JP3936240B2 - Induction heating roller equipment - Google Patents

Induction heating roller equipment Download PDF

Info

Publication number
JP3936240B2
JP3936240B2 JP2002147117A JP2002147117A JP3936240B2 JP 3936240 B2 JP3936240 B2 JP 3936240B2 JP 2002147117 A JP2002147117 A JP 2002147117A JP 2002147117 A JP2002147117 A JP 2002147117A JP 3936240 B2 JP3936240 B2 JP 3936240B2
Authority
JP
Japan
Prior art keywords
winding
windings
turns
phase
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002147117A
Other languages
Japanese (ja)
Other versions
JP2003338364A (en
Inventor
徹 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2002147117A priority Critical patent/JP3936240B2/en
Publication of JP2003338364A publication Critical patent/JP2003338364A/en
Application granted granted Critical
Publication of JP3936240B2 publication Critical patent/JP3936240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は誘導発熱ローラ設備に関する。
【0002】
【従来の技術】
回転する中空のローラの内部に、鉄心と、その外周に巻装された誘導コイルとからなる誘導発熱機構を配置し、これによってローラの周壁を誘導発熱させる誘導発熱ローラ装置は既に知られている。誘導コイルは単相電源で励磁するのが好ましいので、手近にある三相電源から単相電圧を取りだし、これを利用すればよく、具体的には三相電源の各線間に誘導発熱ローラ装置の各誘導コイルを接続して励磁することが考えられる。この場合容量が等しい3台の誘導コイルを、三相電源の各線路間にそれぞれ接続する配線構成とすれば、三相電源の相電流は平衡するので、特に問題はない。
【0003】
しかしこの配線構成では、前記のように各相の線路間に、同容量の誘導コイルを3台接続すれば電源電流は平衡するとしても、誘導コイルが2台または1台であって、誘導コイルが接続されない線路間が存在するようなときは、三相電源電流は不平衡となり、三相電源構成に支障をきたすことは明らかである。
【0004】
たとえば三相電源線路U,V,Wにおいて、線路UV間およびVW間にそれぞれ1台の誘導コイルを接続したとする。両誘導コイルの容量が同じであるとし、各相の電源電流をIすると、線路U,V,Wに流れる電流Iu,Iv,IwはそれぞれI,√(3)I,Iとなり、その比は、1:√(3):1となる。また線路UV間のみに誘導コイルを接続し、線路VW間を無負荷とした場合は、電流IWは0となるので、各線路電流の比は、1:1:0となる。いずれも電流が不平衡となる傾向は大きい。
【0005】
このように三相電源線路のU,V,Wにおいて、線路UV間およびVW間または線路UV間のみに誘導コイルを接続した場合でも、各線路電流が平衡するように、あるいは不平衡傾向が少なくなるようにした構成は、本発明者によって既に提案されているところである。すなわちこれは三相電源の各線路にそれぞれ一端が接続され、他端が一括して接続されて中性点とされてあって、かつ同じ巻数の第1乃至第3の巻線からなり、第1の巻線にまたがって第1の誘導発熱ローラ装置に属している誘導コイルを接続し、第2の巻線および第3の巻線の、一括されている端部とは反対側の端部間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続した構成である。しかしこの構成によれば、中性点とひとつの巻線の端部との間に誘導コイルを接続しているので、中性点の電位が移動するようなことがあると、誘導コイルの入力電圧が負荷電流によって変動してしまう。そのためこのようなことがあると、誘導発熱ローラの温度を安定して制御できなくなってしまう恐れがでてくる。
【0006】
【発明が解決しようとする課題】
本発明は、三相電源から単相電圧を取りだして、これを2台または1台の誘導コイルの励磁電圧とすることにより、三相電源電流が可及的に平衡となるようにした構成において、3個の巻線を一括接続してある中性点の電位移動をなくして安定させるとともに、各巻線における高調波の発生の抑制を目的とする。
【0007】
【課題を解決するための手段】
請求項1ないし請求項7に係る本発明は、三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線し、第1の巻線の一端と前記中性点と間にまたがって第1の誘導発熱ローラ装置に属している誘導コイルを接続し、第2の巻線と第3の巻線の各一端同志の間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続した構成を基本構成として備える。
【0008】
【発明の実施の形態】
本発明の実施の形態を図によって説明する。図1〜図5は、本発明の実施の形態における基本構成を説明する図で、本発明では複数の誘導発熱ローラ装置を二群に分け、そのうちの一方の第1の誘導発熱ローラ装置1に属している誘導コイルと、他方の第2の誘導発熱ローラ装置2に属している誘導コイルとにそれぞれ、三相電源線路から得た単相電圧を印加して励磁する構成である。各誘導発熱ローラ装置1,2はともに図1に示すように構成されている。
【0009】
11はローラシェル、12はその両側に一体的に取り付けられているジャーナルで、軸受13を介して機台14に回転自在に支持されている。なお必要に応じてローラシェル11の周壁の内部にジャケット室が設けられてあり、その内部に気液二相の熱媒体が減圧密封されている。15は誘導発熱機構で、支持ロッド16によって支持されている。支持ロッド16はジャーナル2内に挿通され、軸受17を介してジャーナル12に支持されている。誘導発熱機構15は、筒状の鉄心18とその外周に巻装されている誘導コイル19とによって構成されている。20は誘導コイル19のリード線で、支持ロッド16の内部を通って外部に引き出されている。
【0010】
本発明の実施の形態における基本構成では、図1および図2に示すように、巻数がそれぞれnの巻線a1,b1,c1が用意される。各巻線a1,b1,c1の各一方の端部は三相電源線路の各線路U,V,Wにそれぞれ接続されている。また巻数が同じnである巻線a2,b2,c2が用意される。各巻線a2,b2,c2の各一方の端部は一括して接続されている。この接続点を中性点Nとする。巻線a1,a2同志,巻線b1,b2同志,ならびに巻線c1、c2同志は共通の鉄心に重ね巻きされるなどして、同相の電圧が印加されるようにしてある。
【0011】
巻線a1,b1,c1のそれぞれは、隣の相に属している巻線a2,b2,c2にそれぞれ直列に接続され、これにより千鳥状の結線とされる。巻線a1,b1,c1のうちの一つの巻線a1の一端と中性点Nとの間にまたがって、第1の誘導発熱ローラ装置1に属している誘導コイルA(図1の誘導発熱ローラ装置1の誘導コイル19)を接続する。また他の二つの巻線b1,c1の各一端同志の間にまたがり、第2の誘導発熱ローラ装置2に属している誘導コイルB(図1の誘導発熱ローラ装置2の誘導コイル19)をそれぞれ接続する。
【0012】
次に図示する構成が三相電源に対して平衡する理由を説明する。三相電源の電圧をE、各巻線の巻数をn、各誘導発熱ローラ装置の誘導コイルA,Bは同容量とし、これに流れる電流をI1,I2とする。また各相電流をIu、Iv,Iwとすると、誘導コイルAの入力電圧はE/{√(3)}、誘導コイルBの入力電圧はEであるから、
|I1|={√(3)}×I2 (1式)
お本明細書では、電流、電圧の各値の上に表示するベクトルを意味するドットは省略してある。
【0013】
電源に対して各相のインピーダンスは同じであるから、巻線a1,b2を流れる電流、巻線b1,c2を流れる電流、巻線c1,a2を流れる電流をそれぞれIun,Ivn,Iwn,とすれば、
|Iun|=|Ivn|=|Iwn| (2式)
中性点Nにおいて、
Iun+Ivn+Iwn=I1 (3式)
(1式)乃至(3式)から
|Iun|=|Ivn|=|Iwn|=|I1|/3=|I2|/{√(3)} (4式)
【0014】
巻線a1の一端において
|Iu|+|I1|/3=|I1| (5式)
(5式)に(1式)を代入して整理すれば、

Figure 0003936240
巻線b1の一端において
|Iv|=−|I1|/3+|I2| (6式)
【0015】
(4式)と(6式)から
Figure 0003936240
巻線c1の一端において
Figure 0003936240
(4式)と(7式)とから
Figure 0003936240
【0016】
故に
|Iu|=|Iv|=|Iw|=|I2|×2/{√(3)}
したがって、電源電流Iu,Iv,Iwは互いに等しくなり、平衡三相電流となる。そして各巻線は千鳥結線とされているので、高調波が発生することはないし、また中性点の電位の移動もなく安定する。図3は図2における各巻線のベクトル図を示す。なお各巻線は独立した3個の鉄心に巻回してもよいし、あるいは3脚鉄心の各脚に巻回してもよい。前者の場合の配線図を示したのが図4であり、後者の場合の配線図を示したのが図5である。
【0017】
図6に示す第1の実施形態は、誘導コイルA,Bの入力電圧がともに電源電圧Eとなるようにしたものである。そのために巻線b2に直列に、かつ重ね巻きされた巻線b3を接続し、また巻線b3に直列に、かつ巻線a1に重ね巻きされた巻線a3を接続する。他の巻線の巻数を図2と同様にnとした場合、巻線b3の巻数を{√(3)−1}×nとし、巻線a3の巻数を√(3)×nとする。なお巻数がnである部分に印加される電圧はE/3となる。巻線a3の端部と中性点Nとにまたがって誘導コイルAを接続する。
【0018】
中性点Nから巻線a3の端部までの巻数は
n+{√(3)−1}×n+√(3)×n=2×√(3)×nであるから、誘導コイルAに入力される電圧Vtは
Vt=E×{2×√(3)×n}×cos30°/3n=E
誘導コイルBの入力電圧はEであるから、したがって両誘導コイルA,Bの入力電圧は互いに同じ値となる。
【0019】
このように両誘導コイルA,Bの入力電圧は互いに同じ値となることにより、
|I1|=|I2| (8式)
両誘導コイルA,Bの容量を同じとすれば、
Iu=2×I1/√(3) (9式)
となり、巻線a3,b3に流れる電流はI1、巻線a1に流れる電流は
2×I1/√(3)となる。
【0020】
巻線b2に流れる電流をIbとすれば、巻線b2,b3,a1の接続点において
I1−Iu−Ib=0
上式に(9式)を代入して
I1−{2×I1/√(3)}−Ib=0
よって
Ib=〔1−{2/√(3)}〕×I1 (10式)
【0021】
中性点Nにおいて、
Ib+Ivn+Iwn=I1 (11式)
10式を11式に代入すれば、
Figure 0003936240
巻線b1,c2と、巻線c1,a2のインピーダンスは同じであるから、
Ivn=Iwn={1/√(3)}×I1
【0022】
巻線b1と誘導コイルBとの接続点において、
Iv=−〔{1/√(3)}×I1〕+I2 (12式)
上式と8式から
Figure 0003936240
巻線c1と誘導コイルBとの接続点において、
Figure 0003936240
上式と8式から
Figure 0003936240
【0023】
これらの結果から理解されるように、電源電流Iu,Iv,Iwは互いに等しくなり、平衡三相電流となる。高調波が発生しないこと、中性点の電位が安定することはさきの実施形態と同様である。なお各巻線は独立した3個の鉄心に巻回してもよいし、あるいは3脚鉄心の各脚に巻回してもよい。前者の場合の配線図を示したのが図7であり、後者の場合の配線図を示したのが図8である。
【0024】
図9に示す第2の実施形態は、誘導コイルAの入力電圧を任意に設定自在としたものである。この構成は、巻線b2に延長して巻線b4を設け、この巻線b4に直列に、かつ巻線a1,a2と同相の巻線a4を接続してある。そして巻線b2と巻線b4との巻数の和をn1とする。巻線b2の巻数を図2の場合と同様にnとすれば、巻線b4の巻数は(n1−n)となる。また巻線a4の巻数もn1とする。なお電源電圧をEとすれば、巻数がnである部分に印加される電圧はE/3となる。ここでは巻数n1を任意に設定することにより、誘導コイルAの入力電圧を自在に調整する。
【0025】
各誘導コイルA,Bに流れる電流を、I1,I2とすれば、
|I2|= n1/{√(3)×n}×|I1| (14式)
誘導コイルA,Bの容量を図2の場合と同様に同容量とすれば、
Iu=(2n1/3n)×I1 (15式)
巻線a4,b4に流れる電流はI1,巻線a1に流れる電流はIuすなわち
(2n1/3n)×I1であるから、巻線b2に流れる電流をIbとすれば、巻線b4,a1,b2の接続点においては
I1−Iu−Ib=0
【0026】
上式に15式を代入して電流Ibを求めると、
Ib={1−(2n1/3n)}×I1 (16式)
中性点Nにおいて、
Ib+Ivn+Iwn=I1 (17式)
上式に17式に代入すれば、
Ivn+Iwn=(2n1/3n)×I1
巻線b1,c2と、巻線c1,a2のインピーダンスは同じであるから、
Ivn=Iwn=(n1/3n)×I1 (18式)
【0027】
巻線b1と誘導コイルBとの接続点において、
Iv=−{(n1/3n)×I1}+I2 (19式)
上式と14式から
Figure 0003936240
巻線c1と誘導コイルBとの接続点において、
Iw=−(n1/3n)×I1−I2 (20式)
上式と14式から
Figure 0003936240
【0028】
これらの結果から理解されるように、電源電流Iu,Iv,Iwは互いに等しくなり、平衡三相電流となる。高調波が発生しないこと、中性点の電位が安定することはさきの実施形態と同様である。なお各巻線は独立した3個の鉄心に巻回してもよいし、あるいは3脚鉄心の各脚に巻回してもよい。前者の場合の配線図を示したのが図10であり、後者の場合の配線図を示したのが図11である。図では巻線b4を巻線b2より延長して設けているが、これに代えて、巻線b2の一部を利用してもよい。
【0029】
図12に示す第3の実施形態は、誘導コイルBの入力電圧を任意に設定自在としたものである。この構成は、巻線c2に延長して巻線c3を設け、この巻線c4に直列に、かつ巻線b1,b2と同相の巻線b5を接続してある。そして巻線c2と巻線c5との巻数の和をn2とする。巻線c2の巻数を図2の場合と同様にnとすれば、巻線c3の巻数は(n2−n)となる。また巻線b5の巻数もn2とする。
【0030】
さらに巻線a2に延長して巻線a5を設け、この巻線a5に直列に、かつ巻線c2,c3と同相の巻線c5を接続してある。そして巻線a2と巻線a5との巻数の和をn2とする。巻線a2の巻数を図2の場合と同様にnとすれば、巻線a5の巻数は(n2−n)となる。また巻線c5の巻数もn2とする。ここでは巻数n2を任意に設定することにより、誘導コイBの入力電圧を自在に調整する。
【0031】
ここでも各誘導コイルA,Bは同容量とし、それぞれに流れる電流をI1,I2とする。電流I1と電流I2の位相角差は90度である。中性点Nから線路U,V,Wに至る各巻線のインピーダンスは等しいので、電流I1は中性点Nで3等分し、 Iun=Ivn=Iwn (21式)
巻線a1と誘導コイルAとの接続点においては
Iu=I1−Iun (22式)
【0032】
上式に21式を代入して電流Iuを求めると、
Iu=(2/3)×I1 (23式)
巻線b5,c3,c2,a2,a5,c5に至る回路と、巻線b1と巻線c1とにおいて、
2n×cos30°×(Iv−Iw)=4×n2×cos30°×I2
故に
Iv−Iw=2×(n2/n)×I2 (24式)
誘導コイルA,Bは同容量であるから、
|I2|= n/{√(3)×n2}×|I1| (25式)
【0033】
中性点Nにおいて、
Iu+Iv+Iw=0 (26式)
24式と26式とを加えると、
Iu+2Iv=2×(n2/n)×I2 (27式)
上式と23式から
2Iv=2×(n2/n)×I2−(2/3)×I1
故に
Iv=(n2/n)×I2−(1/3)×I1 (28式)
25式に28式を代入して整理すれば、
|Iv|=(2/3)×|I1|
次に24式に28式を代入して整理すれば、
Iw=(−n2/n)×I2−(1/3)×I1 (29式)
25式と29式から
|Iw|=(2/3)×|I1|
【0034】
これらの結果から理解されるように、電源電流Iu,Iv,Iwは互いに等しくなり、平衡三相電流となる。高調波が発生しないこと、中性点の電位が安定することはさきの実施形態と同様である。なお各巻線は独立した3個の鉄心に巻回してもよいし、あるいは三脚鉄心の各脚に巻回してもよい。前者の場合の配置図を示したのが図13であり、後者の場合の配置図を示したのが図14である。図では巻線c3,a5を巻線c2,a2より延長して設けているが、これに代えて、巻線c2,a2の一部を利用してもよい。
【0035】
図15に示す第4の実施形態は、図9に示す第2の実施形態と、図12に示す第3の実施形態とを合体させ、誘導コイルA,Bの入力電圧をともに独立して任意に設定自在としたものである。この構成は、図9および図12と同様に、巻線a1,a2乃至巻線c1,c2の巻数をn、巻線b4の巻数を(n1−n)、巻線c3、巻線a5の巻数を(n2−n)、巻線a4の巻数をn1、巻線b5および巻線c5の巻数をn2とする。各巻線の位相関係は図9,図12と同じである。巻数n1およびn2を調整することによって、誘導コイルA,Bの入力電圧が調整される。
【0036】
この構成においても、三相電流が平衡することを以下に説明する。27式に15式を代入して電流Ivを求めると、
Iv=(n2/n)×I2−(n1/3n)×I1 (30式)
上式と25式からI2を消去してIvの絶対値を求めると、
|Iv|=(2/3)×(n1/n)×|I1|
24式に30式を代入して電流Iwを求めると、
Iw=(−n2/n)×I2−(n1/3n)×I1 (31式)
上式と25式からI2を消去してIwの絶対値を求めると、
|Iw|=(2/3)×(n1/n)×|I1|
【0037】
これらの結果から理解されるように、電源電流Iu,Iv,Iwは互いに等しくなり、平衡三相電流となる。高調波が発生しないこと、中性点の電位が安定することはさきの実施形態と同様である。なお各巻線は独立した3個の鉄心に巻回してもよいし、あるいは三脚鉄心の各脚に巻回してもよい。前者の場合の配置図を示したのが図16であり、後者の場合の配置図を示したのが図17である。図では巻線c3,a5,b4を巻線c2,a2,b2より延長して設けているが、これに代えて、巻線c2,a2,b2の一部を利用してもよいことは図9,図14の場合と同様である。
【0038】
以上の各実施態様は、いずれも誘導コイルA,Bをともに用いた構成であったが、これらの構成において誘導コイルBに代えて、誘導コイルBに匹敵する負荷として、リアクトルを接続するようにしてもよい。誘導コイルA,Bは同容量であるので、ここに使用するリアクトルは誘導コイルAと同容量のものを用いる。このようなリアクトルを利用することにより、三相電源の各相電流が平衡することは、これまでの説明から容易に理解されるところである。
【0039】
たとえば図18に示す第5の実施形態では、第1の実施形態における誘導コイルBに代えてリアクトルLを、また図21に示す第6の実施形態では、図15に示す第4の実施形態における誘導コイルBに代えて、リアクトルLを接続している。他の実施形態においても同様である。
【0040】
なお図19,図22は、図18,図21に示す構成を互いに独立した鉄心に、それぞれ同相の巻線を巻回して構成した配置図、図20,図23は図18,図21に示す構成を、三脚鉄心の各脚にそれぞれ同相の巻線を巻回して構成した配置図である。
【0041】
以上述べたすべての実施形態における誘導コイルB(前記したリアクトルLを含めて)を省略し、誘導コイルAのみを負荷としてもよい。たとえば基本構成における誘導コイルBを省略した図24の構成(第の実施形態)では、誘導コイルAの入力電圧はE/√3となり、また三相電源に対して各相のインピーダンスは同じであるから、
|Iun|=|Ivn|=|Iwn|
中性点Nにおいて
Iun+Ivn+Iwn=I1
上記両式から
|Iun|=|Ivn|=|Iwn|=|I1|×1/3
【0042】
巻線a1と誘導コイルAとの接続点において、
|Iu|+|I1|×1/3=|I1|
したがって
|Iu|=|I1|−|I1|×1/3=|I1|×2/3
|Iv|=|Ivn|=|I1|×1/3
|Iw|=|Iwn|=|I1|×1/3
故に
|Iu|:|Iv|:|Iw|=2:1:1
となる。
【0043】
因みに三相交流電源の一つの線路間にのみ誘導コイルを接続した場合の三相電源電流の比は、冒頭に述べたように1:1:0となる。これに比較して図24のように構成した場合のほうが、電源電流の不平衡を緩和することができる。なお図25は、図24に示す構成を、互いに独立した鉄心にそれぞれ同相の巻線を巻回して構成した配置図、図26は図24に示す構成を、三脚鉄心の各脚にそれぞれ同相の巻線を巻回して構成した配置図である。
【0044】
また図9に示す第2の実施形態における誘導コイルBを省略した図27の構成(第8の実施形態)では、19式,20式における電流I1を0としたときの電流Iv,Iwと15式の電流Iuの各絶対値の比は、2:1:1となる。すなわち第8の実施形態と同じ電流比となり、三相電源電流の不平衡を緩和することができる。図28は、図27に示す構成を、互いに独立した鉄心に同相の巻線を巻回して構成した配置図、図29は図27に示す構成を、三脚鉄心の各脚にそれぞれ同相の巻線を巻回して構成した配置図である。
【0045】
【発明の効果】
以上説明したように本発明によれば、三相電源から単相電圧を取り出して、誘導発熱ローラ装置の誘導コイルの励磁電圧とするにあたり、三相電源電流を平衡させることができ、または不平衡を緩和することができるとともに、高調波の発生は抑制され、かつ中性点の電位が安定するといった効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施態様の基本構成を示す断面図である。
【図2】図1の結線図である。
【図3】図1のベクトル図である。
【図4】図1の配線図である。
【図5】図1の他の配線図である。
【図6】本発明の第1の実施態様を示す結線図である。
【図7】図6の配線図である。
【図8】図6の他の配線図である。
【図9】本発明の第2の実施態様を示す結線図である。
【図10】図9の配線図である。
【図11】図9の他の配線図である。
【図12】本発明の第3の実施態様を示す結線図である。
【図13】図12の配線図である。
【図14】図12の他の配線図である。
【図15】本発明の第4の実施態様を示す結線図である。
【図16】図15の配線図である。
【図17】図15の他の配線図である。
【図18】本発明の第5の実施態様を示す結線図である。
【図19】図18の配線図である。
【図20】図18の他の配線図である。
【図21】本発明の第6の実施態様を示す結線図である。
【図22】図21の配線図である。
【図23】図21の他の配線図である。
【図24】本発明の第7の実施態様を示す結線図である。
【図25】図24の配線図である。
【図26】図24の他の配線図である。
【図27】本発明の第8の実施態様を示す結線図である。
【図28】図27の配線図である。
【図29】図27の他の配線図である。
【符号の説明】
1,2 誘導発熱ローラ装置
A,B 誘導コイル
a1〜a5 巻線
b1〜b5 巻線
c1〜c5 巻線
L リアクトル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to induction heating roller equipment.
[0002]
[Prior art]
There is already known an induction heating roller device in which an induction heating mechanism including an iron core and an induction coil wound around the outer periphery of a rotating hollow roller is arranged so that the peripheral wall of the roller is induced to generate heat. . Since the induction coil is preferably excited by a single-phase power supply, a single-phase voltage is taken from a nearby three-phase power supply, and this can be used. Specifically, the induction heating roller device is connected between each line of the three-phase power supply. It can be considered that each induction coil is connected and excited. In this case, if three induction coils having the same capacity are connected to each line of the three-phase power source, the phase current of the three-phase power source is balanced, so that there is no particular problem.
[0003]
However, in this wiring configuration, if three induction coils of the same capacity are connected between the lines of each phase as described above, the power supply current is balanced, but there are two or one induction coil. Obviously, when there is a line between which the two are not connected, the three-phase power supply current becomes unbalanced, which causes a problem in the three-phase power supply configuration.
[0004]
For example, in the three-phase power supply lines U, V, and W, one induction coil is connected between the lines UV and VW. Assuming that the capacity of both induction coils is the same and the power supply current of each phase is I, the currents Iu, Iv, Iw flowing in the lines U, V, W are I, √ (3) I, I, respectively, and the ratio is 1: √ (3): 1. Further, when an induction coil is connected only between the lines UV and no load is applied between the lines VW, the current IW is 0, so that the ratio of each line current is 1: 1: 0. In either case, the current tends to be unbalanced.
[0005]
As described above, in the U, V, and W of the three-phase power supply line, even when the induction coil is connected between the lines UV and VW or only between the lines UV, each line current is balanced or the tendency of unbalance is small. Such a configuration has already been proposed by the present inventors. That is, one end is connected to each line of the three-phase power source, the other end is collectively connected to be a neutral point, and is composed of first to third windings having the same number of turns. An induction coil belonging to the first induction heating roller device is connected across one winding, and ends of the second winding and the third winding on the side opposite to the bundled ends It is the structure which connected the induction coil which belongs to the 2nd induction heat-generating roller apparatus in between. However, according to this configuration, since the induction coil is connected between the neutral point and the end of one winding, if the potential of the neutral point moves, the input of the induction coil The voltage fluctuates depending on the load current. For this reason, there is a risk that the temperature of the induction heating roller cannot be stably controlled.
[0006]
[Problems to be solved by the invention]
In the present invention, a single-phase voltage is taken from a three-phase power source and used as an excitation voltage for two or one induction coil so that the three-phase power source current is balanced as much as possible. The purpose is to eliminate the potential shift at the neutral point where the three windings are connected at once, to stabilize the winding, and to suppress the generation of harmonics in each winding.
[0007]
[Means for Solving the Problems]
In the present invention according to claims 1 to 7, the first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end collectively to a neutral point And fourth to sixth windings having the same phase and the same number of turns as the first to third windings, and the other ends of the first to third windings are connected to the adjacent phases. Are connected to each other end of each of the fourth to sixth windings in a staggered manner, and belong to the first induction heating roller device across one end of the first winding and the neutral point. an induction coil are connected, provided across between each end comrades second winding and the third winding, the arrangement of connecting the induction coil belonging to the second induction heating roller apparatus as a basic structure .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 to FIG. 5 are diagrams for explaining a basic configuration in an embodiment of the present invention . In the present invention, a plurality of induction heat roller devices are divided into two groups, and one of the first induction heat roller devices 1 is divided into two groups. In this configuration, a single-phase voltage obtained from a three-phase power supply line is applied to the induction coil belonging to the other induction coil belonging to the other second induction heating roller device 2 and excited. Each induction heating roller device 1, 2 is configured as shown in FIG.
[0009]
11 is a roller shell, 12 is a journal integrally attached to both sides thereof, and is rotatably supported by a machine base 14 via a bearing 13. A jacket chamber is provided inside the peripheral wall of the roller shell 11 as necessary, and a gas-liquid two-phase heat medium is sealed under reduced pressure. An induction heating mechanism 15 is supported by a support rod 16. The support rod 16 is inserted into the journal 2 and supported by the journal 12 via a bearing 17. The induction heating mechanism 15 includes a cylindrical iron core 18 and an induction coil 19 wound around the outer periphery thereof. Reference numeral 20 denotes a lead wire of the induction coil 19 which is led out through the inside of the support rod 16.
[0010]
In the basic configuration of the embodiment of the present invention, as shown in FIGS. 1 and 2, windings a1, b1, and c1 each having n turns are prepared. One end of each winding a1, b1, c1 is connected to each line U, V, W of the three-phase power line. In addition, windings a2, b2, and c2 having the same number of turns n are prepared. One end of each of the windings a2, b2, c2 is connected together. This connection point is defined as a neutral point N. The windings a1 and a2, the windings b1 and b2, and the windings c1 and c2 are wound around a common iron core so that a common-phase voltage is applied.
[0011]
Each of the windings a1, b1, and c1 is connected in series to the windings a2, b2, and c2 belonging to the adjacent phases, thereby forming a staggered connection. An induction coil A belonging to the first induction heat roller device 1 (inductive heat generation in FIG. 1) spans between one end of one of the windings a1, b1, and c1 and the neutral point N. The induction coil 19) of the roller device 1 is connected. In addition, the induction coil B (the induction coil 19 of the induction heating roller device 2 in FIG. 1) that spans between the other ends of the other two windings b1 and c1 and belongs to the second induction heating roller device 2 respectively. Connecting.
[0012]
Next, the reason why the illustrated configuration is balanced with respect to the three-phase power source will be described. The voltage of the three-phase power supply is E, the number of turns of each winding is n, the induction coils A and B of each induction heating roller device have the same capacity, and the currents flowing through these coils are I1 and I2. If each phase current is Iu, Iv and Iw, the input voltage of the induction coil A is E / {√ (3)}, and the input voltage of the induction coil B is E.
| I1 | = {√ (3)} × I2 (1 set)
In the present specification, dots representing vectors displayed on the current and voltage values are omitted.
[0013]
Since the impedance of each phase with respect to the power supply is the same, the current flowing through the windings a1 and b2, the current flowing through the windings b1 and c2, and the current flowing through the windings c1 and a2 are respectively represented as Iun, Ivn, and Iwn. If
| Iun | = | Ivn | = | Iwn | (2 formulas)
At neutral point N,
Iun + Ivn + Iwn = I1 (3 formulas)
From (1 set) to (3 set)
| Iun | = | Ivn | = | Iwn | = | I1 | / 3 = | I2 | / {√ (3)} (Formula 4)
[0014]
At one end of winding a1
| Iu | + | I1 | / 3 = | I1 | (Formula 5)
Substituting (1) into (5) and rearranging
Figure 0003936240
At one end of winding b1
| Iv | =-| I1 | / 3 + | I2 |
[0015]
From (Formula 4) and (Formula 6)
Figure 0003936240
At one end of winding c1
Figure 0003936240
From (Formula 4) and (Formula 7)
Figure 0003936240
[0016]
Therefore
| Iu | = | Iv | = | Iw | = | I2 | × 2 / {√ (3)}
Accordingly, the power supply currents Iu, Iv, and Iw are equal to each other, and a balanced three-phase current is obtained. Since the windings are staggered, no harmonics are generated and the potential at the neutral point does not move and stabilizes. FIG. 3 shows a vector diagram of each winding in FIG. Each winding may be wound around three independent iron cores, or may be wound around each leg of a three-legged iron core. FIG. 4 shows a wiring diagram in the former case, and FIG. 5 shows a wiring diagram in the latter case.
[0017]
In the first embodiment shown in FIG. 6, the input voltages of the induction coils A and B are both set to the power supply voltage E. For this purpose, the winding b3 is connected in series with the winding b2, and the winding a3 wound in series with the winding b3 is connected to the winding b3. When the number of turns of the other winding is n as in FIG. 2, the number of turns of the winding b3 is {√ (3) -1} × n, and the number of turns of the winding a3 is √ (3) × n. The voltage applied to the portion with n turns is E / 3. The induction coil A is connected across the end of the winding a3 and the neutral point N.
[0018]
Since the number of turns from the neutral point N to the end of the winding a3 is n + {√ (3) -1} × n + √ (3) × n = 2 × √ (3) × n, input to the induction coil A The voltage Vt is Vt = E * {2 * √ (3) * n} * cos30 [deg.] / 3n = E
Since the input voltage of the induction coil B is E, therefore, the input voltages of both induction coils A and B have the same value.
[0019]
Thus, the input voltages of both induction coils A and B have the same value,
| I1 | = | I2 | (8 formulas)
If the capacity of both induction coils A and B is the same,
Iu = 2 × I1 / √ (3) (9 formulas)
Thus, the current flowing through the windings a3 and b3 is I1, and the current flowing through the winding a1 is 2 × I1 / √ (3).
[0020]
If the current flowing through the winding b2 is Ib, I1-Iu-Ib = 0 at the connection point of the windings b2, b3, a1.
Substituting (Equation 9) into the above equation, I1− {2 × I1 / √ (3)} − Ib = 0
Therefore, Ib = [1- {2 / √ (3)}] × I1 (10 equations)
[0021]
At neutral point N,
Ib + Ivn + Iwn = I1 (11 formulas)
Substituting equation 10 into equation 11,
Figure 0003936240
Since the impedances of the windings b1 and c2 and the windings c1 and a2 are the same,
Ivn = Iwn = {1 / √ (3)} × I1
[0022]
At the connection point between the winding b1 and the induction coil B,
Iv =-[{1 / √ (3)} * I1] + I2 (12 formulas)
From the above formula and formula 8
Figure 0003936240
At the connection point between the winding c1 and the induction coil B,
Figure 0003936240
From the above formula and formula 8
Figure 0003936240
[0023]
As can be understood from these results, the power supply currents Iu, Iv, and Iw are equal to each other, resulting in a balanced three-phase current. As in the previous embodiment, no harmonics are generated and the neutral point potential is stabilized. Each winding may be wound around three independent iron cores, or may be wound around each leg of a three-legged iron core. FIG. 7 shows a wiring diagram in the former case, and FIG. 8 shows a wiring diagram in the latter case.
[0024]
In the second embodiment shown in FIG. 9, the input voltage of the induction coil A can be arbitrarily set. In this configuration, a winding b4 is provided extending to the winding b2, and a winding a4 in phase with the windings a1 and a2 is connected in series with the winding b4. The sum of the number of turns of the winding b2 and the winding b4 is n1. If the number of turns of the winding b2 is n as in FIG. 2, the number of turns of the winding b4 is (n1-n). The number of turns of the winding a4 is also n1. If the power supply voltage is E, the voltage applied to the portion where the number of turns is n is E / 3. Here, the input voltage of the induction coil A is freely adjusted by arbitrarily setting the number of turns n1.
[0025]
If the currents flowing through the induction coils A and B are I1 and I2,
| I2 | = n1 / {√ (3) × n} × | I1 |
If the capacities of the induction coils A and B are the same as in the case of FIG.
Iu = (2n1 / 3n) × I1 (15 formulas)
Since the current flowing through the windings a4 and b4 is I1 and the current flowing through the winding a1 is Iu, that is, (2n1 / 3n) × I1, if the current flowing through the winding b2 is Ib, the windings b4, a1 and b2 I1-Iu-Ib = 0 at the connection point
[0026]
Substituting equation (15) into the above equation, the current Ib is obtained.
Ib = {1- (2n1 / 3n)} × I1 (16 formulas)
At neutral point N,
Ib + Ivn + Iwn = I1 (17 formulas)
Substituting 17 into the above equation,
Ivn + Iwn = (2n1 / 3n) × I1
Since the impedances of the windings b1 and c2 and the windings c1 and a2 are the same,
Ivn = Iwn = (n1 / 3n) × I1 (18 formulas)
[0027]
At the connection point between the winding b1 and the induction coil B,
Iv =-{(n1 / 3n) * I1} + I2 (Equation 19)
From above and 14
Figure 0003936240
At the connection point between the winding c1 and the induction coil B,
Iw =-(n1 / 3n) * I1-I2 (20 formulas)
From above and 14
Figure 0003936240
[0028]
As can be understood from these results, the power supply currents Iu, Iv, and Iw are equal to each other, resulting in a balanced three-phase current. As in the previous embodiment, no harmonics are generated and the neutral point potential is stabilized. Each winding may be wound around three independent iron cores, or may be wound around each leg of a three-legged iron core. FIG. 10 shows a wiring diagram in the former case, and FIG. 11 shows a wiring diagram in the latter case. In the figure, the winding b4 is extended from the winding b2, but a part of the winding b2 may be used instead.
[0029]
In the third embodiment shown in FIG. 12, the input voltage of the induction coil B can be arbitrarily set. In this configuration, a winding c3 is provided extending to the winding c2, and a winding b5 in phase with the windings b1 and b2 is connected in series with the winding c4. The sum of the number of turns of the winding c2 and the winding c5 is n2. If the number of turns of the winding c2 is n as in the case of FIG. 2, the number of turns of the winding c3 is (n2-n). The number of turns of the winding b5 is also n2.
[0030]
Further, a winding a5 is provided extending to the winding a2, and a winding c5 in phase with the windings c2 and c3 is connected in series with the winding a5. The sum of the number of turns of the windings a2 and a5 is n2. If the number of turns of the winding a2 is n as in the case of FIG. 2, the number of turns of the winding a5 is (n2-n). The number of turns of the winding c5 is also n2. Here, the input voltage of the induction carp B can be freely adjusted by arbitrarily setting the number of turns n2.
[0031]
Again, the induction coils A and B have the same capacity, and the currents flowing through them are I1 and I2, respectively. The phase angle difference between the current I1 and the current I2 is 90 degrees. Since the impedance of each winding from the neutral point N to the lines U, V, and W is equal, the current I1 is divided into three equal parts at the neutral point N, and Iun = Ivn = Iwn (Formula 21)
At the connection point between the winding a1 and the induction coil A, Iu = I1-Iun (Equation 22)
[0032]
Substituting equation (21) into the above equation, the current Iu is obtained.
Iu = (2/3) × I1 (23 formulas)
In the circuit extending to the windings b5, c3, c2, a2, a5, c5, and the windings b1 and c1,
2n × cos30 ° × (Iv−Iw) = 4 × n2 × cos30 ° × I2
Therefore, Iv-Iw = 2 * (n2 / n) * I2 (24 formulas)
Since induction coils A and B have the same capacity,
| I2 | = n / {√ (3) × n2} × | I1 | (Equation 25)
[0033]
At neutral point N,
Iu + Iv + Iw = 0 (Formula 26)
Adding formulas 24 and 26,
Iu + 2Iv = 2 × (n 2 / n) × I 2 (Equation 27)
From the above equation and equation 23, 2Iv = 2 × (n2 / n) × I2− (2/3) × I1
Therefore, Iv = (n2 / n) × I2− (1/3) × I1 (Equation 28)
Substituting 28 into 25 and rearranging,
| Iv | = (2/3) × | I1 |
Next, substituting 28 formulas into 24 formulates,
Iw = (-n2 / n) * I2- (1/3) * I1 (formula 29)
From formula 25 and formula 29
| Iw | = (2/3) × | I1 |
[0034]
As can be understood from these results, the power supply currents Iu, Iv, and Iw are equal to each other, resulting in a balanced three-phase current. As in the previous embodiment, no harmonics are generated and the neutral point potential is stabilized. Each winding may be wound around three independent iron cores, or may be wound around each leg of a tripod iron core. FIG. 13 shows the layout in the former case, and FIG. 14 shows the layout in the latter case. In the figure, the windings c3 and a5 are provided extending from the windings c2 and a2, but instead, a part of the windings c2 and a2 may be used.
[0035]
In the fourth embodiment shown in FIG. 15, the second embodiment shown in FIG. 9 and the third embodiment shown in FIG. 12 are combined, and the input voltages of the induction coils A and B are both arbitrarily determined. Can be set freely. In this configuration, as in FIGS. 9 and 12, the number of turns of the windings a1, a2 to c1, c2 is n, the number of turns of the winding b4 is (n1-n), the number of turns of the winding c3, and the winding a5. (N2−n), the number of turns of the winding a4 is n1, and the number of turns of the winding b5 and the winding c5 is n2. The phase relationship of each winding is the same as in FIGS. By adjusting the turns n1 and n2, the input voltages of the induction coils A and B are adjusted.
[0036]
It will be described below that the three-phase current is balanced even in this configuration. Substituting equation 15 into equation 27 to obtain current Iv,
Iv = (n2 / n) × I2− (n1 / 3n) × I1 (30 formulas)
When I2 is eliminated from the above equation and equation 25 and the absolute value of Iv is obtained,
| Iv | = (2/3) × (n1 / n) × | I1 |
Substituting equation 30 into equation 24 to obtain current Iw,
Iw = (-n2 / n) * I2- (n1 / 3n) * I1 (31 formulas)
If I2 is eliminated from the above equation and equation 25 and the absolute value of Iw is obtained,
| Iw | = (2/3) × (n1 / n) × | I1 |
[0037]
As can be understood from these results, the power supply currents Iu, Iv, and Iw are equal to each other, resulting in a balanced three-phase current. As in the previous embodiment, no harmonics are generated and the neutral point potential is stabilized. Each winding may be wound around three independent iron cores, or may be wound around each leg of a tripod iron core. FIG. 16 shows the layout in the former case, and FIG. 17 shows the layout in the latter case. In the figure, the windings c3, a5, and b4 are provided extending from the windings c2, a2, and b2. However, instead of this, a part of the windings c2, a2, and b2 may be used. 9. The same as in the case of FIG.
[0038]
In each of the above embodiments, the induction coils A and B are both used. However, instead of the induction coil B in these configurations, a reactor is connected as a load comparable to the induction coil B. May be. Since the induction coils A and B have the same capacity, the reactor used here has the same capacity as the induction coil A. It can be easily understood from the above description that the phase currents of the three-phase power supply are balanced by using such a reactor.
[0039]
For example, in the fifth embodiment shown in FIG. 18, a reactor L is used instead of the induction coil B in the first embodiment, and in the sixth embodiment shown in FIG. 21, in the fourth embodiment shown in FIG. Instead of the induction coil B, a reactor L is connected. The same applies to other embodiments.
[0040]
19 and 22 are layout diagrams in which the configurations shown in FIGS. 18 and 21 are formed by winding the same-phase windings around the independent iron cores, and FIGS. 20 and 23 are shown in FIGS. FIG. 3 is a layout diagram in which the same phase winding is wound around each leg of a tripod iron core.
[0041]
The induction coil B (including the reactor L described above) in all the embodiments described above may be omitted, and only the induction coil A may be used as a load. For example, in the configuration of FIG. 24 in which the induction coil B in the basic configuration is omitted ( seventh embodiment), the input voltage of the induction coil A is E / √3, and the impedance of each phase is the same as that of the three-phase power source. because there is,
| Iun | = | Ivn | = | Iwn |
At neutral point N Iun + Ivn + Iwn = I1
From both of the above formulas
| Iun | = | Ivn | = | Iwn | = | I1 | × 1/3
[0042]
At the connection point between winding a1 and induction coil A,
| Iu | + | I1 | × 1/3 = | I1 |
Therefore
| Iu | = | I1 |-| I1 | × 1/3 = | I1 | × 2/3
| Iv | = | Ivn | = | I1 | × 1/3
| Iw | = | Iwn | = | I1 | × 1/3
Therefore
| Iu |: | Iv |: | Iw | = 2: 1: 1
It becomes.
[0043]
Incidentally, the ratio of the three-phase power supply current when the induction coil is connected only between one line of the three-phase AC power supply is 1: 1: 0 as described at the beginning. Compared to this, the configuration shown in FIG. 24 can alleviate the unbalance of the power supply current. FIG. 25 is a layout diagram in which the configuration shown in FIG. 24 is configured by winding the same-phase windings around independent iron cores, and FIG. 26 shows the configuration shown in FIG. 24 in the same phase on each leg of the tripod core. It is the arrangement figure constituted by winding a winding.
[0044]
Further, in the configuration of FIG. 27 ( the eighth embodiment) in which the induction coil B in the second embodiment shown in FIG. 9 is omitted, currents Iv, Iw and 15 when the current I1 in equations 19 and 20 is set to 0 are shown in FIG. The ratio of the absolute values of the current Iu in the equation is 2: 1: 1. That is, the current ratio is the same as in the eighth embodiment, and the unbalance of the three-phase power supply current can be alleviated. FIG. 28 is a layout diagram in which the configuration shown in FIG. 27 is formed by winding the same-phase windings around the independent iron cores, and FIG. 29 is the same-phase winding on each leg of the tripod iron core as shown in FIG. FIG.
[0045]
【The invention's effect】
As described above, according to the present invention, when the single-phase voltage is taken out from the three-phase power source and used as the excitation voltage of the induction coil of the induction heating roller device, the three-phase power source current can be balanced or unbalanced. Can be mitigated, the generation of harmonics is suppressed, and the neutral point potential is stabilized.
[Brief description of the drawings]
1 is a sectional view showing a basic structure of the actual embodiments with the present invention.
FIG. 2 is a connection diagram of FIG.
FIG. 3 is a vector diagram of FIG. 1;
4 is a wiring diagram of FIG. 1. FIG.
FIG. 5 is another wiring diagram of FIG. 1;
FIG. 6 is a connection diagram showing a first embodiment of the present invention.
7 is a wiring diagram of FIG. 6;
FIG. 8 is another wiring diagram of FIG. 6;
FIG. 9 is a connection diagram showing a second embodiment of the present invention.
10 is a wiring diagram of FIG. 9;
FIG. 11 is another wiring diagram of FIG. 9;
FIG. 12 is a connection diagram illustrating a third embodiment of the present invention.
13 is a wiring diagram of FIG.
FIG. 14 is another wiring diagram of FIG.
FIG. 15 is a connection diagram showing a fourth embodiment of the present invention.
16 is a wiring diagram of FIG.
FIG. 17 is another wiring diagram of FIG. 15;
FIG. 18 is a connection diagram showing a fifth embodiment of the present invention.
FIG. 19 is a wiring diagram of FIG. 18;
FIG. 20 is another wiring diagram of FIG.
FIG. 21 is a connection diagram showing a sixth embodiment of the present invention.
22 is a wiring diagram of FIG. 21. FIG.
23 is another wiring diagram of FIG. 21. FIG.
FIG. 24 is a connection diagram showing a seventh embodiment of the present invention.
25 is a wiring diagram of FIG. 24. FIG.
FIG. 26 is another wiring diagram of FIG. 24.
FIG. 27 is a connection diagram illustrating an eighth embodiment of the present invention.
28 is a wiring diagram of FIG. 27. FIG.
FIG. 29 is another wiring diagram of FIG. 27;
[Explanation of symbols]
1, 2 induction heating roller device A, B induction coil a1 to a5 winding b1 to b5 winding c1 to c5 winding L reactor

Claims (7)

三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第4の巻線に延長して、巻数が前記第1の巻線の巻数の{√(3)−1}倍の第7の巻線と、前記第7の巻線に接続されてあって、前記第1の巻線と同相であり、巻数が前記第1の巻線の巻数の√(3)倍の第8の巻線とを設けてなり、前記第8の巻線の端部と前記中性点とにまたがって、第1の誘導発熱ローラ装置に属している誘導コイルを接続し、また前記第2の巻線および前記第3の巻線の端部間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続し、前記第1および第2の誘導発熱ローラ装置に属している各誘導コイルの印加電圧を、前記三相電源の電圧に等しくしてなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. The other ends of the first winding are connected in a zigzag pattern and extended to the fourth winding, and the number of turns is {√ (3) -1} times the number of turns of the first winding. An eighth winding connected to the seventh winding and having the same phase as the first winding and having a number of turns √ (3) times the number of turns of the first winding; An induction coil belonging to the first induction heating roller device is connected across the end of the eighth winding and the neutral point, and the second winding and Straddling the end of the third winding Then, the induction coil belonging to the second induction heat roller device is connected, and the applied voltage of each induction coil belonging to the first and second induction heat roller devices is equal to the voltage of the three-phase power source. Induction heating roller equipment. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第4の巻線内またはその延長巻線内に、任意の巻数とされた第9の巻線を、更に前記第9の巻線に接続されてあって、前記第1の巻線と同相であり、巻数が前記第9の巻線と同数である第10の巻線を設け、前記第10の巻線の端部と前記中性点とにまたがって、第1の誘導発熱ローラ装置に属している誘導コイルを接続し、また前記第2の巻線および前記第3の巻線の端部同志の間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続し、前記第9の巻線の巻数をもって、前記第1のローラ装置に属している誘導コイル印加電圧を任意に設定してなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. Are connected to each other end in a staggered manner, and a ninth winding having an arbitrary number of turns is provided in the fourth winding or an extension winding thereof, and the ninth winding is further provided. A tenth winding having the same phase as the first winding and having the same number of turns as the ninth winding, and an end of the tenth winding and the middle The induction coil belonging to the first induction heating roller device is connected across the sex point, and the second coil and the third winding are connected between the ends of the second coil and the second coil. Invitation Heating roller device an induction coil connected belonging to the ninth have the number of turns of the winding, the first roller device arbitrarily set the induction heating roller equipment comprising an induction coil applied voltage belongs to. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第5および第6の巻線内またはその延長巻線内に、同巻数とされた第11および第12の巻線を、更に前記第11および第12の巻線のそれぞれに接続されてあって、前記第2および第3の巻線と同相であり、同巻数とされた第13および第14の巻線を設け、前記第1の巻線の端部と前記中性点とにまたがって第1の誘導発熱ローラ装置に属している誘導コイルを接続し、また前記第13の巻線および前記第14の巻線の端部同志の間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続し、前記第13の巻線の巻数をもって、前記第2のローラ装置に属している誘導コイル印加電圧を任意に設定してなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. The other ends of the windings are sequentially connected in a staggered manner, and the eleventh and twelfth windings having the same number of turns are further provided in the fifth and sixth windings or in the extension windings thereof. Thirteenth and fourteenth windings connected to each of the eleventh and twelfth windings, having the same phase as the second and third windings and having the same number of turns, are provided. An induction coil belonging to the first induction heating roller device is connected across the end of the winding of the winding and the neutral point, and the thirteenth winding and the An induction coil belonging to the second induction heating roller device is connected across the ends of the 14 windings, and the number of turns of the 13th winding belongs to the second roller device. The induction heating roller equipment is configured by arbitrarily setting the induction coil applied voltage. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第4の巻線内またはその延長巻線内に、任意の巻数とされた第9の巻線を、更に前記第9の巻線に接続されてあって、前記第1の巻線と同相であり、巻数が前記第9の巻線と同数である第10の巻線を設け、前記第10の巻線の端部と前記中性点とにまたがって、第1の誘導発熱ローラ装置に属している誘導コイルを接続し、前記第9の巻線の巻数をもって、前記第1のローラ装置に属している誘導コイル印加電圧を任意に設定するとともに、前記第5および第6の巻線内またはその延長巻線に、任意の同じ巻数とされた第11および第12の巻線を、更に前記第11および第12の巻線のそれぞれに接続されてあって、前記第2および第3の巻線と同相であり、同巻数とされた第13および第14の巻線を設け、前記第13の巻線および前記第14の巻線の端部同志の間にまたがって、第2の誘導発熱ローラ装置に属している誘導コイルを接続し、前記第13の巻線の巻数をもって、前記第2のローラ装置に属している誘導コイル印加電圧を任意に設定してなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. Are connected to each other end in a staggered manner, and a ninth winding having an arbitrary number of turns is provided in the fourth winding or an extension winding thereof, and the ninth winding is further provided. A tenth winding having the same phase as the first winding and having the same number of turns as the ninth winding, and an end of the tenth winding and the middle The induction coil belonging to the first induction heating roller device is connected across the sex point, and the induction coil mark belonging to the first roller device is connected with the number of turns of the ninth winding. The voltage is arbitrarily set, and the eleventh and twelfth windings having the same number of turns are provided in the fifth and sixth windings or an extension winding thereof, and the eleventh and twelfth windings are further provided. Thirteenth and fourteenth windings connected to each of the windings and in phase with the second and third windings and having the same number of turns are provided, and the thirteenth winding and the first winding are provided. An induction coil belonging to the second induction heating roller device is connected across the ends of the 14 windings, and the number of turns of the 13th winding belongs to the second roller device. The induction heating roller equipment is configured by arbitrarily setting the induction coil applied voltage. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してあり、前記第1の巻線の一端と前記中性点と間にまたがって誘導発熱ローラ装置に属している誘導コイルを接続し、前記第2の巻線と第3の巻線の各一端同志の間にまたがって、前記三相電源の各相電流を平衡にするためのリアクトルを接続してなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. The other end of each of the first winding is connected in a staggered manner, and an induction coil belonging to the induction heating roller device is connected across one end of the first winding and the neutral point, and the second An induction heating roller facility in which a reactor for balancing each phase current of the three-phase power source is connected between one end of each of the winding and the third winding. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第4の巻線内またはその延長巻線に、任意の巻数とされた第9の巻線を、更に前記第9の巻線に接続されてあって、前記第1の巻線と同相であり、巻数が前記第9の巻線と同数である第10の巻線を設け、前記第10の巻線の端部と前記中性点とにまたがって、誘導発熱ローラ装置に属している誘導コイルを接続し、前記第9の巻線の巻数をもって、前記ローラ装置に属している誘導コイル印加電圧を任意に設定するとともに、前記第5および第6の巻線内またはその延長巻線に、任意の同じ巻数とされた第11および第12の巻線を、更に前記第11および第12の巻線のそれぞれに接続されてあって、前記第2および第3の巻線と同相で互いに同じ巻数とされた第13および第14の巻線を設け、前記第13の巻線および前記第14の巻線の端部同志の間にまたがって、前記三相電源の各相電流を平衡にするためのリアクトルを接続してなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. Are connected to the other ends of the windings in a staggered manner, and in the fourth winding or its extension winding, a ninth winding having an arbitrary number of turns is further connected to the ninth winding. A tenth winding connected and having the same phase as the first winding and having the same number of turns as the ninth winding, and the end of the tenth winding and the neutral Connecting the induction coil belonging to the induction heating roller device across the points, and arbitrarily applying the induction coil applied voltage belonging to the roller device with the number of turns of the ninth winding. And the eleventh and twelfth windings having the same number of turns in the fifth and sixth windings or their extension windings, and the eleventh and twelfth windings, respectively. The thirteenth and fourteenth windings having the same number of turns and the same phase as the second and third windings are provided, and the thirteenth winding and the fourteenth windings are provided. Induction heating roller equipment formed by connecting a reactor for balancing the phase currents of the three-phase power source across the ends. 三相電源の各線路にそれぞれ一端が接続されてある、同巻数の第1乃至第3の巻線と、一端が一括して中性点に接続されてあり、前記第1乃至第3の巻線と同相かつ同巻数である第4乃至第6の巻線とを備え、前記各第1乃至第3の巻線の各他端を、隣の相の前記各第4乃至第6の巻線の各他端に順次千鳥状に結線してなり、また前記第4の巻線内またはその延長巻線内に、任意の巻数とされた第9の巻線を、更に前記第9の巻線に接続されてあって、前記第1の巻線と同相であり、巻数が前記第9の巻線と同数である第10の巻線を設け、前記第10の巻線の端部と前記中性点とにまたがって、誘導発熱ローラ装置に属している誘導コイルを接続し、前記第9の巻線の巻数をもって、前記ローラ装置に属している誘導コイル印加電圧を任意に設定し、前記第2の巻線および前記第3の巻線の端部同志の間を無負荷としてなる誘導発熱ローラ設備。The first to third windings having the same number of turns, each having one end connected to each line of the three-phase power source, and one end being collectively connected to the neutral point, the first to third windings 4th to 6th windings having the same phase and the same number of turns as the wire, and the other ends of the 1st to 3rd windings are connected to the 4th to 6th windings of the adjacent phase. Are connected to each other end in a staggered manner, and a ninth winding having an arbitrary number of turns is provided in the fourth winding or an extension winding thereof, and the ninth winding is further provided. A tenth winding having the same phase as the first winding and having the same number of turns as the ninth winding, and an end of the tenth winding and the middle The induction coil belonging to the induction heating roller device is connected across the sex point, and the induction coil applied voltage belonging to the roller device is arbitrarily determined by the number of turns of the ninth winding. Set, the induction heating roller equipment between the end comrades said second winding and the third winding becomes as unloaded.
JP2002147117A 2002-05-22 2002-05-22 Induction heating roller equipment Expired - Fee Related JP3936240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147117A JP3936240B2 (en) 2002-05-22 2002-05-22 Induction heating roller equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147117A JP3936240B2 (en) 2002-05-22 2002-05-22 Induction heating roller equipment

Publications (2)

Publication Number Publication Date
JP2003338364A JP2003338364A (en) 2003-11-28
JP3936240B2 true JP3936240B2 (en) 2007-06-27

Family

ID=29705833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147117A Expired - Fee Related JP3936240B2 (en) 2002-05-22 2002-05-22 Induction heating roller equipment

Country Status (1)

Country Link
JP (1) JP3936240B2 (en)

Also Published As

Publication number Publication date
JP2003338364A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US20080303367A1 (en) Variable speed constant frequency motor
JP2007048897A (en) Noise filter
US5574418A (en) Three-phase autotransformer with a balancing function
US7750782B1 (en) Nine-phase autotransformer
TWI706692B (en) Induction heating system
JP2015519747A (en) Magnetic shield three-phase rotary transformer
US20200052486A1 (en) Longitudinal voltage regulation at the line terminals of a phase shifting transformer
US2470598A (en) Transformer windings
JP3936240B2 (en) Induction heating roller equipment
JP4215941B2 (en) Induction heating roller device
CN105939548B (en) Induction heating system
JP5026029B2 (en) Current balancer and low voltage distribution system
JP4080188B2 (en) Induction heating roller equipment
KR20150073055A (en) Power circuit, iron core for scott connected transformer, scott connected transformer and superheated steam generator
JP4071159B2 (en) Induction heating roller device
JP2008061361A5 (en)
JP2007082269A (en) Single phase-three phase converter and single phase-three phase converting method
JP2003249335A (en) Induction heating roller facility
JP6552841B2 (en) Induction heating roller system
KR101783239B1 (en) Hybrid power quality improving device with high-efficiency energy-saving
JP4176276B2 (en) Induction heating roller device
JP2522675B2 (en) Current phase compensation method for two-phase linear electromagnetic device
JPH01501356A (en) Single-phase and multi-phase electromagnetic induction machines with adjusted magnetic pole symmetry
US5903081A (en) Squirrel-cage induction motor
JPS60131041A (en) Polyphase armature winding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Ref document number: 3936240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees