JP3932313B2 - 餌料生物の殺菌方法及び殺菌装置 - Google Patents

餌料生物の殺菌方法及び殺菌装置 Download PDF

Info

Publication number
JP3932313B2
JP3932313B2 JP2004188374A JP2004188374A JP3932313B2 JP 3932313 B2 JP3932313 B2 JP 3932313B2 JP 2004188374 A JP2004188374 A JP 2004188374A JP 2004188374 A JP2004188374 A JP 2004188374A JP 3932313 B2 JP3932313 B2 JP 3932313B2
Authority
JP
Japan
Prior art keywords
storage container
aqueous solution
ultraviolet
main body
organism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004188374A
Other languages
English (en)
Other versions
JP2006006211A (ja
Inventor
英夫 山野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefectural Government
Original Assignee
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefectural Government filed Critical Okayama Prefectural Government
Priority to JP2004188374A priority Critical patent/JP3932313B2/ja
Publication of JP2006006211A publication Critical patent/JP2006006211A/ja
Application granted granted Critical
Publication of JP3932313B2 publication Critical patent/JP3932313B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Description

本発明は、魚介類の種苗生産に用いられる餌料生物を汚染する有害細菌を殺菌する殺菌方法と、前記殺菌方法に用いる殺菌装置とに関する。
魚介類の種苗生産には、ワムシ又はアルテミア等の餌料生物が用いられる。例えば、餌料生物であるワムシは、108CFU/gに達する有害細菌に汚染されており、種苗に対して病原性細菌の媒介者となる虞れがある。そこで、従来より、餌料生物を汚染する有害細菌の殺菌方法が、種々提案されている。具体的には、冷凍法や各種殺菌剤を用いた殺菌方法が知られている。ここで、冷凍法は餌料生物自体を殺してしまうため、餌料生物の餌料価値を低下させる問題から、あまり普及しておらず、現在は専ら殺菌剤を用いた殺菌方法が多用されている。
殺菌剤を用いた殺菌方法は、合成抗菌剤であるニフルスチレン酸ナトリウム(NFS)を溶かし込んだ水溶液に餌料生物を浸す方法が広く用いられている。また、特許文献1は、抗生物質でないイソチアゾリン誘導体の存在下で餌料生物を培養することを提案している。すなわち、魚介類の種苗に餌料生物を与えるまで、できるだけ有害細菌に感染しないようにして、餌料生物を通して魚介類の種苗に有害細菌が汚染することを防止している。
特表平10-507458号公報(4頁〜9頁、図1)
殺菌剤を用いた餌料生物の殺菌方法には、次のような問題がある。まず、合成抗菌剤であるNFSを日常的に餌料生物に使用することは、餌料生物の合成抗菌剤に対する耐性化をもたらす可能性がある。また、薬事法の規制により、NFSの使用に制限が設けられ、これまでに比べて十分な殺菌効果が望めない状況に至っている。更に、餌料生物に投与されたNFSは、この餌料生物を媒介として種苗に蓄積される問題がある。
この点、合成抗菌剤でないイソチアゾリン誘導体を用いる特許文献1の殺菌方法は、有害細菌の耐性獲得や薬事法の規制による問題のほか、イソチアゾリン誘導体が餌料生物を媒介として種苗に蓄積される問題がある。また、イソチアゾリン誘導体の存在下で餌料生物を培養し続けることは好ましくないが、有効濃度を低下させると有害細菌に耐性を与えてしまう虞れがある。そこで、合成抗菌剤や薬剤を使用しない自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に殺菌する殺菌方法として、殺菌剤を用いずに殺菌剤を用いた場合と同等な殺菌効果が得られる殺菌方法及び殺菌装置を開発するため、検討した。
検討の結果開発したものが、餌料生物を浮遊させた水溶液の水面に向けて紫外線を照射することにより、この水溶液中に浮遊するこの餌料生物が抱える有害細菌を殺菌する餌料生物の殺菌方法である。紫外線を用いた殺菌は広く知られるところであるが、本発明は、水溶液に浮遊する餌料生物に対して紫外線を照射することにより、この餌料生物が抱える有害細菌のみを殺す、すなわち殺菌する点に特徴を有する。
紫外線は、水中の透過率が極端に低く、水溶液の水面に向けて照射した紫外線は水面直下の餌料生物にしか作用しないが、餌料生物自身の活動又は後述する攪拌により、水面直下の餌料生物を煩雑に入れ替えて全餌料生物に紫外線の殺菌作用を働かせる。ここで、前記紫外線の殺菌作用は、あくまで水面直下の餌料生物のみに働き、水溶液中大半の餌料生物は紫外線の影響を受けないため、餌料生物の1個体当たりの紫外線料は抑制できる。この結果、餌料生物に紫外線の影響を与えず、有害細菌のみを殺すことができる。殺菌効果は、紫外線強度、紫外線量、水溶液の水量、そして餌料生物の種類及び密度によって変動するが、有害細菌をおよそ1/10〜1/1000の範囲で減らすことができる。
紫外線は、波長320nm以上400nm未満のA領域紫外線(UV-A)、波長280nm以上320nm未満のB領域紫外線(UV-B)、そして波長280nm未満のC領域紫外線(UV-C)に分類され、本発明の殺菌方法では、いずれの紫外線も利用できる。しかし、一般に殺菌に適した紫外線はC領域紫外線であり、また紫外線の光源となる紫外線ランプは通常253.7nmの紫外線を放射することから、本発明でもC領域紫外線を用いるとよい。このC領域紫外線は、紫外線中最も水中の透過率が低いため、殺菌効果を水面直下の餌料生物のみに働かせることができる利点もある。
紫外線による殺菌処理は、紫外線強度が有害細菌の殺菌を左右し、紫外線量が餌料生物に対する影響を左右する。本発明は、紫外線の影響は水溶液の水面に留め、餌料生物自身の活動又は攪拌により水面直下の餌料生物を入れ替えることで、全餌料生物を殺菌処理する。これから、本発明に用いる紫外線は、水溶液の水面での紫外線強度が50mW/cm2〜150mW/cm2、好ましくは65mW/cm2〜135mW/cm2であればよい。紫外線強度が50mW/cm2より弱いと水中の餌料生物が抱える有害細菌に十分な殺菌作用を働かせることができず、実用的な殺菌効果が得られない。また、紫外線強度が150mW/cm2より強いと、水面直下より深い水深にまで十分な紫外線が届き、餌料生物に過剰な紫外線量をもたらして殺してしまう虞れがある。前記範囲の紫外線強度であれば、水溶液の水面直下の餌料生物のみに紫外線を働かせることができ、餌料生物に紫外線による悪影響を与えず、有害細菌のみを殺すことができる。
紫外線量は、紫外線の餌料生物に対する影響を左右するため、上限値を定める必要がある。具体的には、本発明に用いる紫外線は、餌料生物がワムシである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大5mJ/cm2とし、餌料生物がアルテミアである場合に、水溶液の水面での紫外線量が餌料生物の1個体当たりで最大625mJ/cm2とするとよい。アルテミアはワムシの最大5倍程度の個体長を有するため、アルテミアに対する紫外線量の上限値は体積比の125倍になっているだけで、体積当たりの紫外線量はワムシに対する紫外線量の上限値と同じである。
紫外線量は、紫外線強度×照射時間から算出されるため、上記範囲で紫外線強度を設定すると、紫外線量の上限値から紫外線の照射時間も定まることになる。殺菌効果は 、紫外線強度、紫外線量、水溶液の水量、そして餌料生物の密度によって変動することから、実測される紫外線量が上記上限値を超えた場合でも、餌料生物が必ずしも死んでしまうわけではないが、餌料生物に紫外線による悪影響を与えず、有害細菌のみを殺すためには、上記上限値以下の紫外線量で紫外線を照射することが望ましい。また、殺菌効果は紫外線量に依存することから、実際の殺菌処理では、例えば貯留容器に餌料生物を浮遊させた水溶液に対して紫外線を照射するバッチ処理でもよいし、例えば水溶液を循環経路に流し、特定位置で紫外線を照射するリアルタイム処理でもよい。
本発明の殺菌処理は、紫外線は水溶液の水面直下にしか作用せず、餌料生物自身の活動又は攪拌により水面直下の餌料生物が入れ替わることで、全餌料生物に殺菌作用を働かせる。ここで、餌料生物が自身の活動で入れ替わるということは、紫外線の照射時間の間、餌料生物が生存していることを意味する。この餌料生物の生存には、水溶液における餌料生物の密度が重要であり、一度に殺菌処理できる餌料生物は多いほど好ましいが、前記餌料生物の生存との関係から、餌料生物の密度は次の範囲にすることが望ましい。すなわち、本発明の殺菌処理は、餌料生物がワムシの場合、1万個体/mL〜20万個体/mL、好ましくは3万個体/mL〜15万個体/mLの密度で水溶液に浮遊させ、餌料生物がアルテミアの場合、1千個体/mL〜2万個体/mL、好ましくは3千個体/mL〜1万5千個体/mLの密度で水溶液に浮遊させると、紫外線の照射時間の間、餌料生物を生存させ、かつ餌料生物自身の活動で水面直下の餌料生物を入れ替えることができる。
このように大量の餌料生物を一定の照射時間の間、水溶液中に浮遊させておく必要から、できるだけ自然環境下と同じ状態で紫外線を照射できるように、水溶液は海水、又は浸透圧が海水に略等価な食塩水にするとよい。また、水溶液は餌料生物と共に攪拌することにより、紫外線の照射を受ける水面直下の餌料生物を積極的に入れ替えることができる。このほか、水溶液の攪拌は水溶液に酸素を供給する働きを有している。これから、水溶液を攪拌しながら殺菌処理すれば、無攪拌の状態では生存が難しい高密度状態の餌料生物を、紫外線の照射時間の間は生存させることができる。
以上の本発明の殺菌方法を踏まえ、殺菌装置は次のように構成できる。すなわち、餌料生物が抱える有害細菌を殺菌する殺菌装置であって、餌料生物が浮遊する水溶液を貯える貯留容器、この貯留容器が貯える水溶液の水面に向けて紫外線を照射する紫外線照射部と、前記貯留容器及び紫外線照射部を所定位置関係で保持する装置本体と、紫外線照射部を作動及び停止させる制御部とからなる餌料生物の殺菌装置である。
紫外線による殺菌は、既述したように、水面直下の餌料生物にしかもたらされないことから、水溶液の水面の形状を決定する貯留容器の開口形状は広いほど殺菌効率を高くできる。また、一度に処理できる餌料生物が多いほど好ましいが、水深が深すぎると水底付近の餌料生物が水面直下の餌料生物と入れ替わることがなくなる虞れがある。これから、貯留容器は、開口が広く、一度に殺菌処理する水溶液の水深が15cm以下、好ましくは10cm以下に留まる浅皿構造であることが望ましい。具体的には、例えば深さ15cm、内径60cmのタライ状貯留容器を示すことができる。
貯留容器は装置本体に固定してもよい。この場合、水溶液の排出部を底面に設けた貯留容器であると、水溶液に浮遊させた餌料生物を水溶液と共に貯留容器に流し込み、殺菌処理を終えた餌料生物を水溶液と共に前記貯留容器の排出部から速やかに排出できる。逆に、装置本体に対して着脱自在とした貯留容器であると、貯留容器への水溶液の流し込み、排出がより容易になる。この場合も、貯留容器は排出部を底面に設けておくとよい。
紫外線照射部は、殺菌効果を発揮する紫外線を放射する各種光源を用いることができるが、最も簡便には1又は複数の紫外線ランプから構成する。紫外線ランプは、大きく直管形と電球形とに分けることができる。直管形の紫外線ランプを複数用いる場合、貯留容器が貯える水溶液の水面に覆う範囲で各紫外線ランプの向きを揃えて並べ、前記水面を覆う照射範囲を形成するとよい。また、電球形の紫外線ランプを複数用いる場合、貯留容器が貯える水溶液の水面に覆う範囲で各紫外線ランプを格子状に並べ、同じく水面を覆う照射範囲を形成するとよい。
貯留容器に貯えた水溶液の水面直下に存在する餌料生物の入れ替わりを促すには、前記水溶液を攪拌できるとよい。この場合、貯留容器自体に攪拌部を設けることも考えられるが、攪拌部は駆動源及び制御部を有するから、貯留容器に攪拌部を設けることは、装置構成を複雑にしかねない。そこで、装置本体は、貯留容器に向けて垂下させた攪拌部を設け、この攪拌部を作動又は停止させる制御部を設けるとよい。
攪拌部は、貯留容器に貯えた水溶液を攪拌できれば構成を問わず、水溶液に対して何らかの運動を加えることができればよい。しかし、水面に対して直交する運動(上下方向の運動)を加えると、貯留容器から水溶液、そして餌料生物を散逸させる可能性があるため、好ましくは水面に対して平行な運動を加えるとよい。より具体的には、攪拌部は水平旋回する長尺部材からなり、貯留容器に貯えた水溶液に前記長尺部材を没入させ、この水溶液を旋回方向に攪拌する構成が好ましい。
上記水平旋回する長尺部材からなる攪拌部は、長尺部材が水溶液中を水面と平行に移動することで、水溶液を攪拌する。長尺部材の形状は問わず、例えば棒体であってもよいが、好ましくは羽根構造にする。羽根構造の長尺部材からなる攪拌部は、最大120回転/分以下、好ましくは最大100回転/分以下で旋回させるとよい。また、長尺部材の数も自由であり、複数の長尺部材を用いる場合は各長尺部材の位置関係も自由である。長尺部材の位置関係は、各長尺部材の上下方向の高さと、各長尺部材の周方向の間隔と、各長尺部材の旋回軸からの突出方向とから定まる。
攪拌部が貯留容器が貯える水溶液中に没入したままであると、貯留容器に水溶液を流し込む又は排出する作業が面倒である。そこで、攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在にするとよい。攪拌部の昇降は、装置本体に着脱自在とした貯留容器の搬入及び搬出を容易にする。実際には、水溶液を溜めた貯留容器は重量物となるため、貯留容器の底部に車輪を設け、装置本体に設けた搬入及び搬出方向のレールを利用して、貯留容器を装置本体に着脱自在にするとよい。
本発明の殺菌装置は、餌料生物が抱える有害細菌を殺菌できればよく、前記殺菌処理は開放された環境下でも、閉鎖された環境下で実施されても構わない。これから、装置本体は、殺菌処理中の紫外線強度が変化しないように、貯留容器に対して紫外線照射部を、又は紫外線照射部に対して貯留容器を所定位置関係に保持する枠体から構成することもできる。しかし、紫外線は人体に対しても影響を及ぼす可能性があるため、装置本体は閉鎖された環境として扉を有する密閉箱体とし、この装置本体内に貯留容器及び紫外線照射部を内蔵した構成にすることが望ましい。
この閉鎖された環境の装置本体は、貯留容器に向けて垂下させた攪拌部を内蔵し、この攪拌部を作動又は停止させる制御部を設けるとよい。この攪拌部は、上述同様、水平旋回する長尺部材から構成し、貯留容器は前記攪拌部の長尺部材の最外径より大きな内径を有する有底円筒であればよい。この場合、攪拌部は貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とする。
本発明により、自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に殺菌できるようになる。本発明の殺菌方法は、薬剤を用いた殺菌処理と同等な有害細菌を1/10〜1/1000にする殺菌効果を挙げることができるが、殺菌剤のように餌料生物に残存し、魚介類の種苗にまで影響を及ぼす虞れがない。しかも、本発明の殺菌方法は比較的簡単であるため、例えば既存の紫外線ランプを照射する態様で実施できる。このように、本発明は、有効な殺菌効果を安全かつ簡易に実現する餌料生物の殺菌方法を提供する。更に、紫外線を用いる本発明の殺菌処理では、薬剤を用いた殺菌処理に比べ、有害細菌が再び増殖するまでの時間が長い、すなわち殺菌効果の持続性もある。
本発明の殺菌装置は、上記殺菌方法をより効率的に実施するための専用装置を提供する。特に、餌料生物を殺すことなく有害細菌だけを殺すことに適切な紫外線強度及び紫外線量の設定を容易にする。これにより、自然環境下で養殖した餌料生物を、魚介類の種苗に与える寸前に容易かつ大量に殺菌できるようになる。このように、本発明は、有効な殺菌効果のみならず、この殺菌効果を実現しながら実用的に使用し得る殺菌装置を提供する効果を有する。
以下、本発明の実施形態である殺菌装置の一例について図を参照しながら説明する。図1は本発明に基づく殺菌装置1の一例を表す正面図、図2は同殺菌装置1の側面図、図3は同殺菌装置1の平面図、図4は攪拌部13による水溶液121を攪拌する状態を表した要部抜粋斜視図であり、そして図5及び図6はそれぞれ別例の攪拌部23,33による水溶液121を攪拌する状態を表した図4相当斜視図である。説明の便宜上、図1では扉111の図示を、図2では側板112の図示をそれぞれ省略している。
本例の殺菌装置1は、図1〜図3に見られるように、略密閉された装置本体11に収めた貯留容器12に、上方から紫外線照射部14により紫外線を照射する構成である。このほか、装置本体11は、下部に支持枠15を構成し、この支持枠15に設けたストッパ付きキャスタ151によって移動自在にしている。本例では、後述するように、貯留容器12は装置本体11から前方へ突出するレール113に従って出し入れする。支持枠15は、装置本体11の位置を高くして、貯留容器12をレール113に載せやすくする。
装置本体11は、ステンレス鋼板製の直方体状の箱であり、前面に跳ね上げ式の扉111を設けている。扉111には、内部観察用のアクリル小窓114と、開閉を助ける取手115とを設けている。本例が殺菌に使用する紫外線は、後述するように、紫外線ランプ141から照射される波長253.7nmのC領域紫外線であり、人体に対して危険であるから、装置本体11は紫外線放射範囲を囲む略密閉構造が好ましい。前記C領域紫外線は、可視光が透過する素材であっても急激に減衰するため、内部観察程度のアクリル小窓114では外部に紫外線が漏れ出すことはない。この内部観察用のアクリル小窓114は、側板112にも設けてある。装置本体11の上板116は、攪拌部13の駆動部131と、紫外線照射部14及び攪拌部13の制御部16を設けている。
紫外線照射部14は、ステンレス鋼板製の反射板142を備えた4基の紫外線ランプ141から構成している。装置本体11が、幅約80cm×奥行き約70cmの水平断面であれば、紫外線ランプ141に20W型の汎用品を用いると、図示のように4本〜6本を並べることができ、前記水平断面全域を略均一な照射平面に近似できる。
反射板142は、紫外線ランプ141から照射される紫外線のうち、上方に向けて照射される紫外線を反射して、貯留容器12が貯える水溶液121の水面122に向けた紫外線量を増やす働きを有している。このため、本例のように、各紫外線ランプ毎に個別の反射板を設けるほか、紫外線ランプ全体に対して1基の反射板を設けてもよし、最も外側に位置する紫外線ランプにはより内向きに曲げた反射板を用いてもよい。
全紫外線ランプ141は、装置本体11の水平断面に略等しい平面視外形を有するステンレス鋼板製の基準板17の下面に略等間隔で並べて取り付け、この基準板17を高さ調節自在に装置本体11の上板116の内面から吊り下げることで、各紫外線ランプ141から貯留容器12が貯える水溶液121の水面122までの距離を調節する。本例では、長孔171を設けた基部ブラケット172を装置本体11の上板116の内面から垂下し、この基部ブラケット172の長孔171の任意の位置に蝶ネジ173で締着する吊りブラケット174により基準板17を吊り下げている。これにより、基部ブラケット172に対する吊りブラケット174の締着位置を変更すれば、基準板17の高さ、ひいては紫外線ランプ141の高さが調節できる。
紫外線ランプ141の高さは、装置本体11に収めた貯留容器12との距離であり、貯留容器12が貯える水溶液121の水面122における紫外線強度を決定する。これから、一度高さ調節を終えた紫外線ランプ141の高さを調節し直す必要は少なく、むしろ殺菌処理中は紫外線強度が変化しないように、紫外線ランプ141の高さは固定されることが望ましい。仮に、殺菌処理中に紫外線強度を変化させたい場合は、紫外線ランプ自体の照射強度を調節するとよい。こうした紫外線ランプの照射強度の調節は、制御部による紫外線ランプへの印加電圧の調節で実現できる。
貯留容器12は、平面視円形で、開口縁には持ち運び用の取手123を点対称に一対設け、底面124には平行に4基の樹脂製車輪125を取り付けている。本例は、開口の直径を60cm、一度に殺菌処理する水溶液121の水深が10cm以下に留まるように深さ15cmとしたタライ状貯留容器12を図示している。装置本体11は、前記車輪125に対応するレール113を扉111の下縁に沿って前方へ突出しており、貯留容器12は前記レール113に車輪125を載せて装置本体11に容易に出し入れできる。貯留容器を装置本体内に固定する場合、前記レールは必要ない。また、貯留容器12の底面124は、中心に向けて下り勾配を有するすり鉢状とし、前記中心に排出コックを排出部126として設けている。殺菌処理を終えた餌料生物は、水溶液121と共に排出部126から排出し、回収する。
貯留容器12を載せる装置本体11のレール113は、貯留容器12の車輪125に前方から係合する脱落防止突起117を先端に、貯留容器12の車輪125に後方から係合する位置決め突起118を装置本体11内の特定位置に、それぞれ設けている。本例は、更に、車輪125が位置決め突起118に当たった状態で貯留容器12を位置固定するため、貯留容器12の中心を挟んで位置決め突起118と反対位置に、固定レバー18を装置本体11に設けている。固定レバー18は、装置本体11の底面119から立設した基部181と、この基部181に軸着して起立及び傾倒自在なL字状のレバー板182からなる。このレバー板182は、図2に見られる傾倒状態でレール113に従った貯留容器12の移動を妨げず、図1に見られる起立状態で装置本体11に搬入した貯留容器12の外面に当たり、位置決め突起118と共に貯留容器12を挟持して、位置固定する。この貯留容器12の位置固定は、攪拌部13の作動により攪拌される水溶液121の運動によって貯留容器12が位置ずれすることを防止する。
攪拌部13は、装置本体11に収めた貯留容器12に対し、上方から下降し、貯留容器12が貯える水溶液121中に没してこの水溶液121を旋回によって攪拌する。本例の攪拌部13は、装置本体11の上板116に設けた駆動部131から上板116、そして基準板17を貫通して垂下する回転軸132から点対称に突出した一対の長尺部材である羽根133からなる。この攪拌部13は、例えば図4に見られるように、水溶液121を水面122から水底に向けて押し下げる仰角の羽根133を左旋回させる。貯留容器12が貯える水溶液121は、水中で運動する羽根133によって攪拌されるほか、前記羽根133が引き起こす水面122から水底に向けての押し下げによっても攪拌される。これにより、水溶液121に浮遊する餌料生物も攪拌され、特に水面直下の餌料生物の入れ替わりが促される。
ここで、羽根133等の長尺部材からなる攪拌部13が水平に旋回すると、長尺部材の先端の軌跡は円形となり、例えば貯留容器が平面視四角形であると、各角部に澱みが生ずる虞れがある。これから、羽根133等の長尺部材を水平旋回させる攪拌部13に対しては、本例のように外形が円形であるタライ状貯留容器12が好ましく、外形が平面視多角形の場合は、内角が90度より大きな5角形以上とする。
駆動部131は電動モータであり、装置本体11の上板116に立設した案内シャフト134に従って昇降自在なテーブル135に取り付けている。駆動部131の作動又は停止や出力する回転数の制御は、同じく装置本体11の上板に設けた制御部16による。駆動部131が出力する回転数は、水溶液121の水深や攪拌部13の最大外径により適宜設定できるように幅のあることが望ましく、例えば外径約40cmとなる一対の羽根133からなる攪拌部13の場合、最大100回転/分させる回転数を出力できるとよい。前記最大回転数は、攪拌部の仕様、貯留容器に溜めた水溶液の量、そして餌料生物の密度の関係から、攪拌中に水溶液が貯留容器から飛散しない限度で決定する。
駆動部131を支持するテーブル135は、ハンドル136を設けたボールネジ137を螺合させており、前記ハンドル136の操作によりボールネジ137に対して昇降する。すなわち、ハンドル136の操作により駆動部131を昇降させ、駆動部131と回転軸132で結ばれた攪拌部13を昇降させることができる。この攪拌部131の昇降により、貯留容器12を装置本体11に搬入する際、攪拌部13を上方へ待避させることができる。攪拌部の昇降は、例えばボールネジを電動モータにより駆動し、自動化することもできる。
本例の攪拌部13は、点対称に突出した一対の羽根133から構成しているが、別段揚力を生み出すことが目的ではなく、水溶液121を攪拌できればよいため、羽根の枚数は自由である。例えば1枚の羽根で攪拌部を構成してもよいし、図5に見られるように、周方向等間隔に突出する4枚の羽根231から攪拌部を構成してもよい。また、本発明の攪拌部は、水溶液中を運動する物体であれば、水溶液を攪拌し、水面直下の餌料生物の入れ替わりを促すことができる。これから、図6に見られるように、羽根に代えて点対称に突出する一対の棒331から攪拌部33を構成してもよい。
本例の殺菌装置1に従って、殺菌処理の手順について説明する。まず、餌料生物を浮遊させた水溶液(海水)121を満たした貯留容器12を、扉111を持ち上げて開いた装置本体11のレール113に載せる。予めレール113上に載せた貯留容器12に、別の容器から水溶液121を投入してもよい。この段階では、ハンドル136の操作により駆動部131を上昇させ、攪拌部13を紫外線照射部14近傍に待避させておく。これから、装置本体11内には何ら障害物がないため、貯留容器12を押し込むように装置本体11に搬入できる。そして、貯留容器12の車輪125が位置決め突起118に当たった段階で、固定レバー18のレバー板182を起こして貯留容器12を位置固定し、その後扉111を閉じ、攪拌部13を降ろして貯留容器12が貯える水溶液121中に没入させる。このとき、貯留容器12と攪拌部13とが完全に同心とならなくても構わないが、本例ではレール113上の位置決め突起118に車輪125を当てることにより、攪拌部13と貯留容器12との同心が確保されている。これにより、攪拌部13による水溶液121の攪拌に偏りが生じず、貯留容器12全体にわたって水溶液121の攪拌ができる。
扉111を閉じて攪拌部13を貯留容器12の水溶液121中に没入させれば、次に紫外線照射部14を作動させ、併せて攪拌部13を水平旋回させて、殺菌処理を始める。紫外線照射部14及び攪拌部13は独立して作動又は停止させても、一体に作動又は停止させてもよい。紫外線照射部14又は攪拌部13の作動時間は、それぞれタイマーにより設定できるようにするとよい。ここで、紫外線照射部14は、殺菌処理の処理時間の間だけ作動すればよく、むしろ過剰な紫外線照射をしないため、所定の処理時間経過後タイマーにより自動的に停止できることが望ましい。これに対し、攪拌部13は、水面直下の餌料生物を入れ替える働きのほか、水溶液121中に酸素を取り込み、高密度状態にある餌料生物が死ぬ虞れを防止する働きもあるため、紫外線照射部14の停止後も作動する方が好ましい。これから、紫外線照射部14及び攪拌部13は同時に作動させてもよいが、紫外線照射部14をタイマーにより停止させた後も、攪拌部13は停止させずに、貯留容器12を取り出すまでは作動させておくとよい。
餌料生物を殺さず、有害細菌のみを殺すのに適切な紫外線強度は、紫外線照射部14から貯留容器12に貯えた水溶液121の水面122までの距離、餌料生物に悪影響を及ぼさない紫外線量は前記紫外線強度の照射時間により決定される。紫外線強度は、殺菌装置の使用に先立って、貯留容器12の水面122に相当する高さで測定し、適切な強度となるように紫外線照射部14の高さを予め調節しておくとよい。ここで、貯留容器12に貯える水溶液121の量を増減すると、結果として水面122の高さが変化し、実際の殺菌処理における紫外線強度を微調節することもできる。紫外線量は、紫外線の照射時間から演繹的に算出できる。こうして決定された照射時間に従い、紫外線照射部14はタイマーに従って所定時間だけ紫外線を照射する。
タイマーにより、所定の作動時間経過後に制御部16が紫外線照射部14を停止させると、殺菌処理が終了する。この殺菌処理の終了は、例えば制御部16に設けた紫外線照射部14の作動ランプの消灯や停止ランプの点灯のほか、扉111又は側板112に設けたアクリル小窓114から装置本体11内の紫外線ランプ141の消灯を見ることで、確認できる。攪拌部13は、餌料生物の回収まで酸素の供給を継続するために作動させておくとよい。後述するように、本発明に基づく殺菌処理では、有害細菌が再び増殖するまでの時間が長い、すなわち殺菌効果の持続時間が長いため、殺菌処理後直ちに餌料生物を回収する必要がない。これは、殺菌処理に作業者を付きっきりにしなくて済む利点である。
餌料生物は、まず攪拌部13を停止させ、今度はハンドル136の操作により攪拌部13を上昇させて貯留容器12から待避させた後、扉111を開いて搬出した貯留容器12から回収する。本例の貯留容器12は、底面124に排出部126として排出コックを設けているので、例えばレール113上に引き出した貯留容器12から、直接別の容器へと排出部から水溶液と共に餌料生物を回収してもよい。これは、貯留容器を交換することなく、繰り返し使用する場合である。また、貯留容器12をそのまま運び出し、餌料生物を回収してもよい。これは、貯留容器が複数あり、先の殺菌処理が終了すれば直ちに次の殺菌処理を実施する場合に適している。
本例の殺菌装置で一度に殺菌処理できる量は、水溶液の量と餌料生物の密度とにより決定される。例えば、直径60cm×深さ15cmの上記タライ状貯留容器12に、水深10cmの水溶液121を溜め、餌料生物としてワムシを10万個体/mLの密度で前記水溶液121中に浮遊させた場合、(水溶液の量:30cm×30cm×π×10cm=28274mL)×(ワムシの密度=10万個体/mL)=28億2740万個体、すなわち約30億個体について、有害細菌を1/10〜1/1000程度に減らす殺菌処理を施すことができる。これは、小中規模の養殖場で1日に必要なワムシの量に匹敵する。
本発明による餌料生物の殺菌処理の有効性を確認するため、代表的な餌料生物としてワムシについて、次に挙げる実験を実施した。
実験1:ワムシに対する紫外線の影響
紫外線を照射することにより、ワムシ自身が殺されてしまっては意味がないため、まずワムシにどの程度紫外線が照射されれば、ワムシが死んでしまうかについて、すなわち紫外線量の上限値について確認した。実験条件は、次の通りである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液にワムシを100個体/mLの密度で浮遊させた。水溶液の水深は、ワムシ自身の活動が十分に保証され、水面直下のワムシが入れ替わることのできる深さである。この実験1では、水溶液は攪拌していない。
紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い、前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。
ワムシに対する紫外線の影響は、紫外線の照射開始からのワムシの観察による。紫外線照射開始後から2分が経過するまではわずかに死んだワムシが見られたものの、生存するワムシ自体の活動は紫外線照射開始直後と変わらなかった。ここで、ワムシの死亡は、水溶液中の酸素濃度等も関係するため、紫外線の影響と断定することはできない。しかし、紫外線照射開始後から3分が経過するに至り、活動するワムシの数が激減し、目視によればおよそ8割が死亡が確認された。これは、明らかに紫外線照射の影響と考えられる。
実験1では、ワムシが浮遊する水深3mmの水溶液の水面に紫外線強度65.1 mW/cm2の紫外線を照射し、2分照射では安全性が確認され、3分照射ではワムシが殺されることが確認された。ここで、2分照射の場合、ワムシ1個体当たりの紫外線量は65.1mW/cm2×120秒/(4.5cm×4.5cm×π×0.3cm×100個体/mL)=4.1mJ/cm2である。また、3分照射の場合、ワムシ1個体当たりの紫外線量は65.1mW/cm2× 120秒/(4.5cm×4.5cm×π×0.3cm×100個体/mL)=6.1mJ/cm2である。
これから、本発明の殺菌方法で利用しうる紫外線の紫外線量は、ワムシ1個体当たりの紫外線量は5mJ/cm2であると考えられる。ワムシと同じ主要な餌料生物であるアルテミアは、ワムシの最大5倍程度の個体長を有しているから、アルテミアに対する紫外線量の上限値は、前記体積比の125倍、すなわち625mJ/cm2になると考えられる。ワムシは、最も利用され、かつ個体長の小さな餌料生物であるから、このワムシに対する紫外線の影響を確認することで、およそすべての餌料生物に、体積比に応じた同様な紫外線量の上限を当てはめることができると考えられる。以後の実験は、この実験1で確認された紫外線量、すなわちワムシの場合は1個体当たり5mJ/cm2を、アルテミアの場合は625mJ/cm2を超えない範囲で実施した。
実験2:紫外線によるワムシが抱える有害細菌の殺菌
次に、ワムシに対する紫外線量を上記上限値以内で紫外線を照射し、ワムシが抱える有害細菌を実用的な程度に殺菌できるかを確認するため、紫外線の照射時間と殺菌効果との関係について調べてみることにした。実験条件は、実験1とほぼ同じである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液にワムシを2万個体/mLの密度で浮遊させた。実験1よりワムシの密度を高めた理由は、より実用的な殺菌処理の場面を想定したからである。この実験2でも、ワムシ自身の活動により水面直下のワムシが入れ替わるものとして、水溶液は攪拌していない。
紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。
殺菌効果は、紫外線照射前(照射時間0分)の有害細菌の数と、紫外線照射開始から1分、2分、4分、そして6分照射した段階での各有害細菌の数とを測定し、紫外線照射前(照射時間0分)の有害細菌の数からの減少程度で評価した。有害細菌は、魚介類の種苗生産で問題となるビブリオ属細菌(培地との関係から、以下ではTCBS細菌と表記)と、その他の一般細菌とに分けて、それぞれ平板培地で培養し、各培地に生育したコロニー数から、ワムシ1g当たりの細菌数(CFU/g)を算出した。
具体的な細菌数の算出は、次の手順による。照射前、1分照射及び2分照射の各ワムシを、目合い42μmのプランクトンネットに水溶液ごと移して海水で洗浄後、前記プランクトンネットの裏側から濾紙等を用いて余分な水分を取り除く。次に、ガラスホモジナイザにプランクトンネットに付着したワムシの一部(0.1〜0.2g)を取り、正確に秤量後、2.0mLの滅菌海水と共によく磨砕する。この磨砕したワムシを滅菌海水を希釈水として10倍段階希釈し、それぞれの希釈段階から平板培地に1枚当たり0.1mLを接種する。培地は、ビブリオ属細菌の選択培地であるTCBS寒天培地(栄研製)と、海水又は海洋性細菌の分離培養用に一般的に用いられるZoBell2216e寒天培地とを用いている。各培地を25℃で2日間培養した後、適当な希釈段階で生育してきたコロニー数を計数し、前記計数結果と、当初の秤量値及び希釈倍率とからワムシ1gに含まれた細菌数を求める。
実験2の結果を図7に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。まず、照射前に107オーダの細菌数が確認されたTCBS細菌は、1分照射した段階で1/100程度の105オーダに、2分照射の段階で1/1000程度の104オーダ以下、そして4分照射及び6分照射の段階でも1/1000程度の104オーダ以下の細菌数になることが確認された。また、照射前に109オーダの細菌数が確認された一般細菌は、1分照射した段階で1/10程度の108オーダに、2分照射の段階で1/100程度の107オーダ強に、4分照射の段階で1/100程度の107オーダに、そして6分照射の段階で1/1000程度の106オーダの細菌数になることが確認された。ここで、ワムシ1個体当たりの紫外線量は、1分照射で0.01mJ/cm2、2分照射で0.02mJ/cm2、4分照射で0.04mJ/cm2、そして6分照射で0.06mJ/cm2で、いずれも実験1で求めた紫外線量の上限値(5mJ/cm2)を大きく下回る数値であり、実際にワムシの死亡は確認されなかった。細菌数が1/1000以下になる殺菌効果は、従来の薬液による殺菌処理と比べて同等以上の殺菌効果である。これから、本発明による紫外線照射による殺菌処理は、従来の薬液による殺菌処理に代えて使用しうるに十分な殺菌効果があると言える。
実験3:殺菌効果の持続性
上記実験1及び実験2から、紫外線による殺菌処理は、従来の薬剤による殺菌処理と同等以上の殺菌効果を有することが確認された。ここで、薬剤による殺菌処理は、殺菌処理後、2時間程度で殺菌効果が薄れ、有害細菌が再増殖することが知られている。そこで、紫外線による殺菌処理の殺菌効果が殺菌処理後どの程度持続するか、すなわち殺菌処理後の有害細菌の再増殖の程度により、殺菌効果の持続性について調べることにした。
実験条件は、実験2と同じである。貯留容器である内径90mmのプラスチック製浅型シャーレに、水溶液である海水(水温20℃)を水深3mmで満たし、この水溶液中ワムシを2万個体/mLの密度で浮遊させた。紫外線は、15W型紫外線ランプ(東芝製CL-15)を2本用い前記水溶液の水面までの距離を19.5cmに設定している。この紫外線ランプはC領域紫外線を照射し、水溶液の水面における紫外線強度は65.1mW/cm2であった。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。
殺菌効果の持続性は、紫外線の2分照射したワムシにおける有害細菌の数を予め測定しておき、殺菌処理後に海水へ戻した前記ワムシの2時間後、4時間後、そして6時間後における細菌数を測定して、有害細菌の増加傾向を確認することで評価した。殺菌処理を終えてから最後の殺菌数を測定する6時間経過後まで、海水は25.3℃〜26.6℃の範囲で変化したが、これは外気温に連動した通常の変化である。有害細菌は、魚介類の種苗生産で問題となるTCBS細菌と、その他細菌とであり、測定方法は実験2同様、それぞれ平板培地で培養し、各培地に生育したコロニー数から細菌数を算出した。
実験3の結果を図8に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。実験2同様の実験条件であるため、殺菌処理前に107オーダであったTCBS細菌は、紫外線の2分照射により1/100程度の105オーダに、また殺菌処理前に109オーダであった一般細菌は1/10程度の108オーダに減少する殺菌効果が得られている。この殺菌効果は、2時間経過後、4時間経過後、そして6時間経過後の各細菌数がほとんど増加していないことから、少なくとも6時間の持続性を有することが確認された。殺菌処理を終えた餌料生物は、撒き餌後すべてが直ちに魚介類の種苗に食べられるわけではなく、およそ6時間程度かけて食べられる。これから、この実験3で確認された殺菌効果の持続性は、魚介類の種苗に有害細菌が取り込まれにくい非常に有効な殺菌処理であると考えることができる。
このように、本発明による殺菌処理の殺菌効果が持続する理由は、次のように考えることができる。すなわち、薬剤による殺菌処理の殺菌効果は、薬剤により直接有害細菌を殺すばかりではなく、薬剤の存在によって有害細菌の増殖を抑制する働きがある。これに対し、紫外線による殺菌処理の殺菌効果は、紫外線により直接有害細菌を殺すばかりではなく、紫外線が有害細菌のDNAを破損し、再増殖を抑制する又は再増殖に手間取らせる働きがあると考えられる。すなわち、前記DNAの破損が、殺菌効果の持続性に結びついているわけである。このため紫外線による殺菌処理では、有害細菌の再増殖をより抑制しやすいわけである。
実験4:攪拌による殺菌効果
次に、紫外線による殺菌処理が実用的であるか否かを確認するため、一度にどれぐらいの餌料生物が紫外線により殺菌処理できるかを実験してみた。餌料生物は、魚介類の種苗に与える前に殺菌処理されるのであり、前記種苗に与える餌料生物の量は大変多いため、できるだけ短い時間で大量の餌料生物を殺菌処理できることが望ましい。そのため、この実験4では上記実験2に比べて格段に大量のワムシを、実験2相当の殺菌効果が得られる照射時間を目安に殺菌処理してみた。
実験条件は、餌料生物の量を増やすため、水溶液の量を増やし、餌料生物の密度を上げたほかは、実験2とほぼ同じである。貯留容器である内径107mmのガラス製深型シャーレに、水溶液である海水(水温25.7℃)を水深45mmで満たし、この水溶液中ワムシを4万5千個体/mLの密度で浮遊させた。これから、実験4で一度に殺菌処理するワムシの量は、実験2又は実験3の約38万個体に対し、30倍以上の約1200万個体である。殺菌処理するワムシが増えたことから、15W型紫外線ランプ(東芝製CL-15)を2本用いた点は同じであるが、水溶液の水面までの距離を12cmまでに短くして、水溶液の水面における紫外線強度を111.6mW/cm2に高めた。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。また、この実験4では、(攪拌手段)によって殺菌処理中の水溶液を攪拌して、水面直下のワムシの入れ替わりを促すことにした。
この実験4では、水深が実験1〜実験3の3mmに対して45mmと15倍に増えたことから、上述の通り紫外線強度を高めてはいるが、実験2相当の殺菌効果を挙げるに必要な紫外線量を確保するには照射時間が長くなることが予想される。そこで、紫外線照射開始から5分照射、10分照射、15分照射、そして20分照射の各段階における有害細菌の細菌数を調べた。ワムシ1個体当たりの紫外線量は、5分照射で0.00188mJ/cm2、10分照射で0.00375mJ/cm2、15分照射で0.00563mJ/cm2、そして20分照射で0.00750mJ/cm2で、いずれも実験1で求めた紫外線量の上限値(5mJ/cm2)を大きく下回る数値であり、実際にワムシの死亡は確認されなかった。
実験4の結果を図9に示す。実験結果のグラフは、一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、それぞれCFU/gの値を対数値で表している。まず、TCBS細菌については、5分照射の段階で、実験2の1分照射と同等の殺菌効果、すなわち1/100程度の減菌を達成している。そして、以後照射時間が増加するにつれて殺菌効果は徐々に高まり、20分照射の段階では実験2の2分照射と同等の殺菌効果、すなわち1/1000程度の減菌を達成している。ここで、この実験4では、実験2に比べてワムシ1個体当たりの紫外線量が極めて少ないが、紫外線の照射時間が長いことと、攪拌により水面直下の餌料生物を積極的に入れ替えていることから、ワムシ1個体当たりの紫外線量は、実験2相当に確保されていると考えられる。
一般細菌については、15分照射の段階に至って、ようやく実験2の1分照射と同等の殺菌効果、すなわち1/10程度の減菌を達成している。この結果について、実験2及び実験4を比較すれば、殺菌処理の条件によってTCBS細菌と一般細菌との殺菌効果に差を生ずることがあると考えられる。また、実験2では、一般細菌に比べてTCBS細菌の減菌割合が大きく、同様な傾向はこの実験4にも見られる。これから、一般細菌とTCBS細菌とでは、TCBS細菌のほうが紫外線の影響を受けやすく、本発明の殺菌処理は特にTCBS細菌に有効であると考えられる。すなわち、TCBS細菌を殺菌対象とした場合、本発明は実用上有効な殺菌方法を提供できることがわかった。
実験5:本発明の実証
最後に、上記図示により説明した殺菌装置を作成し、より大量の餌料生物を殺菌処理して、本発明の実証を試みた。実験条件は、次の通りである。貯留容器は内径60cmのタライ状でステンレス製容器を用い、水溶液である海水(水温21.1〜24.7℃)を水深10cmで満たし、この水溶液にワムシを低密度(10万個体/mL=30億個体/30L)又は高密度(15万個体/mL=30億個体/20L)で浮遊させた場合と、この水溶液中アルテミアを3,300個体/mL=1億個体/30Lの密度で浮遊させた場合とを実験した。アルテミアは、ワムシの数倍程度の個体長であり、密度は個体長比よりも少なめに設定した。これから、例えば実験5で一度に殺菌処理するワムシは、実験2又は実験3の約38万個体に対し、740倍〜1100倍以上の約28億個体〜約42億個体である。
紫外線は、20W型紫外線ランプ(ナショナル製GL-20)を4本用い、水溶液の水面までの距離を11cmにして、水溶液の水面における紫外線強度を121.6mW/cm2とした。紫外線強度は、前記紫外線ランプから水面までの距離に合わせて紫外線ランプから離れた位置に紫外線強度計(東京光学機械製UVR-254)で測定した値である。紫外線の照射時間は、実験4に比べてより多くのワムシ又はアルテミアを殺菌処理することから、紫外線の照射時間を30分間としている。また、この実験5では、外径40cmの一対の羽根からなる攪拌部によって殺菌処理中の水溶液を攪拌して、水面直下のワムシの入れ替わりを促すことにした。
低密度ワムシについての実験結果を図10に、高密度ワムシについての実験結果を図11に、そしてアルテミアについての実験結果を図12に示す。各実験結果のグラフは、低密度ワムシ及びアルテミアについては一般細菌(白抜き丸線)及びTCBS細菌(黒塗り丸線)について、高密度ワムシについてはTCBS細菌(黒塗り丸線)についてのみ、それぞれCFU/gの値を対数値で表している。まずワムシについて見ると、密度の差を問わず、一般細菌及びTCBS細菌がそれぞれ1/10〜1/100程度減少しており、実用的な殺菌効果が得られていることが分かる。また、同じ殺菌装置を用いたアルテミアの殺菌処理でも、有害細菌が1/10以上に減少していることから、同じく実用的な殺菌処理ができていると言える。このように、本発明による餌料生物の殺菌方法は、薬液に代えて十分実用的な殺菌方法であることが実証された。
ここで、実験5における紫外線量は、低密度ワムシ1個体当たりは7.53×10-10mJ/cm2、高密度ワムシ1個体当たりは5.02×10-10mJ/cm2、そしてアルテミア1個体当たりは2.26×10-8mJ/cm2であり、いずれも実験1で確認した上限値(ワムシ1個体当たりの紫外線量は5mJ/cm2、アルテミア1個体当たりの紫外線量は625mJ/cm2)内に収まっている。目視によっても、ワムシ又はアルテミアが死んだことを確認できていない。むしろ、各紫外線量はいずれも上限値に対して余裕があるため、例えば紫外線強度を高めて照射時間を短縮しながら実験5同等の殺菌効果を挙げることも考えられる。
本発明に基づく殺菌装置の一例を表す正面図である。 図1の殺菌装置の側面図である。 図1の殺菌装置の平面図である。 攪拌部による水溶液を攪拌する状態を表した要部抜粋斜視図である。 別例の攪拌部による水溶液を攪拌する状態を表した図4相当斜視図である。 別例の攪拌部による水溶液を攪拌する状態を表した図4相当斜視図である。 実験2における実験結果を表すグラフである。 実験3における実験結果を表すグラフである。 実験4における実験結果を表すグラフである。 実験5における低密度ワムシについての実験結果を表すグラフである。 実験5における高密度ワムシについての実験結果を表すグラフである。 実験5におけるアルテミアについての実験結果を表すグラフである。
符号の説明
1 殺菌装置
11 装置本体
111 扉
113 レール
114 アクリル小窓
117 脱落防止突起
118 位置決め突起
12 貯留容器
121 水溶液
122 水面
125 樹脂製車輪
126 排出部
13 攪拌部
131 駆動部
132 回転軸
133 羽根
134 案内シャフト
14 紫外線照射部
141 紫外線ランプ
142 反射板
16 制御部
17 基準板
18 固定レバー
23 別例の攪拌部
33 別例の攪拌部

Claims (8)

  1. 餌料生物を浮遊させた水溶液の水面に向けて紫外線を照射することにより、前記餌料生物が抱える有害細菌を殺菌するに際し、水溶液は餌料生物と共に攪拌することを特徴とする餌料生物の殺菌方法。
  2. 餌料生物が抱える有害細菌を殺菌する殺菌装置であって、餌料生物が浮遊する水溶液を貯える貯留容器、該貯留容器が貯える水溶液の水面に向けて紫外線を照射する紫外線照射部と、前記貯留容器及び紫外線照射部を所定位置関係で保持する装置本体と、紫外線照射部を作動及び停止させる制御部とからなる餌料生物の殺菌装置において、装置本体は貯留容器に向けて垂下させた攪拌部を設け、該攪拌部を作動又は停止させる制御部を設けたことを特徴とする餌料生物の殺菌装置。
  3. 攪拌部は、水平旋回する長尺部材からなり、貯留容器に貯えた水溶液に前記長尺部材を没入させ、該水溶液を旋回方向に攪拌する請求項記載の餌料生物の殺菌装置。
  4. 攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とした請求項記載の餌料生物の殺菌装置。
  5. 装置本体は、扉を有する密閉箱体であり、該装置本体内に貯留容器及び紫外線照射部を内蔵した請求項記載の餌料生物の殺菌装置。
  6. 装置本体は、貯留容器に向けて垂下させた攪拌部を内蔵し、該攪拌部を作動又は停止させる制御部を設けてなる請求項記載の餌料生物の殺菌装置。
  7. 攪拌部は、水平旋回する長尺部材からなり、貯留容器は前記攪拌部の長尺部材の最大旋回半径より大きな内径を有する有底円筒である請求項記載の餌料生物の殺菌装置。
  8. 攪拌部は、貯留容器に対して昇降自在に装置本体に設け、貯留容器は装置本体に対して着脱自在とした請求項記載の餌料生物の殺菌装置。
JP2004188374A 2004-06-25 2004-06-25 餌料生物の殺菌方法及び殺菌装置 Expired - Fee Related JP3932313B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188374A JP3932313B2 (ja) 2004-06-25 2004-06-25 餌料生物の殺菌方法及び殺菌装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188374A JP3932313B2 (ja) 2004-06-25 2004-06-25 餌料生物の殺菌方法及び殺菌装置

Publications (2)

Publication Number Publication Date
JP2006006211A JP2006006211A (ja) 2006-01-12
JP3932313B2 true JP3932313B2 (ja) 2007-06-20

Family

ID=35774120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188374A Expired - Fee Related JP3932313B2 (ja) 2004-06-25 2004-06-25 餌料生物の殺菌方法及び殺菌装置

Country Status (1)

Country Link
JP (1) JP3932313B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827563B1 (ko) * 2016-03-16 2018-02-09 신한산기(주) 세척장치를 구비한 발효사료 생산장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1836901A1 (en) * 2006-03-23 2007-09-26 INVE Technologies NV Method for producing a feed comprising Artemia nauplii
WO2008084487A1 (en) * 2007-01-11 2008-07-17 Atlantium Technologies Ltd. Method and system for selective ultraviolet disinfection
JP2009296911A (ja) * 2008-06-11 2009-12-24 Hiroshima Pref Gov 殺菌効果を有する珪藻の培養方法
CN103583417B (zh) * 2012-08-14 2016-08-31 虞文豪 一种水产养殖的杀菌装置及其应用
KR101703091B1 (ko) * 2015-07-29 2017-02-22 한국식품연구원 살균기능을 갖는 식품혼합장치
CN112806296B (zh) * 2021-02-03 2023-08-04 广东恒业高新技术有限公司 一种水产养殖用饲料撒料装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827563B1 (ko) * 2016-03-16 2018-02-09 신한산기(주) 세척장치를 구비한 발효사료 생산장치

Also Published As

Publication number Publication date
JP2006006211A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
US20190070323A1 (en) Inactivation of pathogens in ex vivo blood products in storage bags using visible light
JP3932313B2 (ja) 餌料生物の殺菌方法及び殺菌装置
CN210170509U (zh) 一种农业养殖用喷药器
KR101245373B1 (ko) 포장육 살균 처리장치
ITTV20100075A1 (it) Apparato per l'incubazione di uova e/o embrioni di organismi acquatici
Blidariu et al. Evaluation of phosphorus level in green lettuce conventional grown under natural conditions and aquaponic system.
KR101128924B1 (ko) 기능성채소 생산장치
CN210873158U (zh) 超声探头消毒器
ES2423865A1 (es) Dispositivo para el lavado y desinfeccion de frutas y hortalizas
KR20180071787A (ko) 인삼 종자의 개갑 방법
JP3758927B2 (ja) 水の光殺菌方法
CN113038831B (zh) 用于生产改良动物数量的装置
JP2003339270A (ja) 用水の殺菌と活性化により生物を生育する方法及び前記方法に使用される処理装置
CN212490850U (zh) 一种病媒生物防治用消毒装置
JP2020110132A (ja) 近紫外線光led利用の移動式土壌撹拌消毒装置。
CN213911493U (zh) 一种营养土杀菌设备
CN110124071B (zh) 超声探头消毒器
CN210844418U (zh) 超声探头消毒器
CN219461979U (zh) 一种家禽孵化用消杀装置
CN216236493U (zh) 一种水产养殖灭菌设备
CN214485135U (zh) 一种用于养鸡舍的无死角灭菌装置
RU215986U1 (ru) Ультрафиолетовый обеззараживатель зерна перед посевом
CN215270344U (zh) 消毒保鲜罩
CN219271688U (zh) 养殖用消毒机
KR101459331B1 (ko) 성장 속도가 빠른 돌연변이 전복의 생산방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees