JP3933944B2 - Non-contact inspection method for high frequency aluminum seals - Google Patents

Non-contact inspection method for high frequency aluminum seals Download PDF

Info

Publication number
JP3933944B2
JP3933944B2 JP2002018262A JP2002018262A JP3933944B2 JP 3933944 B2 JP3933944 B2 JP 3933944B2 JP 2002018262 A JP2002018262 A JP 2002018262A JP 2002018262 A JP2002018262 A JP 2002018262A JP 3933944 B2 JP3933944 B2 JP 3933944B2
Authority
JP
Japan
Prior art keywords
upper edge
seal
donut
container opening
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002018262A
Other languages
Japanese (ja)
Other versions
JP2002318213A (en
Inventor
隆博 倉谷
孝六 橘
容周 荒張
武夫 熊田
雅夫 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2002018262A priority Critical patent/JP3933944B2/en
Publication of JP2002318213A publication Critical patent/JP2002318213A/en
Application granted granted Critical
Publication of JP3933944B2 publication Critical patent/JP3933944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8261Testing the joint by the use of thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3656Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint being a layer of a multilayer part to be joined, e.g. for joining plastic-metal laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • B29C65/368Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/561Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using screw-threads being integral at least to one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24221Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/56Stoppers or lids for bottles, jars, or the like, e.g. closures
    • B29L2031/565Stoppers or lids for bottles, jars, or the like, e.g. closures for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)
  • Package Closures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波アルミシールの非接触検査法、より詳しくは、少なくともアルミニウム箔及び合成樹脂成形部材で構成される容器中蓋を高周波誘導加熱によりアルミニウム箔でシールした場合のシールの良否を外蓋上面から得られる赤外線熱画像から直接にまたはこのような赤外線熱画像をデータ処理して得られるヒストグラムから判定する高周波アルミシールの非接触検査法に関する。
【0002】
【従来の技術】
従来、赤外線を利用した検査法には、例えば、特開昭62−28650「異物付着有無の検査方法」や特開平7−101423「包装容器接着検査装置」が知られている。詳述すれば、前者は、被検査物に外部から熱変化を与え、被検査物の異物付着部が他部と異なる熱容量のため生じる温度差を赤外線検出器で測定することにより、食品のブリスタ包装製品の容器上蓋内面への充填物の付着を間接的に自動判定する、というものであり、そして後者は、ホットメルト接着部位を有する包装容器の上面と両側面とから放射される赤外線を赤外線放射温度計で検知することにより、包装容器の接着箇所の接着不良を包装容器の外方から非接触で検査可能にする、というものである。これらは、赤外線熱画像を利用する点においては本発明とは共通するものの、検査の対象(検査箇所)やとらえる赤外線(源)の相違などから、後に説明するところから理解されるように、本発明とは全く異なる。
【0003】
マヨネーズ、ドレッシング、トマトケチャップ、醤油、ソースなど液状、粉状又は顆粒状の調味料が、大は1kg以上にも及ぶ大容量の、そして小は100g以下の小容量の非金属材質の樹脂製容器(ボトル)に充填され、容器開口部は同じく非金属材質の樹脂製キャップ(外蓋)で蓋をされた形態で流通におかれている。これらの製品は、流通過程において、安全上の見地や消費者の受ける衛生上の印象の点から、中蓋を備えることが望まれる。
【0004】
このような中蓋としては、高周波誘導アルミニウム箔の加熱によるシール方法がある。すなわち、例えば、接着剤層を介してポリエチレンフィルムなどの熱溶融性樹脂フィルムを積層したアルミニウム箔(以下アルミシール積層材と言うこともある)を、中身を充填した容器の開口部のドーナツ型上縁を覆うようにドーナツ型上縁の外径より若干大きい(好ましくは、後に開封時中蓋を取り除くときに取り除きやすいようにタブを付けた)円形にカットし、このカット片を熱融着性樹脂フィルムの面を下にして容器開口部を覆い、この上から(好ましくは、内側底にアルミニウム箔を容器開口部上縁によく圧接できるようなドーナツ状の突条を備えた)樹脂製外蓋(キャップ)をし、この状態で高周波誘導加熱シーラーを通す。各部の関係の概念図を図1に示す。
【0005】
このように、高周波シーラーを通した際、アルミニウム箔の円形カット片の外縁内側部分に渦電流が流れ、この渦電流でアルミニウムの箔が加熱される。アルミニウム箔のカット片(アルミシール)は外蓋(キャップ)(の内側底に設けられた突条)でボトル(容器)開口部のドーナツ型上縁に押さえつけられており、アルミシールで発生した熱は、アルミシールが接触している部分(図2のAの部分)のボトルの樹脂を溶かし、後に自然冷却にて溶けた樹脂が固まる。これによって、アルミシール(中蓋)がボトル開口部に接着し、そのうえに外蓋がされている製品が完成する。
【0006】
しかしながら、このようにして行う高周波誘導加熱シールは、必ずしも常に良好に行われるとは限らず、キャップ(上蓋)の緩み、斜めキャップ、アルミシールの2枚重ね、加熱温度の低すぎ、加熱温度の高過ぎ、シール部への内容物(中身)の付着、シール面の切り欠け、アルミシールなし、等の理由による不完全な欠陥シールが生ずることがある。
【0007】
そこで、例えば、ベルトコンベアを利用して、樹脂製容器への中身(内容物)の充填、容器開口部のドーナツ形上縁にアルミニウム箔の円形中蓋を置き、これを外蓋(キャップ)で前記容器開口部上縁に圧接し、この状態で高周波誘導加熱に付して前記アルミニウム箔を前記容器開口部上縁に高周波加熱融着をすることで密栓をした製品を連続的に製造する生産ライン上で前記のようなシールの不完全な製品を簡便に検出することができて、このような製品(不良品)を排除することのできることが強く望まれている。
【0008】
【発明が解決しようとする課題】
従って、本発明は、前項記載の従来技術の背景下に、上に説明したような高周波アルミシールにおける欠陥を簡便に検出する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、前項記載の目的を達成すべく鋭意研究の結果、樹脂製容器開口部ドーナツ形状上縁にアルミシール中蓋をいれた蓋(外蓋)を装着し、高周波シーラー下を通過させ、アルミシール積層材を非接触加熱し、そのうちの下層の熱溶融性樹脂を容器口部ドーナツ形上縁に融着させる際、アルミシール箔部で発生した熱が該ドーナツ形状の溶融部つまりシール状況を外蓋を通してその外側表面に伝わるが、熱伝導された様子を赤外線カメラにて赤外線の熱画像として非接触で取り込み、これを画像検査処理装置にて上蓋外表面の温度分布をカラーで再現し、この形状と解析したデータからアルミシールが良好な状態で接着されたか否かを容易に判別できることを見出し、このような知見に基づいて本発明を完成するに到った。
【0010】
すなわち、本発明は、樹脂製容器開口部のドーナツ形状上縁に少なくとも合成樹脂成形部材とその上にアルミニウム箔等の金属片の中蓋を置き、これを樹脂製外蓋で前記容器開口部上縁に圧接し、この状態で高周波誘導加熱に付して前記金属片の発熱により、下面に圧接された合成樹脂成形部材を部分溶融して前記容器開口部ドーナツ形状上縁に加熱融着させた場合に、前記高周波誘導加熱処理に引き続いて前記キャップ上面を赤外線熱画像カメラで撮影し、得られた赤外線熱画像の形状及び/又はデータ解析に基づいてアルミシールの良否を判定する高周波アルミシールの非接触検査法であって、該データ解析が1)計測された全温度の内、一定以上の高温値の検出、2)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状の長軸及び単軸方向の長さの比又は形状異常による検出、3)樹脂製容器開口部のドーナツ形状上縁に形成された熱溶着部ドーナツ形状の樹脂製容器の流れ方向の中心線の温度分布検出、4)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状のドーナツ形中心線の温度分布検出の少なくとも一つを用いることを特徴とする高周波アルミシールの非接触検査法に関する。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0012】
樹脂製容器開口部のドーナツ型上縁に合成樹脂成形部材とその上にアルミニウム箔等の金属片(アルミシール積層材)の中蓋を置き、これを樹脂製外蓋(キャップ)で前記容器開口部上縁に圧接し、この状態で高周波誘導加熱に付して前記アルミニウム箔の下面に位置した合成樹脂成形部材を前記容器開口部上縁に高周波加熱融着をすること自体は適宜従来法によることができる。
【0013】
赤外線熱画像カメラで物体の表面を撮影し、得られた熱画像をデータ処理して前記物体の表面の温度分布を例えばカラーで表示し(高温部は赤、低温部は青、そして中間部は黄色というように)、あるいはヒストグラムで表示することは、市販の赤外線カメラ、データ処理、ディスプレイなどのシステムからなる装置を適宜使用することが出来る(例えば、日本電気(株)赤外放射温度計「サーモトレーサ」、三菱電機(株)高速熱画像解析装置「三菱サーマルイメージャ」、日本アビオニクス(株)赤外線熱画像装置(TVSシリーズ)、日本電子(株)赤外線温度解析装置「サーモビュア」(JTG−6000シリーズ)、等)。
【0014】
本発明で用いられる高周波発振器は市販の装置を用いることができる。例えば、島田理化(株)製「高周波発振器SSTー20」が好んで用いられる。
【0015】
本発明の特徴は高周波発振により金属片(アルミニウム箔)に発生した熱により、該金属片下面に積層された合成樹脂成形部材の一部が溶融し、樹脂製容器口部のドーナツ形上縁がシールされた際発生した熱を、外蓋裏天面を通して外蓋外側上面に熱伝導された熱分布を上部より赤外線熱画像カメラでとらえ、得られた赤外線熱画像データを処理して外蓋外側上面の温度分布をカラー表示し、またはヒストグラム解析し(因みに、これらの、データ処理による表示は、リアルタイムで行われ得ることは周知の通りである)、これらの表示又は解析を基に良好にシールされた製品の場合のそれらと比較して一致すればシール良好と判定し、そして一致しなければシール不良と判定することや又基準となるデータを設定しておき異常値を検出することでシール性を非接触的に検査することにある。
【0016】
図2により、これをより具体的に説明する。図2はアルミシール加熱時のキャップ(外蓋)上面への熱伝導とこれを上部よりキャップに向かって赤外線熱画像カメラで捕らえたヒストグラフを示すものである。アルミシールで発生した熱は、キャップの部分(図2のAの部分)にも伝わり、キャップ上部から赤外線熱画像カメラで見るとドーナツ形状部分の温度がドーナツ内側の温度より高いことが分かる。温度分布の形でシール性の接着状況をかなり正確に判断することができる。
【0017】
つまり、図2に示すようなきれいなドーナツの形が観察された場合は(ただし、アルミニウム箔の中蓋にタブが付いているときは、ドーナツ型画像の外縁にそれによる若干の欠けが入る)、良好なアルミシールが施された、と判断でき、それ以外の形が観察された場合は、形によって、(1)キャップ(外蓋)が充分に締まっておらずアルミシール(中蓋)がボトル(容器)開口部のドーナツ型上縁によく押さえつけられていなかったため、(2)斜めキャップ締めでアルミシールの浮いている部分があったため、(3)ボトル(開口部のドーナツ型上縁)のアルミシール接着面が平らでなくアルミシールにきちんと接触していなかったため、(4)アルミシール接着面に内容物が付着していたため、温度が充分に上昇しなかったため、(5)高周波シーラーの出力が大きすぎて温度が上昇し過ぎたため、(6)高周波シーラーの出力が小さすぎて温度が充分に上昇しなかったため、(7)高周波シーラーによる加熱がなかったため、(8)アルミシールが装着されていなかったため、(9)アルミシールが重なって装着されていたため、等々の様々な不具合原因を推定することができる。よって、この結果を用いて、コンベアを流れる内容物充填済みボトル(容器)のアルミシール接着の良否判定をオンラインで全数を検査できるのである。
【0018】
ドーナツの形状は樹脂製容器口部が円形であるにも拘わらず、実際生産工程で本発明を実施した場合、画面上では楕円形に映し出される。これは樹脂製容器の熱溶着シールが作動するベルトコンベア上で行われることに起因する。つまり、樹脂製容器は常に一定速度で移動しているので移動方向に押しつぶされた形状の楕円形ドーナツとして画面上に表れるためである。しかしながらこの楕円形の映像であっても解析また肉眼による判断に支障を及ぼすことはない。
【0019】
赤外線画像のデータ処理によって得られるヒストグラムに基づいてアルミシールの良否の判定を行うことも、同様に、シール良好な場合のヒストグラムと検査対象品のヒストグラムを比較し、両者の一致の程度するかどうかでシールの良否を判断する。
【0020】
その画像またはヒストグラムが良好にシールされた製品(良品)の画像またはヒストグラムと照合して一致しないためにシール不良と判定された製品(不良品)をベルトコンベアの製造ラインから除去するには、ディスプレイの画像を監視していてシール不良の画像が表れたら若しくは前記照合を機械的自動的に行わせて不良品の場合はディプレイ上にNo Goodと表示させるようにしておいて、No Goodと表示されたら当該不良品をマニュアル的にラインから取り除くことで行うこともできるが、また、機械的自動的に行わせた前記照合の結果を不良品排除装置の駆動用信号に変換して自動的に不良品排除を行うこともできる。
【0021】
一方、画面上に映し出された映像の温度分布データ解析に於いて、1)(異常高温)計測された全温度のうち、一定以上の高温値の検出、2)(シール部異常形状)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状の長軸及び単軸方向の長さの比又は形状異常による検出、3)(シール温度分布)樹脂製容器開口部のドーナツ形状上縁に形成された熱溶着部ドーナツ形状の樹脂製容器の流れ方向の中心線の温度分布検出、4)(シール温度変化率)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状のドーナツ形中心線の温度分布検出の少なくとも一つを用いるか又複数を組み合わせて用いることができる。
【0022】
上述の1):(異常高温)計測された全温度のうち、一定以上の高温値の検出の目安は樹脂製容器の材質とアルミシール部材に用いる合成樹脂形成部材との組み合わせで決定される。一般的には高密度ポリエチレンを合成樹脂形成部材にポリエチレンを用いる場合、それぞれの融点はメーカーにより差はあるが概ね120〜140℃、107〜120℃であるので最大温度は140℃である。一方、高周波発振による加熱で発生した熱はキャップ内天面からキャップ外側上面にに伝わる。赤外線熱画像カメラはこのキャップ上面の温度を計測するため溶融温度はキャップへの熱伝導を通して測定されることになる。従って、計測される温度は溶融温度より比べかなり低温度で測定される。実際にはどの程度キャップ外側の見かけの温度が溶融温度より低く検出されるかはキャップの材質、構造、高周波アルミシール条件(室温、高周波発振時間、樹脂製容器移動速度等)によって異なってくる。従って、異常高温値を何度に設定するかはその都度検討し決定する必要がある。
【0023】
上述の2):(シール部異常形状)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状の長軸及び単軸方向の長さの比又は形状異常による検出をより具体的に説明する。袴に載置された樹脂製容器はベルトコンベア上を移動しているのでシール性状態の検出のため赤外線画像解析CRT画面に映し出された映像は移動方向Y軸が移動に直角なX軸に比べ短い。従ってX/Y比を一定値幅以内とするかX及びY値各々の上限と下限を設定する検査が可能である。
【0024】
上述の3):(シール温度分布)樹脂製容器開口部のドーナツ形状上縁に形成された熱溶着部ドーナツ形状の樹脂製容器の流れ方向の中心線の温度分布検出はドーナツ状の肉部と空洞部で温度分布が異なることから樹脂製容器の流れ方向の中心線の温度分布を横軸に温度、縦軸に度数をするグラフに示せば2つの極大値を持つ曲線となり、このパターンをメモリーに記憶させておき実測値と比較させることで検出出来る。
【0025】
上述の4):(シール温度変化率)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状のドーナツ形中心線の温度分布検出は主にドーナツ形状の断線つまり熱溶着していない破断部分を検出するのに都合が良い。CRT画面上にX軸はドーナツ形中心線に沿って0〜360度とし、Y軸は温度を記録する。曲線がX軸に平行な直線又は緩い曲線を示せば温度の急激な変化(破断地帯)はないと見なすことが出来る。
【0026】
本発明による検査システムの1例を図3に示す。
【0027】
コンベアの移動が速くてラインスピード(ボトル/分)が大きいときは、このような速度でも先に説明した上蓋上面の温度分布をよくキャッチできるような高速熱画像解析装置を採用するとよいことはいうまでもない。
【0028】
また、コンベアの移動速度が速くて容器移動速度も大きくなり、そのために容器の蓋の進行方向前面が冷え、その結果得られる赤外線熱画像がシール良好の時でもきれいなドーナツ形にならないときは、シール良好なものの熱画像を基準とし、これと検査対象品の熱画像とを照合することでシールの良否を判定することのできることは、これまたいうまでもない。
【0029】
【実施例】
以下、実施例により本発明を更に説明する。
【0030】
(樹脂製容器及び高周波シール部材の準備と組み込み)
樹脂製容器開口部のドーナツ形状上縁に合成樹脂成形部材/接着剤/アルミニウム箔/セロファン薄膜を積層したアルミシール積層材(総厚さ30μm)を中蓋とし、これをねじ込み式の赤色の樹脂製外蓋で前記容器開口部上縁に巻絞めトルク7.5kg/cmで圧接し、試験用サンプルとした。樹脂製容器は容量250g入り、400g入り、600g入り、1000g入りで中身にマヨネーズを充填した各種容器を各5000本用意した。樹脂製外蓋はこの他に黄、橙及び白各種用意した。
【0031】
(高周波シールとシール状態の撮影)
前記準備した樹脂製容器をベルトコンベア上で安定させるための袴に載置し、これを530cm/sで移動させ、高周波発振器(島田理化(株)製「SST−20」)のコイル下一定位置を維持して水方向に移動させた。この状態で出力89〜106V、55〜75Aで高周波誘導加熱に付して前記アルミニウム箔の発熱により、下面に圧接された合成樹脂成形部材を部分溶融して前記容器開口部ドーナツ形状上縁に加熱融着させた。前記高周波誘導加熱処理に引き続いて前記キャップ上面を赤外線熱画像カメラで撮影し、得られたTV画面上にドーナツ形の温度分布映像を映し出した。
【0032】
(解析項目)
1)(異常高温)
計測された全温度のうち、一定以上の高温値の検出、
2)(シール部異常形状)
樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状の長軸及び単軸方向の長さの比又は形状異常による検出、
3)(シール温度分布)
樹脂製容器開口部のドーナツ形状上縁に形成された熱溶着部ドーナツ形状の樹脂製容器の流れ方向の中心線の温度分布検出、
4)(シール温度変化率)
樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状のドーナツ形中心線の温度分布検出
を1)〜4)を同時に行った。
【0033】
(解析結果)
CRT画面の映像から肉眼でドーナツ状の温度分布をカラフルに映像化することができた。これで肉眼でも瞬間的に判断することができた。更に精度を期すために上記解析項目を全サンプルについて検出し、データを記憶させた。実際の工程分析には上記解析項目に照らして異常値を検出した場合にそのサンプルについて、コンピュータに記憶させたデータを引き出し、異常原因を解析し、直ちに、その後の対策をとることができる。解析項目1):異常高温で検出された例は高周波シールした後再度高周波シールを意識的に行った場合に検出された。アルミ箔の一部と樹脂製容器口部上縁の一部がゆるみ、キャップ、あるいは斜めキャップのため部分的に点接触したような状態でその部分の異常高温を検出した。解析項目2):シール部異常形状は樹脂製容器の送り込み、移動速度の異常。解析項目3):(シール温度分布)からアルミシール積層材をセットしなかった場合、二重にアルミシール積層材をセットした場合に異常低温を検出した。解析項目4):(シール温度変化率)はシール部分の一部がシールされていなかった場合に検出した。
【0034】
【発明の効果】
本発明によれば、樹脂製容器(ボトル)に内容物を充填し、アルミシール積層材(中蓋)を外蓋内天面に接してこれに装着し、高周波シーラー出力下を通過させ、アルミシール積層材下層の合成樹脂形成部材と該容器開口部上縁に融着させた際の融着シールの良否が簡便にしかも全数検査が極めて容易に行うことができ、品質管理を極めて効率的かつ効果的行うことができる。
【図面の簡単な説明】
【図1】本発明の高周波シールのシール部分を示す切開図を示す。
【図2】アルミシール加熱時のキャップ(外蓋)上面への熱伝導とその赤外線画像ヒストグラムを示す。
【図3】本発明による検査システムの1例を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact inspection method for high-frequency aluminum seals, and more specifically, the quality of a seal when a container inner lid composed of at least an aluminum foil and a synthetic resin molded member is sealed with aluminum foil by high-frequency induction heating. The present invention relates to a non-contact inspection method for a high-frequency aluminum seal that is determined directly from an infrared thermal image obtained from the upper surface or from a histogram obtained by data processing of such an infrared thermal image.
[0002]
[Prior art]
Conventionally, as an inspection method using infrared rays, for example, Japanese Patent Laid-Open No. 62-28650 “Inspection Method for Adherence of Foreign Objects” and Japanese Patent Laid-Open No. 7-101423 “Packaging Container Adhesion Inspection Device” are known. More specifically, the former applies a thermal change to the object to be inspected from the outside, and measures the temperature difference caused by the heat capacity of the foreign matter adhering part of the object to be inspected with an infrared detector, thereby detecting the blister of the food. Indirect automatic determination of the adhesion of the packing material to the inner surface of the container top lid of the packaged product, and the latter infrared rays are emitted from the upper surface and both side surfaces of the packaging container having the hot melt adhesion site. By detecting with a radiation thermometer, it is possible to inspect the adhesion failure of the bonding location of the packaging container in a non-contact manner from the outside of the packaging container. Although these are the same as the present invention in that infrared thermal images are used, as will be understood from the description below, due to differences in the inspection target (inspection location) and the infrared (source) to be captured. It is completely different from the invention.
[0003]
Liquid, powdery or granular seasonings such as mayonnaise, dressing, tomato ketchup, soy sauce, sauce, etc. The (bottle) is filled, and the container opening is in circulation in the form of being covered with a non-metallic resin cap (outer lid). These products are desired to have an inner lid from the viewpoint of safety and the impression of hygiene received by consumers during the distribution process.
[0004]
As such an inner lid, there is a sealing method by heating a high frequency induction aluminum foil. That is, for example, an aluminum foil laminated with a heat-meltable resin film such as a polyethylene film via an adhesive layer (hereinafter also referred to as an aluminum seal laminate) is formed on the donut shape of the opening of a container filled with the contents. Cut to a circle that is slightly larger than the outer diameter of the upper edge of the donut shape so that it covers the edge (preferably, a tab is attached so that it can be easily removed when the lid is removed later when opened). Covering the container opening with the resin film face down, preferably from the outside (preferably provided with a donut-shaped ridge on the inner bottom so that the aluminum foil can be well pressed against the upper edge of the container opening) Put the lid (cap), and pass the high-frequency induction heating sealer in this state. The conceptual diagram of the relationship between each part is shown in FIG.
[0005]
Thus, when it passes through the high-frequency sealer, an eddy current flows through the inner edge of the circular cut piece of the aluminum foil, and the aluminum foil is heated by this eddy current. The cut piece of aluminum foil (aluminum seal) is pressed against the top edge of the donut shape at the opening of the bottle (container) by the outer lid (cap) (protrusion provided on the inner bottom of the cap), and the heat generated by the aluminum seal Melts the resin of the bottle in the part (A part of FIG. 2) with which the aluminum seal is in contact, and then the melted resin is solidified by natural cooling. As a result, an aluminum seal (inner lid) is adhered to the bottle opening, and a product having an outer lid on the aluminum seal is completed.
[0006]
However, the high-frequency induction heating seal performed in this way is not always performed well, and the cap (top cover) is loosened, the slanted cap and the two aluminum seals are stacked, the heating temperature is too low, and the heating temperature is low. Incomplete defect seals may occur due to reasons such as being too high, contents (contents) adhering to the seal, notch on the seal surface, no aluminum seal, etc.
[0007]
Therefore, for example, using a belt conveyor, the resin container is filled with the contents (contents), a circular inner lid of aluminum foil is placed on the upper edge of the donut shape of the container opening, and this is covered with an outer lid (cap). Production in which the product is continuously sealed by pressing the upper edge of the container opening and subjecting the aluminum foil to high-frequency heat fusion to the upper edge of the container opening by high-frequency induction heating in this state. It is strongly desired that a product with an incomplete seal as described above can be easily detected on the line and such a product (defective product) can be eliminated.
[0008]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for easily detecting defects in a high-frequency aluminum seal as described above under the background of the prior art described in the previous section.
[0009]
[Means for Solving the Problems]
As a result of diligent research to achieve the object described in the preceding paragraph, the present inventor attached a lid (outer lid) with an aluminum seal inner lid to the upper edge of the resin container opening donut shape, and allowed to pass under the high-frequency sealer. When the aluminum seal laminated material is heated in a non-contact manner and the lower layer of the heat-meltable resin is fused to the upper edge of the container mouth portion donut shape, the heat generated in the aluminum seal foil portion is the melted portion of the donut shape, that is, the seal. The situation is transmitted to the outer surface through the outer lid, but the state of heat conduction is captured in a non-contact manner as an infrared thermal image with an infrared camera, and this is reproduced in color by the image inspection processing device in color distribution on the outer surface of the upper lid. Then, it was found that it was possible to easily determine whether or not the aluminum seal was bonded in a good state from the data analyzed by this shape, and the present invention was completed based on such knowledge.
[0010]
That is, the present invention places at least a synthetic resin molded member and an inner lid of a metal piece such as an aluminum foil on the donut-shaped upper edge of the resin container opening, and this is placed on the container opening with a resin outer lid. In this state, it was subjected to high frequency induction heating in this state, and the synthetic resin molding member pressed against the lower surface was partially melted by heat generation of the metal piece, and was heated and fused to the upper edge of the container opening donut shape. In this case, following the high frequency induction heating process, the upper surface of the cap is photographed with an infrared thermal image camera, and the quality of the aluminum seal is determined based on the shape and / or data analysis of the obtained infrared thermal image. A non-contact inspection method in which the data analysis is 1) detection of a high temperature value above a certain measured temperature, and 2) a synthetic resin molded portion welded to the upper edge of the donut shape of the resin container opening Detection by the ratio of the length of the doughnut-shaped long axis and the length in the uniaxial direction or shape abnormality, 3) the flow direction of the heat-welded portion donut-shaped resin container formed on the upper edge of the donut shape of the resin container opening Centerline temperature distribution detection 4) Use of at least one of temperature distribution detection of a donut-shaped centerline of a doughnut-shaped synthetic resin molded member welded to the upper edge of the donut-shape of the resin container opening The present invention relates to a non-contact inspection method for high-frequency aluminum seals.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
A synthetic resin molded member and an inner lid of a metal piece (aluminum seal laminate) such as aluminum foil are placed on the donut-shaped upper edge of the resin container opening, and the container is opened with a resin outer lid (cap). In this state, the synthetic resin molding member positioned on the lower surface of the aluminum foil by being subjected to high frequency induction heating in this state is subjected to high frequency heating and fusion to the upper edge of the container opening itself according to a conventional method. be able to.
[0013]
The surface of the object is photographed with an infrared thermal image camera, the obtained thermal image is processed with data, and the temperature distribution of the surface of the object is displayed, for example, in color (high temperature part is red, low temperature part is blue, and intermediate part is For display with a histogram, etc., a device comprising a system such as a commercially available infrared camera, data processing, display or the like can be used as appropriate (for example, NEC Corporation infrared radiation thermometer “ "Thermo Tracer", Mitsubishi Electric Corporation High-speed Thermal Image Analyzer "Mitsubishi Thermal Imager", Nippon Avionics Co., Ltd. Infrared Thermal Imager (TVS Series), JEOL Ltd. Infrared Temperature Analyzer "Thermo Viewer" (JTG-6000) Series), etc.).
[0014]
A commercially available apparatus can be used for the high-frequency oscillator used in the present invention. For example, “High Frequency Oscillator SST-20” manufactured by Shimada Rika Co., Ltd. is preferably used.
[0015]
A feature of the present invention is that part of the synthetic resin molded member laminated on the lower surface of the metal piece is melted by heat generated in the metal piece (aluminum foil) by high frequency oscillation, and the donut-shaped upper edge of the resin container mouth is The thermal distribution of the heat generated when sealed through the outer top of the outer lid to the outer upper surface of the outer lid is captured by the infrared thermal image camera from the top, and the obtained infrared thermal image data is processed to create the outer side of the outer lid. Color distribution or histogram analysis of the temperature distribution on the upper surface (It is well known that the display by data processing can be performed in real time), and it is well sealed based on these display or analysis If they match with those in the case of the finished product, it is determined that the seal is good, and if they do not match, it is determined that the seal is defective, and the reference data is set and an abnormal value is detected. It is to inspect the sealing contactless manner between.
[0016]
This will be described more specifically with reference to FIG. FIG. 2 shows the heat conduction to the upper surface of the cap (outer lid) during heating of the aluminum seal and a histograph captured by the infrared thermal image camera from the upper part toward the cap. The heat generated by the aluminum seal is also transmitted to the cap portion (portion A in FIG. 2), and it can be seen from the upper part of the cap that the temperature of the donut-shaped portion is higher than the temperature inside the donut. It is possible to determine the state of sealing adhesion fairly accurately in the form of temperature distribution.
[0017]
That is, when a clean donut shape as shown in FIG. 2 is observed (however, when a tab is attached to the inner lid of the aluminum foil, the outer edge of the donut image is slightly chipped), If it can be determined that a good aluminum seal was applied, and other shapes were observed, (1) the cap (outer lid) was not fully tightened depending on the shape, and the aluminum seal (inner lid) was a bottle. (Container) Because it was not well pressed against the upper edge of the donut shape of the opening (2) Because there was a part where the aluminum seal floated by tightening the diagonal cap, (3) The bottle (the upper edge of the donut shape of the opening) Since the aluminum seal bonding surface was not flat and did not properly contact the aluminum seal, (4) the contents did not adhere to the aluminum seal bonding surface and the temperature did not rise sufficiently. Because the output of the high frequency sealer was too large and the temperature rose too much, (6) The output of the high frequency sealer was too small and the temperature did not rise sufficiently, (7) Because there was no heating by the high frequency sealer, (8) Aluminum Since the seal was not attached, (9) since the aluminum seal was attached in an overlapping manner, it is possible to estimate various causes of the malfunction. Therefore, by using this result, it is possible to inspect the total number of on-line judgments on the quality of the aluminum seal adhesion of bottles (containers) filled with contents flowing on the conveyor.
[0018]
The shape of the donut is displayed as an ellipse on the screen when the present invention is implemented in the actual production process, even though the resin container mouth is circular. This is due to the fact that the heat-sealed seal of the resin container is performed on a belt conveyor that operates. That is, since the resin container always moves at a constant speed, it appears on the screen as an elliptical donut that is crushed in the moving direction. However, even this elliptical image does not hinder the analysis or the judgment with the naked eye.
[0019]
Whether the aluminum seal is good or bad can be judged based on the histogram obtained by infrared image data processing. Similarly, if the seal is good and the histogram of the product to be inspected is compared, whether or not they match each other? To judge whether the seal is good or bad.
[0020]
To remove products (defective products) that are judged to be poorly sealed because their images or histograms do not match the images or histograms of well-sealed products (good products) against the display If an image of a seal failure appears, or if the above verification is performed automatically and mechanically automatically, the product is displayed as No Good on the display. If this is the case, the defective product can be manually removed from the line, but the result of the verification performed automatically automatically is converted into a drive signal for the defective product elimination device and automatically It is possible to eliminate defective products.
[0021]
On the other hand, in the temperature distribution data analysis of the image projected on the screen, 1) (abnormally high temperature) out of all the measured temperatures, a high temperature value above a certain level, 2) (abnormal shape of the seal part) made of resin Detection of the ratio of the doughnut-shaped long axis and the length in the uniaxial direction of the synthetic resin molded member welded to the upper edge of the donut shape of the container opening or a shape abnormality, 3) (sealing temperature distribution) of the resin container opening Thermal distribution detection of the center line in the flow direction of the doughnut-shaped resin container formed on the top edge of the donut shape, 4) (Seal temperature change rate) welded to the top edge of the donut shape of the resin container opening At least one of the temperature distribution detection of the donut-shaped center line of the doughnut-shaped synthetic resin molded member can be used, or a plurality can be used in combination.
[0022]
1): (Abnormally high temperature) Among the total temperatures measured, the standard for detecting a high temperature value above a certain level is determined by the combination of the material of the resin container and the synthetic resin forming member used for the aluminum seal member. In general, when high-density polyethylene is used for the synthetic resin forming member, the maximum temperature is 140 ° C. because the melting points are 120 to 140 ° C. and 107 to 120 ° C., although there are differences depending on the manufacturer. On the other hand, heat generated by heating by high frequency oscillation is transmitted from the top surface inside the cap to the top surface outside the cap. Since the thermal imaging camera measures the temperature of the upper surface of the cap, the melting temperature is measured through heat conduction to the cap. Therefore, the measured temperature is measured at a considerably lower temperature than the melting temperature. Actually, how much the apparent temperature outside the cap is detected lower than the melting temperature depends on the material of the cap, the structure, and the high frequency aluminum sealing conditions (room temperature, high frequency oscillation time, resin container moving speed, etc.). Therefore, it is necessary to examine and decide how often the abnormally high temperature value is set.
[0023]
2): (Abnormal shape of seal part) Detection of the ratio of the doughnut-shaped long axis and the length in the uniaxial direction of the synthetic resin molded member welded to the upper edge of the donut shape of the resin container opening or the abnormal shape This will be described more specifically. Since the plastic container placed on the bag is moving on the belt conveyor, the image displayed on the infrared image analysis CRT screen for detecting the sealing property is compared with the X axis where the movement direction Y axis is perpendicular to the movement. short. Therefore, it is possible to inspect the X / Y ratio to be within a certain range or to set the upper and lower limits for each of the X and Y values.
[0024]
3): (Seal temperature distribution) The temperature distribution of the center line in the flow direction of the doughnut-shaped resin container formed in the donut-shaped upper edge of the resin container opening is detected by the donut-shaped meat part. If the temperature distribution of the center line in the flow direction of the resin container is shown on the graph with the temperature on the horizontal axis and the frequency on the vertical axis, the temperature distribution in the hollow part will be a curve with two maximum values. It can be detected by storing it in the memory and comparing it with the measured value.
[0025]
4): (Seal temperature change rate) The temperature distribution of the doughnut-shaped donut center line of the synthetic resin molded member welded to the upper edge of the doughnut-shaped resin container opening is mainly detected by the disconnection of the donut shape, that is, heat It is convenient for detecting a broken portion that is not welded. On the CRT screen, the X axis is 0 to 360 degrees along the donut center line, and the Y axis records the temperature. If the curve shows a straight line parallel to the X axis or a loose curve, it can be considered that there is no sudden change in temperature (break zone).
[0026]
An example of an inspection system according to the present invention is shown in FIG.
[0027]
When the conveyor moves fast and the line speed (bottles / minute) is large, it is advisable to adopt a high-speed thermal image analyzer that can catch the temperature distribution on the upper surface of the upper lid described above even at such a speed. Not too long.
[0028]
Also, if the conveyor moving speed is high and the container moving speed increases, the front of the container lid in the direction of travel cools down, and the resulting infrared thermal image does not form a clean donut shape even when the seal is good. Needless to say, it is possible to determine the quality of the seal by comparing the thermal image of a good product with the thermal image of the product to be inspected as a reference.
[0029]
【Example】
The following examples further illustrate the present invention.
[0030]
(Preparation and assembly of resin containers and high-frequency seal members)
An aluminum seal laminate (total thickness 30 μm) in which a synthetic resin molded member / adhesive / aluminum foil / cellophane thin film is laminated on the upper edge of the donut shape of the resin container opening is used as an inner lid, and this is a screw-in red resin A test sample was prepared by winding and crimping the container opening on the upper edge of the container opening with a torque of 7.5 kg / cm. Resin containers were prepared for 5000 containers each having a capacity of 250 g, 400 g, 600 g, and 1000 g, each filled with mayonnaise. In addition to this, various types of resin outer lids were prepared in yellow, orange and white.
[0031]
(Shooting of high-frequency seal and seal state)
The prepared resin container is placed on a cage for stabilization on a belt conveyor, moved at 530 cm / s, and fixed at a certain position under the coil of a high-frequency oscillator (“SST-20” manufactured by Shimada Rika Co., Ltd.). Was maintained and moved in the water direction. In this state, it is subjected to high-frequency induction heating at an output of 89 to 106 V and 55 to 75 A, and the synthetic resin molding member pressed against the lower surface is partially melted by the heat generation of the aluminum foil and heated to the upper edge of the container opening donut shape. Fused. Subsequent to the high-frequency induction heat treatment, the upper surface of the cap was photographed with an infrared thermal image camera, and a donut-shaped temperature distribution image was projected on the obtained TV screen.
[0032]
(Analysis items)
1) (Abnormally high temperature)
Detection of a high temperature value above a certain level among all measured temperatures,
2) (Abnormal shape of seal part)
Detection by the ratio of the donut-shaped long axis and the length in the uniaxial direction of the synthetic resin molded member welded to the upper edge of the donut shape of the resin container opening, or by a shape abnormality,
3) (Seal temperature distribution)
Temperature distribution detection of the center line in the flow direction of the heat-welded portion donut-shaped resin container formed at the upper edge of the donut-shaped resin container opening,
4) (Seal temperature change rate)
The temperature distribution detection of the donut-shaped centerline of the doughnut-shaped synthetic resin molded member welded to the upper edge of the donut shape of the resin container opening was simultaneously performed 1) to 4).
[0033]
(Analysis result)
The donut-shaped temperature distribution could be visualized colorfully from the CRT screen. This made it possible to make an instant determination even with the naked eye. Further, for the sake of accuracy, the above analysis items were detected for all samples, and the data was stored. In the actual process analysis, when an abnormal value is detected in light of the above analysis items, the data stored in the computer is extracted for the sample, the cause of the abnormality is analyzed, and the subsequent measures can be taken immediately. Analysis item 1): An example detected at an abnormally high temperature was detected when high-frequency sealing was intentionally performed again after high-frequency sealing. A part of the aluminum foil and a part of the upper edge of the resin container mouth were loosened, and an abnormally high temperature of the part was detected in a state where the part was in point contact with the cap or the oblique cap. Analysis item 2): The abnormal shape of the seal part is an abnormality in the feeding and moving speed of the resin container. From analysis item 3): (Seal temperature distribution), when the aluminum seal laminate was not set, an abnormally low temperature was detected when the aluminum seal laminate was set twice. Analysis item 4): (Seal temperature change rate) was detected when a portion of the seal was not sealed.
[0034]
【The invention's effect】
According to the present invention, a resin container (bottle) is filled with contents, and an aluminum seal laminate (inner lid) is attached to and attached to the top surface of the outer lid, and passes under the output of the high frequency sealer. The synthetic resin forming member in the lower layer of the seal laminate and the quality of the fusion seal when fused to the upper edge of the opening of the container can be easily and thoroughly tested, and the quality control is extremely efficient and Can be done effectively.
[Brief description of the drawings]
FIG. 1 is a cutaway view showing a seal portion of a high-frequency seal according to the present invention.
FIG. 2 shows heat conduction to an upper surface of a cap (outer lid) during heating of an aluminum seal and an infrared image histogram thereof.
FIG. 3 shows an example of an inspection system according to the present invention.

Claims (1)

樹脂製容器開口部のドーナツ形状上縁に少なくとも合成樹脂成形部材とその上にアルミニウム箔等の金属片の中蓋を置き、これを樹脂製外蓋で前記容器開口部上縁に圧接し、この状態で高周波誘導加熱に付して前記金属片の発熱により、下面に圧接された合成樹脂成形部材を部分溶融して前記容器開口部ドーナツ形状上縁に加熱融着させた場合に、前記高周波誘導加熱処理に引き続いて前記外蓋上面を赤外線熱画像カメラで撮影し、得られた赤外線熱画像の形状及び/又はデータ解析に基づいてアルミシールの良否を判定する高周波アルミシールの非接触検査法であって、該形状に基づいて判定する方法が、該ドーナツ形状部分の温度分布の形がドーナツの形が観察されたか否かで判断する方法であり、該データ解析が1)計測された全温度の内、一定以上の高温値の検出、2)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状の長軸及び単軸方向の長さの比又は形状異常による検出、3)樹脂製容器開口部のドーナツ形状上縁に形成された熱溶着部ドーナツ形状の樹脂製容器の流れ方向の中心線の温度分布検出、4)樹脂製容器開口部のドーナツ形状上縁に溶着された合成樹脂成形部材のドーナツ形状のドーナツ形中心線の温度分布検出の少なくとも一つを用いることを特徴とする高周波アルミシールの非接触検査法。At least a synthetic resin molded member and an inner lid of a metal piece such as aluminum foil are placed on the upper edge of the donut shape of the resin container opening, and this is pressed against the upper edge of the container opening with a resin outer lid. When the synthetic resin molded member pressed against the lower surface is partially melted and heated and fused to the upper edge of the donut shape of the container opening by high-frequency induction heating in a state and heat generation of the metal piece, the high-frequency induction In a non-contact inspection method for high frequency aluminum seals, the upper surface of the outer lid is photographed with an infrared thermal image camera following the heat treatment, and the quality of the aluminum seal is determined based on the shape and / or data analysis of the obtained infrared thermal image. there, the method determines based on the shape is a method of the form of temperature distribution of the donut-shaped portion is determined by whether the donut shape was observed, the total temperature which the data analysis 1) was measured Among them, detection of a high temperature value above a certain level, 2) detection of the ratio of the doughnut-shaped long axis and uniaxial length of the synthetic resin molded member welded to the upper edge of the donut shape of the resin container opening, or shape abnormality 3) Detection of the temperature distribution of the center line in the flow direction of the heat-welded portion doughnut-shaped resin container formed at the upper edge of the donut shape of the resin container opening 4) On the upper edge of the donut shape of the resin container opening A non-contact inspection method for a high-frequency aluminum seal, characterized by using at least one of temperature distribution detection of a doughnut-shaped center line of a welded synthetic resin molded member.
JP2002018262A 2002-01-28 2002-01-28 Non-contact inspection method for high frequency aluminum seals Expired - Fee Related JP3933944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018262A JP3933944B2 (en) 2002-01-28 2002-01-28 Non-contact inspection method for high frequency aluminum seals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018262A JP3933944B2 (en) 2002-01-28 2002-01-28 Non-contact inspection method for high frequency aluminum seals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12416797A Division JP3517079B2 (en) 1997-05-14 1997-05-14 Non-contact inspection method of high frequency aluminum seal

Publications (2)

Publication Number Publication Date
JP2002318213A JP2002318213A (en) 2002-10-31
JP3933944B2 true JP3933944B2 (en) 2007-06-20

Family

ID=19192085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018262A Expired - Fee Related JP3933944B2 (en) 2002-01-28 2002-01-28 Non-contact inspection method for high frequency aluminum seals

Country Status (1)

Country Link
JP (1) JP3933944B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317683B2 (en) * 2008-12-24 2013-10-16 麒麟麦酒株式会社 Packaging container inspection method and packaging container inspection apparatus
JP2012225871A (en) * 2011-04-22 2012-11-15 Toppan Printing Co Ltd Method for inspecting opening part seal part of fluid container and device thereof
JP7371330B2 (en) * 2019-02-04 2023-10-31 大日本印刷株式会社 Inspection equipment and filling equipment
JP6695489B1 (en) 2019-12-17 2020-05-20 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Method and device for inspecting fusion strength of upper lid of packaging container

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012358B1 (en) * 1970-06-27 1975-05-10
JPS5247352B2 (en) * 1971-12-17 1977-12-01
JPS532350B2 (en) * 1972-03-07 1978-01-27
JPS5320863B2 (en) * 1972-02-25 1978-06-29
JPS5746021B2 (en) * 1972-07-05 1982-09-30
JPS5820502Y2 (en) * 1978-07-19 1983-04-28 東京機械化工業株式会社 Sealer for packaging equipment
JPS5844555B2 (en) * 1979-08-03 1983-10-04 キユーピー株式会社 Cap and method for sealing the mouth of a container using it
JPS59104539A (en) * 1982-12-07 1984-06-16 Toyo Seikan Kaisha Ltd Checking method of junction part
JPS61127427A (en) * 1984-11-16 1986-06-14 サッポロビール株式会社 Hot-melt adhesion inspection device for packaging vessel
JPS6228650A (en) * 1985-07-30 1987-02-06 Mitsubishi Heavy Ind Ltd Inspection method for presence or absence of foreign matter adhesion
JPS6269440U (en) * 1985-10-22 1987-05-01
FR2625178B1 (en) * 1987-12-23 1990-07-13 Cebal PACKAGE COMPRISING A TUBE, A SCREW CAP, AND A WELDING LID ON THE TUBE NECK, AND METHOD FOR CLOSING THE SAME
JPH0419139A (en) * 1990-05-15 1992-01-23 Toyo Alum Kk Laminate suitable for high frequency induction heating and heat-sealing method thereof
JPH05264488A (en) * 1992-03-17 1993-10-12 Yakult Honsha Co Ltd Method and device for detecting thermal welding state of film
KR200149410Y1 (en) * 1992-04-08 1999-06-15 스프레이그 로버트 월터 Tamper evident top tap innerseal
JP2629530B2 (en) * 1992-08-21 1997-07-09 東洋製罐株式会社 Composite lid of metal and synthetic resin, method of manufacturing the same, and manufacturing apparatus
JPH06144415A (en) * 1992-11-06 1994-05-24 Kao Corp Heat-seal line controller of container
JP2769283B2 (en) * 1993-09-30 1998-06-25 アサヒビール株式会社 Packaging container adhesion inspection device
JP3273277B2 (en) * 1993-11-16 2002-04-08 日本クラウンコルク株式会社 Annular liner molding equipment
JPH0811922A (en) * 1994-06-29 1996-01-16 Naniwa Gomme Kogyo Kk Resin film cover body
JP3333925B2 (en) * 1995-07-26 2002-10-15 株式会社フジキカイ Vertical sealing device in bag making and filling machine
JP3517079B2 (en) * 1997-05-14 2004-04-05 クノール食品株式会社 Non-contact inspection method of high frequency aluminum seal

Also Published As

Publication number Publication date
JP2002318213A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
CN105339782B (en) For detect include conductive inner seal liner sealing element in defect the method based on thermal imaging
JP3517079B2 (en) Non-contact inspection method of high frequency aluminum seal
JP5131696B2 (en) Laser cutting device
JP5550134B2 (en) Inspection method for defective sealing of containers using infrared rays
AU2006277444A1 (en) Production method of hermetically sealed container for drink or food
JP2020509364A (en) Method and system for determining package integrity
JP5812225B1 (en) Molded lid, method of fitting the lid to the container, and sealing method
CA2561040A1 (en) Inspection system for blister packages
JP2003307505A (en) Noncontact inspection device and noncontact inspection method by thermography
JP3933944B2 (en) Non-contact inspection method for high frequency aluminum seals
JPS6228650A (en) Inspection method for presence or absence of foreign matter adhesion
Al-Habaibeh et al. A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers
JPH08184571A (en) Method and apparatus for inspection of sealed part with container-opening sealing material
JP2001050884A (en) Method and apparatus for discrimination of fluidity of fluid put into container
JP5292038B2 (en) Seal inspection apparatus, seal inspection method, and container manufacturing method
JP2005009931A (en) Seal fault inspection apparatus
US11836908B2 (en) Method and system for determining package integrity
JP2012173204A (en) Method and device for inspecting cap deposition state
JP2000079917A (en) Method of inspecting improper seal of packing member
JPS62276444A (en) Apparatus for inspecting hermetically sealed part
JP5273713B2 (en) Container seal defect inspection method
JP2012225871A (en) Method for inspecting opening part seal part of fluid container and device thereof
WO2023223314A1 (en) Methods and systems for sealing evaluation of induction-sealed containers
JP6695489B1 (en) Method and device for inspecting fusion strength of upper lid of packaging container
JP3724102B2 (en) Welding quality determination apparatus and method for welding object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees