JP2522675B2 - Current phase compensation method for two-phase linear electromagnetic device - Google Patents

Current phase compensation method for two-phase linear electromagnetic device

Info

Publication number
JP2522675B2
JP2522675B2 JP62236969A JP23696987A JP2522675B2 JP 2522675 B2 JP2522675 B2 JP 2522675B2 JP 62236969 A JP62236969 A JP 62236969A JP 23696987 A JP23696987 A JP 23696987A JP 2522675 B2 JP2522675 B2 JP 2522675B2
Authority
JP
Japan
Prior art keywords
phase
electromagnetic device
linear electromagnetic
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62236969A
Other languages
Japanese (ja)
Other versions
JPS6481653A (en
Inventor
昌昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP62236969A priority Critical patent/JP2522675B2/en
Publication of JPS6481653A publication Critical patent/JPS6481653A/en
Application granted granted Critical
Publication of JP2522675B2 publication Critical patent/JP2522675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2相リニアモータ,2相リニア電磁ポンプある
いは2相電磁攪拌装置などの2相リニア電磁装置に係
り、その2相間の電流位相の補償方法に関するものであ
る。
The present invention relates to a two-phase linear electromagnetic device such as a two-phase linear motor, a two-phase linear electromagnetic pump, or a two-phase electromagnetic stirrer. It concerns a compensation method.

〔従来の技術〕[Conventional technology]

第6図は2極2相の平形リニア電磁装置の鉄心とコイ
ルの関係を示す配置図、第7図は2極2相の円筒形リニ
ア電磁装置の上半部縦断面図であり、第8図はこれらの
電磁装置の運転結線図である。
FIG. 6 is a layout drawing showing the relationship between the iron core and the coil of a 2-pole 2-phase flat linear electromagnetic device, and FIG. 7 is an upper half longitudinal sectional view of a 2-pole 2-phase cylindrical linear electromagnetic device. The figure is an operation connection diagram of these electromagnetic devices.

2相リニア電磁装置1は、平形であっても円筒形であ
っても、磁界の進行方向に対して有限長の鉄心3にU相
コイル21,V相コイル22が幾何学的に磁極ピッチτの1/
2の位相差で配置巻装されたものであり、第8図に示す
ように、U相コイル21およびV相コイル22は出力電圧の
位相差が90°の2相交流電源4により付勢される。
Whether the two-phase linear electromagnetic device 1 is flat or cylindrical, the U-phase coil 21 and the V-phase coil 22 are geometrically arranged at the magnetic pole pitch τ in the iron core 3 having a finite length in the traveling direction of the magnetic field. 1 / p
As shown in FIG. 8, the U-phase coil 21 and the V-phase coil 22 are energized by the two-phase AC power source 4 having a phase difference of 90 ° in the output voltage. It

第6図において、U相コイル21とV相コイル22は磁極
ピッチτに対して相互に1/2だけずれて平形の鉄心3
に設けられたスロット内に収納されている。a1,a2およ
びa3,a4はそれぞれU相コイル21およびV相コイル22の
端子を示している。
In FIG. 6, the U-phase coil 21 and the V-phase coil 22 are offset from each other by 1/2 with respect to the magnetic pole pitch τ p , and the flat core 3
It is stored in the slot provided in the. Reference characters a1, a2 and a3, a4 denote terminals of the U-phase coil 21 and the V-phase coil 22, respectively.

第7図において、U相コイル21,V相コイル22はそれぞ
れ円環状に構成され、円筒状もしくは鉄心ブロックを放
射状に配置して構成した鉄心3に、磁極ピッチτに対
して相互に1/2だけずれて設けられたスロット内に収納
されている。各コイルの端子符号は第6図の場合と同じ
とする。
In FIG. 7, the U-phase coil 21 and the V-phase coil 22 are each formed in an annular shape, and the iron core 3 formed by arranging the cylindrical shape or the iron core blocks in a radial direction is 1 / distance relative to the magnetic pole pitch τ p . It is stored in a slot that is offset by 2. The terminal code of each coil is the same as in FIG.

第8図に示した2相交流電源4はスコット結線変圧器
を使用したものであって、1次側が3相交流電源のR,S,
T相につながれ、2次側から90°位相の異なるU相およ
びV相電圧を出力する。第1の1次巻線61の一端はR相
につながれ、その他端は両端がS相およびT相につなが
れた第2の1次巻線62の中間点につながれている。
The two-phase AC power supply 4 shown in FIG. 8 uses a Scott connection transformer, and the primary side is a three-phase AC power supply R, S,
It is connected to the T-phase and outputs the U-phase and V-phase voltages with 90 ° different phases from the secondary side. One end of the first primary winding 61 is connected to the R phase, and the other end is connected to an intermediate point of the second primary winding 62 whose both ends are connected to the S phase and the T phase.

第1の1次巻線61に結合する第1の2次巻線51はU相
電圧を出力し、その端子符号はb1,b2であり、第2の1
次巻線62に結合する第2の2次巻線52はV相電圧を出力
し、その端子符号はb3,b4であって、U相電圧とV相電
圧とは90°の位相差を有するものとなる。
The first secondary winding 51 coupled to the first primary winding 61 outputs a U-phase voltage, the terminal codes of which are b1 and b2.
The second secondary winding 52 coupled to the secondary winding 62 outputs the V-phase voltage, the terminal codes of which are b3 and b4, and the U-phase voltage and the V-phase voltage have a phase difference of 90 °. Will be things.

2相交流電圧4のU相出力端子b1,b2は2相リニア電
磁装置のU相コイル端子a1,a2に、またV相出力端子b3,
b4はV相コイル端子a3,a4にそれぞれ接続されている。
このような構成により、第6図および第7図に示す矢印
方向に進行磁界が発生する。
The U-phase output terminals b1 and b2 of the 2-phase AC voltage 4 are connected to the U-phase coil terminals a1 and a2 of the 2-phase linear electromagnetic device, and the V-phase output terminals b3 and b3,
b4 is connected to V-phase coil terminals a3 and a4, respectively.
With such a configuration, a traveling magnetic field is generated in the arrow direction shown in FIGS. 6 and 7.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

第5図は2相リニア電磁装置の電気回路の等価回路図
である。U相コイルおよびV相コイルはそれぞれ巻線抵
抗Rと自己リアクタンスLを持ち、90°の位相差を持つ
電圧vu,vvで付勢される。
FIG. 5 is an equivalent circuit diagram of an electric circuit of the two-phase linear electromagnetic device. The U-phase coil and the V-phase coil have winding resistance R and self-reactance L, respectively, and are energized by voltages v u and v v having a phase difference of 90 °.

U相コイルとV相コイルの間は相互インダクタンスM
で結合されており、両相の付勢電圧vu,vvと両相電流iu,
ivの間には次に示す(1),(2)式の関係が成立す
る。
Mutual inductance M between U-phase coil and V-phase coil
Are coupled together, the energizing voltage v u , v v of both phases and the current i u , of both phases are
The following relationships (1) and (2) are established between i v .

vu=iu(R+jωL)+iv(jωM) ……(1) vv=iu(jωM)+iv(R+jωL) ……(2) ここにωは2相交流電源の角周波数である。v u = i u (R + jωL) + i v (jωM) (1) v v = i u (jωM) + i v (R + jωL) (2) where ω is the angular frequency of the two-phase AC power supply.

位相角で90°ずれて配置されているU相コイルとV相
コイルの間の相互インダクタンスMは、回転電機のよう
に磁束進行方向に対して有限端のない場合には、2相間
で互いに鎖交する磁束はほぼ零になる。
The mutual inductance M between the U-phase coil and the V-phase coil, which are arranged with a phase angle difference of 90 °, has a mutual linkage between the two phases when there is no finite end in the magnetic flux traveling direction as in a rotating electric machine. The intersecting magnetic flux becomes almost zero.

第3図は相互インダクタンスが零の場合のベクトル図
であり、直交する付勢電圧vu,vvの印加されるU相およ
びV相には、それぞれ独立して抵抗Rと自己インダクタ
ンスLを持つ回路に電流iu,ivが流れ、電流iuとivは電
圧同様90°の位相差を持つものとなる。
FIG. 3 is a vector diagram when the mutual inductance is zero, and the U-phase and the V-phase to which the orthogonal biasing voltages v u and v v are applied have the resistance R and the self-inductance L independently. The currents i u and i v flow in the circuit, and the currents i u and i v have a phase difference of 90 ° like the voltage.

しかしながら、2相リニア電磁装置のように磁束の進
行方向に有限端を有する場合には、その幾何学的有限性
によりU相コイルとV相コイル間の磁束の鎖交は零とな
らず、相互インダクタンスMが無視できなくなる。
However, when the magnetic flux has a finite end in the traveling direction of the magnetic flux like a two-phase linear electromagnetic device, the linkage of the magnetic flux between the U-phase coil and the V-phase coil is not zero due to its geometrical finiteness, and The inductance M cannot be ignored.

第4図は相互インダクタンスが零でない場合のベクト
ル図であり、U相およびV相回路にそれぞれ相互インダ
クタンスMによる電圧降下iv(jωM)およびiu(jω
M)が生じ、これによりU相電流iuとV相電流ivとの位
相差は90°より大きく(90°+φ)となり、電流値にも
アンバランスが生じる。
FIG. 4 is a vector diagram when the mutual inductance is not zero, and the voltage drops i v (jωM) and i u (jω) due to the mutual inductance M in the U-phase and V-phase circuits, respectively.
M) occurs, which causes the phase difference between the U-phase current i u and the V-phase current i v to be larger than 90 ° (90 ° + φ), and the current value is also unbalanced.

この場合、U相コイルの磁極中心を原点とする磁束分
布B(x)は、最大磁束をBmとした時 ここで となり、位相のずれ角φにより位置による磁束の最大値
は変動する。
In this case, the magnetic flux distribution B (x) whose origin is the magnetic pole center of the U-phase coil is when the maximum magnetic flux is Bm. here Therefore, the maximum value of the magnetic flux varies depending on the position depending on the phase shift angle φ.

すなわち、例えばU相の磁極軸x=0では位相ずれ角
φによって磁束の最大値は変らないが、U相とV相の中
間点πx/τ=π/4では となり、φ=10°ではその地点での磁束の最大値は0.91
倍に減少する。
That is, for example, when the magnetic pole axis x = 0 of the U phase, the maximum value of the magnetic flux does not change depending on the phase shift angle φ, but at the intermediate point πx / τ p = π / 4 between the U phase and the V phase. Therefore, at φ = 10 °, the maximum value of the magnetic flux at that point is 0.91.
Doubled.

このように、2相リニア電磁装置では従来のように直
接2相電源を接続すると、2相コイル間の相互インダク
タンスにより電流位相が90°からずれ、電流値がアンバ
ランスになると共にこの位相ずれにより発生磁界の均一
性が崩れ、電磁的特性の劣化を招くことになる。
In this way, in the two-phase linear electromagnetic device, if the two-phase power source is directly connected as in the conventional case, the current phase is deviated from 90 ° due to the mutual inductance between the two-phase coils, and the current value becomes unbalanced and The uniformity of the generated magnetic field will be lost, and the electromagnetic characteristics will be deteriorated.

本発明はこれら従来の欠点を解決し、所望の電磁特性
を得るための電流位相の補償方法に関するものである。
The present invention relates to a current phase compensating method for solving these conventional drawbacks and obtaining a desired electromagnetic characteristic.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にかかる2相リニア電磁装置の電流位相補償方
法は、幾何学的に互いに1/2磁極ピッチの位相差を持っ
て配置巻装された2相コイルを具備し、出力電圧の2相
間の位相差が90°の2相交流電源により付勢される2相
リニア電磁装置において、該2相リニア電磁装置の2相
回路それぞれに相異なる相の前記2相交流電源の出力電
圧を所定の位相補償電圧に変換する位相補償用変圧器の
2次側を挿入し、各相電圧に対し該変圧器の2次出力電
圧が1次入力電圧と同位相に加算されるよう接続するも
のである。
A current phase compensating method for a two-phase linear electromagnetic device according to the present invention includes two-phase coils geometrically arranged and wound with a phase difference of 1/2 magnetic pole pitch between two phases of an output voltage. In a two-phase linear electromagnetic device energized by a two-phase alternating current power supply having a phase difference of 90 °, the output voltage of the two-phase alternating current power supply of a different phase is set to a predetermined phase for each two-phase circuit of the two-phase linear electromagnetic device. The secondary side of a phase compensating transformer for converting into a compensating voltage is inserted, and the secondary output voltage of the transformer is connected to each phase voltage so as to be added in the same phase as the primary input voltage.

前記位相補償用変圧器の2次側にタップを設けておく
ことにより、設計段階で2相リニア電磁装置の相互リア
クタンスが不確定の場合に、電流位相ずれに合わせて適
宜タップを選択するようにしてもよい。
By providing a tap on the secondary side of the phase compensating transformer, when the mutual reactance of the two-phase linear electromagnetic device is uncertain at the design stage, the tap is appropriately selected according to the current phase shift. May be.

〔作用〕[Action]

第2図は本発明にかかる2相リニア電磁装置の電流位
相補償方法によった場合のベクトル図である。2相リニ
ア電磁装置のU相コイルの付勢電圧vuとして、2相交流
電源のU相出力電圧vsuとV相出力電圧を位相補償用変
圧器で変換した補償電圧vtvをV相出力電圧vsvと同位相
に加算したものとし、2相リニア電磁装置のV相コイル
の付勢電圧vvとして、2相交流電源のV相出力電圧vsv
とU相出力電圧を位相補償用変圧器で変換した補償電圧
vtuをU相出力電圧vsuと同位相に加算したものとするこ
とにより、2相リニア電磁装置の両相コイル間の相互イ
ンダクタンスMにより生じる電圧降下iv(jωM)およ
びiu(jωM)による位相ずれを補償し、両相電流iu,i
v間の位相差を90°に保つことができる。
FIG. 2 is a vector diagram in the case of the current phase compensation method for a two-phase linear electromagnetic device according to the present invention. As the energizing voltage v u of the U-phase coil of the two-phase linear electromagnetic device, the U-phase output voltage v su of the two-phase AC power supply and the compensation voltage v tv obtained by converting the V-phase output voltage with the phase compensation transformer are output as the V-phase output. Assuming that the voltage is added in the same phase as the voltage v sv , the bias voltage v v of the V-phase coil of the two-phase linear electromagnetic device is used as the V-phase output voltage v sv of the two-phase AC power supply.
And U-phase output voltage converted by a phase compensation transformer
By adding v tu in the same phase as the U-phase output voltage v su , the voltage drops i v (jωM) and i u (jωM) caused by the mutual inductance M between the two-phase coils of the two-phase linear electromagnetic device. compensating the phase shift due to both phase currents i u, i
The phase difference between v can be kept at 90 °.

〔実施例〕〔Example〕

第1図は本発明にかかる2相リニア電磁装置の電流位
相補償方法の一実施例の結線図であり、第8図と同一の
符号は同一または同一機能を有する部分を示す。第1図
中、71および72は位相補償用変圧器であり、それぞれ1
次巻線91および92と2次巻線81および82を有している。
FIG. 1 is a connection diagram of an embodiment of a current phase compensating method for a two-phase linear electromagnetic device according to the present invention, and the same reference numerals as those in FIG. 8 denote the same or the same function. In FIG. 1, 71 and 72 are phase compensation transformers, each of which is 1
It has secondary windings 91 and 92 and secondary windings 81 and 82.

位相補償用変圧器71および72の1次巻線91および92
は、それぞれ2相交流電源4のV相出力端子b3,b4およ
びU相出力端子b1,b2に接続され、位相補償用変圧器71
および72の2次巻線81および82は、それぞれ1次巻線と
相異なる相すなわちU相およびV相の2相交流電源出力
に位相を合わせて加算するよう接続されている。
Primary windings 91 and 92 of phase compensating transformers 71 and 72
Are connected to the V-phase output terminals b3 and b4 and the U-phase output terminals b1 and b2 of the two-phase AC power source 4, respectively, and are connected to the phase compensation transformer 71.
Secondary windings 81 and 82 of Nos. 72 and 72 are connected so as to add the phases to the outputs of the two-phase alternating-current power supplies having phases different from the primary winding, that is, U-phase and V-phase.

ここで位相補償用変圧器71および72の2次電圧vtv
よびvtuは、前述の相互インダクタンスMにより生じる
位相ずれ角φとそれぞれの1次電圧vsvおよびvsuから |vtv|≒|vsv|tan(φ/2) |vtu|≒|vsu|tan(φ/2) によって選定する。
Here, the secondary voltages v tv and v tu of the phase compensating transformers 71 and 72 are | v tv | ≈ | from the phase shift angle φ generated by the mutual inductance M and the respective primary voltages v sv and v su. Select by v sv | tan (φ / 2) | v tu | ≈ | v su | tan (φ / 2).

2相リニア電磁装置1の相互インダクタンスMの効果
が設計段階で不確定の場合には、位相補償用変圧器71お
よび72の2次巻線81および82に電圧調整タップを予め設
けておき、電流位相ずれに合わせて適当の電圧タップを
使用する方法もある。
When the effect of the mutual inductance M of the two-phase linear electromagnetic device 1 is uncertain at the design stage, voltage adjustment taps are provided in advance on the secondary windings 81 and 82 of the phase compensation transformers 71 and 72, and There is also a method of using an appropriate voltage tap according to the phase shift.

また、位相補償用変圧器71および72の代りに誘導電圧
調整器を用いて、連続的に位相補償電圧を選定すること
も可能である。
It is also possible to use an induction voltage regulator instead of the phase compensating transformers 71 and 72 to continuously select the phase compensating voltage.

〔発明の効果〕〔The invention's effect〕

本発明にかかる2相リニア電磁装置の電流位相補償方
法によれば、従来の2相リニア電磁装置で生じていた有
限端に起因する磁界分布の不均一と、それによる電磁特
性の劣化を低減し空間的に均一な磁界分布を得ると共
に、推力,電磁力,攪拌力など電磁特性が著しく改善さ
れる。
According to the current phase compensation method for a two-phase linear electromagnetic device according to the present invention, it is possible to reduce the non-uniformity of the magnetic field due to the finite end that occurs in the conventional two-phase linear electromagnetic device and the deterioration of the electromagnetic characteristics due to the non-uniformity. In addition to obtaining a spatially uniform magnetic field distribution, electromagnetic characteristics such as thrust, electromagnetic force and stirring force are significantly improved.

また、2相間の電流のアンバランスを解消することが
できるため、熱的耐力が向上して小形軽量化を図ること
ができる。
Further, since the imbalance of the current between the two phases can be eliminated, the thermal resistance can be improved and the size and weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる2相リニア電磁装置の電流位相
補償方法の一実施例の結線図、第2図はそのときのベク
トル図であり、第3図は相互インダクタンスが零のとき
のベクトル図、第4図は相互インダクタンスが零でない
ときのベクトル図であって、第5図は2相リニア電磁装
置の電気回路の等価回路図、第6図は2極2相の平形リ
ニア電磁装置の鉄心とコイルの関係を示す配置図、第7
図は2極2相の円筒形リニア電磁装置の上半部縦断面図
で、第8図はこれらの電磁装置の従来の運転結線図であ
る。 1……2相リニア電磁装置、21……V相コイル、22……
U相コイル、3……鉄心、4……2相交流電源、51,52,
81,82……2次巻線、61,62,91,92……1次巻線、71,72
……位相補償用変圧器。
FIG. 1 is a connection diagram of an embodiment of a current phase compensation method for a two-phase linear electromagnetic device according to the present invention, FIG. 2 is a vector diagram at that time, and FIG. 3 is a vector when mutual inductance is zero. 4 and 5 are vector diagrams when mutual inductance is not zero, FIG. 5 is an equivalent circuit diagram of an electric circuit of a two-phase linear electromagnetic device, and FIG. 6 is a two-pole two-phase flat linear electromagnetic device. Arrangement diagram showing the relationship between the iron core and the coil, No. 7
The drawing is a vertical cross-sectional view of the upper half of a two-pole two-phase cylindrical linear electromagnetic device, and FIG. 8 is a conventional operation connection diagram of these electromagnetic devices. 1 …… 2-phase linear electromagnetic device, 21 …… V-phase coil, 22 ……
U-phase coil, 3 ... Iron core, 4 ... 2-phase AC power supply, 51, 52,
81,82 …… Secondary winding, 61,62,91,92 …… Primary winding, 71,72
...... Phase compensation transformer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】幾何学的に互いに1/2磁極ピッチの位相差
を持って配置巻装された2相コイルを具備し、出力電圧
の2相間の位相差が90°の2相交流電源により付勢され
る2相リニア電磁装置において、該2相リニア電磁装置
の2相回路それぞれに相異なる相の前記2相交流電源の
出力電圧を所定の位相補償電圧に変換する位相補償用変
圧器の2次側を挿入し、各相電圧に対し該変圧器の2次
出力電圧が1次入力電圧と同位相に加算されるよう接続
した2相リニア電磁装置の電流位相補償方法。
1. A two-phase AC power supply having a two-phase coil geometrically arranged and wound with a phase difference of 1/2 magnetic pole pitch and having a phase difference of 90 ° between two phases of an output voltage. In a two-phase linear electromagnetic device to be energized, a phase compensating transformer for converting the output voltage of the two-phase AC power supply of a different phase in each two-phase circuit of the two-phase linear electromagnetic device into a predetermined phase compensation voltage. A current phase compensation method for a two-phase linear electromagnetic device in which a secondary side is inserted and connected so that the secondary output voltage of the transformer is added in phase with the primary input voltage for each phase voltage.
【請求項2】位相補償用変圧器の2次側に電圧調整用の
タップを設けた特許請求の範囲第1項記載の2相リニア
電磁装置の電流位相補償方法。
2. A current phase compensating method for a two-phase linear electromagnetic device according to claim 1, wherein a tap for voltage adjustment is provided on the secondary side of the phase compensating transformer.
JP62236969A 1987-09-21 1987-09-21 Current phase compensation method for two-phase linear electromagnetic device Expired - Lifetime JP2522675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62236969A JP2522675B2 (en) 1987-09-21 1987-09-21 Current phase compensation method for two-phase linear electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62236969A JP2522675B2 (en) 1987-09-21 1987-09-21 Current phase compensation method for two-phase linear electromagnetic device

Publications (2)

Publication Number Publication Date
JPS6481653A JPS6481653A (en) 1989-03-27
JP2522675B2 true JP2522675B2 (en) 1996-08-07

Family

ID=17008448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62236969A Expired - Lifetime JP2522675B2 (en) 1987-09-21 1987-09-21 Current phase compensation method for two-phase linear electromagnetic device

Country Status (1)

Country Link
JP (1) JP2522675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883408B2 (en) 2000-04-21 2005-04-26 Ricoh Company, Ltd. Method and device for feeding and cutting a rolled transfer paper with improved operability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6883408B2 (en) 2000-04-21 2005-04-26 Ricoh Company, Ltd. Method and device for feeding and cutting a rolled transfer paper with improved operability

Also Published As

Publication number Publication date
JPS6481653A (en) 1989-03-27

Similar Documents

Publication Publication Date Title
US5694027A (en) Three-phase brushless self-excited synchronous generator with no rotor excitation windings
JP2001320845A (en) Stator for rotating electric machine
US4851758A (en) Brushless generator
US20110140555A1 (en) Variable speed constant frequency motor
US5574418A (en) Three-phase autotransformer with a balancing function
US5317299A (en) Electromagnetic transformer
US5537089A (en) Three phase transformer with reduced harmonic currents
US2470598A (en) Transformer windings
JP2522675B2 (en) Current phase compensation method for two-phase linear electromagnetic device
US4656410A (en) Construction of single-phase electric rotating machine
JP2887686B2 (en) Brushless self-excited synchronous generator
US4238719A (en) Rotatable transformer field excitation system for variable speed brushless synchronous motor
US602920A (en) Alternating-cur rent in duction-motor
JPH0613250A (en) Motor-transformer
JP2675591B2 (en) Phase conversion motor
SU1617554A1 (en) Electric drive
US3411068A (en) Brushless alternators of the selfregulating and self-exciting type
US1968853A (en) Multiphase motor
US1955133A (en) Rotary frequency and phase converter
US2505018A (en) Alternating-current commutator machine
US2380265A (en) Adjustable transformer regulator
USRE19433E (en) Dynamo-electric machine winding
JPH02206363A (en) Current-phase compensation method for two-phase linear electromagnetic apparatus
SU1163319A1 (en) Ferroresonance stabilizer
US1246617A (en) System of distribution and control.