JP3929527B2 - Trigger device for seismic isolation system - Google Patents

Trigger device for seismic isolation system Download PDF

Info

Publication number
JP3929527B2
JP3929527B2 JP19773896A JP19773896A JP3929527B2 JP 3929527 B2 JP3929527 B2 JP 3929527B2 JP 19773896 A JP19773896 A JP 19773896A JP 19773896 A JP19773896 A JP 19773896A JP 3929527 B2 JP3929527 B2 JP 3929527B2
Authority
JP
Japan
Prior art keywords
seismic isolation
building
lock member
trigger device
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19773896A
Other languages
Japanese (ja)
Other versions
JPH1038021A (en
Inventor
智勇 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP19773896A priority Critical patent/JP3929527B2/en
Publication of JPH1038021A publication Critical patent/JPH1038021A/en
Application granted granted Critical
Publication of JP3929527B2 publication Critical patent/JP3929527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【産業上の利用分野】
本件発明は、通常時において免震システムが作動しないように、建物の水平方向の相対移動を規制し、一定の大きさ以上の震動が加わった場合に、この規制を解除して免震システムを有効に作動させるトリガー装置に関する。
【0002】
【従来技術】
現在、建物と地盤の間に免震装置を取付け、地震が起こった際、建物に加わる震動を減少させ、建物への被害を最小限に抑える免震装置が提案され、実際にかかる免震装置を備えた建物が建築されている。
【0003】
現存する免震装置は、オフィスビルや集合住宅等、地震荷重が風荷重を上回るような重量建築物に用いられるものが殆どである。この場合、平常時の振動を防止し、大地震時にのみ免震装置を作動させるトリガーは、設けられていないか、もしくは大地震の水平震動により作動するトリガーが装備されるのみである。
【0004】
【発明が解決しようとする課題】
しかしながら、一戸建ての住宅等、軽量建築物では、風荷重が地震荷重を上回るため、免震装置を取り付けると風圧力によって免震装置が作動してしまい建物が簡単に振動してしまう問題があり、かえって通常時の環境に悪影響を与えてしまう。また、重量建築物用のトリガーは、軽量建築物に加わる地震荷重が低いため、同じように使用することは難しい。
【0005】
この問題を解決するために、通常時、風圧力を感知して免震装置をロックするトリガー機構も考えられるが、構造が複雑でメンテナンスも含めコストがかかる構造となって望ましくない。
【0006】
そこで、本発明の目的は、通常時、建物の免震装置の作動を規制して風圧力による振動を防止するとともに、大地震の発生時には免震装置の規制を解除し、これを確実に作動させることができる、構造が簡単で、低コストな免震システムのトリガー装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、建物を地盤に対して水平方向にスライドさせて地震力を吸収する免震システムを作動させるためのトリガー装置であって、建物の一部と地盤に設置された固定部材との間に跨って介在し両者を連結することによって、両者の相対的な水平移動の規制とその解除を行なうロック部材と、前記ロック部材に取り付いた第1の連結体と建物に取り付いた第2の連結体とからなり、通常、前記ロック部材を前記第1の連結体と前記第2の連結体との連結により所定の高さに懸下して前記水平移動の規制状態を継続させ、一定以上の上下震動が加わった場合に限って、前記ロック部材に下向きの慣性を付加し、該下向きの慣性力と前記ロック部材の重力との合計が前記第1の連結体と前記第2の連結体との連結力を上回り、前記連結を解除することによって前記ロック部材を落下させて前記規制を解除する支持部材と、からなる免震システムのトリガー装置により上記課題を解決する。
【0009】
【発明の実施の形態】
本発明の第1実施例を図1乃至図4を用いて説明する。本実施例は免震システムのトリガー装置を免震装置とは別に構成した例を示す。図1は実施例のトリガー装置の分解斜視図、図2は同トリガー装置の作用を説明する図、図3は、同トリガー装置のロック部材の他の構成例を示す説明図、図4は同トリガー装置の支持部材の構造例を示す説明図、さらに、図5はトリガー装置及び免震装置の配置例を示す説明図である。
【0010】
図1に示すように、トリガー装置1は建物A側に取り付けられた係止突起2と、地盤G側に設置された固定部材である、アンカー突起3とを有する。これら係止突起2とアンカー突起3とはそれぞれ同一径を有する円筒体であって、軸線を合わせた状態で位置決めされ、両者を跨ぐように外側に円筒状のロック部材4をスリーブ状に外嵌している。なお、ロック部材4の高さはアンカー突起3の高さより小さく設定され、ロック部材4が地盤G上に落下した際、係止突起2とアンカー突起3との係合が確実に外れるようにしてある。
【0011】
ロック部材4の上端に第2連結体5bが、建物Aの下面には第1連結体5aが取り付けられており、これら連結体5a、5bからなる支持部材5によって、ロック部材4が地盤から所定の高さに懸下される。
【0012】
第1連結体5aと第2連結体5bのそれぞれの当接部には、マグネットが取り付けられており、両者を連結している。この支持部材5はロック部材4の懸下を維持するが、所定の上下方向の力が加わると、第1連結体5aと第2連結体5bの連結が解除される構造となっている。このため、ロック部材4の重量と、マグネットの磁力の強さは、所定の上下方向の振動で支持部材5の連結が解除されるように設定される。
【0013】
図2を用いてトリガー装置の作動を説明する。通常、同図(a) に示すように、ロック部材4は支持部材5により建物Aから懸下されている。この状態にあっては、ロック部材4が係止突起2とアンカー突起3とを連結して、建物Aに水平方向の力が加わっても地盤Gに対して水平方向に移動することを規制している。すなわち、建物Aに風圧力が加わり、これを水平方向に移動させようとしても、かかるトリガー装置1が作動せず、ロック部材4が係止突起2とアンカー突起3とを連結しているため、建物Aの他の部位に配置した免震装置(後述)を作動させることはない。
【0014】
次に、大地震の発生時、支持部材5に上下方向の力が加わり、上下震動によるロック部材に働く下向きの慣性力とロック部材に働く重力との合計が支持部材5の連結力を上回った場合、図2(b) に示すように、第1連結体5a及び第2連結体5bの連結が解除され、ロック部材4は地盤G上に落下する。かかる状態にあっては、係止突起2はロック部材4の外嵌が外れ、アンカー突起3に対して自由に移動できるので、建物Aの震動を許容し、免震装置を作動させる。
【0015】
一般的に、免震効果を期待する大地震では、まず上下方向の震動が発生する。このため本実施例のトリガー装置は、地震の初期段階で上述のごとく免震装置のロックを解除し、免震装置を作動状態におく。そして、続いて発生する水平方向の揺れに対して、建物が水平方向に移動することを許容し、建物に加わる地震力を低減させるものである。なお、トリガー装置は、大地震の発生確率と装置コストのバランスから、その作動後、初期状態へ自動的に戻る機構を有していないが、もちろん、かかる構造を追加的に付加することもできる。
【0016】
トリガー装置のロック部材は、多様な構造が考えられる。図3にトリガー装置のロック部材の構成例を示す。同図(a) は上記実施例と同様の、係止突起2とアンカー突起3とを用いて、筒状のロック部材4を外嵌したものである。同構造の特徴として、後述する(b) 、(c) の構造と異なり、係止突起2が水平移動してもアンカー突起3と接触することはなく、免震装置が作動した際、水平移動の許容範囲を大きく取りたい場合も変位の大きさに装置サイズが関係しないために、トリガー装置を大きくする必要はなく、コンパクトな構造とすることができる。なお、係止突起2とアンカー突起3の形状は、円柱状のものに限らず、四角柱や五角柱など、多様なものが考えられる。
【0017】
図3(b) に示すトリガー機構は、建物A側の係止環体6と、地盤G側のアンカー突起7との間に中央に孔の空いた円盤状のロック部材8を介在させ、水平方向の移動を規制するものである。また、同図(c) は、反対に、建物A側に係止突起9を形成し、地盤G側にアンカー環体10を形成したものである。図3(b) 、(c) のいずれの場合も、一方の突起が他方の環体に嵌入されているため、トリガー装置の作動時、建物Aの水平移動は環体の内径と突起の外径間でのみ許容され、いわば震動幅のストッパー機能を有する。
【0018】
図3(d) のトリガー装置は、建物A側及び地盤G側のそれぞれ第1の孔12及び第2の孔13を設け、両孔12、13を跨ぐようにロック部材である芯体14を挿入したものである。この構造によれば、ロック部材が外側に露出することがなく、機構の劣化を抑えることができる。さらに、同図(e) は上記同図(b) と同様に、建物A側の係止環体15と地盤G側のアンカー突起16との間にロック部材17を介在させている。このロック部材17は、建物A側の係止環体15に内嵌される円盤部17bと、地盤G側のアンカー突起16に外嵌される円筒部17aとからなる。同図(f) は、同様なロック部材17を用い、建物A側に係止突起18を、地盤G側にアンカー環体19を設けて、同図(d) と同様の構造を構成している。なお、いずれのロック部材4、8、14、17とも、図示しない支持部材によって所定の高さに懸下されている。これら(e) 及び(f) の構造によれば、アンカー突起16は係止環体15内にはめ込まれることはなく、アンカー突起16の水平移動時、この移動の許容変位を大きく取ることができる。
【0019】
図4に、支持部材の他の構造例を示す。同図(a) は上記した実施例の支持部材であって、第1連結体5a及び第2連結体5bの当接部にマグネットを取り付けたものである。また、同図(b) に示す支持部材21は、いわゆるボールキャッチ機構を用いた支持部材であって、円柱状の第1連結体21aを円筒状の第2連結体21bに挿入しており、第1連結体21aの内部にバネ21cにより付勢されたボール21dが第2連結体21bの内壁に形成された凹部にはまり込んで両者は連結されている。
【0020】
図4(c) の支持部材22は、先端が棒状になった第1連結体22aを上端が開いた円筒体を先端に有する第2連結体22bが把持して両者を連結しているものである。また、同図(d) の支持部材23は、先端が棒体23aとなった第1連結体23bと、アーム23cの先端にローラ23dを形成したもの2つ配置し、これら2本のアーム23c間を引っ張りバネ23eで連結して構成した第2連結体23fから成る。そして、第1連結体23bのローラ23a上部を第2連結部体23fの2つのローラ23cで挟み、引っ張りバネ23eにより両ローラ23cに付勢を与えて第1連結体23b及び第2連結体23fとを連結している。さらに、同図(e) の支持部材24は、それぞれ第1連結体24a、第2連結体24bを一対のマジックテープで構成している。
【0021】
支持部材は、いずれの構成を採用した場合も、支持するロック部材に働く重力及び大地震時の上下震動によりロック部材に働く慣性力とを考慮して、第1連結体と第2連結体との係合が解除される力を所定の値に設定する。そして、大地震の際、上下震動が加わった際、確実にトリガー装置を作動させ、その他の振動、例えば風圧力による振動や中小地震による震動ではトリガー装置が誤作動しないように調整しておく。なお、上記実施例では、支持部材は1つのみ取り付けられているが、取付数及び取付位置は任意に設定できることは勿論である。
【0022】
図5に本実施例の、トリガー装置1の配置例を示す。本実施例によれば、免震装置26の間に、トリガー装置1を配置している。かかる構造によれば、トリガー装置と免震装置の種類、数、位置の取り合わせが自由であり、建物Aの重量および形状等により最適な配置が可能である。また、装置の配置が分散するので、連続基礎に、より適する。
【0023】
以上説明したように、本実施例のトリガー装置を用いれば、通常時、ロック部材4が建物Aと地盤Gとを水平方向において連結するために、風圧力による振動や中小地震による震動ではトリガー装置が作動することがなくなり、免震装置が作動しないため、建物Aが水平移動することはなく、快適な住居を提供できる。一方、トリガー装置が作動する力は、専らロック部材4に働く重力とロック部材4に加わる大地震時の上下震動による慣性力との合計、及び支持部材5の連結力に依存するため、建物の重量を考慮して免震装置自体の特性を調整して行う方法に比べ、その数値設定が簡単で、免震設計を行い易い。特に、免震装置の特性の設定が難しい、建物が軽量な一戸建て住宅のような場合に本実施例の装置は利点がある。
【0024】
次に本発明の第2実施例を図6を用いて説明する。本実施例はトリガー装置を免震装置に組み合わせた、トリガー機構付き免震装置31を構成している。
【0025】
同図に示すように、この免震装置31は、建物A側に固定した脚部材32と地盤G側の架台33との間に、板状ゴムと鋼板を交互に積層したLRB(レッドラバーベアリング)36を介在させている。そして、これら脚部材32、架台33、LRB36を跨ぐように円筒状のロック部材34を、支持部材35で懸下して外嵌している。
【0026】
通常時、ロック部材34が脚部材32と架台33とを水平方向において連結するために、建物Aに風圧力等による水平力、中小地震による横揺れ等の振動が加わっても免震機構を作動させることはないが、大地震時には上下震動により支持部材35が解放され、ロック部材34が地盤G上に落下して脚部材32と架台33との連結を解除するために、免震機構を作動させることができる。
【0027】
図7に、かかるトリガー機構付き免震装置31の配置例を示す。同免震装置31は所定間隔で、建物Aを重量を均等に支持するように、建物Aと地盤Gとの間に配置されている。トリガー装置と免震装置を別装置とした第1実施例に比べ(図5参照)、トリガー付き免震装置31とすれば取付個所が少なく、施工工数も少なくて済むため、施工効率を改善することができる。なお、かかる構成によっては、装置の配置が集中するため、独立基礎により適する。
【0028】
図8に、第2実施例の、他の構成例を示す。同図(a) 並びに(b) に示したトリガー機構付き免震装置は、滑り支承型のFPS(フリクションペンデュラムシステム)を免震機構に使用したものである。
【0029】
同図(a) に示すように、このトリガー機構付き免震装置37は、上面38a及び下面38bが曲面で構成された可動体38と、この可動体38の下面38bを支持する架台39と、可動体38の上面38aにかぶせ、接触面が球面状に凹んで摺動面40aが形成された摺動部材40とから構成される。架台39は地盤G側に、摺動部材40は建物A側に固定され、建物に震動が加わると、架台39の受台39aに支持された可動体38が摺動部材40の摺動面40a上を滑って移動し、水平方向の揺れを許容して建物にかかる地震荷重を減衰させる構造となっている。
【0030】
架台39は可動体38を受ける、上面が球面状になった受台39aと、円板状のベース39bとから構成されるが、ベース39bと摺動部材40の外側に環体のロック部材41を外嵌している。このロック部材41は、通常時、支持部材42により建物Aから懸下されており、架台39のベース39bと摺動部材40との対向部を跨ぐように位置決めされ、両者を水平方向において連結している。
【0031】
同図(b) に示すトリガー機構付き免震装置43は、トリガー装置のロック部材46をFPS構造の内側に配置している。この構成例の架台45は円柱形状を有し、環状円板状のロック部材46を外嵌している。このロック部材46は、支持部材47により摺動部材44から懸下され、摺動部材44周縁の立設部44aと架台45との間に介在して、摺動部材44の水平方向の移動を規制している。
【0032】
なお、上記第2実施例の各構成例において、支持部材35、42、47の構成は詳述しなかったが、第1実施例で例示した多様な構成(図4参照)から選択することができる。
【0033】
【発明の効果】
以上説明した免震システムのトリガー装置によれば、建物が軽量な一戸建て住宅であっても、風圧力等による水平力や、中小地震による横揺れが加わった際、免震システムが作動することを防止することができ、建物が水平移動することはない。また、一定規模以上の大地震時に上下方向の震動が加わった際にのみ、トリガー装置が作動し、免震システムによる建物の水平移動が許容されるため、駐車場などの建物周りのクリアランス確保や、設備配管の変位追随能力などの日常的配慮が不要となる効果を有する。
【0034】
特に、トリガー装置をロック部材と、所定の上下方向の震動でロック部材を落下させる支持部材により構成した場合は、センサー等を用いて免震装置を制御する方法に比べて、経済的に優れた構造とすることができる。また、構造も簡単であるため、施工効率を向上させることができるほか、メインテナンス等も行い易い。
【0035】
さらに、トリガー装置が作用する上下震動の大きさは、専らロック部材に働く重力とロック部材に加わる大地震時の上下震動による慣性力との合計、及び支持部材の連結力により決定されるものであり、建物の重量に依存しない。そのため、従来のトリガー装置に比べ、免震システムが作動する、建物の免震設計を簡単に行うことができる。
【図面の簡単な説明】
【図1】第1実施例のトリガー装置の分解斜視図である。
【図2】第1実施例のトリガー装置の作用を説明する図である。
【図3】第1実施例のトリガー装置のロック部材の他の構成例を示す説明図である。
【図4】第1実施例のトリガー装置の支持部材の構造例を示す説明図である。
【図5】第1実施例のトリガー装置及び免震装置の配置例を示す説明図である。
【図6】第2実施例のトリガー機構付き免震装置の側断面図である。
【図7】第2実施例のトリガー機構付き免震装置の配置例を示す説明図である。
【図8】第2実施例のトリガー機構付き免震装置の、他の構造例を示す説明図である。
【符号の説明】
A …建物
G …地盤
1 …トリガー装置
2 …係止突起(建物側の一部)
3 …アンカー突起(地盤側の固定部材)
4、8、14、17…ロック部材
5 …支持部材
6 …係止環体
21、22、23、24 …支持部材
31、37、43 …トリガー機構付き免震装置
34、41、46 …ロック部材
35、42、47 …支持部材
[0001]
[Industrial application fields]
The present invention restricts the relative movement of the building in the horizontal direction so that the seismic isolation system does not operate during normal times. The present invention relates to a trigger device that operates effectively.
[0002]
[Prior art]
At present, a seismic isolation device is installed between the building and the ground, and when an earthquake occurs, a seismic isolation device is proposed that reduces the vibration applied to the building and minimizes damage to the building. Building with is built.
[0003]
Most existing seismic isolation devices are used for heavy buildings such as office buildings and apartment buildings where the seismic load exceeds the wind load. In this case, a trigger that prevents vibration during normal times and activates the seismic isolation device only in the event of a large earthquake is not provided, or is only equipped with a trigger that is activated by the horizontal vibration of a large earthquake.
[0004]
[Problems to be solved by the invention]
However, in lightweight buildings such as detached houses, the wind load exceeds the seismic load, so there is a problem that when the seismic isolation device is installed, the seismic isolation device is activated by the wind pressure and the building vibrates easily. On the contrary, it will adversely affect the normal environment. Moreover, the trigger for heavy buildings is difficult to use in the same manner because the seismic load applied to the light buildings is low.
[0005]
In order to solve this problem, a trigger mechanism that senses wind pressure and locks the seismic isolation device in the normal state is also conceivable, but this is not desirable because the structure is complicated and costly including maintenance.
[0006]
Therefore, the purpose of the present invention is to prevent the vibration due to wind pressure by restricting the operation of the seismic isolation device of the building during normal times, and canceling the regulation of the seismic isolation device when a large earthquake occurs, and operating it reliably An object of the present invention is to provide a trigger device for a seismic isolation system that is simple in structure and low in cost.
[0007]
[Means for Solving the Problems]
The present invention is a trigger device for operating a seismic isolation system that absorbs seismic force by sliding a building horizontally with respect to the ground, between a part of the building and a fixed member installed on the ground. A lock member that restricts and releases the relative horizontal movement of the two members by interposing them and connecting them together, a first connection body attached to the lock member, and a second connection attached to the building In general, the locking member is suspended at a predetermined height by the connection of the first connecting body and the second connecting body, and the horizontal movement restriction state is continued. Only when vertical vibration is applied, a downward inertial force is applied to the lock member, and the sum of the downward inertial force and the gravity of the lock member is the first connection body and the second connection body. It exceeds the coupling force and, releasing the consolidated A support member for releasing the restriction by dropping the lock member by Rukoto, to solve the above problems by the trigger device of seismic isolation system consisting.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. This embodiment shows an example in which the trigger device of the seismic isolation system is configured separately from the seismic isolation device. FIG. 1 is an exploded perspective view of the trigger device according to the embodiment, FIG. 2 is a diagram illustrating the operation of the trigger device, FIG. 3 is an explanatory diagram illustrating another configuration example of the lock member of the trigger device, and FIG. FIG. 5 is an explanatory diagram showing an example of the arrangement of the trigger device and the seismic isolation device.
[0010]
As shown in FIG. 1, the trigger device 1 includes a locking protrusion 2 attached to the building A side and an anchor protrusion 3 that is a fixing member installed on the ground G side. These locking projections 2 and anchor projections 3 are cylindrical bodies having the same diameter, and are positioned with their axes aligned, and a cylindrical locking member 4 is fitted on the outside in a sleeve shape so as to straddle both. is doing. The height of the lock member 4 is set to be smaller than the height of the anchor projection 3 so that when the lock member 4 falls on the ground G, the engagement between the locking projection 2 and the anchor projection 3 is surely released. is there.
[0011]
The second connecting body 5b is attached to the upper end of the lock member 4, and the first connecting body 5a is attached to the lower surface of the building A. The support member 5 comprising these connecting bodies 5a and 5b allows the lock member 4 to be fixed from the ground. Suspended to the height of
[0012]
Magnets are attached to the respective contact portions of the first connecting body 5a and the second connecting body 5b, and both are connected. The support member 5 maintains the suspension of the lock member 4. However, when a predetermined vertical force is applied, the connection between the first connection body 5 a and the second connection body 5 b is released. For this reason, the weight of the lock member 4 and the strength of the magnetic force of the magnet are set so that the connection of the support member 5 is released by a predetermined vertical vibration.
[0013]
The operation of the trigger device will be described with reference to FIG. Normally, the lock member 4 is suspended from the building A by the support member 5 as shown in FIG. In this state, the lock member 4 connects the locking projection 2 and the anchor projection 3 to restrict the horizontal movement with respect to the ground G even when a horizontal force is applied to the building A. ing. That is, even if wind pressure is applied to the building A and this is moved in the horizontal direction, the trigger device 1 does not operate, and the lock member 4 connects the locking protrusion 2 and the anchor protrusion 3. Seismic isolation devices (described later) arranged in other parts of the building A are not operated.
[0014]
Next, when a large earthquake occurs, a vertical force is applied to the support member 5, and the sum of the downward inertia force acting on the lock member due to the vertical vibration and the gravity acting on the lock member exceeds the coupling force of the support member 5. In this case, as shown in FIG. 2 (b), the connection of the first connecting body 5 a and the second connecting body 5 b is released, and the lock member 4 falls on the ground G. In such a state, the locking projection 2 is free from the external fitting of the lock member 4 and can move freely with respect to the anchor projection 3, so that the vibration of the building A is allowed and the seismic isolation device is operated.
[0015]
Generally, in a large earthquake that expects a seismic isolation effect, first, vertical vibrations occur. For this reason, the trigger device of the present embodiment releases the lock of the seismic isolation device as described above at the initial stage of the earthquake, and puts the seismic isolation device into an operating state. The building is allowed to move in the horizontal direction in response to the subsequent horizontal shaking, and the seismic force applied to the building is reduced. The trigger device does not have a mechanism that automatically returns to the initial state after the operation from the balance between the occurrence probability of a large earthquake and the device cost. Of course, such a structure can be added additionally. .
[0016]
Various structures are conceivable for the lock member of the trigger device . FIG. 3 shows a configuration example of the lock member of the trigger device. FIG. 5 (a) shows a case where a cylindrical lock member 4 is externally fitted using a locking projection 2 and an anchor projection 3 similar to the above embodiment. Unlike the structures of (b) and (c), which will be described later, the structure does not come into contact with the anchor protrusion 3 even if the locking protrusion 2 moves horizontally. Even if it is desired to increase the allowable range, the size of the device does not relate to the size of the displacement, so that it is not necessary to enlarge the trigger device, and a compact structure can be achieved. In addition, the shape of the latching protrusion 2 and the anchor protrusion 3 is not limited to a cylindrical shape, and various shapes such as a quadrangular prism and a pentagonal prism are conceivable.
[0017]
The trigger mechanism shown in FIG. 3 (b) has a disc-shaped locking member 8 with a hole in the center between a locking ring 6 on the building A side and an anchor projection 7 on the ground G side. The movement of the direction is restricted. On the other hand, FIG. 3C shows a structure in which a locking projection 9 is formed on the building A side and an anchor ring 10 is formed on the ground G side. In both cases of FIGS. 3 (b) and 3 (c), one projection is inserted into the other ring, so that when the trigger device is activated, the horizontal movement of the building A depends on the inner diameter of the ring and the outside of the projection. It is allowed only between spans, so to speak, it has a stopper function of the vibration width.
[0018]
The trigger device of FIG. 3 (d) is provided with a first hole 12 and a second hole 13 on the building A side and the ground G side, respectively, and a core body 14 as a lock member is provided so as to straddle both holes 12 and 13. Inserted. According to this structure, the lock member is not exposed to the outside, and deterioration of the mechanism can be suppressed. Further, in FIG. 6 (e), a locking member 17 is interposed between the locking ring 15 on the building A side and the anchor projection 16 on the ground G side in the same manner as FIG. The lock member 17 includes a disk portion 17b fitted into the locking ring 15 on the building A side and a cylindrical portion 17a fitted onto the anchor projection 16 on the ground G side. Fig. 8 (f) shows the same structure as Fig. 6 (d), using the same locking member 17, with the locking projection 18 on the building A side and the anchor ring 19 on the ground G side. Yes. All of the lock members 4, 8, 14, and 17 are suspended at a predetermined height by a support member (not shown). According to these structures (e) and (f), the anchor protrusion 16 is not fitted into the locking ring body 15, and when the anchor protrusion 16 moves horizontally, a large allowable displacement can be obtained. .
[0019]
FIG. 4 shows another structural example of the support member. FIG. 4A shows the support member of the above-described embodiment, in which magnets are attached to the contact portions of the first connecting body 5a and the second connecting body 5b. Further, the support member 21 shown in FIG. 5B is a support member using a so-called ball catch mechanism, in which a columnar first connecting body 21a is inserted into a cylindrical second connecting body 21b. A ball 21d urged by a spring 21c inside the first connecting body 21a fits into a recess formed on the inner wall of the second connecting body 21b, and the both are connected.
[0020]
The support member 22 shown in FIG. 4 (c) is configured such that the first connecting body 22a having a rod-like tip is held by a second connecting body 22b having a cylindrical body with an open upper end to connect the two. is there. Further, the supporting member 23 in FIG. 4 (d) has two first connecting members 23b each having a rod 23a at the tip and two rollers 23d formed on the tip of the arm 23c, and these two arms 23c. It consists of the 2nd connection body 23f comprised by connecting with the tension | pulling spring 23e between. Then, the upper part of the roller 23a of the first connecting member 23b is sandwiched between the two rollers 23c of the second connecting member 23f, and both the rollers 23c are urged by the tension spring 23e to thereby apply the first connecting member 23b and the second connecting member 23f. Are linked. Further, in the support member 24 in FIG. 5 (e), the first connecting body 24a and the second connecting body 24b are each constituted by a pair of magic tapes.
[0021]
In any of the configurations, the supporting member takes into account the gravity acting on the supporting locking member and the inertial force acting on the locking member due to the vertical vibration at the time of a large earthquake. The force for releasing the engagement is set to a predetermined value. In the event of a major earthquake, the trigger device is surely operated when vertical vibrations are applied, and the trigger device is adjusted so that it does not malfunction due to other vibrations such as vibrations caused by wind pressure or vibrations caused by small and medium earthquakes. In the above embodiment, only one support member is attached, but it goes without saying that the number of attachments and the attachment position can be arbitrarily set.
[0022]
FIG. 5 shows an arrangement example of the trigger device 1 according to the present embodiment. According to the present embodiment, the trigger device 1 is disposed between the seismic isolation devices 26. According to such a structure, the type, number, and position of the trigger device and the seismic isolation device can be freely combined, and optimal arrangement is possible depending on the weight and shape of the building A. Moreover, since the arrangement of the apparatus is dispersed, it is more suitable for a continuous foundation.
[0023]
As described above, when the trigger device of the present embodiment is used, the lock member 4 normally connects the building A and the ground G in the horizontal direction. Therefore, the trigger device is used for vibrations caused by wind pressure or small and medium earthquakes. Since the seismic isolation device does not operate, the building A does not move horizontally, and a comfortable residence can be provided. On the other hand, the force by which the trigger device operates depends exclusively on the sum of the gravity acting on the lock member 4 and the inertial force due to the vertical vibration applied to the lock member 4 and the connecting force of the support member 5. Compared to the method of adjusting the characteristics of the seismic isolation device itself in consideration of the weight, the numerical setting is simple and the seismic isolation design is easy. In particular, the device of this embodiment is advantageous when it is difficult to set the characteristics of the seismic isolation device and the building is a lightweight single-family house.
[0024]
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, a seismic isolation device 31 with a trigger mechanism is configured by combining a trigger device with a seismic isolation device.
[0025]
As shown in the figure, this seismic isolation device 31 is an LRB (red rubber bearing) in which plate rubber and steel plates are alternately laminated between a leg member 32 fixed to the building A side and a base 33 on the ground G side. ) 36 is interposed. A cylindrical lock member 34 is suspended by a support member 35 so as to straddle the leg member 32, the gantry 33, and the LRB 36, and is externally fitted.
[0026]
Normally, the lock member 34 connects the leg member 32 and the gantry 33 in the horizontal direction, so that the seismic isolation mechanism operates even if the building A is subjected to horizontal force due to wind pressure, etc., or vibrations such as rolls caused by small and medium earthquakes. Although it is not allowed to occur, the support member 35 is released by the vertical vibration in the event of a large earthquake, and the seismic isolation mechanism is activated so that the lock member 34 falls on the ground G and the connection between the leg member 32 and the gantry 33 is released. Can be made.
[0027]
FIG. 7 shows an arrangement example of the seismic isolation device 31 with the trigger mechanism. The seismic isolation devices 31 are arranged between the building A and the ground G at predetermined intervals so as to support the weight of the building A evenly. Compared to the first embodiment in which the trigger device and the seismic isolation device are separate devices (see Fig. 5), the seismic isolation device 31 with a trigger reduces the number of installation points and the number of man-hours required, thus improving the construction efficiency. be able to. Depending on the configuration, the arrangement of the apparatus is concentrated, so that it is more suitable for an independent basis.
[0028]
FIG. 8 shows another configuration example of the second embodiment. The seismic isolation device with a trigger mechanism shown in the same figure (a) and (b) uses a sliding support type FPS (friction pendulum system) for the seismic isolation mechanism.
[0029]
As shown in FIG. 6A, the seismic isolation device 37 with a trigger mechanism includes a movable body 38 having a curved upper surface 38a and a lower surface 38b, a gantry 39 that supports the lower surface 38b of the movable body 38, The sliding member 40 covers the upper surface 38a of the movable body 38 and has a contact surface recessed in a spherical shape to form a sliding surface 40a. The gantry 39 is fixed to the ground G side and the sliding member 40 is fixed to the building A side. When a vibration is applied to the building, the movable body 38 supported by the cradle 39a of the gantry 39 is moved to the sliding surface 40a of the sliding member 40. The structure is designed to damp the seismic load on the building by allowing it to slide and move in the horizontal direction.
[0030]
The gantry 39 includes a pedestal 39 a that receives a movable body 38 and has a spherical upper surface and a disc-shaped base 39 b, and an annular lock member 41 outside the base 39 b and the sliding member 40. Is fitted. The lock member 41 is normally suspended from the building A by the support member 42, and is positioned so as to straddle the facing portion between the base 39b of the gantry 39 and the sliding member 40, and connects both in the horizontal direction. ing.
[0031]
In the seismic isolation device 43 with a trigger mechanism shown in FIG. 5B, the lock member 46 of the trigger device is arranged inside the FPS structure. The gantry 45 of this configuration example has a columnar shape, and an annular disk-like lock member 46 is externally fitted thereto. The locking member 46 is suspended from the sliding member 44 by the support member 47, and is interposed between the standing portion 44a on the periphery of the sliding member 44 and the mount 45 so that the sliding member 44 can move in the horizontal direction. It is regulated.
[0032]
In addition, in each structural example of the said 2nd Example, although the structure of the supporting members 35, 42, and 47 was not explained in full detail, it can select from the various structures (refer FIG. 4) illustrated in the 1st Example. it can.
[0033]
【The invention's effect】
According to the trigger device of the seismic isolation system described above, even if the building is a lightweight single-family house, the seismic isolation system is activated when a horizontal force due to wind pressure or a roll due to a small or medium earthquake is applied. Can be prevented and the building will not move horizontally. In addition, the trigger device operates only when vertical vibrations are applied during a large earthquake of a certain scale or larger, and horizontal movement of the building is allowed by the seismic isolation system. It has the effect of eliminating the need for daily considerations such as the ability to follow the displacement of equipment piping.
[0034]
In particular, when the trigger device is composed of a lock member and a support member that drops the lock member with a predetermined vertical vibration, it is economically superior to the method of controlling the seismic isolation device using a sensor or the like. It can be a structure. In addition, since the structure is simple, construction efficiency can be improved and maintenance and the like are easy to perform.
[0035]
Furthermore, the magnitude of the vertical vibration that the trigger device acts on is determined solely by the sum of the gravity acting on the lock member and the inertial force due to the vertical vibration applied to the lock member and the support member's coupling force. Yes and does not depend on the weight of the building. Therefore, compared to the conventional trigger device, it is possible to easily perform the seismic isolation design of the building in which the seismic isolation system operates.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a trigger device according to a first embodiment.
FIG. 2 is a diagram illustrating the operation of the trigger device of the first embodiment.
FIG. 3 is an explanatory view showing another configuration example of the lock member of the trigger device of the first embodiment.
FIG. 4 is an explanatory view showing a structural example of a support member of the trigger device of the first embodiment.
FIG. 5 is an explanatory view showing an arrangement example of the trigger device and the seismic isolation device of the first embodiment.
FIG. 6 is a side sectional view of a seismic isolation device with a trigger mechanism according to a second embodiment.
FIG. 7 is an explanatory view showing an arrangement example of a seismic isolation device with a trigger mechanism according to a second embodiment.
FIG. 8 is an explanatory view showing another structural example of the seismic isolation device with a trigger mechanism according to the second embodiment.
[Explanation of symbols]
A ... Building G ... Ground 1 ... Trigger device 2 ... Locking protrusion (part of building side)
3 ... Anchor protrusion (fixing member on the ground side)
4, 8, 14, 17 ... lock member 5 ... support member 6 ... locking ring
21, 22, 23, 24 ... support member
31, 37, 43… Seismic isolation device with trigger mechanism
34, 41, 46 ... Lock member
35, 42, 47… support member

Claims (1)

建物を地盤に対して水平方向にスライドさせて地震力を吸収する免震システムを作動させるためのトリガー装置であって、
建物の一部と地盤に設置された固定部材との間に跨って介在し両者を連結することによって、両者の相対的な水平移動の規制とその解除を行なうロック部材と、
前記ロック部材に取り付いた第1の連結体と建物に取り付いた第2の連結体とからなり、通常、前記ロック部材を前記第1の連結体と前記第2の連結体との連結により所定の高さに懸下して前記水平移動の規制状態を継続させ、一定以上の上下震動が加わった場合に限って、前記ロック部材に下向きの慣性を付加し、該下向きの慣性力と前記ロック部材の重力との合計が前記第1の連結体と前記第2の連結体との連結力を上回り、前記連結を解除することによって前記ロック部材を落下させて前記規制を解除する支持部材と、
からなることを特徴とした免震システムのトリガー装置。
A trigger device for operating a seismic isolation system that absorbs seismic force by sliding a building horizontally relative to the ground,
A lock member that regulates and releases the relative horizontal movement of both by interposing between and connecting between a part of the building and a fixed member installed on the ground,
The first connection body attached to the lock member and the second connection body attached to the building, and the lock member is usually connected to the first connection body and the second connection body by a predetermined connection. Only when a certain level of vertical vibration is applied by suspending it at a height, the downward inertia force is applied to the lock member. A support member for releasing the restriction by dropping the lock member by releasing the connection, the sum of the gravity of the members exceeds the connecting force of the first connecting body and the second connecting body ;
Trigger device for seismic isolation system, characterized by comprising
JP19773896A 1996-07-26 1996-07-26 Trigger device for seismic isolation system Expired - Lifetime JP3929527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19773896A JP3929527B2 (en) 1996-07-26 1996-07-26 Trigger device for seismic isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19773896A JP3929527B2 (en) 1996-07-26 1996-07-26 Trigger device for seismic isolation system

Publications (2)

Publication Number Publication Date
JPH1038021A JPH1038021A (en) 1998-02-13
JP3929527B2 true JP3929527B2 (en) 2007-06-13

Family

ID=16379526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19773896A Expired - Lifetime JP3929527B2 (en) 1996-07-26 1996-07-26 Trigger device for seismic isolation system

Country Status (1)

Country Link
JP (1) JP3929527B2 (en)

Also Published As

Publication number Publication date
JPH1038021A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US4883250A (en) Vibration-proof and earthquake-immue mount system
JP3014034B2 (en) Windproof seismic isolation building
US4801122A (en) Isolator for seismic activity
JP3929527B2 (en) Trigger device for seismic isolation system
JP2819454B2 (en) Seismic isolation device for small buildings
JPH11200660A (en) Vibration control structure for construction
JPH06200658A (en) Vibration isolating mechanism device
JP3747282B2 (en) Hybrid seismic isolation device
JP4284743B2 (en) Seismic isolation display
JPH10317723A (en) Damper device of base isolation structure
JP2938848B1 (en) Seismic isolation device
JP2005249210A (en) Damping apparatus
JP2627862B2 (en) Structure damping device
JP2004060404A (en) Base-isolation device and base-isolation structure
JP3138538U (en) Seismic pedestal and stepped wedge for preventing malfunction
JP2893067B2 (en) Shock absorber
JPH03249445A (en) Simple earthquake proof device for small-structure
JPH02167959A (en) Response control holder
JPH09177371A (en) Bearing ball laid seismic isolation base
JP2007024123A (en) Base isolation plate
JPH0932002A (en) Base isolation base structure for wooden house
JPH1122783A (en) Base isolation device
JPS5977143A (en) Vibration-free supporting device
JP3782084B2 (en) Damping structure of structure
JP2733718B2 (en) Seismic isolation device for floors inside buildings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

EXPY Cancellation because of completion of term