JP3936199B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP3936199B2
JP3936199B2 JP2002014032A JP2002014032A JP3936199B2 JP 3936199 B2 JP3936199 B2 JP 3936199B2 JP 2002014032 A JP2002014032 A JP 2002014032A JP 2002014032 A JP2002014032 A JP 2002014032A JP 3936199 B2 JP3936199 B2 JP 3936199B2
Authority
JP
Japan
Prior art keywords
compressor
vehicle
compressor unit
air
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002014032A
Other languages
Japanese (ja)
Other versions
JP2003211953A (en
Inventor
政人 坪井
敦雄 井上
謙一 鈴木
智規 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2002014032A priority Critical patent/JP3936199B2/en
Priority to US10/347,630 priority patent/US6761037B2/en
Priority to CNB031075681A priority patent/CN1286674C/en
Priority to DE60304291T priority patent/DE60304291T2/en
Priority to EP03250432A priority patent/EP1331115B1/en
Publication of JP2003211953A publication Critical patent/JP2003211953A/en
Application granted granted Critical
Publication of JP3936199B2 publication Critical patent/JP3936199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の原動機(エンジン)と、それとは別の電動モータとにより駆動力を得ることのできるハイブリッド型の圧縮機を備えた車両用空調装置に関する。
【0002】
【従来の技術】
通常、車両用空調装置における圧縮機(コンプレッサ)は、車両エンジンによってベルト駆動され、それによって冷媒を圧縮し空調を行うようにしている。あるいは、専用の電動モータによってコンプレッサを駆動し、空調を行う場合もある。このような単一の駆動源を設ける場合に対し、車両エンジン、電動モータの両方によってコンプレッサを駆動可能としたハイブリッドコンプレッサも知られており、この場合、通常、エンジンが稼働している時はエンジンにてコンプレッサを駆動し、エンジンが停止している時は電動モータにてコンプレッサを駆動する方式が考えられている。
【0003】
上記のような従来の技術では、コンプレッサの駆動方法をエンジンの稼働/非稼働により、ベルト駆動または電動モータ駆動のいずれかに切り換えている。エンジンにより圧縮機を駆動する場合、圧縮機の回転数はエンジンの回転数に依存することとなり、空調負荷が大きいときは空調能力が不足する状況が考えられる。また、電動モータにより圧縮機を駆動する場合、圧縮機の回転数は車両の電力源の容量が不足したときに制限を受けることとなり、空調負荷が大きいときは空調能力が不足する状況が考えられる。いずれの問題も、コンプレッサの駆動方法がどちらかの駆動源の選択によってのみ決定されることに起因して生じるものである。
【0004】
このような従来のハイブリッド圧縮機に対し、未だ出願未公開の段階にあるが、先に本出願人により、車両のエンジンのみにより駆動される第1圧縮機(第1圧縮室)と、電動モータのみにより駆動される第2圧縮機(第2圧縮室)とが一体に組み付けられ、第1圧縮機と第2圧縮機を選択的にまたは同時に駆動可能としたハイブリッド圧縮機が提案されている(特願2001−280630)。
【0005】
【発明が解決しようとする課題】
本発明の課題は、前述のような従来のハイブリッド圧縮機駆動制御方法における問題点に着目し、とくに上記本出願人が先に提案した第1圧縮機と第2圧縮機を選択的にまたは同時に駆動可能な特定のハイブリッド圧縮機の使用を前提とし、この圧縮機の駆動を適切に制御することで、車両用空調装置の性能向上をはかることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機を備えた車両用空調装置において、前記圧縮機を原動機のみにより駆動する場合、電動モータのみにより駆動する場合の消費動力または冷凍能力を推定し、該消費動力または冷凍能力に応じて、前記第1圧縮機部駆動または第2圧縮機部駆動、第1圧縮機部と第2圧縮機部の両方を同時に駆動する手段を有することを特徴とするものからなる(第1態様に係る車両用空調装置)。
【0007】
このような車両用空調装置においては、圧縮機に対し各駆動源を用いた場合の消費動力または冷凍能力が推定され、該消費動力または冷凍能力に応じて駆動形態が選択される(単独駆動、同時駆動)ので、そのときの状態に応じて最適な駆動形態とされることが可能となる。
【0008】
また、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機を備えた車両用空調装置において、前記圧縮機を原動機のみにより駆動する場合、電動モータのみにより駆動する場合の消費動力を推定することのできる消費動力推定手段を有し、最小の消費動力となる駆動手段を選択する手段を有することを特徴とするものからなる(第2態様に係る車両用空調装置)。
【0009】
このような車両用空調装置においては、各駆動源を用いた場合の圧縮機の消費動力が推定され、消費動力が最小となる駆動手段が選択されるので、空調装置に使用される動力が最小化されて、車両全体の省動力化が適切に達成されることになる。
【0010】
そして、この車両全体の省動力化を、第1圧縮機と第2圧縮機を選択的にまたは同時に駆動可能なハイブリッド圧縮機を使用することの基本的な目的としつつ、より具体的には、そのときの車両の熱負荷に応じて、最適な駆動方式を選択する制御を行うことができる。
【0011】
すなわち、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第1圧縮機部と第2圧縮機部の両方を同時に運転することを特徴とするものからなる(第3態様に係る車両用空調装置)。
【0012】
また、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第1圧縮機部のみの運転から第1圧縮機部と第2圧縮機部の同時運転に、所定値より小さい場合、該同時運転から第1圧縮機部のみの運転に切り替えることを特徴とするものからなる(第4態様に係る車両用空調装置)。
【0013】
また、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第2圧縮機部のみの運転から第1圧縮機部と第2圧縮機部の同時運転に、所定値より小さい場合、該同時運転から第2圧縮機部のみの運転に切り替えることを特徴とするものからなる(第5態様に係る車両用空調装置)。
【0014】
さらに、本発明に係る車両用空調装置は、車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷に応じて、前記第1圧縮機部のみの運転から第2圧縮機部のみの運転に、あるいは、第2圧縮機部のみの運転から第1圧縮機部のみの運転に切り替えることを特徴とするものからなる(第6態様に係る車両用空調装置)。
【0015】
これら第3態様ないし第6態様を組み合わせた態様とすることもできる。
【0016】
上記第3態様ないし第6態様に係る車両用空調装置においては、室外熱交換器である凝縮器を通過する空気の温度またはそれに相関のある物理量を検知する凝縮器入口空気温度検知手段、室外熱交換器である凝縮器を通過する空気の風速またはそれに相関のある物理量を検知する凝縮器入口空気風速検知手段、室内熱交換器である蒸発器を通過する空気の温度またはそれに相関のある物理量を検知する蒸発器入口空気温度検知手段、室内熱交換器である蒸発器を通過する空気の湿度またはそれに相関のある物理量を検知する蒸発器入口空気湿度検知手段、室内熱交換器である蒸発器を通過する空気の風速またはそれに相関のある物理量を検知する蒸発器入口空気風速検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定することができる。
【0017】
また、外気温度またはそれに相関のある物理量を検知する外気温度検知手段、車室内空気温度またはそれに相関のある物理量を検知する車室内空気温度検知手段、外気導入状態か内気循環状態かを認識する内外気状態認識手段、車両の走行速度またはそれに相関のある物理量を検知する車速検知手段、送風機風量またはそれに相関のある物理量を検知する送風機風量認識手段、室内熱交換器である蒸発器を通過する空気の湿度またはそれに相関のある物理量を検知する蒸発器入口空気湿度検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定することもできる。
【0018】
さらに、車両の走行速度またはそれに相関のある物理量を検知する車速検知手段、日射量またはそれに相関のある物理量を検知する日射量検知手段、外気温度またはそれに相関のある物理量を検知する外気温度検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定することもできる。
【0019】
また、本発明に係る車両用空調装置においては、冷凍サイクルにおける冷媒高圧圧力またはそれに相関のある物理量を検知する冷媒高圧圧力検知手段を有し、その検知信号に基づいて冷凍サイクルの熱負荷を推定することができる。
【0020】
さらに、車室内空気温度またはそれに相関のある物理量を検知する車室内空気温度検知手段および車室内空気温度目標値を推定し、車室内空気温度目標値と車室内空気温度検出値との差を演算する車室内空気温度目標値−検出値差演算手段を有し、該演算手段による演算値に基づいて車両の熱負荷を推定することもできる。
【0021】
上記のような本発明に係る車両用空調装置においては、2つの圧縮機部(2つの圧縮室)を同時運転することで、交互運転よりも大きな冷却能力を発生させ、空調能力不足を回避することができる。また、そのときの熱負荷に応じて、いずれか一方の駆動源から同時運転に切り替えたり、同時運転から選択的にいずれか一方の駆動源による運転に切り替えたりすることにより、能力不足、電力不足、能力過多、電力過多、動力過多等が生じた場合、さらには、車両の高低速の切り替え時や加速時、内外気切り替え等の条件変更が生じた場合にも、そのときの条件に応じて最適な運転方法を任意に選択することが可能になり、より最適な空調制御状態とすることが可能になる。
【0022】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
図1は本発明の第1実施態様に係る車両用空調装置のシステム構成図、図5はその制御例を示すブロック図、図2は本発明の第2実施態様に係る車両用空調装置のシステム構成図、図6はその制御例を示すブロック図、図3は本発明の第3実施態様に係る車両用空調装置のシステム構成図、図7、8はその制御例を示すブロック図、図4は本発明の第4実施態様に係る車両用空調装置のシステム構成図、図9はその制御例を示すブロック図を、それぞれ示している。
【0023】
図1に示すような空調装置において、図5に示すような制御ブロック図に従い、各入力変数をメインコントローラに入力し、消費動力または冷凍能力LBを推定演算することで、圧縮機(コンプレッサ)の駆動制御を行う。
【0024】
図1は、本発明の第1実施態様に係る空調システム構成図である。冷凍サイクル1には、車両の原動機のみにより駆動される第1圧縮機部と電動モータのみにより駆動される第2圧縮機部とが一体に組み付けられているハイブリッド型の圧縮機4が設けられている。冷凍サイクル1において、車両の原動機としてのエンジン2の駆動力を伝達する電磁クラッチ3と、電動モータ5との2つの駆動源を持つハイブリッド圧縮機4により圧縮された高温高圧の冷媒が、室外熱交換器としての凝縮器6により外気と熱交換して冷却され、凝縮し液化する。受液器7により気液が分離され、液冷媒が膨張弁8によって減圧される。減圧された低圧の冷媒は、室内熱交換器としての蒸発器9に流入して、送風機12により送風された空気と熱交換する。蒸発器9において蒸発し気化した冷媒は再びハイブリッド圧縮機4に吸入され圧縮される。
【0025】
車室内空調を行う空気が通過する通風ダクト13には、送風機12、蒸発器9、エアミックスダンパ10、ヒータコア11が備えられている。蒸発器9を通過した空気は、エアミックスダンパ10の開度により決められる比率でヒータコア11を通過し、加熱される。通風ダクト13の下流側には、DEF、VENT、FOOT等の各吹き出し口41、42、43が設けられており、図示を省略した各ダンパにより所定の吹き出し口が選択され、調和された空気が車室内に送出される。
【0026】
空調制御のための各種センサとして、蒸発器9通過後の空気温度を検知するための蒸発器出口空気温度センサ14が備えられ、検知された信号は空調制御を行う空調制御装置15へ入力される。さらに空調制御装置15には、蒸発器出口空気温度Toff、外気空気温度Tout、車室内温度Tr、内外気切替ダンパ19の位置信号INT、原動機回転数Ne、送風機電圧BLV、蒸発器入口空気温度Teva等の信号群16がそれぞれ入力される。また出力信号として、電動モータ回転数制御信号17、クラッチ制御信号18がそれぞれ出力される。
【0027】
ハイブリッド圧縮機4(第2圧縮機部〔第2圧縮室〕)を電動モータ5で駆動させる際は、クラッチ制御信号18により、クラッチ3をオフしたうえで、電動モータ回転数制御信号17をデューティ信号として与えることにより電動モータ5の回転数を制御する。逆にエンジン2により圧縮機4(第1圧縮機部〔第1圧縮室〕)を駆動させる場合は、電動モータ回転数制御信号17の出力を停止し、クラッチ3をオンする。
【0028】
また、ハイブリッド圧縮機4をエンジン2で駆動および電動モータ5で駆動する同時運転時は、クラッチ制御信号18によりクラッチ3をオン、電動モータ回転数制御信号17をデューティ信号として与えることにより電動モータ5の回転数を制御する。
【0029】
蒸発器9通過後の空気温度の制御を、電動モータ5による圧縮機駆動時はモータ回転数により行い、エンジン2による圧縮機駆動時はクラッチのオン/オフ制御により行う。
【0030】
制御は、図5に示すように、蒸発器出口空気温度Toff、外気空気温度Tout、車室内温度Tr、内外気切替ダンパ19の位置信号INT、原動機回転数Ne、送風機電圧BLV、蒸発器入口空気湿度Hevaの信号群に基づき、消費動力または冷凍能力LBが次式によって推定演算される。
LB=f(INT,Tout,Ne,Tr,BLV,Heva,Toff)
【0031】
このLBに基づいて、コンプレッサ駆動制御手段により、第1圧縮機と第2圧縮機の同時運転、あるいは、第1または第2圧縮機の運転に制御され、そのときの状態に応じて、最適な駆動形態とされる。
【0032】
図2は、本発明の第2実施態様に係る空調システム構成図である。図2に示すような空調装置において、図6のような制御ブロック図に従い、各入力変数をメインコントローラに入力し、車両の熱負荷値を演算することで、圧縮機(コンプレッサ)の駆動制御を行う。
【0033】
空調制御のための各種センサとして、蒸発器9通過後の空気温度を検知するための蒸発器出口空気温度センサ14が備えられ、検知された信号は空調制御を行う空調制御装置15へ入力される。さらに空調制御装置15には、凝縮器入口空気温度Tcon、凝縮器入口空気風速Vcon、蒸発器入口空気温度Teva、蒸発器入口空気湿度Heva、蒸発器入口空気風速Veva等の信号群16がそれぞれ入力される。また出力信号として、電動モータ回転数制御信号17、クラッチ制御信号18がそれぞれ出力される。
【0034】
制御は、図6に示すように、凝縮器入口空気温度Tcon、凝縮器入口空気風速Vcon、蒸発器入口空気温度Teva、蒸発器入口空気湿度Heva、蒸発器入口空気風速Veva等の信号群に基づき、車両における空調負荷LAが次式によって推定演算される。
LA=f(Tcon,Vcon,Teva,Heva,Veva)
【0035】
LAと所定値dとの関係により、コンプレッサ駆動制御手段により、第1圧縮機と第2圧縮機の同時運転、あるいは、第1または第2圧縮機の運転に制御する。LA≧dの時、同時運転とし、LA<dの時、第1または第2圧縮機の運転とする。これによって、負荷の大きい時には同時運転として空調能力不足を回避し、負荷の小さい時には第1または第2圧縮機の運転として、他の機器や他の運転状態に影響を及ぼすことなく、小さな消費動力で所望の空調能力を発生させることができるようになる。
【0036】
図3は、本発明の第3実施態様に係る空調システム構成図である。図3に示すような空調装置において、図7、図8のような制御ブロック図に従い、各入力変数をメインコントローラに入力し、車両の熱負荷値を演算することで、コンプレッサ駆動制御を行う。
【0037】
図3において、前記図2との違いは、空調制御装置15への入力信号が異なる点のみである。空調制御のための各種センサとして、蒸発器9通過後の空気温度Teを検知するための蒸発器出口空気温度センサ14が備えられ、検知された信号は空調制御を行う空調制御装置15へ入力される。さらに空調制御装置15には、外気温度Tout、日射量Rsun、車室内空気温度Tr、車速SP、冷媒高圧圧力Pd等の信号群16がそれぞれ入力される。出力信号とハイブリッド圧縮機4の制御方法は、第1、第2実施態様と同様である。
【0038】
制御は、図7に示すように、たとえば、外気温度Tout、車速SP、日射量Rsunの信号に基づき、車両における空調負荷LAが次式によって推定演算される。
LA=f(Tout,SP,Rsun)
【0039】
LAと所定値dとの関係により、コンプレッサ駆動制御手段により、第1圧縮機と第2圧縮機の同時運転、あるいは、第1または第2圧縮機の運転に制御する。LA≧dの時、同時運転とし、LA<dの時、第1または第2圧縮機の運転とする。これによって、負荷の大きい時には同時運転として空調能力不足を回避し、負荷の小さい時には第1または第2圧縮機の運転として、他の機器や他の運転状態に影響を及ぼすことなく、小さな消費動力で所望の空調能力を発生させることができるようになる。
【0040】
また図8に示すように、冷媒高圧圧力Pdの信号に基づき、車両における空調負荷LAが次式によって推定演算される。
LA=f(Pd)
【0041】
LAと所定値dとの関係により、コンプレッサ駆動制御手段により、第1圧縮機と第2圧縮機の同時運転、あるいは、第1または第2圧縮機の運転に制御する。LA≧dの時、同時運転とし、LA<dの時、第1または第2圧縮機の運転とする。これによって、負荷の大きい時には同時運転として空調能力不足を回避し、負荷の小さい時には第1または第2圧縮機の運転として、他の機器や他の運転状態に影響を及ぼすことなく、小さな消費動力で所望の空調能力を発生させることができるようになる。
【0042】
図4は、本発明の第4実施態様に係る空調システム構成図である。図4に示すような空調装置において、図9のような制御ブロック図に従い、各入力変数をメインコントローラに入力し、車両の熱負荷値を演算することで、コンプレッサ駆動制御を行う。
【0043】
図4において、前記図2との違いは、空調制御装置15への入力信号が異なる点と、内外気切換ダンパ19が追加された点の2つである。空調制御のための各種センサとして、蒸発器9通過後の空気温度Teを検知するための蒸発器出口空気温度センサ14が備えられ、検知された信号は空調制御を行う空調制御装置15へ入力される。さらに空調制御装置15には、外気温度Tout、車室内空気温度Tr、内外気切替ダンパ位置INT、車速SP、送風機電圧BLV、蒸発器入口空気湿度Heva等の信号群16がそれぞれ入力される。出力信号とハイブリッド圧縮機4の制御方法は、第1、第2実施態様と同様である。
【0044】
制御は、図9に示すように、内外気切替ダンパ位置INT、外気温度Tout、車速SP、車室内空気温度Tr、送風機電圧BLV、蒸発器入口空気湿度Heva等の信号群に基づき、車両における空調負荷LAが次式によって推定演算される。
LA=f(INT,Tout,SP,Tr,BLV,Heva)
【0045】
LAと所定値dとの関係により、コンプレッサ駆動制御手段により、第1圧縮機と第2圧縮機の同時運転、あるいは、第1または第2圧縮機の運転に制御する。LA≧dの時、同時運転とし、LA<dの時、第1または第2圧縮機の運転とする。これによって、負荷の大きい時には同時運転として空調能力不足を回避し、負荷の小さい時には第1または第2圧縮機の運転として、他の機器や他の運転状態に影響を及ぼすことなく、小さな消費動力で所望の空調能力を発生させることができるようになる。
【0048】
【発明の効果】
以上説明したように、本発明に係る車両用空調装置によれば、従来技術では空調負荷が大きいときに不足していたと考えられる空調能力を、ハイブリッド圧縮機の駆動方式を適切に切り替えることにより、そのときの条件に応じて不足しないように十分に大きな能力を発揮させることができ、さらに、その他の各種車両の熱負荷に関する条件に応じて、原動機、電動モータのいずれかの単独運転と、両駆動源による同時運転とに最適に切り替えることができるようになり、いかなる条件時にも、最適な空調制御を行うことが可能となる。その結果、快適な空調と、省動力との両方を達成することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係る車両用空調装置のシステム構成図である。
【図2】本発明の第2実施態様に係る車両用空調装置のシステム構成図である。
【図3】本発明の第3実施態様に係る車両用空調装置のシステム構成図である。
【図4】本発明の第4実施態様に係る車両用空調装置のシステム構成図である。
【図5】第1実施態様の制御例を示すブロック図である。
【図6】第2実施態様の制御例を示すブロック図である。
【図7】第3実施態様の制御例を示すブロック図である。
【図8】第3実施態様の別の制御例を示すブロック図である。
【図9】第4実施態様の制御例を示すブロック図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air conditioner including a hybrid compressor that can obtain a driving force by a motor (engine) of a vehicle and an electric motor different from the motor.
[0002]
[Prior art]
Usually, a compressor (compressor) in a vehicle air conditioner is belt-driven by a vehicle engine, thereby compressing a refrigerant to perform air conditioning. Alternatively, the compressor may be driven by a dedicated electric motor to perform air conditioning. In contrast to the case where such a single drive source is provided, there is also known a hybrid compressor in which a compressor can be driven by both a vehicle engine and an electric motor. In this case, the engine is usually operated when the engine is operating. A method of driving the compressor with an electric motor when the engine is stopped is considered.
[0003]
In the conventional technology as described above, the driving method of the compressor is switched to either belt driving or electric motor driving depending on whether the engine is operating or not. When the compressor is driven by the engine, the rotational speed of the compressor depends on the rotational speed of the engine, and when the air conditioning load is large, a situation where the air conditioning capacity is insufficient may be considered. Further, when the compressor is driven by an electric motor, the rotation speed of the compressor is limited when the capacity of the power source of the vehicle is insufficient, and the air conditioning capacity may be insufficient when the air conditioning load is large. . Both problems arise because the driving method of the compressor is determined only by the selection of either driving source.
[0004]
Although such a conventional hybrid compressor is still in an unpublished application stage, the present applicant previously made a first compressor (first compression chamber) driven only by a vehicle engine and an electric motor. A hybrid compressor is proposed in which a second compressor (second compression chamber) that is driven only by this is integrally assembled, and the first compressor and the second compressor can be driven selectively or simultaneously ( Japanese Patent Application 2001-280630).
[0005]
[Problems to be solved by the invention]
An object of the present invention is to focus on the problems in the conventional hybrid compressor drive control method as described above, and in particular, selectively or simultaneously the first compressor and the second compressor previously proposed by the applicant. On the premise of using a specific hybrid compressor that can be driven, the performance of the vehicle air conditioner is improved by appropriately controlling the driving of the compressor.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, a vehicle air conditioner according to the present invention is driven only by a prime mover of the vehicle, a first compressor section having a first compression chamber is driven only by an electric motor, the second compression chamber a second compressor unit having the integrally assembled to the single compressor of a hybrid compressor of which the first compressor section and the second compressor unit is drivable configured selectively or simultaneously In the vehicle air conditioner provided, when the compressor is driven only by the prime mover, the power consumption or the refrigeration capacity when the compressor is driven only by the electric motor is estimated, and the first compression is performed according to the power consumption or the refrigeration capacity. It has means for driving the machine part drive or the second compressor part drive, and simultaneously driving both the first compressor part and the second compressor part (vehicle air conditioner according to the first aspect). .
[0007]
In such a vehicle air conditioner, power consumption or refrigeration capacity when each drive source is used for the compressor is estimated, and a drive mode is selected according to the power consumption or refrigeration capacity (single drive, (Simultaneous driving), it is possible to achieve an optimum driving mode according to the state at that time.
[0008]
The vehicle air conditioner according to the present invention is driven by only the prime mover of the vehicle and has a first compressor section having a first compression chamber, and a second compressor having a second compression chamber driven only by an electric motor. parts and is assembled integrally with a single compressor of the air conditioner for a vehicle having a hybrid-type compressor of the first compressor section and the second compressor unit is drivable configured selectively or simultaneously In the above, when the compressor is driven only by the prime mover, the power consumption estimation means for estimating the power consumption when the compressor is driven only by the electric motor is provided, and means for selecting the drive means that provides the minimum power consumption is provided. (Vehicle air conditioner according to the second aspect).
[0009]
In such a vehicle air conditioner, the power consumption of the compressor when each drive source is used is estimated, and the drive means that minimizes the power consumption is selected, so the power used for the air conditioner is minimal. As a result, the power saving of the entire vehicle is appropriately achieved.
[0010]
And more specifically, while making the power saving of the entire vehicle the basic purpose of using a hybrid compressor capable of selectively or simultaneously driving the first compressor and the second compressor, It is possible to perform control for selecting an optimum driving method according to the thermal load of the vehicle at that time.
[0011]
That is, the vehicle air-conditioning apparatus according to the present invention is driven only by the prime mover of the vehicle, the first compressor unit having the first compression chamber, and the second compressor having only the electric motor and having the second compression chamber. And a hybrid compressor in which the first compressor unit and the second compressor unit can be selectively or simultaneously driven, and the compressor is incorporated. And a compressor drive control means for selecting the driving of the compressor, the driving of only the motor, the driving of only the electric motor, the simultaneous driving of the motor and the electric motor, and the stop, and the thermal load of the vehicle When the vehicle thermal load estimated by the thermal load estimating means is greater than or equal to a predetermined value , both the first compressor section and the second compressor section are provided. Luck at the same time It consists those characterized by that (for a vehicle according to the third aspect air conditioner).
[0012]
The vehicle air conditioner according to the present invention is driven by only the prime mover of the vehicle and has a first compressor section having a first compression chamber, and a second compressor having a second compression chamber driven only by an electric motor. And a hybrid compressor in which the first compressor unit and the second compressor unit can be selectively or simultaneously driven, and the compressor is incorporated. And a compressor drive control means for selecting the driving of the compressor, the driving of only the motor, the driving of only the electric motor, the simultaneous driving of the motor and the electric motor, and the stop, and the thermal load of the vehicle In the vehicle air conditioner including the thermal load estimating means for estimating the first load, when the vehicle thermal load estimated by the thermal load estimating means is greater than or equal to a predetermined value, the first compressor unit is operated only from the first compressor unit. Part and second pressure The simultaneous operation of the machine part, is smaller than a predetermined value, consisting of those and switches from of identity during operation to the operation of only the first compressor unit (a vehicle air conditioner according to the fourth aspect).
[0013]
The vehicle air conditioner according to the present invention is driven by only the prime mover of the vehicle and has a first compressor section having a first compression chamber, and a second compressor having a second compression chamber driven only by an electric motor. And a hybrid compressor in which the first compressor unit and the second compressor unit can be selectively or simultaneously driven, and the compressor is incorporated. And a compressor drive control means for selecting the driving of the compressor, the driving of only the motor, the driving of only the electric motor, the simultaneous driving of the motor and the electric motor, and the stop, and the thermal load of the vehicle In the vehicle air conditioner including the thermal load estimating means for estimating the heat load, when the vehicle thermal load estimated by the thermal load estimating means is greater than or equal to a predetermined value, the first compressor starts operation only from the second compressor section. Part and second pressure The simultaneous operation of the machine part, is smaller than a predetermined value, consisting of those and switches from of identity during operation to the operation of only the second compressor unit (air conditioning system for vehicles according to the fifth aspect).
[0014]
Furthermore, the vehicle air-conditioning apparatus according to the present invention is driven only by the motor of the vehicle , the first compressor section having the first compression chamber, and the second compressor having the second compression chamber driven only by the electric motor. parts and is assembled integrally with a single compressor in a hybrid compressor in which the first compressor section and the second compressor unit is drivable configured selectively or simultaneously, the compressor is incorporated And a compressor drive control means for selecting the driving of the compressor, the driving of only the motor, the driving of only the electric motor, the simultaneous driving of the motor and the electric motor, and the stop, and the thermal load of the vehicle In the vehicle air conditioner including the thermal load estimating means for estimating the thermal load estimating means, the operation of only the first compressor section is changed from the operation of only the first compressor section according to the thermal load of the vehicle estimated by the thermal load estimation means. For driving There is, consist of, characterized in that switching from the operation of only the second compressor unit for the operation of only the first compressor unit (a vehicle air conditioner according to the sixth aspect).
[0015]
These third to sixth aspects may be combined.
[0016]
In the vehicle air conditioner according to the third to sixth aspects, the condenser inlet air temperature detection means for detecting the temperature of the air passing through the condenser which is the outdoor heat exchanger or a physical quantity correlated therewith, the outdoor heat Condenser inlet air wind speed detection means for detecting the wind speed of air passing through the condenser as a exchanger or a physical quantity correlated therewith, the temperature of air passing through the evaporator as an indoor heat exchanger or a physical quantity correlated therewith. An evaporator inlet air temperature detecting means for detecting, an evaporator inlet air humidity detecting means for detecting the humidity of air passing through the evaporator as an indoor heat exchanger or a physical quantity correlated therewith, and an evaporator as an indoor heat exchanger. It has at least one of the evaporator inlet air wind speed detecting means for detecting the wind speed of the passing air or a physical quantity correlated therewith, and based on the detection signal from them, the vehicle It is possible to estimate the load.
[0017]
Also, an outside air temperature detecting means for detecting an outside air temperature or a physical quantity correlated therewith, a vehicle interior air temperature detecting means for detecting a vehicle interior air temperature or a physical quantity correlated therewith, an inside / outside recognizing whether the outside air is introduced or the inside air circulation state Air condition recognition means, vehicle speed detection means for detecting the running speed of a vehicle or a physical quantity correlated therewith, air blower air quantity recognition means for detecting a blower air quantity or a physical quantity correlated therewith, air passing through an evaporator which is an indoor heat exchanger It is also possible to estimate the thermal load of the vehicle based on the detection signal from the at least one of the evaporator inlet air humidity detecting means for detecting the humidity or the physical quantity correlated therewith.
[0018]
Further, vehicle speed detecting means for detecting the vehicle running speed or a physical quantity correlated therewith, solar radiation amount detecting means for detecting the solar radiation quantity or physical quantity correlated therewith, outside air temperature detecting means for detecting outside air temperature or a physical quantity correlated therewith It is also possible to estimate the thermal load of the vehicle based on the detection signal from the at least one of the above.
[0019]
Further, the vehicle air conditioner according to the present invention has a refrigerant high pressure detection means for detecting a refrigerant high pressure in the refrigeration cycle or a physical quantity correlated therewith, and estimates a heat load of the refrigeration cycle based on the detection signal. can do.
[0020]
Furthermore, the vehicle interior air temperature detection means for detecting the vehicle interior air temperature or a physical quantity correlated therewith and the vehicle interior air temperature target value are estimated, and the difference between the vehicle interior air temperature target value and the vehicle interior air temperature detected value is calculated. The vehicle interior air temperature target value-detected value difference calculating means is provided, and the thermal load of the vehicle can be estimated based on the calculated value by the calculating means.
[0021]
In the vehicle air conditioner according to the present invention as described above, by simultaneously operating the two compressor sections (two compression chambers), a cooling capacity larger than that of the alternate operation is generated, and a lack of air conditioning capacity is avoided. be able to. Also, depending on the thermal load at that time, switching from one of the drive sources to simultaneous operation, or selectively switching from simultaneous operation to one of the drive sources, insufficient capacity, insufficient power Depending on the conditions at the time of excessive capacity, excessive power, excessive power, etc., and even when changing conditions such as switching between high and low speeds of the vehicle, acceleration, switching between inside and outside air, etc. An optimum operation method can be arbitrarily selected, and a more optimal air conditioning control state can be achieved.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 is a system configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention, FIG. 5 is a block diagram showing an example of the control, and FIG. 2 is a system of a vehicle air conditioner according to a second embodiment of the present invention. FIG. 6 is a block diagram illustrating an example of the control, FIG. 3 is a system configuration diagram of the vehicle air conditioner according to the third embodiment of the present invention, and FIGS. 7 and 8 are block diagrams illustrating the example of control. Is a system configuration diagram of a vehicle air conditioner according to a fourth embodiment of the present invention, and FIG. 9 is a block diagram showing a control example thereof.
[0023]
In the air conditioner as shown in FIG. 1, according to the control block diagram as shown in FIG. 5, each input variable is input to the main controller, and the consumption power or the refrigerating capacity LB is estimated and calculated. Drive control is performed.
[0024]
FIG. 1 is a configuration diagram of an air conditioning system according to a first embodiment of the present invention. The refrigeration cycle 1 is provided with a hybrid compressor 4 in which a first compressor portion driven only by a motor of a vehicle and a second compressor portion driven only by an electric motor are assembled together. Yes. In the refrigeration cycle 1, high-temperature and high-pressure refrigerant compressed by a hybrid compressor 4 having two drive sources of an electromagnetic clutch 3 that transmits a driving force of an engine 2 as a motor of a vehicle and an electric motor 5 is converted into outdoor heat. The condenser 6 as an exchanger is cooled by exchanging heat with the outside air, condensed and liquefied. Gas liquid is separated by the liquid receiver 7, and the liquid refrigerant is decompressed by the expansion valve 8. The decompressed low-pressure refrigerant flows into the evaporator 9 as an indoor heat exchanger and exchanges heat with the air blown by the blower 12. The refrigerant evaporated and vaporized in the evaporator 9 is again sucked into the hybrid compressor 4 and compressed.
[0025]
The ventilation duct 13 through which air for air conditioning the vehicle passes is provided with a blower 12, an evaporator 9, an air mix damper 10, and a heater core 11. The air that has passed through the evaporator 9 passes through the heater core 11 at a ratio determined by the opening degree of the air mix damper 10 and is heated. On the downstream side of the ventilation duct 13, blowout ports 41, 42, 43 such as DEF, VENT, and FOOT are provided. A predetermined blowout port is selected by each damper (not shown), and conditioned air is supplied. It is sent out to the passenger compartment.
[0026]
As various sensors for air conditioning control, an evaporator outlet air temperature sensor 14 for detecting the air temperature after passing through the evaporator 9 is provided, and the detected signal is input to an air conditioning control device 15 that performs air conditioning control. . Further, the air-conditioning control device 15 includes an evaporator outlet air temperature Toff, an outside air temperature Tout, a vehicle interior temperature Tr, a position signal INT of the inside / outside air switching damper 19, a motor speed Ne, a blower voltage BLV, an evaporator inlet air temperature Teva. The signal group 16 is input. Further, an electric motor rotation speed control signal 17 and a clutch control signal 18 are output as output signals.
[0027]
When the hybrid compressor 4 (second compressor section [second compression chamber]) is driven by the electric motor 5, the clutch 3 is turned off by the clutch control signal 18, and the electric motor rotation speed control signal 17 is set to the duty. The rotational speed of the electric motor 5 is controlled by giving it as a signal. Conversely, when the compressor 2 (first compressor section [first compression chamber]) is driven by the engine 2, the output of the electric motor rotation speed control signal 17 is stopped and the clutch 3 is turned on.
[0028]
When the hybrid compressor 4 is driven by the engine 2 and the electric motor 5 at the same time, the clutch 3 is turned on by the clutch control signal 18 and the electric motor rotational speed control signal 17 is given as a duty signal to thereby provide the electric motor 5. Control the number of revolutions.
[0029]
The air temperature after passing through the evaporator 9 is controlled by the motor rotation speed when the compressor is driven by the electric motor 5, and by the clutch on / off control when the compressor is driven by the engine 2.
[0030]
As shown in FIG. 5, the control includes the evaporator outlet air temperature Toff, the outside air temperature Tout, the passenger compartment temperature Tr, the position signal INT of the inside / outside air switching damper 19, the prime mover rotational speed Ne, the blower voltage BLV, the evaporator inlet air. Based on the signal group of the humidity H eva, the power consumption or the refrigerating capacity LB is estimated by the following equation.
LB = f (INT, Tout, Ne, Tr, BLV, Heva, Toff)
[0031]
Based on this LB, the compressor drive control means controls the simultaneous operation of the first compressor and the second compressor, or the operation of the first or second compressor, and the optimum operation according to the state at that time. It is a driving form.
[0032]
FIG. 2 is an air conditioning system configuration diagram according to the second embodiment of the present invention. In the air conditioner as shown in FIG. 2, according to the control block diagram as shown in FIG. 6, each input variable is input to the main controller, and the heat load value of the vehicle is calculated, thereby controlling the drive of the compressor (compressor). Do.
[0033]
As various sensors for air conditioning control, an evaporator outlet air temperature sensor 14 for detecting the air temperature after passing through the evaporator 9 is provided, and the detected signal is input to an air conditioning control device 15 that performs air conditioning control. . Further, a signal group 16 such as a condenser inlet air temperature Tcon, a condenser inlet air wind speed Vcon, an evaporator inlet air temperature Teva, an evaporator inlet air humidity Heva, and an evaporator inlet air wind speed Veva is input to the air conditioning controller 15. Is done. Further, an electric motor rotation speed control signal 17 and a clutch control signal 18 are output as output signals.
[0034]
As shown in FIG. 6, the control is based on a signal group such as a condenser inlet air temperature Tcon, a condenser inlet air wind speed Vcon, an evaporator inlet air temperature Teva, an evaporator inlet air humidity Heva, an evaporator inlet air wind speed Veva, and the like. The air conditioning load LA in the vehicle is estimated and calculated by the following equation.
LA = f (Tcon, Vcon, Teva, Heva, Veva)
[0035]
Depending on the relationship between LA and the predetermined value d, the compressor drive control means controls the simultaneous operation of the first compressor and the second compressor, or the operation of the first or second compressor. When LA ≧ d, simultaneous operation is performed, and when LA <d, operation of the first or second compressor is performed. This avoids shortage of air-conditioning capacity as simultaneous operation when the load is large, and reduces the power consumption of the first or second compressor when the load is small without affecting other devices or other operating conditions. The desired air conditioning capability can be generated.
[0036]
FIG. 3 is an air conditioning system configuration diagram according to the third embodiment of the present invention. In the air conditioner as shown in FIG. 3, the compressor drive control is performed by inputting each input variable to the main controller and calculating the thermal load value of the vehicle according to the control block diagrams as shown in FIGS.
[0037]
3 is different from FIG. 2 only in that an input signal to the air conditioning control device 15 is different. As various sensors for air conditioning control, an evaporator outlet air temperature sensor 14 for detecting the air temperature Te after passing through the evaporator 9 is provided, and the detected signal is input to an air conditioning control device 15 that performs air conditioning control. The Further, the air conditioning controller 15 receives signals 16 such as the outside air temperature Tout, the solar radiation amount Rsun, the vehicle interior air temperature Tr, the vehicle speed SP, and the refrigerant high pressure Pd. The control method of the output signal and the hybrid compressor 4 is the same as in the first and second embodiments.
[0038]
As shown in FIG. 7, for example, the air conditioning load LA in the vehicle is estimated and calculated based on the following equation based on signals of the outside air temperature Tout, the vehicle speed SP, and the solar radiation amount Rsun.
LA = f (Tout, SP, Rsun)
[0039]
Depending on the relationship between LA and the predetermined value d, the compressor drive control means controls the simultaneous operation of the first compressor and the second compressor, or the operation of the first or second compressor. When LA ≧ d, simultaneous operation is performed, and when LA <d, operation of the first or second compressor is performed. This avoids shortage of air-conditioning capacity as simultaneous operation when the load is large, and reduces the power consumption of the first or second compressor when the load is small without affecting other devices or other operating conditions. The desired air conditioning capability can be generated.
[0040]
Further, as shown in FIG. 8, the air conditioning load LA in the vehicle is estimated and calculated by the following equation based on the signal of the refrigerant high pressure Pd.
LA = f (Pd)
[0041]
Depending on the relationship between LA and the predetermined value d, the compressor drive control means controls the simultaneous operation of the first compressor and the second compressor, or the operation of the first or second compressor. When LA ≧ d, simultaneous operation is performed, and when LA <d, operation of the first or second compressor is performed. This avoids shortage of air-conditioning capacity as simultaneous operation when the load is large, and reduces the power consumption of the first or second compressor when the load is small without affecting other devices or other operating conditions. The desired air conditioning capability can be generated.
[0042]
FIG. 4 is an air conditioning system configuration diagram according to the fourth embodiment of the present invention. In the air conditioner as shown in FIG. 4, compressor drive control is performed by inputting each input variable to the main controller and calculating the thermal load value of the vehicle according to the control block diagram as shown in FIG.
[0043]
In FIG. 4, the difference from FIG. 2 is that the input signal to the air conditioning control device 15 is different and that the inside / outside air switching damper 19 is added. As various sensors for air conditioning control, an evaporator outlet air temperature sensor 14 for detecting the air temperature Te after passing through the evaporator 9 is provided, and the detected signal is input to an air conditioning control device 15 that performs air conditioning control. The Further, the air conditioning controller 15 is supplied with a signal group 16 such as the outside air temperature Tout, the vehicle interior air temperature Tr, the inside / outside air switching damper position INT, the vehicle speed SP, the blower voltage BLV, and the evaporator inlet air humidity Heva. The control method of the output signal and the hybrid compressor 4 is the same as in the first and second embodiments.
[0044]
As shown in FIG. 9, the control is based on a signal group such as an inside / outside air switching damper position INT, an outside air temperature Tout, a vehicle speed SP, a vehicle interior air temperature Tr, a blower voltage BLV, an evaporator inlet air humidity Heva, and the like. The load LA is estimated and calculated by the following equation.
LA = f (INT, Tout, SP, Tr, BLV, Heva)
[0045]
Depending on the relationship between LA and the predetermined value d, the compressor drive control means controls the simultaneous operation of the first compressor and the second compressor, or the operation of the first or second compressor. When LA ≧ d, simultaneous operation is performed, and when LA <d, operation of the first or second compressor is performed. This avoids shortage of air-conditioning capacity as simultaneous operation when the load is large, and reduces the power consumption of the first or second compressor when the load is small without affecting other devices or other operating conditions. The desired air conditioning capability can be generated.
[0048]
【The invention's effect】
As described above, according to the vehicle air conditioner according to the present invention, by appropriately switching the driving method of the hybrid compressor, the air conditioning capacity considered to be insufficient when the air conditioning load is large in the conventional technology, Depending on the conditions at that time, it is possible to exert a sufficiently large capacity so that it does not run short. Furthermore, depending on the conditions related to the heat load of other various vehicles, both the single operation of the motor and the electric motor and both It becomes possible to optimally switch to simultaneous operation by the drive source, and optimal air conditioning control can be performed under any conditions. As a result, it is possible to achieve both comfortable air conditioning and power saving.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention.
FIG. 2 is a system configuration diagram of a vehicle air conditioner according to a second embodiment of the present invention.
FIG. 3 is a system configuration diagram of a vehicle air conditioner according to a third embodiment of the present invention.
FIG. 4 is a system configuration diagram of a vehicle air conditioner according to a fourth embodiment of the present invention.
FIG. 5 is a block diagram showing a control example of the first embodiment.
FIG. 6 is a block diagram showing a control example of the second embodiment.
FIG. 7 is a block diagram showing a control example of the third embodiment.
FIG. 8 is a block diagram showing another control example of the third embodiment.
FIG. 9 is a block diagram showing a control example of the fourth embodiment.

Claims (11)

車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機を備えた車両用空調装置において、前記圧縮機を原動機のみにより駆動する場合、電動モータのみにより駆動する場合の消費動力または冷凍能力を推定し、該消費動力または冷凍能力に応じて、前記第1圧縮機部駆動または第2圧縮機部駆動、第1圧縮機部と第2圧縮機部の両方を同時に駆動する手段を有することを特徴とする車両用空調装置。  A first compressor unit that is driven only by a motor of the vehicle and has a first compression chamber, and a second compressor unit that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. In the vehicle air conditioner provided with a hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, the compressor is driven only by the prime mover , Estimating power consumption or refrigeration capacity when driven by only an electric motor, and depending on the power consumption or refrigeration capacity, the first compressor section drive or the second compressor section drive, the first compressor section and the first compressor section A vehicle air conditioner having means for simultaneously driving both of the two compressor sections. 車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機を備えた車両用空調装置において、前記圧縮機を原動機のみにより駆動する場合、電動モータのみにより駆動する場合の消費動力を推定することのできる消費動力推定手段を有し、最小の消費動力となる駆動手段を選択する手段を有することを特徴とする車両用空調装置。  A first compressor unit that is driven only by a motor of the vehicle and has a first compression chamber, and a second compressor unit that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. In the vehicle air conditioner provided with a hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, the compressor is driven only by the prime mover A vehicle air conditioner comprising: consumption power estimation means capable of estimating consumption power in the case of driving only by an electric motor, and means for selecting a drive means having minimum consumption power. 車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第1圧縮機部と第2圧縮機部の両方を同時に運転することを特徴とする車両用空調装置。A first compressor section that is driven only by the motor of the vehicle and has a first compression chamber, and a second compressor section that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. A hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, a refrigeration cycle in which the compressor is incorporated, and driving of the compressor , A vehicle having compressor driving control means selected from driving of only the prime mover, driving of only the electric motor, simultaneous driving by the prime mover and the electric motor, and stopping, and thermal load estimating means for estimating the thermal load of the vehicle In the air conditioning system for a vehicle, when the thermal load of the vehicle estimated by the thermal load estimating means is equal to or greater than a predetermined value , both the first compressor unit and the second compressor unit are operated simultaneously. apparatus. 車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第1圧縮機部のみの運転から第1圧縮機部と第2圧縮機部の同時運転に、所定値より小さい場合、該同時運転から第1圧縮機部のみの運転に切り替えることを特徴とする車両用空調装置。A first compressor unit that is driven only by a motor of the vehicle and has a first compression chamber, and a second compressor unit that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. A hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, a refrigeration cycle in which the compressor is incorporated, and driving of the compressor , A vehicle having compressor driving control means selected from driving of only the prime mover, driving of only the electric motor, simultaneous driving by the prime mover and the electric motor, and stopping, and thermal load estimating means for estimating the thermal load of the vehicle In the air conditioner for a vehicle, when the thermal load of the vehicle estimated by the thermal load estimating means is a predetermined value or more, the operation of only the first compressor unit to the simultaneous operation of the first compressor unit and the second compressor unit, Less than the specified value If, air conditioning system and switches from of identity during operation to the operation of only the first compressor unit. 車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷が所定値以上の場合、前記第2圧縮機部のみの運転から第1圧縮機部と第2圧縮機部の同時運転に、所定値より小さい場合、該同時運転から第2圧縮機部のみの運転に切り替えることを特徴とする車両用空調装置。A first compressor unit that is driven only by a motor of the vehicle and has a first compression chamber, and a second compressor unit that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. A hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, a refrigeration cycle in which the compressor is incorporated, and driving of the compressor , A vehicle having compressor driving control means selected from driving of only the prime mover, driving of only the electric motor, simultaneous driving by the prime mover and the electric motor, and stopping, and thermal load estimating means for estimating the thermal load of the vehicle In the air conditioner for a vehicle, when the thermal load of the vehicle estimated by the thermal load estimating means is equal to or greater than a predetermined value , the operation of only the second compressor unit is changed to the simultaneous operation of the first compressor unit and the second compressor unit. Less than the specified value If, air conditioning system and switches from of identity during operation to the operation of only the second compressor unit. 車両の原動機のみにより駆動され、第1圧縮室を有する第1圧縮機部と、電動モータのみにより駆動され、第2圧縮室を有する第2圧縮機部とが一台の圧縮機内に一体に組み付けられ、第1圧縮機部と第2圧縮機部とが選択的にまたは同時に駆動可能に構成されたハイブリッド型の圧縮機と、該圧縮機が組み込まれた冷凍サイクルと、前記圧縮機の駆動について、原動機のみの駆動、電動モータのみの駆動、原動機と電動モータによる同時駆動、停止のいずれかから選択する圧縮機駆動制御手段と、車両の熱負荷を推定する熱負荷推定手段とを備えた車両用空調装置において、熱負荷推定手段により推定される車両の熱負荷に応じて、前記第1圧縮機部のみの運転から第2圧縮機部のみの運転に、あるいは、第2圧縮機部のみの運転から第1圧縮機部のみの運転に切り替えることを特徴とする車両用空調装置。  A first compressor unit that is driven only by a motor of the vehicle and has a first compression chamber, and a second compressor unit that is driven only by an electric motor and has a second compression chamber are integrally assembled in one compressor. A hybrid compressor configured such that the first compressor unit and the second compressor unit can be selectively or simultaneously driven, a refrigeration cycle in which the compressor is incorporated, and driving of the compressor , A vehicle having compressor driving control means selected from driving of only the prime mover, driving of only the electric motor, simultaneous driving by the prime mover and the electric motor, and stopping, and thermal load estimating means for estimating the thermal load of the vehicle In the air conditioner for a vehicle, depending on the thermal load of the vehicle estimated by the thermal load estimating means, the operation of only the first compressor unit is changed to the operation of only the second compressor unit, or only the second compressor unit is operated. First from driving Air conditioning system and switches the operation of the compressor unit only. 室外熱交換器である凝縮器を通過する空気の温度またはそれに相関のある物理量を検知する凝縮器入口空気温度検知手段、室外熱交換器である凝縮器を通過する空気の風速またはそれに相関のある物理量を検知する凝縮器入口空気風速検知手段、室内熱交換器である蒸発器を通過する空気の温度またはそれに相関のある物理量を検知する蒸発器入口空気温度検知手段、室内熱交換器である蒸発器を通過する空気の湿度またはそれに相関のある物理量を検知する蒸発器入口空気湿度検知手段、室内熱交換器である蒸発器を通過する空気の風速またはそれに相関のある物理量を検知する蒸発器入口空気風速検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定する、請求項3ないし6のいずれかに記載の車両用空調装置。  Condenser inlet air temperature detection means for detecting the temperature of the air passing through the condenser which is an outdoor heat exchanger or a physical quantity correlated therewith, the wind speed of the air passing through the condenser which is an outdoor heat exchanger or a correlation thereof Condenser inlet air wind speed detection means for detecting physical quantity, evaporator inlet air temperature detection means for detecting temperature of air passing through an evaporator as an indoor heat exchanger or a physical quantity correlated therewith, evaporation as an indoor heat exchanger Evaporator inlet air humidity detecting means for detecting the humidity of air passing through the evaporator or a physical quantity correlated therewith, Evaporator inlet detecting the wind speed of air passing through the evaporator which is an indoor heat exchanger or a physical quantity correlated therewith 7. The vehicle according to any one of claims 3 to 6, comprising at least one of air wind speed detection means and estimating a heat load of the vehicle based on a detection signal from them. Adjusting unit. 外気温度またはそれに相関のある物理量を検知する外気温度検知手段、車室内空気温度またはそれに相関のある物理量を検知する車室内空気温度検知手段、外気導入状態か内気循環状態かを認識する内外気状態認識手段、車両の走行速度またはそれに相関のある物理量を検知する車速検知手段、送風機風量またはそれに相関のある物理量を検知する送風機風量認識手段、室内熱交換器である蒸発器を通過する空気の湿度またはそれに相関のある物理量を検知する蒸発器入口空気湿度検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定する、請求項3ないし6のいずれかに記載の車両用空調装置。  Outside air temperature detecting means for detecting the outside air temperature or a physical quantity correlated therewith, inside air temperature detecting means for detecting the air temperature inside the vehicle interior or a physical quantity correlated therewith, an inside / outside air state for recognizing whether the outside air is introduced or the inside air is circulated Recognizing means, vehicle speed detecting means for detecting the running speed of the vehicle or a physical quantity correlated therewith, blower air volume recognizing means for detecting the blower air quantity or a physical quantity correlated therewith, humidity of air passing through the evaporator which is an indoor heat exchanger 7. The apparatus according to claim 3, further comprising at least one of evaporator inlet air humidity detecting means for detecting a physical quantity correlated therewith, and estimating a thermal load of the vehicle based on a detection signal therefrom. Vehicle air conditioner. 車両の走行速度またはそれに相関のある物理量を検知する車速検知手段、日射量またはそれに相関のある物理量を検知する日射量検知手段、外気温度またはそれに相関のある物理量を検知する外気温度検知手段の少なくとも一つを有し、それらからの検知信号に基づいて車両の熱負荷を推定する、請求項3ないし6のいずれかに記載の車両用空調装置。  At least a vehicle speed detecting means for detecting a traveling speed of a vehicle or a physical quantity correlated therewith, a solar radiation amount detecting means for detecting a solar radiation quantity or a physical quantity correlated therewith, an outside air temperature detecting means for detecting an outside air temperature or a physical quantity correlated therewith. The vehicle air conditioner according to any one of claims 3 to 6, wherein the vehicle air conditioner has one and estimates a thermal load of the vehicle based on a detection signal from them. 冷凍サイクルにおける冷媒高圧圧力またはそれに相関のある物理量を検知する冷媒高圧圧力検知手段を有し、その検知信号に基づいて冷凍サイクルの熱負荷を推定する、請求項3ないし9のいずれかに記載の車両用空調装置。  The refrigerant high pressure detection means for detecting a refrigerant high pressure in the refrigeration cycle or a physical quantity correlated therewith, and estimating a heat load of the refrigeration cycle based on the detection signal. Vehicle air conditioner. 車室内空気温度またはそれに相関のある物理量を検知する車室内空気温度検知手段および車室内空気温度目標値を推定し、車室内空気温度目標値と車室内空気温度検出値との差を演算する車室内空気温度目標値−検出値差演算手段を有し、該演算手段による演算値に基づいて車両の熱負荷を推定する、請求項3ないし10のいずれかに記載の車両用空調装置。  Vehicle interior air temperature detection means for detecting vehicle interior air temperature or a physical quantity correlated therewith and vehicle interior air temperature target value are estimated, and a vehicle for calculating a difference between the vehicle interior air temperature target value and the vehicle interior air temperature detected value The vehicle air conditioner according to any one of claims 3 to 10, further comprising an indoor air temperature target value-detected value difference calculating means, wherein the thermal load of the vehicle is estimated based on a value calculated by the calculating means.
JP2002014032A 2002-01-23 2002-01-23 Air conditioner for vehicles Expired - Lifetime JP3936199B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002014032A JP3936199B2 (en) 2002-01-23 2002-01-23 Air conditioner for vehicles
US10/347,630 US6761037B2 (en) 2002-01-23 2003-01-22 Vehicle air conditioner using a hybrid compressor
CNB031075681A CN1286674C (en) 2002-01-23 2003-01-23 Motor-vehicle airconditioner using mixed compressor
DE60304291T DE60304291T2 (en) 2002-01-23 2003-01-23 Vehicle air conditioning system with a hybrid compressor
EP03250432A EP1331115B1 (en) 2002-01-23 2003-01-23 Vehicle air conditioner using a hybrid compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014032A JP3936199B2 (en) 2002-01-23 2002-01-23 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2003211953A JP2003211953A (en) 2003-07-30
JP3936199B2 true JP3936199B2 (en) 2007-06-27

Family

ID=27650832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014032A Expired - Lifetime JP3936199B2 (en) 2002-01-23 2002-01-23 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP3936199B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460913B2 (en) * 2004-02-16 2010-05-12 サンデン株式会社 Air conditioner
JP4436152B2 (en) * 2004-02-16 2010-03-24 サンデン株式会社 Air conditioner
JP4436151B2 (en) * 2004-02-16 2010-03-24 サンデン株式会社 Air conditioner for vehicles
FR2954462B1 (en) * 2009-12-17 2012-02-24 Valeo Systemes Thermiques OPTIMIZATION OF A GLOBAL HEATING CAPACITY OF AN AIR CONDITIONING SYSTEM
KR102371082B1 (en) * 2017-04-10 2022-03-07 현대자동차주식회사 Heat pump system for vehicle and control method thereof

Also Published As

Publication number Publication date
JP2003211953A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP4526755B2 (en) Air conditioner for vehicles
JP4376651B2 (en) Air conditioner for vehicles
US6761037B2 (en) Vehicle air conditioner using a hybrid compressor
US6675595B2 (en) Refrigerant cycle system including two evaporators
JP4417064B2 (en) Air conditioner for vehicles
JP4006782B2 (en) Air conditioner having a cooler for heat generating equipment
JP2003326962A (en) Vehicle air conditioner
CN103813915A (en) Vehicle air-conditioning device
JP3955504B2 (en) Method for starting hybrid compressor for vehicle air conditioner
JP2004066847A (en) Air conditioner for vehicle
EP1717527B1 (en) Air conditioner
JP3936199B2 (en) Air conditioner for vehicles
JP2002370529A (en) Air-conditioner for vehicle
JP2008261603A (en) Refrigerating cycle device and air conditioner for vehicle
JP4156955B2 (en) Driving method of hybrid compressor for vehicle air conditioner
WO2005077689A1 (en) Air conditioner
JP3951807B2 (en) Air conditioner for vehicles
JP3936200B2 (en) Air conditioner for vehicles
JP5195378B2 (en) Air conditioning control device for vehicles
JP2003291633A (en) Air conditioner for vehicle
JP4285228B2 (en) Air conditioner for vehicles
JP3947671B2 (en) Air conditioner for vehicles
JP4258217B2 (en) Refrigeration cycle equipment
JP3947672B2 (en) Air conditioner for vehicles
JP2003146061A (en) Air-conditioning system for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Ref document number: 3936199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term