JP2007504857A - Lubricant coating for medical devices - Google Patents

Lubricant coating for medical devices Download PDF

Info

Publication number
JP2007504857A
JP2007504857A JP2006525380A JP2006525380A JP2007504857A JP 2007504857 A JP2007504857 A JP 2007504857A JP 2006525380 A JP2006525380 A JP 2006525380A JP 2006525380 A JP2006525380 A JP 2006525380A JP 2007504857 A JP2007504857 A JP 2007504857A
Authority
JP
Japan
Prior art keywords
polymer
lubricious
vinyl
coating
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006525380A
Other languages
Japanese (ja)
Other versions
JP4920414B2 (en
Inventor
カンガス、スティーブ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Limited
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Publication of JP2007504857A publication Critical patent/JP2007504857A/en
Application granted granted Critical
Publication of JP4920414B2 publication Critical patent/JP4920414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/145Hydrogels or hydrocolloids

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Paints Or Removers (AREA)

Abstract

An ultraviolet curable lubricious coating including at least one lubricious polymer and at least one oxygen-insensitive crosslinkable polymer, methods of making and using the same, and articles coated therewith.

Description

発明の分野
本発明は、一般に、ポリマー基材および金属基材用の合成ポリマー系コーティング組成物の分野、該組成物の作製方法および使用方法、ならびに該組成物でコーティングした物品に関する。
The present invention relates generally to the field of synthetic polymer-based coating compositions for polymer and metal substrates, methods of making and using the compositions, and articles coated with the compositions.

水溶性の生体適合性化合物は、これを使用しない場合は(otherwise) 非潤滑性である材料の表面に潤滑性を付与し、身体内に挿入または移植される医療デバイスにおける使用が望ましい。かかる医療デバイスとしては、ステント、ステントグラフト、グラフトまたは大静脈フィルター、バルーンカテーテル、他の膨張可能な医療デバイスなどを送達するために用いられるカテーテルが挙げられ得る。当産業では、シリコーン、グリセリンまたはオリーブ油などの通常使用されている疎水性コーティングに伴う問題を解決するため、親水性潤滑性コーティングが注目されてきた。   Water-soluble biocompatible compounds are desirable for use in medical devices that are otherwise inserted or implanted into the body by imparting lubricity to the surface of materials that are otherwise non-lubricating. Such medical devices may include catheters used to deliver stents, stent grafts, graft or vena cava filters, balloon catheters, other inflatable medical devices, and the like. In the industry, hydrophilic lubricious coatings have attracted attention in order to solve the problems associated with commonly used hydrophobic coatings such as silicone, glycerin or olive oil.

疎水性コーティングは、水性環境に曝露されたとき数珠状になって(bead up) 流出すること、初期潤滑性が急速に失われること、および耐摩耗性に欠けることが知られている。また、残留量のシリコーンは、患者内で組織反応および刺激を引き起こすことが知られている。潤滑性の低下は、患者への挿入中に不快症状をもたらし得、デバイスの挿入または取外す際に摩擦力によって血管および組織を損傷し得る。   Hydrophobic coatings are known to bead up when exposed to an aqueous environment, rapidly lose initial lubricity, and lack wear resistance. Residual amounts of silicone are also known to cause tissue reactions and irritation in patients. The loss of lubricity can cause discomfort during insertion into the patient and can damage blood vessels and tissues due to frictional forces when inserting or removing the device.

親水性コーティングは、体液などの水性環境に曝露されたとき、医療デバイスの表面上に保持することが困難であり得る。広く使われ始めてきた親水性コーティングの特定の種類の1つは、水性環境において膨潤する「ヒドロゲル」であり、「湿った」または含水状態の間も潤滑性を示すことができる。含水時、これらの物質は、体液(唾液、消化液および血液を含む)ならびに生理食塩水溶液および水中で低摩擦力を有する。かかる物質としては、任意選択で、ウレタン結合またはウレイド結合によって結合されるか、またはポリ(メタ)アクリレートポリマーもしくはコポリマーとのインターポリマー化されるポリエチレンオキシド; 無水マレイン酸のコポリマー;(メタ)アクリルアミドのポリマーおよびコポリマー;(メタ)アクリル酸コポリマー;ポリウレタン; ポリ(ビニルピロリドン)およびポリウレタンとのブレンドまたはインターポリマー;多糖類;ならびにその混合物が挙げられる。   Hydrophilic coatings can be difficult to hold on the surface of a medical device when exposed to an aqueous environment such as body fluids. One particular type of hydrophilic coating that has begun to be widely used is a "hydrogel" that swells in an aqueous environment and can exhibit lubricity even during "wet" or wet conditions. When hydrated, these substances have a low frictional force in body fluids (including saliva, digestive fluids and blood) and saline solutions and water. Such materials optionally include polyethylene oxide bonded by urethane bonds or ureido bonds or interpolymerized with poly (meth) acrylate polymers or copolymers; copolymers of maleic anhydride; (meth) acrylamides Polymers and copolymers; (meth) acrylic acid copolymers; polyurethanes; blends or interpolymers with poly (vinyl pyrrolidone) and polyurethanes; polysaccharides; and mixtures thereof.

しかしながら、ヒドロゲル単独では、水性環境に曝露されたとき、これらが適用された表面からなお移動し得る。改善された表面保持を得るための方法の1つは、1種類の材料が架橋性であるポリマーネットワークの使用によるもの、または1種類より多い材料が架橋性である相互侵入ネットワークの使用によるものである。   However, hydrogels alone can still migrate from the surface to which they are applied when exposed to an aqueous environment. One method for obtaining improved surface retention is through the use of a polymer network in which one type of material is crosslinkable or by the use of an interpenetrating network in which more than one type of material is crosslinkable. is there.

架橋性材料は、典型的には、紫外線(UV)放射を加えることにより硬化する。UV硬化システムは、典型的には、フリーラジカル機構またはカチオン系機構を含む2つの機構の一方により機能する。フリーラジカル機構により硬化する材料の種類の一例は、アクリレート官能性架橋剤である。これらのアクリレートは、酸素の存在下で安定なラジカルを形成し得るため、酸素に対して感応性であり、したがって、不活性ガスパージを必要とする。   Crosslinkable materials are typically cured by the application of ultraviolet (UV) radiation. UV curing systems typically function by one of two mechanisms including a free radical mechanism or a cationic mechanism. One example of a type of material that cures by a free radical mechanism is an acrylate functional crosslinker. These acrylates are sensitive to oxygen because they can form stable radicals in the presence of oxygen and therefore require an inert gas purge.

カチオン系硬化機構は、典型的には、化学線UV放射に曝露されると崩壊して強酸を形成するスルホニウム塩またはヨードニウム塩の使用を伴う。この種の架橋性材料は、塩基
性種の存在および湿度に対して感応性である。
Cationic curing mechanisms typically involve the use of sulfonium or iodonium salts that disintegrate to form strong acids when exposed to actinic UV radiation. This type of crosslinkable material is sensitive to the presence of basic species and humidity.

当該技術分野において、酸素の存在または湿気に対して感応性でない潤滑性コーティングを形成するのに有用な、改善された架橋性材料に対する必要性がなお存在する。   There remains a need in the art for improved crosslinkable materials useful for forming lubricious coatings that are not sensitive to the presence of oxygen or moisture.

広義において、本発明は、少なくとも1種類の成分が酸素非感応性架橋性材料であり、少なくとも1種類の第2の成分が存在し、潤滑性を与える潤滑性コーティングに関する。該潤滑性コーティングは、医療デバイスまたはその構成要素の表面において用いられ得る。   In a broad sense, the present invention relates to a lubricious coating in which at least one component is an oxygen insensitive crosslinkable material and at least one second component is present to provide lubricity. The lubricious coating can be used on the surface of a medical device or component thereof.

第2の成分は、潤滑性親水性ポリマー、潤滑性疎水性ポリマーまたはその混合物を含む任意の潤滑性ポリマー系材料であり得る。また、架橋性材料も用いられ得る。   The second component can be any lubricious polymer-based material including a lubricious hydrophilic polymer, a lubricious hydrophobic polymer or mixtures thereof. Crosslinkable materials can also be used.

一態様において、架橋性材料は、潤滑性非架橋ヒドロゲルを用いてポリマーネットワークを形成するために用いられる。
別の態様において、酸素非感応性架橋性成分を、少なくとも1種類の第2の架橋性成分と組み合わせて用いてもよく、その結果、「半相互侵入ポリマーネットワーク」となる。
In one embodiment, the crosslinkable material is used to form a polymer network using a lubricious non-crosslinked hydrogel.
In another embodiment, the oxygen insensitive crosslinkable component may be used in combination with at least one second crosslinkable component, resulting in a “semi-interpenetrating polymer network”.

一態様において、架橋性ポリマーは、下記一般化学構造:   In one embodiment, the crosslinkable polymer has the following general chemical structure:

Figure 2007504857
Figure 2007504857

(式中、mおよびnは正の数であり、Xはアニオンである)
を有する、スチリルピリジニウム基で修飾されたポリビニルアルコールである。
スチリルピリジニウム修飾PVAを使用することに対する利点の1つは、スチリルピリジニウム基自体が、架橋を開始する発色団または光吸収基であるということであり、したがって、従来のUV硬化性材料とは異なり、光開始剤を必要としない。
(Where m and n are positive numbers and X is an anion)
A polyvinyl alcohol modified with a styrylpyridinium group.
One advantage to using styrylpyridinium modified PVA is that the styrylpyridinium group itself is a chromophore or light absorbing group that initiates crosslinking, and thus, unlike conventional UV curable materials, No photoinitiator is required.

一態様において、スチリルピリジニウム修飾ポリビニルアルコール(PVA)は、ポリエチレンオキシドヒドロゲルを用いてポリマーネットワークを形成するために用いられる
In one embodiment, styrylpyridinium modified polyvinyl alcohol (PVA) is used to form a polymer network using polyethylene oxide hydrogel.

別の態様において、スチリルピリジニウム修飾PVAは、ポリウレタンまたはポリウレタンのブレンドを用いてポリマーネットワークを形成するために用いられる。
潤滑性コーティングは、任意のポリマー表面または金属表面において、かかる表面に潤滑性を与えるために用いられ得る。潤滑性コーティングは、医療デバイスおよびその構成要素(例えば、カテーテル軸、ガイドワイヤー、ガイドワイヤールーメン、拡張バルーンなど)において特に有用なことがわかった。潤滑性コーティングは、かかる医療デバイスおよびその構成要素の内側表面および外側表面の両方において用いられ得る。
In another embodiment, styrylpyridinium modified PVA is used to form a polymer network using polyurethane or a blend of polyurethanes.
Lubricious coatings can be used on any polymer or metal surface to impart lubricity to such surfaces. Lubricious coatings have been found to be particularly useful in medical devices and components thereof (eg, catheter shafts, guidewires, guidewire lumens, dilatation balloons, etc.). Lubricious coatings can be used on both the inner and outer surfaces of such medical devices and components thereof.

医療デバイスの表面は、基材に対するコーティングの付着性を改善するため、例えば、ヘリウムまたはアルゴンなどで最初にプラズマ処理してもよい。
本発明は、さらに、医療デバイスまたはその構成要素への潤滑性コーティングの適用方法に関する。かかる方法は、該コーティングをデバイスまたはその構成要素に塗布する工程、デバイスのコートされた表面に対してUV放射を施すことによって、および架橋性材料(1種または複数)をデバイスの表面上で重合する工程を含む。コーティングの適用は、溶媒から、噴霧、はけ塗り(brushing)、塗装などによってなされ得る。有用な溶媒としては、水、低級アルコール(例えば、イソプロパノール、メタノールなど)が挙げられるが、これらに限定されない。押出し、共押出しおよび他の応用技術もまた用いられ得る。かかる技術は、溶媒の使用を必要としない。
The surface of the medical device may be first plasma treated with, for example, helium or argon to improve the adhesion of the coating to the substrate.
The invention further relates to a method of applying a lubricious coating to a medical device or component thereof. Such methods include the steps of applying the coating to the device or its components, applying UV radiation to the coated surface of the device, and polymerizing the crosslinkable material (s) on the surface of the device. The process of carrying out is included. Application of the coating can be done from solvent, by spraying, brushing, painting and the like. Useful solvents include, but are not limited to water, lower alcohols (eg, isopropanol, methanol, etc.). Extrusion, coextrusion and other application techniques can also be used. Such a technique does not require the use of a solvent.

また、潤滑性ポリマーが架橋性材料である場合、硬化が紫外線放射などの放射を付与することによるものである場合は、光開始剤もまた、コーティング混合物に有益に添加され得る。   Also, if the lubricious polymer is a crosslinkable material, a photoinitiator can also be beneficially added to the coating mixture if curing is by imparting radiation, such as ultraviolet radiation.

別の態様において、本発明は、薬物送達系を含み、コーティングが生体内に挿入され得るデバイスに固定され、かつコーティングが酸素非感応性架橋性材料、非架橋ヒドロゲルおよび治療用薬物を含む。治療用薬物は、コーティング内に取り込まれていてもよく、コーティングの含水時に該コーティングから浸出可能なものであってもよい。   In another aspect, the invention includes a drug delivery system, the coating is secured to a device that can be inserted into a living body, and the coating includes an oxygen insensitive crosslinkable material, a noncrosslinked hydrogel, and a therapeutic drug. The therapeutic drug may be incorporated within the coating or may be leached from the coating when the coating is wet.

本発明は、多くの異なる形態で具体化し得るが、本発明の具体的な実施形態を本明細書に詳細に記載する。本記載は、本発明の原理の例示であって、本発明を、例示した特定の実施形態に限定することを意図しない。   While the present invention may be embodied in many different forms, specific embodiments of the invention are described in detail herein. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.

潤滑性コーティングは、少なくとも1種類の酸素非感応性架橋性ポリマーおよび少なくとも1種類の潤滑性ポリマーを含む。
スチリルピリジニウム基を有する酸素非感応性架橋性ポリマーを用いることが有益であることがわかった。スチリルピリジニウム基は、例えば縮合反応によってポリマー鎖の主鎖に付加し得る。一実施形態において、スチリルピリジニウム基は、縮合反応によって、隣接ヒドロキシル基を有するポリマー鎖の主鎖に付加され、したがってアセタール結合を形成する。
The lubricious coating comprises at least one oxygen insensitive crosslinkable polymer and at least one lubricious polymer.
It has been found beneficial to use an oxygen insensitive crosslinkable polymer having styrylpyridinium groups. The styrylpyridinium group can be added to the main chain of the polymer chain, for example, by a condensation reaction. In one embodiment, the styrylpyridinium group is added to the main chain of the polymer chain having an adjacent hydroxyl group by a condensation reaction, thus forming an acetal bond.

有用な酸素非感応性架橋性ポリマーのより具体的な例は、スチリルピリジニウム基をポリビニルアルコール(PVA)に、縮合反応によって添加してアセタール結合を形成させたものである。この化合物は、下記一般構造:   A more specific example of a useful oxygen-insensitive crosslinkable polymer is one in which styrylpyridinium groups are added to polyvinyl alcohol (PVA) by a condensation reaction to form an acetal bond. This compound has the following general structure:

Figure 2007504857
Figure 2007504857

(式中、mおよびnは正の数であり、Xはアニオンである)
を有する。
Xは、硫酸塩(SO )、炭酸塩(CO )、ハロゲン化物イオン(Cl、Brなど)、硫酸水素塩(HSO )、アルキル硫酸塩(CHSO など)、リン酸イオン、p−トルエンスルホン酸イオン、ナフタレンスルホン酸塩、メチル硫酸イオン、エチル硫酸イオン、亜リン塩、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、塩化物/塩化亜鉛(chloride-zinc chloride)、トリフルオロ酢酸、シュウ酸塩、1〜8個の炭素原子を有するアルキルスルホン酸塩、トリフルオロメタンスルホン酸塩、6〜24個の炭素原子を有するアリールスルホン酸塩および2−ヒドロキシ−4−メトキシベンゾフェノン(methoxybenzopbenone) −5−スルホン酸塩などのスルホン酸塩などであり得る。
(Where m and n are positive numbers and X is an anion)
Have
X is sulfate (SO 3 ), carbonate (CO 2 ), halide ion (Cl , Br etc.), hydrogen sulfate (HSO 3 ), alkyl sulfate (CH 3 SO 3 etc.) ), Phosphate ion, p-toluenesulfonate ion, naphthalenesulfonate, methyl sulfate ion, ethyl sulfate ion, phosphite, tetrafluoroborate, hexafluorophosphate, chloride / zinc chloride (chloride- zinc chloride), trifluoroacetic acid, oxalate, alkyl sulfonate with 1-8 carbon atoms, trifluoromethanesulfonate, aryl sulfonate with 6-24 carbon atoms and 2-hydroxy- It may be a sulfonate such as 4-methoxybenzopbenone-5-sulfonate.

スチリルピリジニウム官能基は、付加環化反応により硬化し、したがって、この反応は、従来のフリーラジカルプロセスでもカチオン系プロセスでも進行しないが、本質的にはラジカル系であると考えられる。さらにまた、スチリルピリジニウム基自体が、架橋を開始する発色団または光吸収基であり、したがって、従来のUV硬化性材料とは異なり、光開始剤を必要としない。ピーク吸収は、約360nmに生じ、この吸収は、架橋を誘導するために当該産業設備においてしばしば使用される水銀灯に理想的に適している。   The styrylpyridinium functional group is cured by a cycloaddition reaction, and thus this reaction does not proceed with either conventional free radical processes or cationic processes, but is considered radical in nature. Furthermore, the styrylpyridinium group itself is a chromophore or light-absorbing group that initiates cross-linking and therefore does not require a photoinitiator, unlike conventional UV curable materials. The peak absorption occurs at about 360 nm, and this absorption is ideally suited for mercury lamps that are often used in such industrial facilities to induce crosslinking.

スチリルピリジニウム基で置換されたポリビニルアルコールは、水溶性であり、さらに溶媒を必要とせず、該化合物を潤滑性コーティングにおいて用いると、さらに有益である。   Polyvinyl alcohols substituted with styrylpyridinium groups are water-soluble and require no additional solvent, and it is further beneficial when the compounds are used in lubricious coatings.

本発明の酸素非感応性架橋性ポリマーにおいて使用され得る他の感光性基としては、例えば、スチリルキノリニウム基およびスチリルベンゾチアゾリウム基が挙げられる。かかる基で修飾されたPVAポリマーは、例えば、米国特許第5021505号(これは、参照によりその全体が本明細書に援用される)に記載されている。   Other photosensitive groups that can be used in the oxygen insensitive crosslinkable polymers of the present invention include, for example, styrylquinolinium groups and styrylbenzothiazolium groups. PVA polymers modified with such groups are described, for example, in US Pat. No. 5,021,505, which is hereby incorporated by reference in its entirety.

スチリルピリジニウム基が付加され得る他のポリマー系材料としては、例えば、ポリビニルピロリドン、または例えばポリアクリル酸が挙げられる。
スチリルピリジニウム修飾PVAにUVエネルギーを加えると、架橋反応がスチリルピリジニウム基同士間で起こり、下記の機構:
Other polymeric materials to which styrylpyridinium groups can be added include, for example, polyvinylpyrrolidone or, for example, polyacrylic acid.
When UV energy is applied to a styrylpyridinium modified PVA, a crosslinking reaction occurs between styrylpyridinium groups and the following mechanism:

Figure 2007504857
Figure 2007504857

にしたがって進行すると考えられる。
この反応は、従来のフリーラジカルまたはカチオン系機構によってではなく、2+2付加環化により進行する。したがって、この反応は、フリーラジカル機構(例えば、アクリレートの場合)に典型的であるような酸素に対する感応性はなく、カチオン系機構に典型的であるような塩基または湿気に対する感応性もない。スチリルピリジニウム基は、コーティング/乾燥プロセス中などの薄膜形成中に示されるように配向(orient)することが知られている。これらの基がかかる様式で配向するため、ある1つのスチリルピリジニウム基は、反応相手の別のスチリルピリジニウム基を見つけるためにコーティング媒体中に拡散する必要がない。したがって、これらの基は、UVエネルギーを加える前であっても反応できる状態にある。硬化速度は急速であり、ほんの30秒以内で起こり得る。また、温度に対して非感応性を示し、−80℃もの低い温度で急速に硬化する。急速硬化速度は、通常用いられるフリーラジカルポリマーが、拡散制御され、硬化速度が低い傾向にあるため、これらよりも有益である。
It is thought that it progresses according to.
This reaction proceeds by 2 + 2 cycloaddition rather than by conventional free radical or cationic mechanisms. Thus, this reaction is not sensitive to oxygen as is typical of free radical mechanisms (eg, in the case of acrylates) and is not sensitive to bases or moisture as is typical of cationic mechanisms. Styrylpyridinium groups are known to orient as shown during thin film formation, such as during a coating / drying process. Because these groups are oriented in such a manner, one styrylpyridinium group need not diffuse into the coating medium to find another styrylpyridinium group with which to react. These groups are therefore ready to react even before the UV energy is applied. The cure rate is rapid and can occur in as little as 30 seconds. It is insensitive to temperature and cures rapidly at temperatures as low as -80 ° C. Rapid cure rates are more beneficial than commonly used free radical polymers because they are diffusion controlled and tend to have lower cure rates.

これらの架橋構造は、より移動性の高い他の潤滑性ポリマー系材料を、その架橋構造内に取り込むと考えられ、したがって潤滑性材料を、潤滑性コーティングが適用された表面から容易に移動しないように固定する。   These cross-linked structures are believed to incorporate other more mobile polymer materials that are more mobile into the cross-linked structure, so that the lubricious material is not easily transferred from the surface to which the lubricious coating has been applied. Secure to.

潤滑性ポリマー系材料は、疎水性、親水性またはその混合物であってもよく、また、それ自体が架橋性材料であってもよい。非架橋性の疎水性または親水性材料により、酸素非感応性架橋性化合物は、同一出願人による米国特許第5693034号(これは、参照によりその全体が本明細書に援用される)に記載されたものなどのポリマーネットワークを形成し得る。潤滑性ポリマー系材料もまた架橋性である後者の場合では、相互侵入ネットワークまたはIPNが酸素非感応性架橋性ポリマーとともに形成され得る。   The lubricious polymer-based material may be hydrophobic, hydrophilic or a mixture thereof, and may itself be a crosslinkable material. Due to non-crosslinkable hydrophobic or hydrophilic materials, oxygen insensitive crosslinkable compounds are described in commonly assigned US Pat. No. 5,693,034, which is hereby incorporated by reference in its entirety. Polymer networks such as In the latter case, where the lubricious polymer-based material is also crosslinkable, an interpenetrating network or IPN can be formed with the oxygen insensitive crosslinkable polymer.

有用な親水性ポリマーの例としては、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリウレタン、ポリエチレンオキシド(PEO)、ポリ(N−イソポリアクリルアミド)、またはヒドロキシル置換低級アルキルアクリレート、メタクリレート、アクリルアミド、メタクリルアミド、低級アリルアクリルアミドおよびメタクリルアミド、ヒドロキシル置換低級アルキルビニルエーテル、ビニルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、N−ビニルピロール、N−ビニル−2−ピロリドン、2−ビニルオキサゾリン、2−ビニル4,4' −ジアルキル
オキサゾリン−5−オン、2−および4−イニルプルイジン、合計3〜5個の炭素原子を有するビニル系不飽和カルボン酸、アミノ低級アルキル(この場合、用語「アミノ」は第四級アンモニウムも含む)、モノ低級アルキルアミノ低級アルキルおよびジ低級アルキルアミノ低級アルキルアクリレートおよびメタクリレート、アリルアルコールなどのポリマーが挙げられるが、これらに限定されない。かかるポリマーは、水の存在下で膨潤し、滑り易くなることが知られており、しばしば、当産業において「ヒドロゲル」とよばれる。したがって、これらのポリマーは典型的には、湿ったとき、より大きな潤滑性を示す。このタイプの潤滑性ヒドロゲルは、同一出願人による米国特許第5693034号(これは、参照によりその全体が本明細書に援用される)に記載されている。
Examples of useful hydrophilic polymers include poly (acrylic acid), poly (methacrylic acid), polyurethane, polyethylene oxide (PEO), poly (N-isopolyacrylamide), or hydroxyl-substituted lower alkyl acrylate, methacrylate, acrylamide, Methacrylamide, lower allyl acrylamide and methacrylamide, hydroxyl substituted lower alkyl vinyl ether, sodium vinyl sulfonate, sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, N-vinyl pyrrole, N-vinyl-2-pyrrolidone, 2-vinyloxazoline, 2-vinyl4,4'-dialkyloxazolin-5-one, 2- and 4-ynylpluidine, vinyl unsaturated carboxylic acids having a total of 3-5 carbon atoms , Amino lower alkyl (in this case, the term “amino” also includes quaternary ammonium), mono-lower alkylamino lower alkyl and di-lower alkylamino lower alkyl acrylates and methacrylates, and polymers such as allyl alcohol. It is not limited. Such polymers are known to swell and become slippery in the presence of water and are often referred to in the industry as “hydrogels”. Thus, these polymers typically exhibit greater lubricity when wet. This type of lubricious hydrogel is described in commonly assigned US Pat. No. 5,693,034, which is hereby incorporated by reference in its entirety.

一実施形態において、ポリエチレンオキシドが、酸素非感応性架橋性材料と組み合わせて用いられる。
別の実施形態では、ポリウレタンまたはポリウレタンのブレンドが、酸素非感応性架橋性材料と組み合わせて用いられる。使用され得るポリウレタンの例としては、TECOGEL(登録商標)500、TECOGEL(登録商標)2000(ともに、サーメディックス(Thermedics, Inc.)から入手可能)が挙げられるが、これらに限定されない。TECOGEL(登録商標)ポリウレタンは、どのような場合も(anywhere)その重量の約5倍(TG−500)〜約20倍(TG−2000)の水を吸収することができる脂肪族ポリエーテルポリウレタンである。本発明による架橋性材料と組み合わせて使用すると、半相互侵入ポリマーネットワーク(半IPN)がもたらされる。架橋性材料は、自身と好適に架橋するが、ポリウレタン(1種または複数種)とは架橋しない。
In one embodiment, polyethylene oxide is used in combination with an oxygen insensitive crosslinkable material.
In another embodiment, a polyurethane or blend of polyurethanes is used in combination with an oxygen insensitive crosslinkable material. Examples of polyurethanes that may be used include, but are not limited to, TECOGEL® 500, TECOGEL® 2000 (both available from Thermedics, Inc.). TECOGEL® polyurethane is an aliphatic polyether polyurethane that can absorb water anywhere from about 5 times its weight (TG-500) to about 20 times (TG-2000). is there. When used in combination with a crosslinkable material according to the present invention, a semi-interpenetrating polymer network (semi-IPN) is provided. The crosslinkable material suitably crosslinks with itself, but does not crosslink with the polyurethane (s).

さらに別の実施形態において、上記のタイプのポリウレタンを、あまり多くの水を吸収せず、したがって、あまり膨潤しないポリウレタンとブレンドする。TECOGEL(登録商標)ポリウレタンは、自身の重量に対して500%〜2000%の範囲であるが、どのような場合も0%〜上記のような約2000%までの水吸収を示すポリウレタンが利用可能である。かかるブレンドを用い、潤滑性の量、またはどれだけ摩擦力を低減するかを制御することができる。   In yet another embodiment, a polyurethane of the type described above is blended with a polyurethane that does not absorb too much water and therefore does not swell much. TECOGEL® polyurethane ranges from 500% to 2000% of its own weight, but in any case, polyurethanes with water absorption from 0% to about 2000% as described above are available It is. Such blends can be used to control the amount of lubricity or how much the frictional force is reduced.

また、潤滑性疎水性材料を、本発明において用いてもよい。疎水性潤滑性材料の使用は、満足な量の混合を達成するため、潤滑性材料と酸素非感応性架橋性ポリマー間にある程度の相溶性が存在することを必要とし得る。有用な疎水性ポリマーの例としては、例えば、シリコーン、グリセリンまたはオリーブ油が挙げられるが、これらに限定されない。低分子量疎水性材料は、酸素非感応性架橋性ポリマーの架橋構造内に、より容易に取り込まれ得る。   Lubricating hydrophobic materials may also be used in the present invention. The use of a hydrophobic lubricious material may require that there is some degree of compatibility between the lubricious material and the oxygen insensitive crosslinkable polymer in order to achieve a satisfactory amount of mixing. Examples of useful hydrophobic polymers include, but are not limited to, for example, silicone, glycerin or olive oil. Low molecular weight hydrophobic materials can be more easily incorporated into the cross-linked structure of oxygen insensitive crosslinkable polymers.

別の態様において、潤滑性ポリマーもまた架橋性であってもよい。架橋性ポリマーの組み合わせにより、それ自体が架橋性である第2の材料を用いた場合は、当該技術分野において相互侵入ネットワークまたはIPNとして知られるものが有益に形成され得る。IPNは、これを使用しない場合は2種の異なる材料(あるものは疎水性であり、あるものは親水性であるなど)の良好な混合(intermingling) を得るために有益に用いられる。また、かかる構造を、おそらく共有結合によるポリマー表面および金属表面上でのより良好な保持を得るために用いることができると考えられる。   In another embodiment, the lubricious polymer may also be crosslinkable. A combination of crosslinkable polymers can beneficially form what is known in the art as an interpenetrating network or IPN when using a second material that is itself crosslinkable. IPN is beneficially used to obtain good intermingling of two different materials (some are hydrophobic, some are hydrophilic, etc.) if not used. It is also believed that such a structure can be used to obtain better retention on polymer and metal surfaces, possibly by covalent bonds.

後者の場合、第2の架橋性材料も用いるとき、その第2の架橋性材料の硬化機構がUVエネルギーを加えることによってなされるものであるならば、光開始剤を任意選択で添加してもよい。多くのUV硬化システムとは異なり、本発明のスチリルピリジニウム修飾ポリマーは、スチリルピリジニウム基それ自体が、UV範囲を吸収する発色団であるため、付加的な光開始剤を必要としない。   In the latter case, when a second crosslinkable material is also used, a photoinitiator may optionally be added if the curing mechanism of the second crosslinkable material is by applying UV energy. Good. Unlike many UV curing systems, the styrylpyridinium modified polymers of the present invention do not require additional photoinitiators because the styrylpyridinium group itself is a chromophore that absorbs the UV range.

本明細書に記載していない他の材料が、本発明にしたがって有益に用いられ得る。上記列挙したものは、網羅的ではなく、例示の目的のみを意図する。本発明によるポリマーネットワークまたはIPN内に組み込まれ得るポリマー系材料は限りなく多種多様にある。   Other materials not described herein can be beneficially used in accordance with the present invention. The above list is not exhaustive and is intended for illustrative purposes only. There is an unlimited variety of polymer-based materials that can be incorporated into a polymer network or IPN according to the present invention.

他の材料、例えば、酸化防止剤、蛍光剤、可塑剤、UV安定剤などもまた混合物に用いられ得る。かかる材料は、当業者にとって既知である。
本発明による潤滑性コーティングは、種々の表面(ポリマー系、金属、木材などを含む)において有用なことがわかった。これらのコーティングは、医療デバイスおよびその構成要素(例えば、カテーテル軸、ガイドワイヤー、拡張バルーンなど)において特に有用である。
Other materials, such as antioxidants, fluorescent agents, plasticizers, UV stabilizers, etc. can also be used in the mixture. Such materials are known to those skilled in the art.
The lubricious coatings according to the present invention have been found useful on a variety of surfaces (including polymer systems, metals, wood, etc.). These coatings are particularly useful in medical devices and their components (eg, catheter shafts, guidewires, dilatation balloons, etc.).

一部のある表面は、潤滑性コーティングの適用前に、最初に下塗り処理を必要とし得る。例えば、ポリエチレンまたはポリプロピレンなどのポリオレフィン表面は、グロー放電プラズマ処理を必要とし得る。また、ジ芳香族ケトンおよびポリエチレンテレフタレートを含むポリイミドなどの他のポリマー基材は、プラズマ処理しない場合であっても、好適な基材であることがわかった。ポリウレタンおよびナイロンは、ビニル官能性イソシアネートにより下塗り処理し得る。ステンレス鋼および金などの金属は、最良の接着のために、最初にビニルまたはアクリレート官能性シランなどの下塗剤で処理し得る。当業者は、かかる表面処理を承知している。   Some surfaces may require an initial primer treatment prior to application of the lubricious coating. For example, polyolefin surfaces such as polyethylene or polypropylene may require glow discharge plasma treatment. Moreover, it turned out that other polymer base materials, such as a polyimide containing a diaromatic ketone and polyethylene terephthalate, are suitable base materials, even when it is not a plasma process. Polyurethanes and nylons can be primed with vinyl functional isocyanates. Metals such as stainless steel and gold can be first treated with a primer such as a vinyl or acrylate functional silane for best adhesion. Those skilled in the art are aware of such surface treatments.

該コーティングは、内側表面および外側表面の両方において有用なことがわかった。潤滑性コーティングは、例えば、患者の脈管構造を通して医療デバイスを送達することを容易にし得る。潤滑性コーティングをカテーテル軸の内側ルーメンの内側表面に適用することは、例えば、ガイドワイヤーの使用中のワイヤーの移動摩擦を低減し得る。   The coating has been found useful on both the inner and outer surfaces. The lubricious coating may facilitate delivery of the medical device through the patient's vasculature, for example. Applying a lubricious coating to the inner surface of the inner lumen of the catheter shaft may, for example, reduce wire friction during use of the guidewire.

かかる潤滑性ヒドロゲルには数多くの他の用途があり、これは当業者にとって既知である。
コーティングは、内側表面および外側表面の両方に、浸漬、噴霧、はけ塗り、共押出しなどによって塗布され得る。
Such lubricious hydrogels have numerous other uses, which are known to those skilled in the art.
The coating can be applied to both the inner and outer surfaces by dipping, spraying, brushing, coextrusion, and the like.

コーティングは、所望の表面に、まず潤滑性ポリマーおよび酸素非感応性架橋性材料を溶媒または補助溶媒混合物中で混合することによって塗布され得る。有用な溶媒としては、例えば、イソプロピルアルコールなどの低級アルコール、水などが挙げられる。溶媒は、架橋性材料および潤滑性ポリマーの溶解度に基づいて選択され得る。当業者は、かかる溶媒選択に精通している。   The coating can be applied to the desired surface by first mixing the lubricious polymer and the oxygen insensitive crosslinkable material in a solvent or cosolvent mixture. Examples of useful solvents include lower alcohols such as isopropyl alcohol and water. The solvent can be selected based on the solubility of the crosslinkable material and the lubricious polymer. Those skilled in the art are familiar with such solvent selection.

所望の表面がコートされたら、架橋性材料を、UV光を短時間施すことによって硬化し得る。UV光が化合物の重合および架橋を誘発する。好ましくは、混合物を高輝度紫外線ランプを用いて硬化する。表面を硬化させるのに必要とされる正確な時間の量は、エネルギー源、組成物中の構成成分の相対量、所望されるコーティング厚、および他の因子に依存する。しかしながら、初期硬化は典型的にはかなり急速であり、ほんの30秒以内で起こり得る。しかしながら、UV光を除いた後、ある程度硬化を継続させ得ることは可能である。   Once the desired surface is coated, the crosslinkable material can be cured by applying UV light for a short time. UV light induces polymerization and crosslinking of the compound. Preferably, the mixture is cured using a high brightness ultraviolet lamp. The exact amount of time required to cure the surface depends on the energy source, the relative amounts of components in the composition, the desired coating thickness, and other factors. However, initial curing is typically fairly rapid and can occur within only 30 seconds. However, it is possible to continue curing to some extent after removing the UV light.

酸素非感応性架橋性ポリマーを使用することは、現在使用されている従来からの他の架橋性ポリマーと比べて多くの利点を提示する。第1に、上記のように、酸素の存在に対して非感応性であるため、不活性ガスによるパージが必要とされない。第2の利点は、ポリマーを架橋するために光開始剤が必要とされないことである。   The use of oxygen insensitive crosslinkable polymers presents many advantages over other conventional crosslinkable polymers currently in use. First, as described above, since it is insensitive to the presence of oxygen, purging with an inert gas is not required. A second advantage is that no photoinitiator is required to crosslink the polymer.

第3に、酸素非感応性架橋性材料を非架橋性ヒドロゲルと組み合わせて用いた場合、コ
ーティングは、湿ったとき高い潤滑性を示し得る。しかしながら、乾燥状態ではコーティングは、事実上、基材とは区別がつかない。このことは、乾燥状態の場合であっても粘着性のままである一部の潤滑性コーティングと比べて利点を提示する。
Third, when an oxygen insensitive crosslinkable material is used in combination with a noncrosslinkable hydrogel, the coating can exhibit high lubricity when wet. However, in the dry state, the coating is virtually indistinguishable from the substrate. This presents an advantage over some lubricious coatings that remain tacky even in the dry state.

第4に、本発明の潤滑性コーティングは、架橋反応による強い付着力を伴って種々の異なる基材に適用することができる。したがって、ポリマーネットワークまたはIPNは、選択した潤滑性ポリマーに依存するが、潤滑性であると同時に付着力のある耐久性のコーティングを提供する。激しい摩擦および長期含水によってコーティングの潤滑性は低減されず、コーティングの強い付着力が示される。   Fourth, the lubricious coating of the present invention can be applied to a variety of different substrates with strong adhesion due to cross-linking reactions. Thus, the polymer network or IPN provides a durable coating that is both lubricious and adherent, depending on the selected lubricious polymer. The intense friction and long-term water content does not reduce the lubricity of the coating, indicating a strong adhesion of the coating.

第5に、上記のように、本発明による酸素非感応性架橋性材料は、非架橋性材料、例えば非架橋性ヒドロゲル(例えば、ポリエチレンオキシドまたはポリビニルピロリドン)などと組み合わせて用い、ヒドロゲルが、事実上、系内に取り込まれたポリマーネットワークを形成することができる。取り込みにより、材料がコーティングから離れて身体に進入するのを妨げる。この特徴は、種々のポリマーを、親水性材料に加えて疎水性材料を含む架橋構造内に取り込むために用いることができる。   Fifth, as described above, the oxygen-insensitive crosslinkable material according to the present invention is used in combination with a non-crosslinkable material such as a non-crosslinkable hydrogel (eg, polyethylene oxide or polyvinylpyrrolidone). In addition, a polymer network incorporated in the system can be formed. Ingestion prevents material from leaving the coating and entering the body. This feature can be used to incorporate various polymers into cross-linked structures that include hydrophobic materials in addition to hydrophilic materials.

第6に、本発明のポリマーネットワークは、薬物送達系として有用である。潤滑性ポリマーの分子量および酸素非感応性架橋性ポリマーの架橋密度などのパラメータを変更することにより、さらなる構成成分(治療用薬物など)を、本発明のポリマーネットワーク内に組み込むことができる。また、薬物をポリマーネットワークまたはIPN内に取り込み、コーティングを湿らすとコーティングから浸出させ、薬物が身体の隣接部位に速やかに送達してもよい。医療デバイス上のコーティングから放出される薬物を組み込むことの利点は明白である。本発明のコーティングの使用により、血栓形成、再狭窄、感染症の影響、および疾病伝播でさえ、最小化および排除され得る。   Sixth, the polymer network of the present invention is useful as a drug delivery system. By modifying parameters such as the molecular weight of the lubricious polymer and the crosslink density of the oxygen insensitive crosslinkable polymer, additional components (such as therapeutic drugs) can be incorporated into the polymer network of the present invention. Alternatively, the drug may be incorporated into the polymer network or IPN, and when the coating is moistened, it will leach out of the coating so that the drug can be quickly delivered to adjacent parts of the body. The advantages of incorporating drugs released from coatings on medical devices are obvious. By using the coatings of the present invention, thrombus formation, restenosis, infection effects and even disease transmission can be minimized and eliminated.

以下の非限定的な実施例により、本発明をさらに説明する。
(実施例)
The invention is further illustrated by the following non-limiting examples.
(Example)

試験方法
1.潤滑性試験方法
潤滑性は、ラテックスパッドをカテーテルの長さに沿って循環させるデバイスを用いて測定した。カテーテルを水中に浸漬した。ラテックスパッドを、80gのおもりを負荷したアーマチュア(armature)に貼り付けた。次いで、アーマチュアを、さらにフォースゲージに接続した。次いで、カテーテルをパッドに沿ってモーター駆動により往復循環させた。力は、循環回数の関数として測定した。必要とされる力が小さいほど、潤滑性が大きい。
Test method 1. Lubricity Test Method Lubricity was measured using a device that circulates a latex pad along the length of the catheter. The catheter was immersed in water. The latex pad was affixed to an armature loaded with an 80 g weight. The armature was then further connected to a force gauge. The catheter was then reciprocated by motor drive along the pad. The force was measured as a function of the number of circulations. The smaller the required force, the greater the lubricity.

親水性コーティングを、チャーキットケミカルコーポ( Charkit Chemical Corp.)から
入手可能なLS400スチリルピリジニウム修飾ポリビニルアルコール(4.1%スチリルピリジニウム官能基)を用いて調製した。
Hydrophilic coatings were prepared using LS400 styrylpyridinium modified polyvinyl alcohol (4.1% styrylpyridinium functional groups) available from Charkit Chemical Corp.

使用したコーティングの配合は以下のとおりとした。
10部のポリエチレンオキシド(900,000 MW)
1部のポリビニルアルコール(スチリルピリジニウムで修飾)
2%固形分および4%固形分に水で希釈
PEBAX(登録商標)7033、ポリエーテルブロックアミドで形成され、0.042インチの直径を有する外側軸を、まずヘリウム(He)でプラズマ処理し、上記配合物でスポンジコートし、室温で風乾し、水銀灯を用いて各々の面で30秒間360nmでU
V硬化した。次いで、コートされた軸を潤滑性および耐久性について、潤滑性および耐久性試験機を用いて試験した。
(比較例A)
The composition of the coating used was as follows.
10 parts polyethylene oxide (900,000 MW)
1 part polyvinyl alcohol (modified with styrylpyridinium)
Diluted with water to 2% solids and 4% solids PEBAX® 7033, an outer shaft formed with polyether block amide and having a diameter of 0.042 inches is first plasma treated with helium (He), Sponge coat with the above formulation, air dry at room temperature, U for 30 seconds at 360 nm on each side using a mercury lamp.
V cured. The coated shaft was then tested for lubricity and durability using a lubricity and durability tester.
(Comparative Example A)

イソプロピルアルコール(IPA)が水に対して3.75:1の補助溶媒ブレンド中にポリエチレンオキシドを含む混合物を、上記のPEBAX(登録商標)7033で形成されたバルーンに適用した。また、少量のネオペンチルグリコールジアクリレート(NPG)架橋剤を、混合物に、PEOをNPGに対して10:1の比で添加した。また、アゾビス(イソブチロニトリル)(isibutironitrile)光開始剤を、NPG重合を開始するのに有効な必要最低限量で添加した。次いで、配合物を、水で2%固形分および4%固形分に希釈した。これは業界標準である。   A mixture comprising polyethylene oxide in a co-solvent blend of 3.75: 1 isopropyl alcohol (IPA) to water was applied to a balloon formed of PEBAX® 7033 as described above. A small amount of neopentyl glycol diacrylate (NPG) cross-linking agent was also added to the mixture in a 10: 1 ratio of PEO to NPG. Also, azobis (isobutironitrile) photoinitiator was added in the minimum amount necessary to initiate NPG polymerization. The formulation was then diluted with water to 2% solids and 4% solids. This is an industry standard.

PEBAX(登録商標) 7033、ポリエーテルブロックアミドで形成された外側軸を、上記配合物でスポンジコートし、室温で風乾し、各々の面で30秒間UV硬化した。次いで、コートされた軸を潤滑性および耐久性について、潤滑性および耐久性試験機を用いて試験した。   The outer shaft formed of PEBAX® 7033, a polyether block amide, was sponge coated with the above formulation, air dried at room temperature, and UV cured for 30 seconds on each side. The coated shaft was then tested for lubricity and durability using a lubricity and durability tester.

上記試験の結果を、以下の表に示す。   The results of the above test are shown in the following table.

Figure 2007504857
Figure 2007504857

図1は、表1に示したデータをまとめたグラフである。グラフからわかるように、ラテックスパッドをカテーテルに沿って、循環させるのに必要とされる摩擦力は、実施例1で、当該業界標準である比較例Aよりも小さい。摩擦力は、潤滑性の尺度である。この力が小さいほど、潤滑性が高い。   FIG. 1 is a graph summarizing the data shown in Table 1. As can be seen from the graph, the frictional force required to circulate the latex pad along the catheter is less in Example 1 than in Comparative Example A, which is the industry standard. Frictional force is a measure of lubricity. The smaller this force, the higher the lubricity.

上記の開示は、例示的なものであって、網羅的なものではない。本記載により、多くの変形形態および代替形態が当業者に示唆されよう。これらの代替形態および変形形態はすべて、添付の特許請求の範囲内に含まれることが意図される。当該技術分野に精通する者には、本明細書に記載した特定の実施形態に対する他の均等物が認識され得、その均等物もまた、添付の特許請求の範囲内に包含されることが意図される。   The above disclosure is illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the appended claims. Those skilled in the art will recognize other equivalents to the specific embodiments described herein, which equivalents are also intended to be encompassed within the scope of the appended claims. Is done.

本発明による含水させたカテーテルに沿って、ラテックスパッドを循環させるのに必要とされる力を、従来技術のカテーテルに必要とされる力と比較したものを示すグラフ。FIG. 6 is a graph showing the force required to circulate a latex pad along a water-containing catheter according to the present invention compared to the force required for a prior art catheter.

Claims (43)

a)少なくとも1種類の潤滑性ポリマー、および
b)酸素非感応性非カチオン系機構により架橋可能な少なくとも1種類のポリマー
を含む紫外線硬化性潤滑性コーティング。
An ultraviolet curable lubricating coating comprising a) at least one lubricious polymer, and b) at least one polymer crosslinkable by an oxygen insensitive non-cationic mechanism.
前記少なくとも1種類の潤滑性ポリマーが、疎水性、親水性またはその混合である、請求項1に記載の潤滑性コーティング。 The lubricious coating of claim 1, wherein the at least one lubricious polymer is hydrophobic, hydrophilic, or a mixture thereof. 前記少なくとも1種類の潤滑性ポリマーが、親水性である、請求項1に記載の潤滑性コーティング。 The lubricious coating of claim 1, wherein the at least one lubricious polymer is hydrophilic. 前記少なくとも1種類の潤滑性ポリマーが、非架橋ヒドロゲルである、請求項1に記載の潤滑性コーティング。 The lubricious coating of claim 1, wherein the at least one lubricious polymer is a non-crosslinked hydrogel. 前記少なくとも1種類の潤滑性ポリマーが、架橋性である、請求項1に記載の潤滑性コーティング。 The lubricious coating of claim 1, wherein the at least one lubricious polymer is crosslinkable. 前記潤滑性ポリマーおよび前記少なくとも1種類の酸素非感応性架橋性ポリマーが相互侵入ネットワークを形成する、請求項5に記載の潤滑性コーティング。 6. The lubricious coating of claim 5, wherein the lubricious polymer and the at least one oxygen insensitive crosslinkable polymer form an interpenetrating network. 前記架橋性ポリマーが少なくとも1個のスチリルピリジニウム基を含む、請求項1に記載の潤滑性コーティング。 The lubricious coating of claim 1, wherein the crosslinkable polymer comprises at least one styrylpyridinium group. 前記架橋性ポリマーが、下記一般構造:
Figure 2007504857
(式中、mおよびnは正の数であり、Xはアニオンである)
を有する、請求項1に記載の潤滑性コーティング。
The crosslinkable polymer has the following general structure:
Figure 2007504857
(Where m and n are positive numbers and X is an anion)
The lubricious coating of claim 1, comprising:
前記潤滑性ポリマーが、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリウレタン、ポリエチレンオキシド、ポリ(N−イソポリアクリルアミド)、またはヒドロキシル置換低級アルキルアクリレート、メタクリレート、アクリルアミド、メタクリルアミド、低級アリルアクリルアミドおよびメタクリルアミド、ヒドロキシル置換低級アルキルビニルエー
テル、ビニルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、N−ビニルピロール、N−ビニル−2−ピロリドン、2−ビニルオキサゾリン、2−ビニル4,4'−ジアルキルオキサゾリン−5−オン、
2−および4−イニルプルイジン(inylpruidine)、合計3〜5個の炭素原子を有するビニル系不飽和カルボン酸、アミノ低級アルキル(この場合、用語「アミノ」は第四級アンモニウムも含む)、モノ低級アルキルアミノ低級アルキルおよびジ低級アルキルアミノ低級アルキルアクリレートおよびメタクリレート、アリルアルコールのポリマー、その任意のコポリマー、ならびにその混合物からなる群より選択される親水性ポリマーである、請求項1に記載の潤滑性コーティング。
The lubricious polymer is poly (acrylic acid), poly (methacrylic acid), polyurethane, polyethylene oxide, poly (N-isopolyacrylamide), or hydroxyl-substituted lower alkyl acrylate, methacrylate, acrylamide, methacrylamide, lower allyl acrylamide and Methacrylamide, hydroxyl-substituted lower alkyl vinyl ether, sodium vinyl sulfonate, sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, N-vinyl pyrrole, N-vinyl-2-pyrrolidone, 2-vinyl oxazoline, 2- Vinyl 4,4′-dialkyloxazolin-5-one,
2- and 4-inylpruidine, vinyl unsaturated carboxylic acids having a total of 3 to 5 carbon atoms, amino lower alkyl (wherein the term “amino” includes quaternary ammonium), mono lower alkyl The lubricious coating of claim 1 which is a hydrophilic polymer selected from the group consisting of amino lower alkyl and di-lower alkylamino lower alkyl acrylates and methacrylates, polymers of allyl alcohol, any copolymers thereof, and mixtures thereof.
前記潤滑性ポリマーがポリエチレンオキシドである、請求項9に記載の潤滑性コーティング。 The lubricious coating of claim 9, wherein the lubricious polymer is polyethylene oxide. 前記潤滑性ポリマーがポリウレタンまたはポリウレタンのブレンドである、請求項9に記載の潤滑性コーティング。 The lubricious coating of claim 9, wherein the lubricious polymer is polyurethane or a blend of polyurethanes. a)管状部材、
b)該管状部材上のコーティング
を含む医療デバイスであって、該コーティングが、少なくとも1種類の親水性ポリマー、および酸素非感応性非カチオン系機構により架橋可能な少なくとも1種類のポリマーを含む、医療デバイス。
a) tubular member,
b) a medical device comprising a coating on the tubular member, wherein the coating comprises at least one hydrophilic polymer and at least one polymer crosslinkable by an oxygen insensitive non-cationic mechanism. device.
前記酸素非感応性架橋性ポリマーがスチリルピリジニウム基を含む、請求項12に記載の医療デバイス。 The medical device of claim 12, wherein the oxygen insensitive crosslinkable polymer comprises a styrylpyridinium group. 前記酸素非感応性架橋性ポリマーが、下記一般構造:
Figure 2007504857
(式中、mおよびnは正の数であり、Xはアニオンである)
を有する、請求項12に記載の医療デバイス。
The oxygen-insensitive crosslinkable polymer has the following general structure:
Figure 2007504857
(Where m and n are positive numbers and X is an anion)
The medical device of claim 12, comprising:
前記少なくとも1種類の親水性ポリマーが、限定されないが、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリウレタン、ポリエチレンオキシド、ポリ(N−イソポリアクリルアミド)、またはヒドロキシル置換低級アルキルアクリレート、メタクリレート、アクリ
ルアミド、メタクリルアミド、低級アリルアクリルアミドおよびメタクリルアミド、ヒドロキシル置換低級アルキルビニルエーテル、ビニルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、N−ビニルピロール、N−ビニル−2−ピロリドン、2−ビニルオキサゾリン、2−ビニル4,4' −ジアルキルオキサゾリン−5−オン、2−および4−イニルプルイジン、合計3〜5個の炭素原子を有するビニル系不飽和カルボン酸、アミノ低級アルキル(この場合、用語「アミノ」は第四級アンモニウムも含む)、モノ低級アルキルアミノ低級アルキルおよびジ低級アルキルアミノ低級アルキルアクリレートおよびメタクリレート、アリルアルコールのポリマーならびにその混合物からなる群より選択される少なくとも1種類の構成成分を含む、請求項12に記載の医療デバイス。
The at least one hydrophilic polymer includes, but is not limited to, poly (acrylic acid), poly (methacrylic acid), polyurethane, polyethylene oxide, poly (N-isopolyacrylamide), or hydroxyl-substituted lower alkyl acrylate, methacrylate, acrylamide , Methacrylamide, lower allylacrylamide and methacrylamide, hydroxyl substituted lower alkyl vinyl ether, sodium vinyl sulfonate, sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, N-vinyl pyrrole, N-vinyl-2-pyrrolidone , 2-vinyloxazoline, 2-vinyl4,4′-dialkyloxazolin-5-one, 2- and 4-ynylpluidine, a vinyl group having a total of 3 to 5 carbon atoms Carboxylic acid, amino lower alkyl (in this case, the term “amino” also includes quaternary ammonium), mono-lower alkylamino lower alkyl and di-lower alkylamino lower alkyl acrylates and methacrylates, polymers of allyl alcohol and mixtures thereof The medical device of claim 12, comprising at least one component selected from the group.
前記少なくとも1種類の親水性ポリマーがポリエチレンオキシドである、請求項15に記載の医療デバイス。 The medical device according to claim 15, wherein the at least one hydrophilic polymer is polyethylene oxide. 前記少なくとも1種類の親水性ポリマーがポリウレタンまたはポリウレタンのブレンドである、請求項15に記載の医療デバイス。 16. The medical device of claim 15, wherein the at least one hydrophilic polymer is polyurethane or a blend of polyurethanes. 前記少なくとも1種類の親水性ポリマーが脂肪族ポリエーテルポリウレタンである、請求項17に記載の医療デバイス。 The medical device of claim 17, wherein the at least one hydrophilic polymer is an aliphatic polyether polyurethane. 前記少なくとも1種類の脂肪族ポリエーテルポリウレタンが、重量基準で約500%〜約2000%の水を吸収することができる、請求項18に記載の医療デバイス。 The medical device of claim 18, wherein the at least one aliphatic polyether polyurethane is capable of absorbing from about 500% to about 2000% water by weight. 前記管状部材が内側表面および外側表面を有する、請求項12に記載の医療デバイス。 The medical device of claim 12, wherein the tubular member has an inner surface and an outer surface. 前記親水性コーティングが、前記内側表面上、前記外側表面上またはその両表面上にある、請求項12に記載の医療デバイス。 13. The medical device of claim 12, wherein the hydrophilic coating is on the inner surface, the outer surface, or both. コーティングを有する拡張バルーンであって、該コーティングが、少なくとも1種類の潤滑性ポリマー、および酸素非感応性非カチオン系機構により架橋可能な少なくとも1種類のポリマーを含む、拡張バルーン。 An expansion balloon having a coating, wherein the coating comprises at least one lubricious polymer and at least one polymer crosslinkable by an oxygen insensitive non-cationic mechanism. 前記酸素非感応性架橋性ポリマーが、下記一般式:
Figure 2007504857
(式中、mおよびnは正の数であり、Xはアニオンである)
を有する、請求項22に記載の拡張バルーン。
The oxygen-insensitive crosslinkable polymer has the following general formula:
Figure 2007504857
(Where m and n are positive numbers and X is an anion)
23. The dilatation balloon of claim 22 having
前記潤滑性ポリマーが、疎水性、親水性またはその混合である、請求項22に記載の拡張バルーン。 23. The dilatation balloon of claim 22, wherein the lubricious polymer is hydrophobic, hydrophilic or a mixture thereof. 前記潤滑性ポリマーが非架橋性ヒドロゲルである、請求項22に記載の拡張バルーン。 23. The dilatation balloon of claim 22, wherein the lubricious polymer is a non-crosslinkable hydrogel. 前記少なくとも1種類の親水性ポリマーが、限定されないが、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリウレタン、ポリエチレンオキシド、ポリ(N−イソポリアクリルアミド)、またはヒドロキシル置換低級アルキルアクリレート、メタクリレート、アクリルアミド、メタクリルアミド、低級アリルアクリルアミドおよびメタクリルアミド、ヒドロキシル置換低級アルキルビニルエーテル、ビニルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、N−ビニルピロール、N−ビニル−2−ピロリドン、2−ビニルオキサゾリン、2−ビニル4,4' −ジアルキルオキサゾリン−5−オン、2−および4−イニルプルイジン、合計3〜5個の炭素原子を有するビニル系不飽和カルボン酸、アミノ低級アルキル(この場合、用語「アミノ」は第四級アンモニウムも含む)、モノ低級アルキルアミノ低級アルキルおよびジ低級アルキルアミノ低級アルキルアクリレートおよびメタクリレート、アリルアルコールのポリマーならびにその混合物からなる群より選択される少なくとも1種類の構成成分を含む、請求項22に記載の拡張バルーン。 The at least one hydrophilic polymer includes, but is not limited to, poly (acrylic acid), poly (methacrylic acid), polyurethane, polyethylene oxide, poly (N-isopolyacrylamide), or hydroxyl-substituted lower alkyl acrylate, methacrylate, acrylamide , Methacrylamide, lower allylacrylamide and methacrylamide, hydroxyl substituted lower alkyl vinyl ether, sodium vinyl sulfonate, sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, N-vinyl pyrrole, N-vinyl-2-pyrrolidone , 2-vinyloxazoline, 2-vinyl4,4′-dialkyloxazolin-5-one, 2- and 4-ynylpluidine, a vinyl group having a total of 3 to 5 carbon atoms Carboxylic acid, amino lower alkyl (in this case, the term “amino” also includes quaternary ammonium), mono-lower alkylamino lower alkyl and di-lower alkylamino lower alkyl acrylates and methacrylates, polymers of allyl alcohol and mixtures thereof 23. The dilatation balloon of claim 22, comprising at least one component selected from the group. 前記少なくとも1種類の親水性ポリマーがポリエチレンオキシドである、請求項26に記載の拡張バルーン。 27. The dilatation balloon of claim 26, wherein the at least one hydrophilic polymer is polyethylene oxide. 前記少なくとも1種類の親水性ポリマーがポリウレタンまたはポリウレタンのブレンドである、請求項26に記載の拡張バルーン。 27. The dilatation balloon of claim 26, wherein the at least one hydrophilic polymer is polyurethane or a blend of polyurethanes. 前記少なくとも1種類の親水性ポリマーが脂肪族ポリエーテルポリウレタンである、請求項28に記載の拡張バルーン。 29. The dilatation balloon of claim 28, wherein the at least one hydrophilic polymer is an aliphatic polyether polyurethane. 前記脂肪族ポリエーテルポリウレタンが、重量基準で約500%〜約2000%の水を吸
収することができる、請求項29に記載の拡張バルーン。
30. The dilatation balloon of claim 29, wherein the aliphatic polyether polyurethane is capable of absorbing about 500% to about 2000% water on a weight basis.
内側表面および外側表面を有する、請求項22に記載の拡張バルーン。 23. The dilatation balloon of claim 22, having an inner surface and an outer surface. 前記親水性コーティングが、前記内側表面上、前記外側表面上またはその両表面上にある、請求項31に記載の拡張バルーン。 32. The dilatation balloon of claim 31, wherein the hydrophilic coating is on the inner surface, the outer surface, or both. a) 医療デバイスの少なくとも1つの表面に、少なくとも1種類の潤滑性ポリマーおよび酸素非感応性非カチオン系機構により架橋可能な少なくとも1種類のポリマーを含む混合物を塗布する工程、および
b)コーティングを紫外線放射に曝露する工程
を含む、医療デバイスの少なくとも1つの表面をコーティングする方法。
a) applying to the at least one surface of the medical device a mixture comprising at least one lubricious polymer and at least one polymer crosslinkable by an oxygen insensitive non-cationic mechanism; and b) applying the coating to ultraviolet light A method of coating at least one surface of a medical device comprising exposing to radiation.
前記混合物が溶媒から(out of)塗布される、請求項33に記載の方法。 34. The method of claim 33, wherein the mixture is applied out of solvent. 前記混合物が前記医療デバイスの前記表面に噴霧、浸漬、塗装または共押出しによって塗布される、請求項33に記載の方法。 34. The method of claim 33, wherein the mixture is applied to the surface of the medical device by spraying, dipping, painting or coextrusion. 前記混合物が約1wt%〜約5wt%固形分の濃度で存在する、請求項34に記載の方法。 35. The method of claim 34, wherein the mixture is present at a concentration of about 1 wt% to about 5 wt% solids. 前記酸素非感応性紫外線架橋性ポリマーがスチリルピリジニウム基を含む、請求項33に記載の方法。 34. The method of claim 33, wherein the oxygen insensitive ultraviolet crosslinkable polymer comprises styrylpyridinium groups. 前記酸素非感応性紫外線架橋性ポリマーが、下記一般構造:
Figure 2007504857
(式中、mおよびnは正の数であり、Xはアニオンである)
を有する、請求項33に記載の方法。
The oxygen-insensitive ultraviolet crosslinkable polymer has the following general structure:
Figure 2007504857
(Where m and n are positive numbers and X is an anion)
34. The method of claim 33, comprising:
前記潤滑性ポリマーが、限定されないが、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリウレタン、ポリエチレンオキシド、ポリ(N−イソポリアクリルアミド)、またはヒドロキシル置換低級アルキルアクリレート、メタクリレート、アクリルアミド、メタクリルアミド、低級アリルアクリルアミドおよびメタクリルアミド、ヒドロキシル置換低級ア
ルキルビニルエーテル、ビニルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸、N−ビニルピロール、N−ビニル−2−ピロリドン、2−ビニルオキサゾリン、2−ビニル4,4' −ジアルキルオキサゾリン−5−オン、2−および4−イニルプルイジン、合計3〜5個の炭素原子を有するビニル系不飽和カルボン酸、アミノ低級アルキル(この場合、用語「アミノ」は第四級アンモニウムも含む)、モノ低級アルキルアミノ低級アルキルおよびジ低級アルキルアミノ低級アルキルアクリレートおよびメタクリレート、アリルアルコールのポリマーならびにその混合物からなる群より選択される少なくとも1種類の構成成分を含むからなる群より選択される少なくとも1種類の構成成分を含む、請求項33に記載の方法。
The lubricious polymer includes, but is not limited to, poly (acrylic acid), poly (methacrylic acid), polyurethane, polyethylene oxide, poly (N-isopolyacrylamide), or hydroxyl-substituted lower alkyl acrylate, methacrylate, acrylamide, methacrylamide, Lower allyl acrylamide and methacrylamide, hydroxyl substituted lower alkyl vinyl ether, sodium vinyl sulfonate, sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, N-vinyl pyrrole, N-vinyl-2-pyrrolidone, 2-vinyl Oxazoline, 2-vinyl 4,4′-dialkyloxazolin-5-one, 2- and 4-ynylpluidine, vinyl unsaturated carboxylic acids having a total of 3 to 5 carbon atoms, Selected from the group consisting of mono-lower alkylamino lower alkyl and di-lower alkylamino lower alkyl acrylates and methacrylates, polymers of allyl alcohol, and mixtures thereof. 34. The method of claim 33, comprising at least one component selected from the group consisting of: comprising at least one component.
前記少なくとも1種類の親水性ポリマーがポリエチレンオキシドである、請求項39に記載の方法。 40. The method of claim 39, wherein the at least one hydrophilic polymer is polyethylene oxide. 前記少なくとも1種類の親水性ポリマーが、ポリウレタンまたはポリウレタンのブレンドである、請求項39に記載の方法。 40. The method of claim 39, wherein the at least one hydrophilic polymer is a polyurethane or a blend of polyurethanes. 前記少なくとも1種類の親水性ポリマーが脂肪族ポリエーテルポリウレタンである、請求項41に記載の方法。 42. The method of claim 41, wherein the at least one hydrophilic polymer is an aliphatic polyether polyurethane. 前記脂肪族ポリエーテルポリウレタンが、重量基準で約500%〜約2000%の水を吸収することができる、請求項42に記載の方法。 43. The method of claim 42, wherein the aliphatic polyether polyurethane is capable of absorbing about 500% to about 2000% water on a weight basis.
JP2006525380A 2003-09-09 2004-08-30 Medical device having lubricious coating surface and method for producing the same Expired - Fee Related JP4920414B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/658,729 US7544381B2 (en) 2003-09-09 2003-09-09 Lubricious coatings for medical device
US10/658,729 2003-09-09
PCT/US2004/028181 WO2005025633A1 (en) 2003-09-09 2004-08-30 Lubricious coatings for medical device

Publications (2)

Publication Number Publication Date
JP2007504857A true JP2007504857A (en) 2007-03-08
JP4920414B2 JP4920414B2 (en) 2012-04-18

Family

ID=34226838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006525380A Expired - Fee Related JP4920414B2 (en) 2003-09-09 2004-08-30 Medical device having lubricious coating surface and method for producing the same

Country Status (8)

Country Link
US (2) US7544381B2 (en)
EP (1) EP1667747B1 (en)
JP (1) JP4920414B2 (en)
AT (1) ATE383177T1 (en)
CA (1) CA2533780A1 (en)
DE (1) DE602004011243T2 (en)
ES (1) ES2299873T3 (en)
WO (1) WO2005025633A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515495A (en) * 2004-10-07 2008-05-15 コロプラスト アクティーゼルスカブ Medical device with wet hydrophilic coating
JP2010535581A (en) * 2007-08-06 2010-11-25 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Medical device with a lubricious coating having a hydrophilic compound included in the interlocking network
WO2013084943A1 (en) * 2011-12-05 2013-06-13 テルモ株式会社 Catheter assembly
JP2016526060A (en) * 2013-04-26 2016-09-01 バイオインタラクションズ・リミテッドBioInteractions Ltd Bioactive coating
JP2017529129A (en) * 2014-09-25 2017-10-05 メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. Coated balloon and coated balloon assembly and associated methods of use and manufacture
USRE49522E1 (en) 2013-04-26 2023-05-09 Biointeractions Ltd. Bioactive coatings

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7807211B2 (en) * 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US7727221B2 (en) 2001-06-27 2010-06-01 Cardiac Pacemakers Inc. Method and device for electrochemical formation of therapeutic species in vivo
US6656216B1 (en) * 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6896965B1 (en) * 2002-11-12 2005-05-24 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US7063884B2 (en) * 2003-02-26 2006-06-20 Advanced Cardiovascular Systems, Inc. Stent coating
AU2004216404C1 (en) 2003-02-28 2011-04-28 Biointeractions Ltd. Polymeric network system for medical devices and methods of use
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7544381B2 (en) * 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7534495B2 (en) * 2004-01-29 2009-05-19 Boston Scientific Scimed, Inc. Lubricious composition
US8394338B2 (en) * 2004-04-26 2013-03-12 Roche Diagnostics Operations, Inc. Process for hydrophilizing surfaces of fluidic components and systems
US8709469B2 (en) 2004-06-30 2014-04-29 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
EP1781343A1 (en) * 2004-08-19 2007-05-09 Coloplast A/S Absorbent fiber material and use thereof in wound dressings
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US20090088846A1 (en) * 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
EP1827718B1 (en) 2004-11-29 2011-06-29 DSM IP Assets B.V. Method for reducing the amount of migrateables of polymer coatings
US20060240253A1 (en) * 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Guidewire and tube with lubricious coating
US20060240059A1 (en) * 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Lubricious eluting polymer blend and coating made from the same
US20060240060A1 (en) 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Lubricious compound and medical device made of the same
US20060241000A1 (en) * 2005-04-22 2006-10-26 Cardiac Pacemakers, Inc. Lubricious compound and medical device made of the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US8298565B2 (en) 2005-07-15 2012-10-30 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US7785647B2 (en) * 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US20070128246A1 (en) * 2005-12-06 2007-06-07 Hossainy Syed F A Solventless method for forming a coating
US20070129748A1 (en) * 2005-12-07 2007-06-07 Tracee Eidenschink Selectively coated medical balloons
DK1957130T3 (en) * 2005-12-09 2010-11-22 Dsm Ip Assets Bv Hydrophilic coating comprising a polyelectrolyte
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
EP1979016B1 (en) 2006-02-01 2015-07-01 Hollister Incorporated Methods of applying a hydrophilic coating to a substrate, and substrates having a hydrophilic coating
US20070196428A1 (en) * 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7601383B2 (en) * 2006-02-28 2009-10-13 Advanced Cardiovascular Systems, Inc. Coating construct containing poly (vinyl alcohol)
US7713637B2 (en) * 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US20070231363A1 (en) * 2006-03-29 2007-10-04 Yung-Ming Chen Coatings formed from stimulus-sensitive material
US7547474B2 (en) * 2006-04-06 2009-06-16 Med-Eez, Inc. Lubricious coatings for pharmaceutical applications
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US20070259101A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Microporous coating on medical devices
US8304012B2 (en) * 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7775178B2 (en) * 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US20070286882A1 (en) * 2006-06-09 2007-12-13 Yiwen Tang Solvent systems for coating medical devices
US8778376B2 (en) * 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
EP2054537A2 (en) * 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
WO2008031601A1 (en) * 2006-09-13 2008-03-20 Dsm Ip Assets B.V. Antimicrobial hydrophilic coating comprising metallic silver particles
WO2008031596A1 (en) * 2006-09-13 2008-03-20 Dsm Ip Assets B.V. Coating formulation for medical coating
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
JP2010503489A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
CA2663303A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Endoprosthesis with adjustable surface features
EP2399616A1 (en) * 2006-09-15 2011-12-28 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
EP2068782B1 (en) 2006-09-15 2011-07-27 Boston Scientific Limited Bioerodible endoprostheses
JP2010503482A (en) 2006-09-18 2010-02-04 ボストン サイエンティフィック リミテッド Endoprosthesis
US20080097577A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Medical device hydrogen surface treatment by electrochemical reduction
JP5196769B2 (en) * 2006-11-22 2013-05-15 テルモ株式会社 Guide wire
US8597673B2 (en) * 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
EP2277563B1 (en) 2006-12-28 2014-06-25 Boston Scientific Limited Bioerodible endoprostheses and method of making the same
MY148410A (en) * 2007-02-28 2013-04-30 Dsm Ip Assets Bv Hydrophilic coating
EP2114477B1 (en) * 2007-02-28 2012-05-30 DSM IP Assets B.V. Hydrophilic coating
US8257719B2 (en) * 2007-03-06 2012-09-04 Ranir, Llc Oral care layer and related method of manufacture
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US20120077049A1 (en) * 2007-08-06 2012-03-29 Abbott Cardiovascular Systems, Inc. Medical devices having a lubricious coating with a hydrophilic compound in an interlocking network
US8747940B2 (en) * 2007-08-06 2014-06-10 Abbott Cardiovascular Systems Inc. Manufacturing processes for making medical devices having a coating gradient
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US20090157047A1 (en) * 2007-12-13 2009-06-18 Boston Scientific Scimed, Inc. Medical device coatings and methods of forming such coatings
US8378011B2 (en) * 2007-12-27 2013-02-19 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
US20110059874A1 (en) * 2008-03-12 2011-03-10 Marnix Rooijmans Hydrophilic coating
CA2718718A1 (en) * 2008-03-21 2009-09-24 Biomimedica, Inc Methods, devices and compositions for adhering hydrated polymer implants to bone
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
JP5752035B2 (en) * 2008-07-07 2015-07-22 バイオミメディカ インコーポレイテッド Hydrophilic interpenetrating polymer network derived from hydrophobic polymer
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2010017282A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc. Polyurethane-grafted hydrogels
US20100048758A1 (en) * 2008-08-22 2010-02-25 Boston Scientific Scimed, Inc. Lubricious coating composition for devices
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
CN102427834A (en) 2009-04-28 2012-04-25 苏尔莫迪克斯公司 Devices and methods for delivery of bioactive agents
US8246576B2 (en) * 2009-05-18 2012-08-21 Surmodics, Inc. Method and apparatus for delivery of a therapeutic agent with an expandable medical device
US8287890B2 (en) * 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
AU2010330733A1 (en) * 2009-12-18 2012-08-02 Biomimedica, Inc. Method, device, and system for shaving and shaping of a joint
EP2531140B1 (en) * 2010-02-02 2017-11-01 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8957125B2 (en) 2010-06-16 2015-02-17 Dsm Ip Assets B.V. Coating formulation for preparing a hydrophilic coating
EP2609154B1 (en) 2010-08-27 2020-04-22 Hyalex Orthopaedics, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
US8541498B2 (en) 2010-09-08 2013-09-24 Biointeractions Ltd. Lubricious coatings for medical devices
EP3235522A1 (en) * 2011-01-10 2017-10-25 Biomimedica, Inc Orthopedic implants having gradient polymer alloys
US10213529B2 (en) 2011-05-20 2019-02-26 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US9757497B2 (en) 2011-05-20 2017-09-12 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US9861727B2 (en) 2011-05-20 2018-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
AU2012319183A1 (en) 2011-10-03 2014-05-22 Biomimedica, Inc. Polymeric adhesive for anchoring compliant materials to another surface
AU2012340699A1 (en) 2011-11-21 2014-06-19 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
WO2013130850A1 (en) 2012-02-28 2013-09-06 Microvention, Inc. Coating methods
CA2878167C (en) 2012-07-13 2018-03-13 Boston Scientific Scimed, Inc. Occlusion device for an atrial appendage
US9555119B2 (en) 2012-11-05 2017-01-31 Surmodics, Inc. Composition and method for delivery of hydrophobic active agents
US11246963B2 (en) * 2012-11-05 2022-02-15 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
US20180360586A9 (en) 2013-03-07 2018-12-20 Merit Medical Systems, Inc. Embolic filter balloon
CA2912387C (en) 2013-05-15 2019-04-16 Micell Technologies, Inc. Bioabsorbable biomedical implants
NL2013115B1 (en) * 2014-07-03 2016-06-14 Wellinq Medical B V Method for providing a hydrogel coating.
CN104857571B (en) * 2014-12-03 2017-10-24 美昕医疗器械(上海)有限公司 The preparation method of hydrophilic lubrication silica fubber cathete and its hydrophilic lubrication coating
CN104857572B (en) * 2014-12-05 2018-07-17 美昕医疗器械(上海)有限公司 The method and its medical instrument of hydrophilic lubrication coating are prepared on inert polymer material surface
EP3283136B1 (en) 2015-04-16 2021-06-02 Hollister Incorporated Hydrophilic coatings and methods of forming the same
GB201509919D0 (en) * 2015-06-08 2015-07-22 Jmedtech Pte Ltd Coating
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
EP3373829A1 (en) 2015-11-13 2018-09-19 Cardiac Pacemakers, Inc. Bioabsorbable left atrial appendage closure with endothelialization promoting surface
US10543299B2 (en) 2016-10-03 2020-01-28 Microvention, Inc. Surface coatings
US10898446B2 (en) 2016-12-20 2021-01-26 Surmodics, Inc. Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces
WO2019034915A1 (en) * 2017-08-17 2019-02-21 Khalifa University of Science and Technology Mesoporous carbon based nanocontainer coatings for corrosion protection of metal structures
WO2019161072A1 (en) 2018-02-14 2019-08-22 Boston Scientific Scimed, Inc. Occlusive medical device
AU2019271495B2 (en) 2018-05-17 2023-03-09 Hollister Incorporated Methods of making sleeved hydrophilic catheter assemblies
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
JP2022542589A (en) * 2019-07-26 2022-10-05 マイクロベンション インコーポレイテッド coating
US11331418B2 (en) * 2019-08-26 2022-05-17 Mervyn B. Forman Medical devices for continuous delivery of therapeutic agents
WO2021130625A1 (en) 2019-12-23 2021-07-01 Church & Dwight Co., Inc. Polymer compositions and articles coated therewith
CN113698535A (en) * 2020-05-21 2021-11-26 江苏百赛飞生物科技有限公司 Polymer, composition, coating thereof and product
CN114099790B (en) * 2020-10-17 2023-03-24 河南驼人贝斯特医疗器械有限公司 Lubricating coating of medical catheter and preparation method thereof
CN115364281A (en) * 2022-08-16 2022-11-22 珠海金导医疗科技有限公司 Ultrasonic developing lubricating medical catheter and preparation method thereof
CN116712616B (en) * 2023-06-21 2024-05-31 眉山尤博瑞新材料有限公司 Ultrathin durable lubricating polyurethane coating material, and preparation method and application of coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284483A (en) * 1985-06-11 1986-12-15 Dainippon Ink & Chem Inc Thermal recording body
JP2000507997A (en) * 1996-02-09 2000-06-27 サーフェス ソルーションズ ラボラトリーズ インコーポレイテッド Aqueous hydrophilic coating composition and articles made therefrom

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272620A (en) * 1978-08-09 1981-06-09 Agency Of Industrial Science And Technology Polyvinyl alcohol-styrylpyridinium photosensitive resins and method for manufacture thereof
US4439583A (en) * 1980-11-12 1984-03-27 Tyndale Plains-Hunter, Ltd. Polyurethane diacrylate compositions useful in forming canulae
JPS59164723A (en) * 1983-03-10 1984-09-17 Koken:Kk Substrate containing regenerated collagen fibril and its preparation
US4564580A (en) * 1983-06-30 1986-01-14 Kogyo Gijutsuin Photosensitive resin composition
JPH0743537B2 (en) * 1985-04-03 1995-05-15 工業技術院長 Photosensitive resin composition
JPH0762048B2 (en) * 1986-09-25 1995-07-05 工業技術院長 Photosensitive resin
JPH0713099B2 (en) * 1988-12-14 1995-02-15 工業技術院長 Photosensitive polyvinyl alcohol derivative
GB2226564B (en) 1988-12-16 1993-03-17 Sericol Group Ltd Photopolymerisable polyvinyl alcohols and compositions containing them
US4990357A (en) * 1989-05-04 1991-02-05 Becton, Dickinson And Company Elastomeric segmented hydrophilic polyetherurethane based lubricious coatings
DE3928825A1 (en) * 1989-08-31 1991-03-07 Hoechst Ag Graft polymer with unsaturated side chains, this containing light-sensitive mixture and recording material made from it
JPH06506019A (en) * 1991-12-18 1994-07-07 シメッド ライフ システムズ インコーポレイテッド Lubricious polymer network
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
MX9705922A (en) * 1995-02-01 1997-10-31 Schneider Usa Inc Process for hydrophilicization of hydrophobic polymers.
US5662960A (en) * 1995-02-01 1997-09-02 Schneider (Usa) Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly (n-vinylpyrrolidone) polymer hydrogel
US5919570A (en) * 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5576072A (en) * 1995-02-01 1996-11-19 Schneider (Usa), Inc. Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel
US6558798B2 (en) 1995-02-22 2003-05-06 Scimed Life Systems, Inc. Hydrophilic coating and substrates coated therewith having enhanced durability and lubricity
US5800412A (en) * 1996-10-10 1998-09-01 Sts Biopolymers, Inc. Hydrophilic coatings with hydrating agents
US6221467B1 (en) * 1997-06-03 2001-04-24 Scimed Life Systems, Inc. Coating gradient for lubricious coatings on balloon catheters
JP3771705B2 (en) * 1998-03-12 2006-04-26 互応化学工業株式会社 Photosensitive resin composition and photoresist ink for production of printed wiring board
US6331578B1 (en) * 1998-11-18 2001-12-18 Josephine Turner Process for preparing interpenetrating polymer networks of controlled morphology
US6673053B2 (en) * 1999-05-07 2004-01-06 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising an antiblock agent
US6176849B1 (en) * 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6610035B2 (en) * 1999-05-21 2003-08-26 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hybrid top coat
US6458867B1 (en) * 1999-09-28 2002-10-01 Scimed Life Systems, Inc. Hydrophilic lubricant coatings for medical devices
US6558879B1 (en) * 2000-09-25 2003-05-06 Ashland Inc. Photoresist stripper/cleaner compositions containing aromatic acid inhibitors
US7544381B2 (en) * 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284483A (en) * 1985-06-11 1986-12-15 Dainippon Ink & Chem Inc Thermal recording body
JP2000507997A (en) * 1996-02-09 2000-06-27 サーフェス ソルーションズ ラボラトリーズ インコーポレイテッド Aqueous hydrophilic coating composition and articles made therefrom

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515495A (en) * 2004-10-07 2008-05-15 コロプラスト アクティーゼルスカブ Medical device with wet hydrophilic coating
JP2010535581A (en) * 2007-08-06 2010-11-25 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Medical device with a lubricious coating having a hydrophilic compound included in the interlocking network
JP2014138864A (en) * 2007-08-06 2014-07-31 Abbott Cardiovascular Systems Inc Medical device provided with lubrication coating having hydrophilic compound included in interlocking network
WO2013084943A1 (en) * 2011-12-05 2013-06-13 テルモ株式会社 Catheter assembly
JP2016526060A (en) * 2013-04-26 2016-09-01 バイオインタラクションズ・リミテッドBioInteractions Ltd Bioactive coating
USRE49522E1 (en) 2013-04-26 2023-05-09 Biointeractions Ltd. Bioactive coatings
USRE49528E1 (en) 2013-04-26 2023-05-16 Biointeractions Ltd. Bioactive coatings
JP2017529129A (en) * 2014-09-25 2017-10-05 メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. Coated balloon and coated balloon assembly and associated methods of use and manufacture

Also Published As

Publication number Publication date
JP4920414B2 (en) 2012-04-18
CA2533780A1 (en) 2005-03-24
WO2005025633A1 (en) 2005-03-24
EP1667747A1 (en) 2006-06-14
DE602004011243T2 (en) 2009-01-15
US20050055044A1 (en) 2005-03-10
US7544381B2 (en) 2009-06-09
US20090227946A1 (en) 2009-09-10
DE602004011243D1 (en) 2008-02-21
EP1667747B1 (en) 2008-01-09
ES2299873T3 (en) 2008-06-01
ATE383177T1 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
JP4920414B2 (en) Medical device having lubricious coating surface and method for producing the same
ES2612188T3 (en) Methods of applying a hydrophilic coating to a substrate and substrates having a hydrophilic coating
US6221425B1 (en) Lubricious hydrophilic coating for an intracorporeal medical device
EP1103278B1 (en) Medical device having wet lubricity and method for its production
JP4795951B2 (en) Medical device including a lubricious coating surface
US8932694B2 (en) Fluorinated polymers and lubricious coatings
JP2006510756A (en) Hydrophilic coatings and methods for preparing them
IES20030294A2 (en) Coating for biomedical devices
WO1998058990A1 (en) A hydrophilic coating and a method for the preparation thereof
JP2002530158A (en) Sterilization method of medical device having hydrophilic coating
US11578286B2 (en) UV cure basecoatings for medical devices
JP3522839B2 (en) Medical device having surface lubricity when wet and method for producing the same
CN114845746B (en) UV curable coatings for medical devices
JPH0819599A (en) Medical device having lubricative surface upon wetting and manufacture thereof
JP2744155B2 (en) Antithrombotic medical device having lubricity when wet and method for producing the same
WO2019217766A1 (en) Lubricious coating compositions
US20220002571A1 (en) Hydrophilic coating composition for double-layer coating and hydrophilic coating method using same
US20210178129A1 (en) Controlled Release of a Hydrophilic Agent from a Coated Surface
CN115212432B (en) Medicine carrying saccule
US20210115350A1 (en) UV Cure Topcoatings For Medical Devices
IES83703Y1 (en) Coating for biomedical devices
IE20030294U1 (en) Coating for biomedical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110404

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees