN104067414A (en) Lead storage battery
TWI655120B (en) Active discharge balance extended range device using regenerative energy and method thereof
Abeywardana et al. Improved shared transformer cell balancing of Li-ion batteries
CN116345643B (en) Energy storage system and electric equipment
US20220006300A1 (en) Electrical energy store, device and method for operating an electrical energy store
KR102562600B1 (en) Power supply system using supercapacitor
CN216699585U (en) Lithium battery system for navigation mark lighthouse
CN201041946Y (en) Self-excited negative impulse voltage stabilization balance battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term