JP3936180B2 - Polymer gel lubrication method - Google Patents

Polymer gel lubrication method Download PDF

Info

Publication number
JP3936180B2
JP3936180B2 JP2001373894A JP2001373894A JP3936180B2 JP 3936180 B2 JP3936180 B2 JP 3936180B2 JP 2001373894 A JP2001373894 A JP 2001373894A JP 2001373894 A JP2001373894 A JP 2001373894A JP 3936180 B2 JP3936180 B2 JP 3936180B2
Authority
JP
Japan
Prior art keywords
gel
friction
polymer gel
test
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001373894A
Other languages
Japanese (ja)
Other versions
JP2003171686A (en
Inventor
誠之 森
新一 細川
英孝 七尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001373894A priority Critical patent/JP3936180B2/en
Publication of JP2003171686A publication Critical patent/JP2003171686A/en
Application granted granted Critical
Publication of JP3936180B2 publication Critical patent/JP3936180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Lubricants (AREA)
  • Materials For Medical Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水中の相対摺動部材間に潤滑材である高分子ゲルを配設して用いる潤滑方法に係り、好適には、生体内で使用する人工関節の摺動部等における水潤滑技術に適用される。
【0002】
【従来の技術】
ハイドロゲル等の水含有系のゲルは生体への毒性が低いことから、以前より人工関節材料として広く研究されている。人工関節のような高荷重におけるゲルの潤滑特性に関しては、臨床応用が検討されている。一方、医療機器分野では、手術時に用いられるカテーテル先端にマニピュレート機能を持たせるようなマイクロマシン(微小機械)の開発もなされている。生体に用いる材料としての潤滑性を考慮すると水含有系のハイドロゲルが相応しいと考えられている。
【0003】
【発明が解決しようとする課題】
このような微小機械の摩擦場に掛かる荷重は極めて低いものであるが、ハイドロゲルの低荷重条件下における潤滑特性に関しての研究は殆どなされていない。また、微小機械の摩擦場においては、摩擦力に対する表面力の影響の顕在化は無視できず、特に、生体内のように水が摩擦界面に存在することによって、界面での水素結合やメニスカス力等が摩擦を大きくする要因となる。このような場合、表面の疎水化等の処理により低摩擦とするのが一般的である。しかしながら、この種のハイドロゲルのように水を含み膨潤し、かつ極めて軟質な材料においては、表面の疎水化が有効かどうかは明らかではない。そこで、水の含浸能力の高い多孔質の性状を有するポリビニルアルコールを用いて、しみ出た水による潤滑効果を得ることも提案された。しかしながら、ゲル表面の保水能力が充分でなく、より低い摩擦係数を得ることはできなかった。
【0004】
そこで、本発明では、前記ハイドロゲルの低荷重摩擦において、ゲル表面の化学的性質を制御して潤滑特性との関係を明らかにして、生体内等の水中における摩擦部の潤滑性能を向上させる高分子ゲル潤滑方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、本発明が採用した技術解決手段は、
水中の相対摺動部材間に潤滑材である高分子ゲルを配設して用いる潤滑方法において、前記高分子ゲルを親水性高分子ゲルとするとともに、該親水性高分子ゲルの官能基を親水基とし、さらに前記親水性高分子ゲルが、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸およびこれらの共重合体から選定され、また前記官能基が、アミド基にカルボキシル基を添加したことを特徴とする高分子ゲル潤滑方法である。
また、前記親水性高分子ゲルの潤滑面に凹凸を形成したことを特徴とする高分子ゲル潤滑方法である。
また、前記凹凸形成による潤滑面積に対する接触面積の比率をほぼ40〜60%前後としたことを特徴とする高分子ゲル潤滑方法である。
【0006】
【実施の形態】
以下、本発明における高分子ゲル潤滑方法の実施の形態を図面に基づいて詳細に説明する。図1(A)は本発明の高分子ゲル潤滑方法にて使用される親水性高分子ゲルの実施の形態のモデル図、図1(B)は比較例である疎水性高分子ゲルのモデル図、図2は摩擦試験機の概略図、図3は試験ゲルの摩擦力の時間的変化図、図4は試験ゲルの物理特性(重合度)と摩擦係数との関係図、図5は試験ゲルの含水率(溶液濃度)と摩擦係数との関係図、図6は試験ゲルのスライダ(摩擦対象物である相対摺動部材)種別とゲル種別毎の摩擦係数との比較図、図7は試験ゲルの保存日数と摩擦係数との関係図、図8は試験ゲルのアクリル酸濃度と摩擦係数との関係図、図9は試験ゲルの表面形状図、図10は試験ゲルの表面形状と大気中および水中での摩擦係数との関係表図、図11は大気中における試験ゲルの接触面積比率と摩擦係数との関係図、図12は水中における試験ゲルの接触面積比率と摩擦係数との関係図、図13は大気中における試験ゲルの凹部深さと摩擦係数との関係図、図14は水中における試験ゲルの凹部深さと摩擦係数との関係図である。
【0007】
本発明の高分子ゲル潤滑方法は、図1(A)に示すように、水中の相対摺動部材間に潤滑材である高分子ゲルを配設して用いる潤滑方法において、前記高分子ゲルを、ポリビニルアルコール(PVA)、ポリアクリルアミド(PAAm)およびポリアクリル酸およびその共重合体等の親水性高分子ゲルとするとともに、該親水性高分子ゲルの官能基を、水酸基、アミド基、カルボキシル基等の1ないし複数から選定された親水基としたことを特徴とする。
【0008】
本発明の高分子ゲル潤滑方法を導くために、ハイドロゲルの低荷重摩擦において、ゲル表面の化学的性質を制御して潤滑特性との関係について行った摩擦試験について以下に詳述する。
<潤滑試験>
<試料>
各種ゲルを作成するためのモノマ溶液の性状を以下にまとめて示す。
ポリビニルアルコール(PVA)ゲル
超音波分散器中、PVAを蒸留水に溶解させ(10wt%)、約24時間サイクルで凍結解凍(−10°C〜室温)を10回繰り返しゲルを得た。
ポリアクリルアミド(PAAm)およびN−イソプロピルアクリルアミド(NiPAAm)ゲル
モノマ水溶液(PAAmは10wt%、NiPAAmは15wt%)に架橋剤N,N’−メチレンビスアクリルアミド(BIS)を1mol%で溶解し、該水溶液にN,N,N,N−テトラメチレンエチレンジアミン(TMED)を加え、氷浴中、窒素もしくはアルゴン置換を行った。その後、重合開始剤ペルオキソ二硫化アンモニウム(APS)を40g/lで加え、攪拌、成形した。
アクリルアミド−アクリル酸共重合(Poly(AAm−co−AAc))ゲル
10wt%AAm水溶液に対して、AAcを〜20mol%で溶解した水溶液にTMEDを加え、氷浴中、窒素もしくはアルゴン置換を行った。その後、重合開始剤APSを40g/lで加え、攪拌、成形した。
ポリビニルメチルエーテル(PVME)ゲル
PVME水溶液をγ線で架橋させたもの。
【0009】
図2は低荷重の摩擦試験機の概略図で、各試験ゲルは、0.5mm厚さのスペーサを介した2枚のスライドガラスに挟んで成形したため、基本的には平滑表面を有するが、前記PVMEに関しては、μmオーダの細孔が表面およびバルクに形成されていた。また、全ての摩擦試験は超純水中、室温で行った。試料サンプルである試験ゲルを水中に保持した状態で摩擦試験が行われ、荷重は、サンプルを支持する板ばねに貼り付けたストレインゲージでモニタした。一方、得られる摩擦力は、スライダを支持する板ばねの変位を渦電流式センサで検出し、これにばね定数を乗じることによって算出した。スライダ(曲率半径:7.8mm)には光学ガラス(BK−7)とスチール(SUJ−2)製のものを用いた、荷重を加え始めてから、摩擦開始までの保持時間の増加に伴う静摩擦係数の上昇が報告されているため、摩擦開始までの荷重時間は20〜30sに統一した。その他の摩擦条件として、荷重を3〜25mN、摩擦速度を20μm/sとした。
【0010】
<結果および考察>
<PVAゲルの水中摩擦試験>
図3は、PVAゲルをサンプルとした水中における摩擦試験時に得られた典型的な時間的変化による摩擦力曲線を示す。スライダ(SUJ−2)をサンプル(PVAゲル)に押し付け、一定荷重で約20s保持した後、サンプルステージを一定速度で移動させて摩擦を開始した。摩擦開始後から約6s間は、ゲルの拈弾性変形による流動抵抗を伴い、見かけ上の摩擦力は約1mNまで急激に上昇した。その後、スティック・スリップ現象を起こして摩擦状態に移行し、定常な摩擦においては平均摩擦係数が約0.05と非常に低い値となった。サンプルである軟質のゲルは、硬質のスライダを押し付けられて変形する。つまり、接触面積はゲルの物理特性に依存する。
【0011】
そこで、試験ゲルにおける平均重合度を変え、摩擦に対する影響を検討した。図4は試験ゲルの物理特性(重合度)と摩擦係数との関係図で、平均重合度が800から2500までのPVAゲル(いずれもモノマ水溶液の濃度は10wt%のものを使用)を用いた。PVAゲルの重合度増加により、平均摩擦係数は低下する傾向があった。この時の平均摩擦係数の変化は0.1から0.05と低く、いずれの場合においても低い摩擦係数だった。PVAゲルが人工関節の軟質潤滑膜として優れた潤滑特性を示すと報告されており、その理由として、弾性流体潤滑作用とともに、荷重を掛けた場合にゲル内部からしみ出した水が寄与しているものと考えられている。
【0012】
そこで、ゲルの含水率を82〜95%と変えて摩擦試験を行った。図5は試験ゲルの含水率(溶液濃度)と摩擦係数との関係図である。試験ゲルはPVAゲルで、平均重合度は3500に統一した。いずれの含水率においても、摩擦係数は0.1以下であり、また、平均摩擦係数の含水率依存性は小さいものであった。傾向としては含水率の高い方ゲルの方が摩擦係数が低くなった。一方、大気中での摩擦試験では、ゲル内部に水が存在しても表面は乾燥しており、その時の平均摩擦係数は0.9と非常に高かった。これらの結果により、PVAゲルによる潤滑において低摩擦を実現するためには、スライダ・ゲル界面に充分な水が存在することが重要であることが理解される。
【0013】
<各種ゲルの水中摩擦試験>
PVAゲルに加え、分子構造が異なるPAAm、NiPAAmおよびPVMEの4種類のゲルを用い、水中で摩擦試験を行った。その結果を図6に示す。図6は試験ゲルのスライダ(摩擦対象物である相対摺動部材)種別と前記ゲル種別毎の摩擦係数との比較図である。摩擦条件は前述のPVAゲルの摩擦試験時と同様とした。スライダにはBK−7(Glass slider)を使用した。全てのゲルにおいてゲル調製前のモノマ水溶液濃度は10wt%に揃えた。各々の平均摩擦係数はPVAゲルが最も低くて0.1、PAAmゲルが0.2、NiPAAmおよびPVMEゲルが0.9であった。NiPAAmおよびPVMEゲルは表面が乾いたPVAゲルと同等の摩擦係数であることより、水中でも潤滑性に乏しい材料であることが分かった。
【0014】
次に、PVAゲル、PAAmおよびNiPAAmゲルについて、スライダをBK−7からSUJ−2(Steel slider)に変えて摩擦試験を行った。PVAゲルではスライダ材質の違いによる摩擦係数の変化は殆ど見られず、どちらも0.1と低い値を示しており、優れた潤滑性を示した。PAAmゲルはスライダをSUJ−2とすることによって摩擦係数が1以上と極めて高くなった。これに対し、NiPAAmゲルに対しては、スライダをSUJ−2とすることで摩擦係数が0.9から0.4にまで低下した。この試験において、相手材がゲルで軟質であるため、スライダの接触面積はゲルのみに依存しスライダに依らないと考えてよい。すなわち、摩擦係数がスライダ材料に強く依存したことは、スライダ・ゲル界面の化学的性質が摩擦に関与したと考えられる。
【0015】
PVAゲルの平均摩擦係数が最も低く、PVMEゲルが高くなった理由について、ゲルの分子構造という観点から考察すると、PVAゲルは分子側鎖に親水性の水酸基(OH基)を有し、PVMEゲルは疎水性のOCH3 基を有する。つまり、親水基を有するPVAゲルは潤滑剤として働く水をスライダ・ゲル界面に保持する能力が高かったためと考えられる。また、PAAmゲルとNiPAAmゲルを比較すると、ガラススライダを用いた場合、PVAゲルとPVMEゲルと同様に、親水性のアミド基を有するPAAmゲルがNiPAAmゲルより低い摩擦係数を示した。NiPAAmゲルにもアミド結合が分子側鎖に存在するものの、疎水基であるイソプロピル基が立体的な障害となり疎水性である。しかし、スライダ材質としてSUJ−2を用いた場合、摩擦係数に及ぼす影響が逆転したという結果については今後の検討が必要である。
【0016】
<PAAmゲルの摩擦係数経時変化>
図7は試験ゲルの保存日数と摩擦係数との関係図で、PAAmゲルを作成してから摩擦係数試験を行うまでの保存期間を変えた時の摩擦係数の変化を示したものである。用いたスライダはBK−7とした。ゲルを作成後100日を越えたものは、平均摩擦係数が0.1以下となり、1年を経過したものは0.04まで低下した。これはPVAゲルと同等の潤滑性を有することになる。PAAm−アセトン系の研究によると、保存時間とゲルの膨潤度に相関が見られ、これはアミド結合部分の加水分解に起因すると報告されている。つまり、本試験においても、PAAmゲルが加水分解されて側鎖にCOOH(カルボキシル)基を持つようになり、PVAゲルのOH基と同様に、水と相互作用し易くなったため摩擦係数がPVAゲルと同等の値まで低下したと考えられる。
【0017】
<共重合体ゲルによる潤滑>
これまでの考察において、PVAゲルがスライダ材料に関わらず高い潤滑性を示したのは、ゲル分子側鎖のOH基が潤滑剤として働く水を保持するためと考えてきた。また、PAAmゲルの平均摩擦係数が保存期間ととともに低下した結果については、前記段落でゲル分子の加水分解によるCOOH基の増加の影響であると考察した。そこで、PAAmとPAAcの共重合体を用いて摩擦係数に対するCOOH基の影響を検討した。スライダにはSUJ−2を用いた。AAc(アクリル酸)の添加濃度はAAmとの重量比で0〜20%、荷重は5〜20mNとした。
【0018】
摩擦試験結果を図8に示す。図8は試験ゲルのアクリル酸濃度と摩擦係数との関係図で、AAcが無添加の場合、平均摩擦係数は1前後と高い値だった。しかし、AAcを僅かに0.2%加えたことにより、平均摩擦係数は0.1以下まで下がった。その後AAcを5、10%と増すと、僅かではあるが摩擦係数は上昇し、20%に至っては、無添加と変わらない値まで高くなった。この傾向は荷重によらなかった。添加濃度の上昇に伴い摩擦係数が上昇するという結果については、ゲルの物性の変化等も関与してくると考えられるが、低摩擦係数となった時のAAcの添加濃度が極めて低いことから、物性の影響は小さいと考えられる。また、この結果より摩擦係数を下げるためには微量のAAcの添加が重要であることが分かった。
【0019】
さらに、その理由としてカルボキシル(COOH)基による親水性の向上が考えられる。添加濃度の上昇に伴い、再び摩擦係数が高くなるという興味ある結果が得られた。その理由について図1に示したモデルで説明する。添加濃度の低い状態では、図1(A)に示すように、AAmのアミド(CONH2 )基に加え、AAcのCOOH基の導入によりゲル表面の親水性が高まり潤滑剤として働く水を留めておく能力が増加したと考えられる。しかし、AAcの添加濃度が高くなると、図1(B)の比較例に示すように、CONH2 基とCOOH基が水素結合でカップリングし、潤滑性のCONH2 基やCOOH基がゲル表面に存在せず、ゲルのバルクに取り込まれるようになると考えられる。このため、ゲル表面には疎水性のゲル分子主鎖が露出するようになり、潤滑性が低下したと考えられる。
【0020】
親水基を有するPVAゲルやPAAmゲルで摩擦係数が低かったのに対し、官能基が疎水基のPVMEやNiPAAmゲルでは摩擦係数が高かったという結果もこの考え方を支持している。この結果に荷重依存性が殆ど見られないということ、さらに、ゲルの硬さや含水率を変化させた場合よりも摩擦係数の変化量が大きい(図4、5参照)ことから、積極的なCOOH基の導入が摩擦の低減に効果があることが分かった。つまり、ゲルの化学的特性(分子構造、親水性)が摩擦に大きく影響していることが明らかとなった。
【0021】
図9は試験ゲルの表面形状図である。平面形状が亀甲模様に形成された摩擦面を形成する接触面長さをb、摩擦への寄与が少ない凹部長さをa、凹部深さをhとして試験ゲルの表面形状を考察した。図10は試験結果を示した試験ゲルの表面形状と大気中および水中での摩擦係数との関係表図である。該図10と図11(大気中試験)および図12(水中試験)の接触面積比率と摩擦係数との関係図から理解されることは、接触面積比率が40〜60%の時に摩擦係数が最も小さいことである。また、凹部深さhに関しては、大気中および水中試験のいずれの場合もフラットおよび1.92μmの比較的浅い場合は摩擦係数は高いことが分かるが、それ以上の深さについては摩擦係数との関係は明確ではない。凹部にある程度の深さがあれば、潤滑面であるスライダ・ゲル界面に低摩擦のための水の確保は可能であると考えられる。
【0022】
以上、低荷重(5〜20mN)における各種ゲルの摩擦試験を水中で行った結果、次のことが明らかとなった。PVAゲルはスライダ材料によらず、平均摩擦係数が0.1前後と低く、優れた潤滑性を示した。含水率が高く、高重合度のPVAゲルで摩擦係数が最も低かったことから、このような低荷重条件下においても、接触面積が小さいことや、また荷重を加えた後の水の摩擦界面へのしみ出しが摩擦に影響していることが示唆された。ゲルの潤滑性はその分子構造に強く依存し、類似ゲルで比較すると、摩擦係数は、PVAゲル<PVMEゲルおよびPAAm<NiPAAmであった。すなわち、ゲルの親水性が水中での潤滑性に深く関わっていることが明らかとなった。さらに、PAAmにAAcを微量添加し、ゲルに親水性官能基(COOH基)を導入することで摩擦係数が著しく低下した。PVAゲルが最も摩擦係数が低いという結果から、ハイドロゲルでの潤滑においては、水がスライダ・ゲル界面に保持され、潤滑剤として働くことが重要であると結論された。
【0023】
以上、本発明の実施の形態について説明してきたが、本発明の趣旨の範囲内で、潤滑剤としての親水性高分子ゲルの種類(ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸およびこれらの共重合体の他、ポリスチレンスルホン酸等の適宜の親水性高分子ゲル)、該高分子ゲルが潤滑剤として使用される対象部位、官能基における親水基の種類(水酸基、アミド基、カルボキシル基の他、アミノ基、ケトン基、エステル基、スルホン酸基、エーテル基等)、官能基におけるアミド基へのカルボキシル基の添加モル%、親水性高分子ゲルの潤滑面の凹凸形状、該凹凸形状における接触面積の比率および凹部深さ等については適宜選定することができる。
【0024】
【発明の効果】
以上詳細に説明したように、本発明によれば、水中の相対摺動部材間に潤滑材である高分子ゲルを配設して用いる潤滑方法において、前記高分子ゲルを親水性高分子ゲルとするとともに、該親水性高分子ゲルの官能基を親水基としたことにより、潤滑剤である水と相互作用を持ち易い親水性の官能基の存在によって高分子ゲルを水中での優れた潤滑剤として使用することが可能となった。
【0025】
また、前記親水性高分子ゲルが、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸およびこれらの共重合体から選定された場合は、最適な親水性高分子ゲルの採用により毒性が低い素材が要求される生体内での水による無害な潤滑性の向上に寄与できる。
さらに、前記官能基が、水酸基、アミド基、カルボキシル基等の1ないし複数から選定された場合は、好適な親水性の高分子ゲルと官能基との組み合わせにより飛躍的な水による潤滑性の向上が実現できた。
【0026】
さらにまた、前記官能基として、アミド基にカルボキシル基を数モル%添加した場合は、分子内水素結合の生成による疎水性表面を形成することなく最も効果的に最適化されて摩擦係数を低下(従来の1/10程度)させることができる。また、前記親水性高分子ゲルの潤滑面に凹凸を形成した場合は、凹部の保水機能により潤滑性能がさらに向上する。
【0027】
さらに、前記凹凸形成による潤滑面積に対する接触面積の比率をほぼ40〜60%前後とした場合は、凸部である摩擦面積と凹部である保水部との適度のバランスにより摩擦低減効果がさらに向上する。
かくして、本発明によれば、生体内等の水中における摩擦部の潤滑性能を向上させる高分子ゲル潤滑方法が提供される。
【図面の簡単な説明】
【図1】本発明における高分子ゲル潤滑方法の1実施の形態を示すもので、図1(A)は本発明の高分子ゲル潤滑方法にて使用される親水性高分子ゲルの実施の形態のモデル図、図1(B)は比較例である疎水性高分子ゲルのモデル図である。
【図2】同、摩擦試験機の概略図である。
【図3】同、試験ゲルの摩擦力の時間的変化図である。
【図4】同、試験ゲルの物理特性(重合度)と摩擦係数との関係図である。
【図5】同、試験ゲルの含水率(溶液濃度)と摩擦係数との関係図である。
【図6】同、試験ゲルのスライダ(摩擦対象物である相対摺動部材)種別とゲル種別毎の摩擦係数との比較図である。
【図7】同、試験ゲルの保存日数と摩擦係数との関係図である。
【図8】同、試験ゲルのアクリル酸濃度と摩擦係数との関係図である。
【図9】同、試験ゲルの表面形状図である。
【図10】同、試験ゲルの表面形状と大気中および水中での摩擦係数との関係表図である。
【図11】同、大気中における試験ゲルの接触面積比率と摩擦係数との関係図である。
【図12】同、水中における試験ゲルの接触面積比率と摩擦係数との関係図である。
【図13】同、大気中における試験ゲルの凹部深さと摩擦係数との関係図である。
【図14】同、水中における試験ゲルの凹部深さと摩擦係数との関係図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lubrication method in which a polymer gel as a lubricant is disposed between relative sliding members in water, and preferably a water lubrication technique in a sliding portion of an artificial joint used in a living body. Applies to
[0002]
[Prior art]
Water-containing gels such as hydrogels have been widely studied as artificial joint materials since they have low toxicity to living bodies. Clinical application of gel lubrication characteristics under high loads such as artificial joints is being investigated. On the other hand, in the medical device field, micromachines (micromachines) have been developed that provide a manipulating function at the tip of a catheter used during surgery. In consideration of lubricity as a material used for living bodies, water-containing hydrogels are considered suitable.
[0003]
[Problems to be solved by the invention]
Although the load applied to the friction field of such a micromachine is extremely low, there has been little research on the lubrication characteristics of hydrogel under low load conditions. Also, in the micromechanical friction field, the manifestation of the effect of surface force on frictional force cannot be ignored, and in particular, the presence of water at the frictional interface as in the living body causes hydrogen bonding and meniscus force at the interface. Etc. are factors that increase friction. In such a case, the friction is generally reduced by a treatment such as hydrophobization of the surface. However, it is not clear whether surface hydrophobization is effective in materials that swell and swell and contain water like this type of hydrogel. Therefore, it has also been proposed to obtain a lubricating effect by the exuded water by using polyvinyl alcohol having a porous property with high water impregnation ability. However, the water retention capacity of the gel surface is not sufficient, and a lower coefficient of friction could not be obtained.
[0004]
Therefore, in the present invention, in the low load friction of the hydrogel, the chemical properties of the gel surface are controlled to clarify the relationship with the lubrication characteristics, thereby improving the lubrication performance of the friction part in water such as in vivo. An object is to provide a molecular gel lubrication method.
[0005]
[Means for Solving the Problems]
For this reason, the technical solution means adopted by the present invention is:
In a lubricating method in which a polymer gel as a lubricant is disposed between relative sliding members in water, the polymer gel is a hydrophilic polymer gel, and the functional group of the hydrophilic polymer gel is hydrophilic. Further, the hydrophilic polymer gel is selected from polyvinyl alcohol, polyacrylamide, polyacrylic acid and copolymers thereof, and the functional group is a carboxylic acid group added to an amide group. This is a polymer gel lubrication method.
Further, the polymer gel lubrication method is characterized in that irregularities are formed on the lubrication surface of the hydrophilic polymer gel.
The polymer gel lubrication method is characterized in that the ratio of the contact area to the lubrication area by the formation of the irregularities is about 40 to 60%.
[0006]
[Embodiment]
Hereinafter, embodiments of the polymer gel lubrication method of the present invention will be described in detail with reference to the drawings. FIG. 1A is a model diagram of an embodiment of a hydrophilic polymer gel used in the polymer gel lubrication method of the present invention, and FIG. 1B is a model diagram of a hydrophobic polymer gel as a comparative example. 2 is a schematic diagram of the friction tester, FIG. 3 is a time-dependent change diagram of the friction force of the test gel, FIG. 4 is a relationship diagram between the physical properties (polymerization degree) of the test gel and the friction coefficient, and FIG. 5 is a test gel. FIG. 6 is a comparison diagram of the test gel slider (relative sliding member as a friction object) type and the friction coefficient for each gel type, and FIG. 7 is a test diagram. Fig. 8 is a graph showing the relationship between the storage days of the gel and the coefficient of friction, Fig. 8 is a graph showing the relationship between the acrylic acid concentration of the test gel and the coefficient of friction, Fig. 9 is a surface profile of the test gel, and Fig. 10 is a surface profile of the test gel and in the atmosphere. FIG. 11 is a chart showing the relationship between the contact area ratio of the test gel in air and the friction coefficient. FIG. 12 is a relationship diagram between the contact area ratio of the test gel in water and the friction coefficient, FIG. 13 is a relationship diagram between the recess depth of the test gel in air and the friction coefficient, and FIG. 14 is a recess in the test gel in water. It is a relationship figure of depth and a friction coefficient.
[0007]
As shown in FIG. 1 (A), the polymer gel lubrication method of the present invention is a lubrication method in which a polymer gel as a lubricant is disposed between relative sliding members in water. And a hydrophilic polymer gel such as polyvinyl alcohol (PVA), polyacrylamide (PAAm), polyacrylic acid and copolymers thereof, and the functional groups of the hydrophilic polymer gel are a hydroxyl group, an amide group, a carboxyl group A hydrophilic group selected from one or more of the above.
[0008]
In order to guide the polymer gel lubrication method of the present invention, the friction test conducted in relation to the lubrication characteristics by controlling the chemical properties of the gel surface in the low load friction of the hydrogel will be described in detail below.
<Lubrication test>
<Sample>
The properties of the monomer solution for preparing various gels are summarized below.
-Polyvinyl alcohol (PVA) gel In an ultrasonic disperser, PVA was dissolved in distilled water (10 wt%), and freeze-thawed (-10C to room temperature) was repeated 10 times in a cycle of about 24 hours. Obtained.
-Polyacrylamide (PAAm) and N-isopropylacrylamide (NiPAAm) gel An aqueous monomer solution (PAAm is 10 wt%, NiPAAm is 15 wt%) and the cross-linking agent N, N'-methylenebisacrylamide (BIS) at 1 mol%. After dissolution, N, N, N, N-tetramethyleneethylenediamine (TMED) was added to the aqueous solution, and nitrogen or argon substitution was performed in an ice bath. Thereafter, a polymerization initiator ammonium peroxodisulfide (APS) was added at 40 g / l, and the mixture was stirred and molded.
-Acrylamide-acrylic acid copolymerization (Poly (AAm-co-AAc)) gel 10 wt% AAm aqueous solution, TMED was added to an aqueous solution of AAc dissolved at ~ 20 mol%, and then replaced with nitrogen or argon in an ice bath. It was. Thereafter, the polymerization initiator APS was added at 40 g / l, and the mixture was stirred and molded.
-Polyvinyl methyl ether (PVME) gel PVME aqueous solution crosslinked with γ rays.
[0009]
FIG. 2 is a schematic diagram of a low-load friction tester, and each test gel is formed by sandwiching between two glass slides with a spacer having a thickness of 0.5 mm, and thus basically has a smooth surface. With respect to the PVME, pores on the order of μm were formed on the surface and in the bulk. All friction tests were performed in ultrapure water at room temperature. A friction test was performed with the test gel as a sample sample held in water, and the load was monitored with a strain gauge attached to a leaf spring supporting the sample. On the other hand, the obtained frictional force was calculated by detecting the displacement of the leaf spring supporting the slider with an eddy current sensor and multiplying this by the spring constant. The slider (curvature radius: 7.8 mm) made of optical glass (BK-7) and steel (SUJ-2) is used, and the coefficient of static friction accompanying the increase in the holding time from the start of load to the start of friction As a result, it has been reported that the load time until the start of friction is 20-30 s. As other friction conditions, the load was 3 to 25 mN, and the friction speed was 20 μm / s.
[0010]
<Results and discussion>
<Underwater friction test of PVA gel>
FIG. 3 shows a frictional force curve by a typical time change obtained during a friction test in water using PVA gel as a sample. The slider (SUJ-2) was pressed against the sample (PVA gel) and held at a constant load for about 20 seconds, and then the sample stage was moved at a constant speed to start friction. For about 6 s after the start of friction, the apparent friction force increased rapidly to about 1 mN, accompanied by flow resistance due to the elastic deformation of the gel. After that, a stick-slip phenomenon occurred and the frictional state was reached. In steady friction, the average friction coefficient was a very low value of about 0.05. A soft gel as a sample is deformed by being pressed by a hard slider. That is, the contact area depends on the physical properties of the gel.
[0011]
Therefore, the average degree of polymerization in the test gel was changed and the influence on friction was examined. FIG. 4 is a graph showing the relationship between the physical properties (polymerization degree) of the test gel and the coefficient of friction, and PVA gels having an average polymerization degree of 800 to 2500 (both used are those having a monomer aqueous solution concentration of 10 wt%). . The average coefficient of friction tended to decrease with an increase in the degree of polymerization of the PVA gel. The change in the average friction coefficient at this time was as low as 0.1 to 0.05, and in all cases, the friction coefficient was low. PVA gel has been reported to exhibit excellent lubrication characteristics as a soft lubricating film for artificial joints. This is because of the elastohydrodynamic lubrication and the water that exudes from the gel when a load is applied. It is considered a thing.
[0012]
Therefore, a friction test was conducted by changing the moisture content of the gel to 82 to 95%. FIG. 5 is a graph showing the relationship between the moisture content (solution concentration) of the test gel and the friction coefficient. The test gel was PVA gel, and the average degree of polymerization was unified to 3500. At any moisture content, the friction coefficient was 0.1 or less, and the moisture content dependence of the average friction coefficient was small. As a tendency, the higher moisture content gel had a lower coefficient of friction. On the other hand, in the friction test in the atmosphere, the surface was dry even when water was present inside the gel, and the average friction coefficient at that time was as high as 0.9. From these results, it is understood that it is important that sufficient water is present at the slider-gel interface in order to realize low friction in the lubrication by the PVA gel.
[0013]
<In-water friction test of various gels>
In addition to PVA gel, four types of gels of PAAm, NiPAAm and PVME having different molecular structures were used, and a friction test was performed in water. The result is shown in FIG. FIG. 6 is a comparison diagram of a test gel slider (relative sliding member which is a friction object) type and a friction coefficient for each gel type. The friction conditions were the same as in the above-described PVA gel friction test. BK-7 (Glass slider) was used for the slider. In all gels, the concentration of the monomer aqueous solution before gel preparation was adjusted to 10 wt%. The average coefficient of friction of each was 0.1 for the lowest PVA gel, 0.2 for PAAm gel, 0.9 for NiPAAm and PVME gel. Since NiPAAm and PVME gel have the same coefficient of friction as PVA gel with a dry surface, it was found that these materials are poor in lubricity even in water.
[0014]
Next, the PVA gel, PAAm, and NiPAAm gel were subjected to a friction test by changing the slider from BK-7 to SUJ-2 (Steel slider). The PVA gel showed almost no change in the coefficient of friction due to the difference in the slider material, and both showed low values of 0.1, indicating excellent lubricity. The PAAm gel has an extremely high friction coefficient of 1 or more when the slider is SUJ-2. On the other hand, for NiPAAm gel, the friction coefficient decreased from 0.9 to 0.4 by setting the slider to SUJ-2. In this test, since the counterpart material is gel and soft, it may be considered that the contact area of the slider depends only on the gel and not on the slider. That is, the fact that the coefficient of friction strongly depends on the slider material is thought to be due to the chemical properties of the slider-gel interface being involved in the friction.
[0015]
The reason why the average friction coefficient of the PVA gel is the lowest and the PVME gel is high is considered from the viewpoint of the molecular structure of the gel. The PVA gel has a hydrophilic hydroxyl group (OH group) in the molecular side chain. Has a hydrophobic OCH 3 group. That is, it is considered that the PVA gel having a hydrophilic group has a high ability to retain water acting as a lubricant at the slider-gel interface. Further, when the PAAm gel and the NiPAAm gel were compared, when the glass slider was used, the PAAm gel having a hydrophilic amide group showed a lower friction coefficient than the NiPAAm gel, similarly to the PVA gel and the PVME gel. The NiPAAm gel also has an amide bond in the molecular side chain, but the isopropyl group, which is a hydrophobic group, is a steric hindrance and is hydrophobic. However, when SUJ-2 is used as the slider material, further examination is necessary for the result that the influence on the friction coefficient is reversed.
[0016]
<Change in friction coefficient of PAAm gel over time>
FIG. 7 is a graph showing the relationship between the storage days of the test gel and the friction coefficient, and shows the change in the friction coefficient when the storage period from the preparation of the PAAm gel to the friction coefficient test is changed. The slider used was BK-7. Those that exceeded 100 days after the gel was prepared had an average coefficient of friction of 0.1 or less, and those that passed one year decreased to 0.04. This has the same lubricity as PVA gel. A study of the PAAm-acetone system shows a correlation between storage time and gel swelling, which is reported to be due to hydrolysis of the amide bond moiety. That is, in this test, the PAAm gel was hydrolyzed to have a COOH (carboxyl) group in the side chain, and like the OH group of the PVA gel, it became easy to interact with water, so the friction coefficient was PVA gel. It is thought that it fell to the value equivalent to.
[0017]
<Lubrication with copolymer gel>
In the discussion so far, it has been considered that the PVA gel showed high lubricity regardless of the slider material because the OH group of the gel molecule side chain retains water acting as a lubricant. Further, the result of the decrease in the average friction coefficient of the PAAm gel with the storage period was considered to be the influence of the increase in COOH groups due to the hydrolysis of the gel molecules in the above paragraph. Therefore, the influence of COOH groups on the friction coefficient was examined using a copolymer of PAAm and PAAc. SUJ-2 was used for the slider. The addition concentration of AAc (acrylic acid) was 0 to 20% by weight ratio with AAm, and the load was 5 to 20 mN.
[0018]
The friction test results are shown in FIG. FIG. 8 is a graph showing the relationship between the acrylic acid concentration of the test gel and the friction coefficient. When AAc was not added, the average friction coefficient was as high as about 1. However, the average friction coefficient decreased to 0.1 or less by adding 0.2% of AAc. Thereafter, when AAc was increased to 5 and 10%, the friction coefficient increased slightly, and reached 20% when it was 20%. This tendency did not depend on the load. Regarding the result that the friction coefficient increases with the increase in the additive concentration, it is considered that the change in the physical properties of the gel is also involved, but since the additive concentration of AAc when the friction coefficient is low is extremely low, The effect of physical properties is considered to be small. Further, it was found from this result that the addition of a small amount of AAc is important for lowering the friction coefficient.
[0019]
Furthermore, the improvement of the hydrophilicity by a carboxyl (COOH) group can be considered as the reason. An interesting result was obtained that the coefficient of friction again increased as the additive concentration increased. The reason will be described with reference to the model shown in FIG. In a state where the addition concentration is low, as shown in FIG. 1 (A), in addition to the amide (CONH 2 ) group of AAm, the hydrophilicity of the gel surface is increased by introducing the COOH group of AAc, and water acting as a lubricant is retained. It is thought that the ability to keep increased. However, when the concentration of AAc increases, as shown in the comparative example of FIG. 1B, the CONH 2 group and the COOH group are coupled by hydrogen bonds, and the lubricating CONH 2 group and the COOH group are attached to the gel surface. It is thought that it does not exist and becomes incorporated into the bulk of the gel. For this reason, it is considered that the hydrophobic gel molecule main chain is exposed on the gel surface and the lubricity is lowered.
[0020]
The fact that the friction coefficient was low in the PVME or NiPAAm gel having a hydrophobic functional group as opposed to the low friction coefficient in the PVA gel or PAAm gel having a hydrophilic group also supports this idea. This result shows that there is almost no load dependence, and further, the amount of change in the friction coefficient is larger than when the gel hardness or moisture content is changed (see FIGS. 4 and 5). It was found that the introduction of the group was effective in reducing friction. In other words, it was revealed that the chemical properties (molecular structure, hydrophilicity) of the gel have a great influence on the friction.
[0021]
FIG. 9 is a surface shape diagram of the test gel. The surface shape of the test gel was considered, where b is the contact surface length that forms a friction surface with a planar shape of a tortoiseshell pattern, a is the recess length with little contribution to friction, and h is the recess depth. FIG. 10 is a table showing the relationship between the surface shape of the test gel showing the test results and the coefficient of friction in air and water. It can be understood from the relationship between the contact area ratio and the friction coefficient in FIGS. 10 and 11 (in the air test) and FIG. 12 (underwater test) that the friction coefficient is the highest when the contact area ratio is 40 to 60%. It is small. Regarding the recess depth h, the friction coefficient is high when flat and relatively shallow at 1.92 μm in both the atmospheric and underwater tests. The relationship is not clear. If the recess has a certain depth, it is considered that water for low friction can be secured at the slider-gel interface which is the lubrication surface.
[0022]
As described above, as a result of the friction test of various gels under water at a low load (5 to 20 mN), the following has been clarified. PVA gel showed an excellent lubricity with an average friction coefficient as low as about 0.1 regardless of the slider material. PVA gel with high water content and high polymerization degree has the lowest friction coefficient, so even under such low load conditions, the contact area is small and the friction interface of water after applying load It was suggested that the exudation of spills affected the friction. The lubricity of the gel was strongly dependent on its molecular structure and when compared with similar gels, the friction coefficients were PVA gel <PVME gel and PAAm <NiPAAm. That is, it became clear that the hydrophilicity of the gel is deeply related to the lubricity in water. Furthermore, the friction coefficient was remarkably lowered by adding a small amount of AAc to PAAm and introducing a hydrophilic functional group (COOH group) into the gel. From the result that the PVA gel has the lowest friction coefficient, it was concluded that in the lubrication with hydrogel, it is important that water is retained at the slider-gel interface and acts as a lubricant.
[0023]
As described above, the embodiment of the present invention has been described, but within the scope of the present invention, the kind of hydrophilic polymer gel as a lubricant (polyvinyl alcohol, polyacrylamide, polyacrylic acid, and copolymers thereof) In addition, an appropriate hydrophilic polymer gel such as polystyrene sulfonic acid), a target site where the polymer gel is used as a lubricant, the type of hydrophilic group in the functional group (hydroxyl group, amide group, carboxyl group, amino Group, ketone group, ester group, sulfonic acid group, ether group, etc.), addition mol% of carboxyl group to amide group in functional group, uneven shape of lubricating surface of hydrophilic polymer gel, contact area in the uneven shape About a ratio, a recessed part depth, etc., it can select suitably.
[0024]
【The invention's effect】
As described above in detail, according to the present invention, in the lubricating method in which the polymer gel that is a lubricant is disposed between the relative sliding members in water, the polymer gel is used as a hydrophilic polymer gel. In addition, by making the functional group of the hydrophilic polymer gel a hydrophilic group, the polymer gel is excellent in water due to the presence of the hydrophilic functional group that easily interacts with the lubricant water. It became possible to use as.
[0025]
In addition, when the hydrophilic polymer gel is selected from polyvinyl alcohol, polyacrylamide, polyacrylic acid and copolymers thereof, a material having low toxicity is required by adopting an optimal hydrophilic polymer gel. It can contribute to the improvement of innocuous lubricity due to water in vivo.
Furthermore, when the functional group is selected from one or more of a hydroxyl group, an amide group, a carboxyl group, etc., the lubricity is greatly improved by a combination of a suitable hydrophilic polymer gel and the functional group. Was realized.
[0026]
Furthermore, when several mol% of a carboxyl group is added to the amide group as the functional group, it is optimized most effectively without forming a hydrophobic surface due to the generation of intramolecular hydrogen bonds, and the friction coefficient is reduced ( About 1/10 of the conventional level). Moreover, when unevenness is formed on the lubrication surface of the hydrophilic polymer gel, the lubrication performance is further improved by the water retention function of the recess.
[0027]
Furthermore, when the ratio of the contact area to the lubrication area due to the unevenness formation is about 40 to 60%, the friction reduction effect is further improved by an appropriate balance between the friction area as the convex part and the water retaining part as the concave part. .
Thus, according to the present invention, there is provided a polymer gel lubrication method for improving the lubrication performance of a friction part in water such as in vivo.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a polymer gel lubrication method according to the present invention, and FIG. 1 (A) shows an embodiment of a hydrophilic polymer gel used in the polymer gel lubrication method of the present invention. FIG. 1B is a model diagram of a hydrophobic polymer gel as a comparative example.
FIG. 2 is a schematic view of the friction tester.
FIG. 3 is a time-dependent change diagram of the friction force of the test gel.
FIG. 4 is a graph showing the relationship between the physical properties (degree of polymerization) of the test gel and the friction coefficient.
FIG. 5 is a graph showing the relationship between the moisture content (solution concentration) of the test gel and the friction coefficient.
FIG. 6 is a comparison diagram of the type of slider (relative sliding member that is a friction object) of the test gel and the coefficient of friction for each type of gel.
FIG. 7 is a graph showing the relationship between the storage days of the test gel and the friction coefficient.
FIG. 8 is a graph showing the relationship between the acrylic acid concentration of the test gel and the friction coefficient.
FIG. 9 is a surface shape diagram of the test gel.
FIG. 10 is a table showing the relationship between the surface shape of the test gel and the friction coefficient in air and water.
FIG. 11 is a graph showing the relationship between the contact area ratio of the test gel in air and the friction coefficient.
FIG. 12 is a graph showing the relationship between the contact area ratio of the test gel in water and the friction coefficient.
FIG. 13 is a graph showing the relationship between the depth of the recess of the test gel and the coefficient of friction in the atmosphere.
FIG. 14 is a graph showing the relationship between the depth of the concave portion of the test gel and the coefficient of friction in water.

Claims (3)

水中の相対摺動部材間に潤滑材である高分子ゲルを配設して用いる潤滑方法において、前記高分子ゲルを親水性高分子ゲルとするとともに、該親水性高分子ゲルの官能基を親水基とし、さらに前記親水性高分子ゲルが、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸およびこれらの共重合体から選定され、また前記官能基が、アミド基にカルボキシル基を添加したことを特徴とする高分子ゲル潤滑方法。In a lubricating method in which a polymer gel as a lubricant is disposed between relative sliding members in water, the polymer gel is a hydrophilic polymer gel, and the functional group of the hydrophilic polymer gel is hydrophilic. Further, the hydrophilic polymer gel is selected from polyvinyl alcohol, polyacrylamide, polyacrylic acid and copolymers thereof, and the functional group has a carboxyl group added to an amide group. Polymer gel lubrication method. 前記親水性高分子ゲルの潤滑面に凹凸を形成したことを特徴とする請求項1に記載の高分子ゲル潤滑方法。2. The polymer gel lubrication method according to claim 1, wherein irregularities are formed on the lubrication surface of the hydrophilic polymer gel. 前記凹凸形成による潤滑面積に対する接触面積の比率をほぼ40〜60%前後としたことを特徴とする請求項2に記載の高分子ゲル潤滑方法。The method of lubricating a polymer gel according to claim 2, wherein a ratio of a contact area to a lubrication area by the unevenness formation is approximately 40 to 60%.
JP2001373894A 2001-12-07 2001-12-07 Polymer gel lubrication method Expired - Fee Related JP3936180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373894A JP3936180B2 (en) 2001-12-07 2001-12-07 Polymer gel lubrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373894A JP3936180B2 (en) 2001-12-07 2001-12-07 Polymer gel lubrication method

Publications (2)

Publication Number Publication Date
JP2003171686A JP2003171686A (en) 2003-06-20
JP3936180B2 true JP3936180B2 (en) 2007-06-27

Family

ID=19182537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373894A Expired - Fee Related JP3936180B2 (en) 2001-12-07 2001-12-07 Polymer gel lubrication method

Country Status (1)

Country Link
JP (1) JP3936180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877748A (en) * 2014-02-27 2015-09-02 中国科学院兰州化学物理研究所 Lubricating jelly composition and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622019B (en) * 2007-02-28 2015-01-07 帝斯曼知识产权资产管理有限公司 Hydrophilic coating
JP5324070B2 (en) 2007-08-27 2013-10-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer gel structure and method for producing the same
US10293079B2 (en) * 2014-05-05 2019-05-21 Sealantis Ltd. Biological adhesives and sealants and methods of using the same
JP6856019B2 (en) * 2016-02-22 2021-04-07 東レ株式会社 Ocular lens and its manufacturing method
EP3395376A4 (en) 2016-02-22 2020-01-01 Toray Industries, Inc. Device and production method for same
JP6930718B2 (en) * 2017-02-09 2021-09-01 国立大学法人山形大学 A method for producing a high-strength gel having a low-friction surface
WO2019031477A1 (en) 2017-08-09 2019-02-14 東レ株式会社 Medical device and method for manufacturing same
CN107670104B (en) * 2017-11-21 2020-07-03 吉林大学 Preparation method of self-lubricating bionic articular cartilage with shear force response

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH611150A5 (en) * 1975-04-18 1979-05-31 Sulzer Ag
JPS61247448A (en) * 1985-04-25 1986-11-04 日石三菱株式会社 Production of artificial joint
JP2858141B2 (en) * 1989-10-27 1999-02-17 京セラ株式会社 Artificial cartilage
JP3502641B2 (en) * 1992-02-26 2004-03-02 京セラ株式会社 Artificial joint
JPH07299086A (en) * 1994-05-09 1995-11-14 Katsuzo Okada Permanent lubricating method for artificial joint, and artificial joint
JP3522839B2 (en) * 1994-07-15 2004-04-26 テルモ株式会社 Medical device having surface lubricity when wet and method for producing the same
US5509899A (en) * 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
JP3492857B2 (en) * 1996-07-30 2004-02-03 京セラ株式会社 Method for improving wear resistance of polyvinyl alcohol hydrogel
JP3649578B2 (en) * 1998-03-31 2005-05-18 住友ベークライト株式会社 Endoscopic hydrophilic tube
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104877748A (en) * 2014-02-27 2015-09-02 中国科学院兰州化学物理研究所 Lubricating jelly composition and preparation method thereof
CN104877748B (en) * 2014-02-27 2017-10-17 中国科学院兰州化学物理研究所 A kind of lubricationg jelly composition and preparation method thereof

Also Published As

Publication number Publication date
JP2003171686A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
JP3936180B2 (en) Polymer gel lubrication method
US7988992B2 (en) Superporous hydrogels for heavy-duty applications
CA1081891A (en) Materials for self-reinforcing hydrogels
JP5324070B2 (en) Polymer gel structure and method for producing the same
US7857447B2 (en) Interpenetrating polymer network hydrogel contact lenses
US4267295A (en) Polymeric compositions and hydrogels formed therefrom
US4379864A (en) Polymeric compositions and hydrogels formed therefrom
JP5059407B2 (en) Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
WO2002015911A1 (en) Lubricating agent and insertion aid solution for contact lens
JP2013517353A (en) Nanocomposite hydrogels and methods for their preparation for industrial and medical applications
Tomić et al. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly (alkylene glycol) s and itaconic acid
US20120150006A1 (en) Stimuli responsive membrane
EP0253515A2 (en) Fluorine containing soft contact lens hydrogels
ES2138385T3 (en) ABSORBENT LIQUID POLYMERS, PROCEDURE FOR ITS PREPARATION AND FOR ITS USE.
JP2007504857A (en) Lubricant coating for medical devices
Shi et al. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state
WO2008131410A1 (en) Pva hydrogels having improved creep resistance, lubricity, and toughness
JP6961587B2 (en) Slippery imparting agent and slippery imparting method
JPWO2017146102A1 (en) Device and manufacturing method thereof
Bonina et al. pH-sensitive hydrogels composed of chitosan and polyacrylamide–preparation and properties
JP2006213868A (en) Gel and its manufacturing method
JP5048183B2 (en) Low friction hydrogel having linear polymer and method for producing the same
JP7025749B2 (en) Shape memory hydrogel
US20110256201A1 (en) Hydrolyzed hydrogels
JP2017155171A (en) Composite sheet for water absorption containing bacterial cellulose and hydrophilic polymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees