JP3935467B2 - Manufacturing method of optical semiconductor module - Google Patents

Manufacturing method of optical semiconductor module Download PDF

Info

Publication number
JP3935467B2
JP3935467B2 JP2003432232A JP2003432232A JP3935467B2 JP 3935467 B2 JP3935467 B2 JP 3935467B2 JP 2003432232 A JP2003432232 A JP 2003432232A JP 2003432232 A JP2003432232 A JP 2003432232A JP 3935467 B2 JP3935467 B2 JP 3935467B2
Authority
JP
Japan
Prior art keywords
optical
optical semiconductor
semiconductor element
transparent resin
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003432232A
Other languages
Japanese (ja)
Other versions
JP2005189605A (en
Inventor
英人 古山
浩史 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003432232A priority Critical patent/JP3935467B2/en
Priority to US11/012,273 priority patent/US7192199B2/en
Priority to EP04257856A priority patent/EP1548475B1/en
Priority to DE602004032008T priority patent/DE602004032008D1/en
Priority to TW093139667A priority patent/TWI263813B/en
Priority to CNB2004101048983A priority patent/CN100370293C/en
Priority to KR1020040112792A priority patent/KR100645414B1/en
Publication of JP2005189605A publication Critical patent/JP2005189605A/en
Application granted granted Critical
Publication of JP3935467B2 publication Critical patent/JP3935467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、短距離光伝送用に比較的簡易な構造で安定な光結合を実現する光半導体モジュールの製造方法に関する。 The present invention relates to a method of manufacturing an optical semiconductor module that realizes stable optical coupling with a relatively simple structure for short-distance optical transmission.

バイポーラトランジスタや電界効果トランジスタ等の電子デバイスの性能向上により、大規模集積回路(LSI)においては飛躍的な動作速度向上が図られてきている。しかしながら、LSI内部動作が高速化されても、それを実装するプリント基板レベルの動作速度はLSI内部動作より低く抑えられ、そのプリント基板を装着したラックレベルでは更に動作速度が低く抑えられている。これらは動作周波数上昇に伴う電気配線の伝送損失や雑音、電磁障害の増大に起因するものであり、信号品質を確保するため長い配線ほど動作周波数を低く抑える必然性によるものである。このため、電気配線装置においてはLSI動作速度より実装技術がシステム動作速度を支配するという傾向が近年益々強まってきている。   With improvements in the performance of electronic devices such as bipolar transistors and field effect transistors, a dramatic increase in operating speed has been achieved in large scale integrated circuits (LSIs). However, even if the LSI internal operation is speeded up, the operation speed at the printed circuit board level for mounting the LSI is suppressed lower than the internal operation of the LSI, and the operation speed is further suppressed at the rack level where the printed circuit board is mounted. These are due to the increase in transmission loss, noise, and electromagnetic interference of the electrical wiring accompanying the increase in the operating frequency, and the necessity of keeping the operating frequency lower for longer wiring in order to ensure signal quality. For this reason, in the electrical wiring apparatus, the tendency that the mounting technology dominates the system operation speed rather than the LSI operation speed has been increasing in recent years.

このような電気配線装置の問題を鑑み、LSI間を光で接続する光配線装置が幾つか提案されている。光配線は、直流から100GHz以上の周波数領域で損失等の周波数依存性が殆ど無く、配線路の電磁障害や接地電位変動雑音も無いため、数十Gbpsの配線が容易に実現できる。この種のLSI間光配線を実現するためには、例えば特許文献1などに示されているような簡易構造の光半導体モジュールが必要となる。また、LSI配線として多数の光伝送路が必要であり、非常に低コストで作製できる必要もある。
特開2000−347072号公報
In view of such problems of the electrical wiring device, several optical wiring devices for connecting LSIs with light have been proposed. Optical wiring has almost no frequency dependency such as loss in a frequency range from DC to 100 GHz or more, and there is no electromagnetic interference in the wiring path or ground potential fluctuation noise. Therefore, wiring of several tens of Gbps can be easily realized. In order to realize this type of inter-LSI optical interconnection, an optical semiconductor module having a simple structure as shown in, for example, Patent Document 1 is required. In addition, a large number of optical transmission lines are necessary as LSI wiring, and it is necessary that the LSI wiring can be manufactured at very low cost.
JP 2000-347072 A

一般的な光半導体モジュールは、結像用のレンズなどを組み込んだり光ファイバー結合部をコネクタ構造としたりするため、あまり小型化できないものが多い。それに比し特許文献1に示されたような光半導体モジュールでは、光ファイバー等の光伝送路と光半導体素子とを直接結合して一体化してしまうため比較的小型化が容易であるが、いくつかの問題点が含まれている。   Many common optical semiconductor modules cannot be miniaturized much because they incorporate an imaging lens or the like, and have an optical fiber coupling portion as a connector structure. On the other hand, in the optical semiconductor module as shown in Patent Document 1, since the optical transmission line such as an optical fiber and the optical semiconductor element are directly coupled and integrated, it is relatively easy to downsize. The problems are included.

まず、特許文献1の光半導体モジュールでは光ファイバとその保持部材を一体形成し、その上で光半導体素子搭載用のパターン電極を形成しているため、何らかの電極パターン描画もしくはパターン転写を非常に狭い光ファイバ保持部材端部で行う必要がある。少なくともこれはアレイ化光半導体素子を用いる場合に必須の内容である。これには数mから数10mの光ファイバを取り付けたまま、数μm精度のパターンニングを微小領域に行う必要があり、現実には生産困難な内容である。即ち、これを大量生産することは実質的に不可能、もしくは非常な低歩留まりでしか行えないということになる。   First, in the optical semiconductor module of Patent Document 1, since an optical fiber and its holding member are integrally formed and a pattern electrode for mounting an optical semiconductor element is formed thereon, any electrode pattern drawing or pattern transfer is very narrow. This must be done at the end of the optical fiber holding member. At least this is an essential content when using an arrayed optical semiconductor element. For this purpose, it is necessary to perform patterning with accuracy of several μm on a minute region with an optical fiber of several meters to several tens of meters attached, which is actually difficult to produce. That is, it is practically impossible to mass-produce this, or it can only be done with a very low yield.

次に、特許文献1の光半導体モジュールでは、光ファイバ端面と光半導体素子搭載面がほぼ同一の面にあり、光ファイバと光半導体素子が非常に接近して光結合される。ところが高速発光素子の代表ともいえる面発光レーザは、自分の発したレーザ光が反射して戻ってくる所謂反射戻り光に対して敏感であり、光ファイバ結合部での戻り光(近端反射)対策や、光ファイバ出射面などでの反射光(遠端反射)対策が重要である。これには光アイソレータを用いる方法が最も確実であるが、光アイソレータが非常に高価であるばかりか、それを組み込むためのスペースがモジュールを大幅に大型化してしまう。また、光ファイバ端面に無反射コーティングを施したり、斜め加工を施したりすることでかなりの戻り
光対策が可能になるが、特許文献1のような従来例では光ファイバと保持部材を一体形成して光半導体素子用のパターン電極を形成しているため、無反射コーティングもパターン形成する必要がある。これは前述の生産性の面でも困難な内容となる。また、面発光レーザと光ファイバの距離を適切にとることで戻り光の影響を緩和可能である。即ち、面発光レーザと光ファイバの距離を極端に離すと単純に光結合が弱くなり、光伝送そのものが難しくなるが、適度な距離に設定すると光結合も低くなるが反射戻り光も小さくなり、光伝送は可能でありながら反射戻り光の影響をかなり抑制可能になる。しかしながら、特許文献1に示された光半導体モジュールでは、光半導体素子と光ファイバ端の距離制御は実質困難であり、特に、100μm近い距離を離す場合、スペーサの厚さ制御や光ファイバのエッチング後退を制御して行うことになるが、非常に再現性に乏しいものになりやすい。
Next, in the optical semiconductor module of Patent Document 1, the end face of the optical fiber and the surface on which the optical semiconductor element is mounted are substantially on the same surface, and the optical fiber and the optical semiconductor element are optically coupled very closely. However, surface-emitting lasers, which can be said to be representative of high-speed light-emitting elements, are sensitive to so-called reflected return light that is reflected by the laser beam emitted by the laser, and the return light (near-end reflection) at the optical fiber coupling portion Countermeasures and countermeasures for reflected light (far end reflection) on the optical fiber exit surface are important. The method using an optical isolator is the most reliable for this, but the optical isolator is not only very expensive, but the space for incorporating it greatly increases the size of the module. In addition, the optical fiber end face can be provided with a non-reflective coating or obliquely processed, so that a considerable countermeasure against return light is possible. However, in the conventional example such as Patent Document 1, the optical fiber and the holding member are integrally formed. Therefore, since the pattern electrode for the optical semiconductor element is formed, it is necessary to form a pattern for the non-reflective coating. This is also difficult in terms of productivity. Further, the influence of the return light can be mitigated by appropriately taking the distance between the surface emitting laser and the optical fiber. In other words, if the distance between the surface emitting laser and the optical fiber is extremely far away, the optical coupling is simply weakened and the optical transmission itself becomes difficult.However, if the distance is set appropriately, the optical coupling is lowered but the reflected return light is also reduced. While optical transmission is possible, the influence of reflected return light can be considerably suppressed. However, in the optical semiconductor module disclosed in Patent Document 1, it is practically difficult to control the distance between the optical semiconductor element and the end of the optical fiber. In particular, when the distance is close to 100 μm, the spacer thickness control and the optical fiber etching back-up are performed. However, it tends to be very poor in reproducibility.

次に、最も大きな課題として、特許文献1の光半導体モジュールでは光ファイバ端面の形成が研磨で行われており、この部分のコストが非常に大きなウェイトを占めてしまう問題がある。一般に光ファイバの研磨は、同時に多数の光ファイバを自動装置で研磨するとしても、ファイバの装着固定から粗研磨、中間研磨、仕上げ研磨と数時間以上の工程時間が必要となり、工程ボトルネックとなりやすい上にそのコスト低減は限界がある。   Next, as the biggest problem, in the optical semiconductor module of Patent Document 1, the end face of the optical fiber is formed by polishing, and the cost of this portion occupies a very large weight. In general, optical fiber polishing is a process bottleneck that requires several hours of processing, from fiber mounting and fixing to rough polishing, intermediate polishing, and final polishing, even if many optical fibers are simultaneously polished with an automatic device. Moreover, the cost reduction is limited.

本発明は、上記のような従来技術の問題を考慮して成されており、必要最小限の部材により構成され、反射戻り光などの影響が軽減できるとともに、研磨などの高コスト工程を用いずに生産可能な光半導体モジュールの製造方法を提供することを目的としている。 The present invention has been made in consideration of the above-mentioned problems of the prior art, and is composed of the minimum necessary members, can reduce the influence of reflected return light, etc., and does not use a high-cost process such as polishing. An object of the present invention is to provide a method for manufacturing an optical semiconductor module that can be produced.

上記目的を達成するために、本発明の一態様の光半導体モジュールの製造方法は、透明樹脂膜を光電気フェルールの突起電極が形成されている面に押し付けて前記突起電極の先端を前記透明樹脂膜から突き出させる工程と、前記突起電極に光半導体素子を装着する工程と、光伝送路を前記光電気フェルールのガイドに挿入して前記透明樹脂膜を前記光半導体素子に押し付け接触させる工程と、前記光半導体素子の周囲から前記光半導体素子及び前記光電気フェルールの間に透明樹脂を注入して固化せしめる工程と、を具備することを特徴とする。In order to achieve the above object, a method for manufacturing an optical semiconductor module according to one aspect of the present invention is such that a transparent resin film is pressed against a surface on which a protruding electrode of a photoelectric ferrule is formed, and the tip of the protruding electrode is positioned on the transparent resin. A step of protruding from a film, a step of mounting an optical semiconductor element on the protruding electrode, a step of inserting an optical transmission path into a guide of the photoelectric ferrule and pressing the transparent resin film against the optical semiconductor element; And a step of injecting a transparent resin between the optical semiconductor element and the photoelectric ferrule from the periphery of the optical semiconductor element to solidify.

本発明の光半導体モジュールの製造方法によれば、非常に単純化された構成で材料コストが最小限に抑制され、且つ、小型で高機能な光半導体モジュールが、低コスト工程だけで大量生産可能となる。従って、LSIの高速チップ間配線をローコストで実現することができ、情報通信機器等の高度化の促進に寄与することが可能となる。 According to the method of manufacturing an optical semiconductor module of the present invention, the material cost can be suppressed to a minimum with a very simplified configuration, and a small and highly functional optical semiconductor module can be mass-produced by only a low cost process. It becomes. Therefore, high-speed wiring between LSI chips can be realized at low cost, and it is possible to contribute to the advancement of information communication equipment and the like.

以下、図面を参照しながら本発明の実施例を説明していく。本発明は、光ファイバ等の光伝送路を保持部材に固定して研磨するのではなく、光ファイバのへき開や光導波路のウェハ一括エッチングで形成した端面をそのまま用いて光半導体素子との光結合を行うものであり、また、光半導体素子と光伝送路端面との距離を制御するために透明樹脂スペーサを光路に挿入するものである。   Embodiments of the present invention will be described below with reference to the drawings. The present invention does not grind the optical transmission line such as an optical fiber fixed to the holding member, but uses the end face formed by cleaving the optical fiber or batch etching of the optical waveguide as it is and optical coupling with the optical semiconductor element. In addition, a transparent resin spacer is inserted into the optical path in order to control the distance between the optical semiconductor element and the end face of the optical transmission path.

図1は、本発明の光半導体モジュールを示した断面模式図である。図1において、1は光電気フェルール、2は突起電極および電気配線、3は光半導体素子、4は光ファイバ芯線、5は(光ファイバの)保護被覆、6は透明樹脂スペーサ、7は透明アンダーフィル樹脂、8は光伝送路(光ファイバや光導波路フィルム等)を貫通させるガイドである。図1において、突起電極2は突起を構成する本体である支持体、及び電極部からなる。この電極部は、例えばAu、Pt、Ti等を積層した多層構造となっている。突起電極2はこのような構成に限られず、例えば銀ペーストで支持体、電極部を両方構成してもよい。   FIG. 1 is a schematic cross-sectional view showing an optical semiconductor module of the present invention. In FIG. 1, 1 is a photoelectric ferrule, 2 is a protruding electrode and electrical wiring, 3 is an optical semiconductor element, 4 is an optical fiber core wire, 5 is a protective coating (of the optical fiber), 6 is a transparent resin spacer, and 7 is a transparent underlayer. A fill resin 8 is a guide for penetrating an optical transmission line (such as an optical fiber or an optical waveguide film). In FIG. 1, the protruding electrode 2 includes a support that is a main body constituting the protrusion, and an electrode portion. This electrode part has a multilayer structure in which, for example, Au, Pt, Ti or the like is laminated. The protruding electrode 2 is not limited to such a configuration, and for example, both the support and the electrode portion may be configured with silver paste.

図1の断面図だけでは全体のイメージが掴みにくいため、図2に図1の実施例の全体斜視図を示す。ここでは4本の光ファイバを4チャネル光半導体素子アレイに結合させる例を示している。図2において、2aは4チャネルアレイの共通電極(接地または電源)、2bは各光半導体素子の信号電極であり、光半導体素子を搭載する面から隣接する側面に直角折り曲げ配線を形成している。隣接する側面に電極を引き出しているのは、光半導体素子の駆動ICなどへ接続(ワイヤボンディング、フリップチップボンディング等)するためのものである。   Since only the cross-sectional view of FIG. 1 is difficult to grasp the entire image, FIG. 2 shows an overall perspective view of the embodiment of FIG. Here, an example is shown in which four optical fibers are coupled to a four-channel optical semiconductor element array. In FIG. 2, 2a is a common electrode (grounding or power supply) of the 4-channel array, 2b is a signal electrode of each optical semiconductor element, and a right-angle bent wiring is formed on the side surface adjacent to the surface on which the optical semiconductor element is mounted. . The electrodes are drawn out to the adjacent side surfaces for connection (wire bonding, flip chip bonding, etc.) to the driving IC of the optical semiconductor element.

次に、本発明の実施例1の光半導体モジュールの製造方法について、図3乃至図6を用いて説明する。   Next, the manufacturing method of the optical semiconductor module of Example 1 of this invention is demonstrated using FIG. 3 thru | or FIG.

図3乃至図6は、図1の光半導体モジュールの製造工程を示す工程断面図である。1の光電気フェルールは、例えば30μm程度のガラスフィラーを80%程度混入したエポキシ樹脂を金型による樹脂成型で形成し、光ファイバガイド穴や突起電極の突起部を形成、そしてメタルマスクとスパッタ等によるパターンメタライズを行って2の突起電極および電気配線を形成する。これにより、1の光電気フェルールは1μm以下の非常に高い精度を持ちながら非常に低コストで量産することが可能である。   3 to 6 are process cross-sectional views illustrating the manufacturing process of the optical semiconductor module of FIG. For example, the optoelectric ferrule 1 is formed by molding an epoxy resin mixed with about 80% of a glass filler of about 30 μm by resin molding using a mold, forming an optical fiber guide hole, a protruding portion of a protruding electrode, and a metal mask and sputtering, etc. Pattern metallization is performed to form two protruding electrodes and electrical wiring. As a result, one photoelectric ferrule can be mass-produced at a very low cost while having a very high accuracy of 1 μm or less.

この光電気フェルールにアクリル樹脂やシリコーン樹脂、エポキシ樹脂などによる透明樹脂シート(スペーサ)6を装着し(図3)、ゴム板などの当て板9を押し付けて突起電極2の先端を透明樹脂シート6から突き出させる。そこに、光半導体素子(面発光レーザやフォトダイオード等)をフリップチップボンディングして装着する(図4)。そして、光ファイバ4をガイド穴に挿入し、透明樹脂スペーサ6が光半導体素子3に接触するまで光ファイバを押し込む(図5)。このとき、光電気フェルール1を固定して光ファイバ4の挿入を行うと、光半導体素子が押されて2の電極パッド部分から剥れることがある。これを防止するため、1の光電気フェルールを保持固定するのではなく、光半導体素子3の後ろに当て板を設けて光ファイバと当て板で光半導体素子3と透明樹脂スペーサ6を挟むようにすると良い。但し、光半導体素子は一般に脆弱であるため、大きな押し圧がかからないよう、光ファイバの反跳圧力を監視して、反跳圧力が僅かに増える位置で光ファイバの押し込みを止めるようにする。この反跳圧力が僅かに増加する範囲として、6の透明樹脂スペーサが弾性変形してあまり光半導体素子に圧力がかからない範囲を設定すればよい。 A transparent resin sheet (spacer) 6 made of acrylic resin, silicone resin, epoxy resin, or the like is attached to the photoelectric ferrule (FIG. 3), and a contact plate 9 such as a rubber plate is pressed to attach the tip of the protruding electrode 2 to the transparent resin sheet 6. Protrude from. An optical semiconductor element (surface emitting laser, photodiode, etc.) is mounted thereon by flip chip bonding (FIG. 4). Then, the optical fiber 4 is inserted into the guide hole, and the optical fiber is pushed in until the transparent resin spacer 6 contacts the optical semiconductor element 3 (FIG. 5). At this time, when the optical fiber 4 is inserted while the optoelectric ferrule 1 is fixed, the optical semiconductor element may be pushed and peeled off from the two electrode pad portions. In order to prevent this, instead of holding and fixing one photoelectric ferrule, a backing plate is provided behind the optical semiconductor element 3 so that the optical semiconductor element 3 and the transparent resin spacer 6 are sandwiched between the optical fiber and the backing plate. Good. However, since the optical semiconductor element is generally fragile, the recoil pressure of the optical fiber is monitored so that the large recoil pressure is not applied, and the push of the optical fiber is stopped at a position where the recoil pressure slightly increases. As a range in which the recoil pressure slightly increases, a range in which the pressure is not applied to the optical semiconductor element due to elastic deformation of the 6 transparent resin spacers may be set.

4の光ファイバは、一般的な光ファイバカッターにより切断するだけで、比較的高い面精度の光学端面を得ることができる。これは、光ファイバを破断切断や切削により切断するのではなく、ダイヤモンドによる僅かな傷入れを行って側面押し出しによる応力へき開を用いていることによる。本発明の光半導体モジュールにおいては、このような切断面をそのまま用いることで研磨などの高コスト工程を排除している。   The optical fiber of No. 4 can obtain an optical end face with relatively high surface accuracy only by cutting with a general optical fiber cutter. This is because the optical fiber is not cut by breakage cutting or cutting, but a slight scratching with diamond is performed and stress cleavage by side extrusion is used. In the optical semiconductor module of the present invention, such a cut surface is used as it is, thereby eliminating a costly process such as polishing.

最後に、光半導体素子3が装着された側面から透明樹脂(液体)7を注入してアンダー
フィルとする(図6)。このとき、透明アンダーフィル樹脂の注入は、8のガイド穴後部から行うことも可能であり、また、光電気フェルール側面に設けた樹脂注入開口(図示せず)から行っても良い。透明アンダーフィル樹脂7としては、アクリルやシリコーン、エポキシ等の透明樹脂を用いればよく、加熱または紫外線照射で硬化するタイプを用いるのが効率的に作業できる。また、可能な限り、硬化後の屈折率が透明樹脂スペーサ6の屈折率と整合していることが過剰な散乱損失を防止するために望ましい。
Finally, transparent resin (liquid) 7 is injected from the side surface on which the optical semiconductor element 3 is mounted to form an underfill (FIG. 6). At this time, the injection of the transparent underfill resin can be performed from the rear portion of the eight guide holes, or may be performed from a resin injection opening (not shown) provided on the side surface of the photoelectric ferrule. As the transparent underfill resin 7, a transparent resin such as acrylic, silicone, or epoxy may be used, and it is efficient to use a type that is cured by heating or ultraviolet irradiation. Further, as much as possible, it is desirable that the refractive index after curing matches the refractive index of the transparent resin spacer 6 in order to prevent excessive scattering loss.

なお、本発明は上述した各実施形態に限定されるものではない。例えば透明樹脂は他にもポリイミド樹脂やポリカーボネート樹脂など種々の樹脂が選定可能であり、光ファイバも石英系やプラスチック系などの選択が可能であり、更に光ファイバに代えて光導波路フィルムを用いるような選択も可能である。その他、本発明はその要旨を逸脱しない範囲で、種々変形して実施することができるものである。   The present invention is not limited to the above-described embodiments. For example, various resins such as polyimide resin and polycarbonate resin can be selected as the transparent resin, and the optical fiber can be selected from quartz or plastic, and an optical waveguide film is used instead of the optical fiber. A simple selection is also possible. In addition, the present invention can be variously modified and implemented without departing from the spirit of the present invention.

本発明の実施例1に係る光半導体モジュールの概略構成を示す断面図。Sectional drawing which shows schematic structure of the optical semiconductor module which concerns on Example 1 of this invention. 本発明の実施例1に係る光半導体モジュールの概略構成を示す斜視図。1 is a perspective view showing a schematic configuration of an optical semiconductor module according to Embodiment 1 of the present invention. 本発明の実施例2に係る本発明の構成の工程断面図。Process sectional drawing of the structure of this invention which concerns on Example 2 of this invention. 本発明の実施例2に係る本発明の構成の工程断面図。Process sectional drawing of the structure of this invention which concerns on Example 2 of this invention. 本発明の実施例2に係る本発明の構成の工程断面図。Process sectional drawing of the structure of this invention which concerns on Example 2 of this invention. 本発明の実施例2に係る本発明の構成の工程断面図。Process sectional drawing of the structure of this invention which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

1 … 光電気フェルール
2 … 突起電極
3 … 光半導体素子
4 … 光ファイバ芯線
5 … 保護被覆
6 … 透明樹脂スペーサ
7 … 透明樹脂アンダーフィル
8 … ガイド

DESCRIPTION OF SYMBOLS 1 ... Photoelectric ferrule 2 ... Projection electrode 3 ... Optical semiconductor element 4 ... Optical fiber core wire 5 ... Protective coating 6 ... Transparent resin spacer 7 ... Transparent resin underfill 8 ... Guide

Claims (2)

透明樹脂膜を光電気フェルールの突起電極が形成されている面に押し付けて前記突起電極の先端を前記透明樹脂膜から突き出させる工程と、
前記突起電極に光半導体素子を装着する工程と、
光伝送路を前記光電気フェルールのガイドに挿入して前記透明樹脂膜を前記光半導体素子に押し付け接触させる工程と、
前記光半導体素子の周囲から前記光半導体素子及び前記光電気フェルールの間に透明樹脂を注入して固化せしめる工程と、
を具備することを特徴とする光半導体モジュールの製造方法
Pressing the transparent resin film against the surface on which the protruding electrode of the photoelectric ferrule is formed to protrude the tip of the protruding electrode from the transparent resin film ;
Attaching an optical semiconductor element to the protruding electrode;
Inserting an optical transmission path into the guide of the photoelectric ferrule and pressing the transparent resin film against the optical semiconductor element; and
Injecting and solidifying a transparent resin between the optical semiconductor element and the photoelectric ferrule from the periphery of the optical semiconductor element ;
An optical semiconductor module manufacturing method comprising:
前記突起電極の先端を前記透明樹脂膜から突き出させる工程は、ゴム板を用いて前記透明樹脂膜を前記光電気フェルールの前記突起電極が形成されている面に押し付けてなされることを特徴とする請求項記載の光半導体モジュールの製造方法。 Step to protrude the tip of the projecting electrode from the transparent resin layer is characterized to be made against the transparent resin film using a rubber plate to the surface on which protruding electrodes are formed of the photoelectric ferrule The manufacturing method of the optical-semiconductor module of Claim 1 .
JP2003432232A 2003-12-26 2003-12-26 Manufacturing method of optical semiconductor module Expired - Fee Related JP3935467B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003432232A JP3935467B2 (en) 2003-12-26 2003-12-26 Manufacturing method of optical semiconductor module
EP04257856A EP1548475B1 (en) 2003-12-26 2004-12-16 Optical semiconductor module and method of manufacturing the same
DE602004032008T DE602004032008D1 (en) 2003-12-26 2004-12-16 Optical semiconductor module and method for its production
US11/012,273 US7192199B2 (en) 2003-12-26 2004-12-16 Optical semiconductor module and method of manufacturing the same
TW093139667A TWI263813B (en) 2003-12-26 2004-12-20 Optical semiconductor module and method of manufacturing the same
CNB2004101048983A CN100370293C (en) 2003-12-26 2004-12-24 Optical semiconductor module and method of manufacturing the same
KR1020040112792A KR100645414B1 (en) 2003-12-26 2004-12-27 Optical semiconductor module and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003432232A JP3935467B2 (en) 2003-12-26 2003-12-26 Manufacturing method of optical semiconductor module

Publications (2)

Publication Number Publication Date
JP2005189605A JP2005189605A (en) 2005-07-14
JP3935467B2 true JP3935467B2 (en) 2007-06-20

Family

ID=34789994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003432232A Expired - Fee Related JP3935467B2 (en) 2003-12-26 2003-12-26 Manufacturing method of optical semiconductor module

Country Status (1)

Country Link
JP (1) JP3935467B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732198B2 (en) 2006-03-10 2011-07-27 住友電気工業株式会社 Optical connecting component manufacturing method and optical connecting component
JP2009139895A (en) * 2007-12-11 2009-06-25 Sumitomo Electric Ind Ltd Optical module and method of manufacturing optical module
EP2256881A4 (en) 2008-03-26 2014-12-24 Sumitomo Electric Industries Photoelectric conversion module, method for assembling same, and photoelectric information processing device using same
JP2009251224A (en) * 2008-04-04 2009-10-29 Sumitomo Electric Ind Ltd Optical module and method for assembling the same
JP5375535B2 (en) * 2009-11-11 2013-12-25 住友電気工業株式会社 Photoelectric conversion module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250110A (en) * 1988-08-12 1990-02-20 Hitachi Ltd Optical element module
JPH07218777A (en) * 1994-01-26 1995-08-18 Alps Electric Co Ltd Module for optical communication
US5625733A (en) * 1995-02-09 1997-04-29 Lucent Technologies Inc. Arrangement for interconnecting an optical fiber to an optical component
JP3040721B2 (en) * 1995-08-30 2000-05-15 松下電器産業株式会社 Optical coupling module
JPH0990176A (en) * 1995-09-27 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical element module
JP3609625B2 (en) * 1998-08-20 2005-01-12 株式会社トーコー Molded product manufacturing equipment for molding and cutting synthetic resin sheets
JP2000208859A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Optical transmission device
JP3758938B2 (en) * 1999-06-16 2006-03-22 セイコーエプソン株式会社 Optical module, method for manufacturing the same, and optical transmission device
JP2001127312A (en) * 1999-10-28 2001-05-11 Seiko Epson Corp Optical module, manufacturing method therefor, and optical transmission device
JP2001159724A (en) * 1999-12-02 2001-06-12 Seiko Epson Corp Optical module, its manufacturing method, and optical transfer device
JP2002164602A (en) * 2000-11-27 2002-06-07 Seiko Epson Corp Optical module, its manufacturing method and optical transmission equipment
JP3775480B2 (en) * 2001-03-13 2006-05-17 セイコーエプソン株式会社 Manufacturing method of optical module
JP3920264B2 (en) * 2003-12-26 2007-05-30 株式会社東芝 Manufacturing method of optical semiconductor module

Also Published As

Publication number Publication date
JP2005189605A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US7118293B2 (en) Optical module and manufacturing method of the same, optical communication device, opto-electrical hybrid integrated circuit, circuit board, and electronic apparatus
TW424167B (en) Optical transmit-receive module, optical transmit-receive coupler and optical transmit-receive system using same
KR100645414B1 (en) Optical semiconductor module and method of manufacturing the same
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
JP2011095295A (en) Optical fiber block of optical module and method of manufacturing the same
JP2010097169A (en) Photoelectric module, optical substrate and method of manufacturing photoelectric module
JP3935467B2 (en) Manufacturing method of optical semiconductor module
US5500914A (en) Optical interconnect unit and method or making
JP3920264B2 (en) Manufacturing method of optical semiconductor module
JP6728639B2 (en) Optical wiring connection structure and optical wiring connection method
JP5395042B2 (en) Manufacturing method of optical path conversion device
JP5223879B2 (en) Transceiver module
JP3831350B2 (en) Optical semiconductor module and manufacturing method thereof
Palen Low cost optical interconnects
US5545359A (en) Method of making a plastic molded optoelectronic interface
JP2002214485A (en) Plane optical element, plane optical element mounting body, method for producing it and optical wiring device using it
JP2002350654A (en) Plastic optical fiber and its manufacturing method, and optical mount body and optical wiring device using the same
JP4607063B2 (en) Manufacturing method of optical path conversion connector
JP2002311260A (en) Plastic optical fiber, production method therefor, optical package using the same and optical wiring device
JP2007073664A (en) Optical transceiver module and optical communication device
KR100864962B1 (en) Flexible optical interconnection module for flat panel display and manufacturing method thereof
JP2009223340A (en) Optical component and optical path changing device used for the same
JP4800409B2 (en) Manufacturing method of optical path conversion connector
JP2011095294A (en) Optical module
JP2000056154A (en) Optical module and its manufacture

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees