JP3927795B2 - Carbon fiber bundle and its textile fabric - Google Patents

Carbon fiber bundle and its textile fabric Download PDF

Info

Publication number
JP3927795B2
JP3927795B2 JP2001363599A JP2001363599A JP3927795B2 JP 3927795 B2 JP3927795 B2 JP 3927795B2 JP 2001363599 A JP2001363599 A JP 2001363599A JP 2001363599 A JP2001363599 A JP 2001363599A JP 3927795 B2 JP3927795 B2 JP 3927795B2
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
fine particles
resin
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001363599A
Other languages
Japanese (ja)
Other versions
JP2003166174A5 (en
JP2003166174A (en
Inventor
智雄 佐野
俊宏 笠井
新治 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001363599A priority Critical patent/JP3927795B2/en
Publication of JP2003166174A publication Critical patent/JP2003166174A/en
Publication of JP2003166174A5 publication Critical patent/JP2003166174A5/ja
Application granted granted Critical
Publication of JP3927795B2 publication Critical patent/JP3927795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、形態を維持しつつ取り扱い性に優れた炭素繊維束と、その炭素繊維束からなる織物に関する
【0002】
【従来の技術】
ガラス繊維や炭素繊維、アラミド繊維などの強化繊維を用いて形成された織物は、そのほとんどが樹脂を含浸・硬化させた繊維強化プラスチックとして使用される。これら織物状繊維強化プラスチックの機械的特性を最大限に引き出すためには、織物を構成する糸において蛇行や目ずれ等の乱れが少なく、織形態が安定していることが要求される。また、織物状繊維強化プラスチックは機械的特性と併せて外観の美しさを要求される場合も多々存在する。
【0003】
強化繊維織物の織形態を維持する手法としては多くの検討がなされており、通常は、強化繊維に低融点の熱融着性樹脂をカバリングして織物を形成し、次いでこの織物を加熱して樹脂を融着させる方法がある。
【0004】
また、例えば特開昭64−40632号公報では、強化繊維束を一方向に又は交差方向に引き揃え、隣り合う強化繊維束間に交差状に配された第1及び第2補助糸により織組織を構成して、前記強化繊維束を一体に保持するとともに、前記第1補助糸または第2補助糸に沿って、熱可塑性ポリマーを線条に連続または不連続に付着させ、該熱可塑性ポリマーにより互に交差する補助糸同志を接合させている。
【0005】
さらに、例えば特開平7−314443号公報によれば、ガラス転移温度が70℃以上である熱硬化性樹脂又は熱可塑性樹脂からなる形態安定化剤を、炭素繊維織物の繊維材料重量に対して0.5〜10重量%の範囲で付着させることにより、プリプレグにおける表層部のマトリックス樹脂の炭素繊維織物内部への沈降が防止されるため、プリプレグとしてのタック性が長時間保持され、また、そのプリプレグを硬化させることにより成形品表面の樹脂欠損のない表面平滑性に優れた繊維強化複合材料が得られるというものである。
【0006】
また、例えば特開平8−158207号公報には、高耐熱性繊維からなる経糸と緯糸とを織機にセットして織物を製織するとき、その織口と巻き取り部1との間で前記製織後の織物にホットメルト樹脂を塗布し、該樹脂を固化して、経糸と緯糸とを結着することにより、構成繊維が樹脂で被覆されるとともに、経糸と緯糸とが強固に結着され、織機に仕掛かった状態で織物を目止することができるため、経糸と緯糸との配列が乱れることなく製織直後の綺麗な布目をそのまま維持した織物を得ることが可能となるとしている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述の強化繊維に低融点の熱融着性樹脂を予めカバリングして織物を形成する方法では、強化繊維束が熱融着性樹脂で覆われてしまい、強化繊維束の内部までマトリックス樹脂が侵入しがたい。また、上記特開平7−314443号公報に開示された方法では、隣り合う強化繊維束間に交差状に配されたたて糸及びよこ糸となる第1及び第2補助糸同士の単なる点接着に過ぎないため、強化繊維束の断面形状が比較的容易に変形してしまい、特に打ち込み本数の少ない織物では目開きや目ずれを抑えることができない。
【0008】
一方、上記特開平7−314443号公報や特開平8−158207号公報に開示された方法では、織物のドレープ性が著しく低下し、また樹脂含浸性も低下する場合が多い。また、このような織物に形状を与えるために変形させる場合には、接着点が剥離してしまう場合もある。
【0009】
本発明は、かかる課題を解決すべくなされたものであり、具体的な目的は室温における強化繊維束及び強化繊維束織物の形態安定性が向上し、その取り扱い性を容易に、かつ高いドレープ性を維持させることが可能な炭素繊維束と同強化繊維束を用いた織物を提供することにある。
【0010】
【課題を解決するための手段及び作用効果】
本発明者らは上記目的を達成すべく鋭意検討を行った結果、本発明に至ったものである。
すなわち、本発明は平均粒子径が10〜20000nmである微粒子付与された炭素繊維束であって、前記微粒子は、表層と芯部とを有し、表層はアクロイル基又はメタクリロイル基を含有するモノマーを主成分とする、ガラス転移温度−10〜+20℃の非晶性熱可塑性樹脂で形成され、芯部はアクロイル基又はメタクリロイル基を含有するモノマーを主成分とする重合体で形成された炭素繊維束とそれらの炭素繊維束を用いた織物である。これにより、室温における炭素繊維束及び強化繊維束織物の形態安定性を向上させて取り扱い性を容易とし、かつ高いドレープ性を維持させることが可能となる。特に開繊拡幅繊維束及びその織物においてその効果を発揮する。
【0011】
本発明に用いる強化繊維束としては、炭素繊維束が使われる。ガラス繊維、アルミナ繊維などの向き繊維束やアラミド繊維などの有機繊維束も挙げることはできるが、炭素繊維は特に軽量で比強度および比弾性率に優れ、さらに耐熱性、耐薬品性にも優れているため特に好ましい。
【0012】
炭素繊維束に付与する微粒子は本発明において最も重要なものである。
微粒子は、少なくともその表層がガラス転移温度−10〜+20℃の非晶性熱可塑性樹脂であることが必須である。結晶性熱可塑性樹脂であると、その融点が常温より低い場合は、高い流動性のために炭素繊維束及び炭素繊維束からなる織物において十分な形態保持が得られにくく、融点が常温より高い場合は、炭素繊維束及び炭素繊維束からなる織物のドレープ性が低下してしまい、また、巻き出しや形状賦与などの炭素繊維束あるいは炭素繊維織物の変形によって接着部に大きな応力がかかるため、場合によってはその接着が剥離してしまう可能性がある。
【0013】
ここで、該微粒子はコア/シェル型である必要があり、本発明の要件としては、表層となるシェルのガラス転移温度が−10〜+20℃である。これにより、炭素繊維束及び炭素繊維束からなる織物の形態安定性の向上と常温におけるドレープ性維持とを両立させることが可能となる。
【0014】
微粒子表層のガラス転移温度が−10℃より低いと形態安定性が低下し、場合によっては炭素繊維束あるいは炭素繊維織物の表面がべとつく可能性もあり、取扱い性が低下する可能性がある。微粒子表層のガラス転移温度が+20℃を越えると微粒子表層の樹脂が常温でガラス状態となるため、炭素繊維束及び炭素繊維束からなる織物のドレープ性が低下してしまい、また、炭素繊維束あるいは炭素繊維織物の変形によって接着部に大きな応力がかかるため、場合によってはその接着が剥離してしまう可能性がある。
【0015】
ここでガラス転移温度は、通常、DSCや動的粘弾性測定により測定することができるが、コア/シェル型微粒子においてはその範囲にない。従って、これらのガラス転移温度(Tg)は以下の式により求めるものとする。
1/(Tg+273)=W1/{100×(Tg1+273)}+W2/{100×(Tg2+273)}+…+Wn/{100×(Tgn+273)}
ただし、Tgは非晶性熱可塑性樹脂のガラス転移温度(℃)、Tg1,Tg2,・・・ ,Tgnは非晶性熱可塑性樹脂を構成する各モノマーユニットのホモポリマーのガラス転移温度(℃)、W1,W2,・・・ ,Wnは非晶性熱可塑性樹脂を構成する各モノマーユニットの重量分率(%)である。
【0016】
微粒子表層の樹脂はガラス転移温度−10〜+20℃の非晶性熱可塑性樹脂であれば特に限定されず、任意の樹脂を用いることができる。繊維強化プラスチックを製造する際のマトリックス樹脂との濡れ性や、マトリックス樹脂との接着性などの点から、アクリロイル基および/またはメタクリロイル基を含有するモノマーを主成分とする非晶性熱可塑性樹脂が好適に用いられる。また、繊維強化プラスチックとしたときの機械的特性発現やマトリックス樹脂の含浸性から、反応性官能基としてグリシジル基を含有する樹脂、例えばグリシジルアクリレート、グリシジルメタクリレートなどをモノマーユニットとして含有する樹脂を好適に用いることができる。
【0017】
微粒子が多層構造である場合、その芯部、すなわちコアとしてはアクリロイル基又はメタクリロイル基を含有するモノマーを主成分とする重合体を用いることができる。加熱による溶融接着を行う場合、微粒子の流動を抑えることで、フィラメントの一部を部分的に接着した状態を保持しやすくなる点、及び繊維強化プラスチックとした際の機械的特性発現の点から、ガラス転移温度30℃以上の非晶性樹脂を好適に使用することができる。
【0018】
ガラス転移温度30℃以上の非晶性樹脂としては、ガラス転移温度30℃以上であれば特に制限は無く、通常の非晶性熱可塑性樹脂が用いられる
【0019】
微粒子径は平均粒子径が10〜20000nmであることが好ましい。10nm未満であると、炭素繊維束に付与した際にその多くが炭素繊維束内に埋もれてしまい、炭素繊維束間の接着を確実に行うために多量の微粒子を付与せねばならない。20000nmを越えると粒子が大きいため、付着斑が起こりやすくなり、さらに場合によっては、炭素繊維束あるいは炭素繊維織物の表面に微細ながら凹凸感が現れる可能性がある。30〜10000nmであることがより好適である。
【0020】
微粒子の炭素繊維束への付与量は、強化繊維束の0.1〜5重量%であることが好ましい。0.1重量%未満では炭素繊維束間の接着が不十分となり、5重量%を越えると繊維強化プラスチックとした際の力学的特性に影響を与える場合がある。また、微粒子は炭素繊維束の表層全面に付与されていても良いし、一部を選択して付与されても良い。例えば、扁平形状の炭素繊維束において、その片面のみに微粒子を付与する、一定あるいは不規則なピッチで付与部分と非付与部分を作ることも可能である。
【0021】
微粒子の付与方法としては、微粒子を炭素繊維束に吹き付ける、微粒子エマルジョンを炭素繊維束に塗布等して乾燥させるといった方法を挙げることができるが特に制限はない。微粒子表面のガラス転移温度(Tg)が低いこと及び微粒子付着量のコントロールから、微粒子をエマルジョン状態で炭素繊維束に付与する方法が好適に使用される。
【0022】
このエマルジョンは重合時に乳化、あるいは重合後に乳化したものいずれでも良いが、重合時に乳化して得られる微粒子は粒径のコントロールが容易なため好適に利用できる。また、エマルジョンの溶媒としては水が好ましいが、エマルジョンの安定性を損なわない範囲で少量のアルコール類、ケトン類等の有機溶剤を添加することも可能である。微粒子をエマルジョンとしたときの炭素繊維への付与方法としては、浸漬、タッチロール、ロールコート、スプレー、噴霧雰囲気中の通過などが挙げられるが、特に制限されるものではない。
【0023】
本発明の炭素繊維束としては開繊拡幅処理されたものに対して特に好適に用いられる。これは本発明により、炭素繊維織物の織形態だけでなく、炭素繊維束の形態をも良好に保持できるためである。炭素繊維束の開繊拡幅処理方法としては、流体噴射によるもの、案内手段の搖動によるもの、擦過によるもの、空気吸引によるもの、超音波によるもの、高線圧をかけるものなどを挙げることができるが、特に制限はない。これら開繊拡幅処理した炭素繊維束への微粒子の付与としては、開繊拡幅処理を行う前の炭素繊維束に微粒子を付与し、その後開繊拡幅処理してもよいし、開繊拡幅処理後の炭素繊維束に微粒子を付与しても良い。
【0024】
噴射流体や空気吸引、超音波などの開繊拡幅処理においては、拡幅処理の際に付与することも可能である。例えば、噴射流体による開繊拡幅においては、エマルジョンを直接噴射、あるいはエマルジョンを霧散させた空気を噴射することなどが可能であり、空気吸引開繊においては吸引周辺の雰囲気にエマルジョンを霧散させることなどが可能である。
【0025】
本発明の炭素繊維束は、そのまま、フィラメントワインド、引抜などの方法により成形されても良いし、織成により織物としても良く、あるいは一方向又は多方向に引き揃えてマトリックス樹脂を含浸したプリプレグとしても良い。もちろん、織物とした後にマトリックス樹脂を含浸させてプリプレグとしても良い。特に、強化繊維織物、強化繊維織物プリプレグとして好適に使用できる。強化繊維織物とする際には、織製した後に加熱融着することにより、さらに織形態が安定で、かつドレープ性に優れた織物を得ることができる。
【0026】
本発明の炭素繊維束、炭素繊維織物に含浸させるマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル系樹脂、BT樹脂など繊維強化プラスチックのマトリックスとして使用される樹脂であれば特に制限はない。中でも強化繊維への接着性、繊維強化プラスチックとしたときの機械的強度発現などからエポキシ樹脂が好適に使用される。
【0027】
【発明の実施形態】
以下、本発明の実施形態を代表的な実施例により具体的に説明する。
【0028】
(比較例1)
フィラメント数12000本の炭素繊維(三菱レイヨン(株)製パイロフィルTR50S)を空気吸引により開繊拡幅し、トウ幅20mmの炭素繊維束を得た。炭素繊維束は拡幅状態が不安定であり、持ち上げるだけでトウ幅が縮んでしまった。
【0029】
たて糸、よこ糸いずれにも炭素繊維束を用い、たてよこ共に打ち込みピッチ20mmの平織組織し、炭素繊維織物を作製した。この炭素繊維織物は非常に形態安定性が低く、触るだけで目ずれやトウ幅の収縮が起こってしまい、取り扱い性が非常に悪いものであった。
【0030】
(実施例1)
コアにメチルメタクリレート(MMA)/n−ブチルアクリレート(nBA)/エチレングリコールジメタクリレート(EDMA)が重量比で41.4/55.2/3.4、シェルにMMA/n−BA/メチルアクリレートが重量比で40.6/56.4/3.0、コア/シェル比40/60なるアクリルエマルジョンを乳化重合で調製した。コアのTgは1.7℃、シェルのTgは3.8℃と算出された。このエマルジョンは樹脂分含量が重量分率で約38%であった。また、同エマルジョン中の樹脂粒子径をレーザー回折・散乱式粒度分布測定装置HORIBA LA−910にて測定したところ、平均で93nmであった。
【0031】
炭素繊維束Aの一表面にエマルジョンをスプレー塗布し、乾燥させ、微粒子が付与され炭素繊維束を得た。この炭素繊維束の粒子付着量は重量分率で約0.6%であった。炭素繊維束は形態的に安定であり、持ち上げてもトウ幅を保持していた。また、炭素繊維束は粒子が付与されていないときの強化繊維束より心持ち硬く感じるものの柔軟性に富むものであった。
【0032】
たて糸、よこ糸いずれにも粒子が付与された炭素繊維束を用い、たてよこ共に、打ち込みピッチ20mmの平織組織し、さらに80℃、40secの条件でフュージングプレスにかけて熱融着させ、炭素繊維織物を作製した。この炭素繊維織物Dは形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。また、ドレープ性に富み、3インチ紙管に巻いても織目接着部に剥離などは起こらなかった。
【0033】
(実施例2)
粒子付着量が1.5%であること以外は実施例1と同様にして、炭素繊維束を得た。炭素繊維束は形態的に安定であり、持ち上げてもトウ幅を保持していた。また、炭素繊維束炭素繊維束より心持ち硬く感じるものの柔軟性に富むものであった。
【0034】
たて糸、よこ糸いずれにも炭素繊維束を用い、打ち込みピッチ20mmの平織組織し、さらに80℃、40secの条件でフュージングプレスにかけて熱融着させ、炭素繊維織物Fを作製した。この炭素繊維織物Eは形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。また、ドレープ性に富み、3インチ紙管に巻いても織目接着の剥離などは起こらなかった。
【0035】
(比較例2)
MMA/エチルアクリレート(EA)/n−オクチルメルカプタン(n−OM)を重量比で80/20/0.03なるアクリルエマルジョン2を乳化重合で調製した。エマルジョン中の樹脂成分のTgは71℃と算出された。このエマルジョン2は樹脂分含量が重量分率で約38%であった。また、エマルジョン中の樹脂粒子径は平均で188nmであった。
【0036】
強化繊維束Aの一表面にエマルジョン2をスプレー塗布し、乾燥させ、炭素繊維束を得た。炭素繊維束Gの粒子付着量は重量分率で約1.5%であった。炭素繊維束は形態的に安定であり、持ち上げてもトウ幅を保持していたが、炭素繊維束と比べると非常に硬くなっていた。
【0037】
たて糸、よこ糸いずれにも炭素繊維束を用い、たてよこ共に打ち込みピッチ20mmの平織組織し、さらに120℃、40secの条件でフュージングプレスにかけて熱融着させ、炭素繊維織物を作製した。この強化繊維織物Hは形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。しかし、ドレープ性が低く、3インチ紙管に巻こうとすると織目接着が剥離してしまい、その後は目ずれが起きやすくなってしまった。
【0038】
(実施例3)
コアにMMA/nBAが重量比で74/26、シェルにMMA/nBA/メチルアクリレート(MAA)が重量比で46/50/4、コア/シェル比40/60なるアクリルエマルジョン3を乳化重合で調製した。コアのTgは40.9℃、シェルのTgは3.8℃と算出された。このエマルジョン3は樹脂分含量が重量分率で約38%であった。また、エマルジョン中の樹脂粒子径を測定したところ、平均で96nmであった。
【0039】
炭素繊維束の一表面にエマルジョン3をスプレー塗布し、乾燥させ、炭素繊維束を得た。炭素繊維束の粒子付着量は重量分率で約1.5%であった。炭素繊維束Iは形態的に安定であり、持ち上げてもトウ幅を保持していた。また、炭素繊維束は炭素繊維束より心持ち硬く感じるものの柔軟性に富むものであった。
【0040】
たて糸、よこ糸いずれにも炭素繊維束Iを用い、実施例1と同様にして、強化繊維織物Jを作製した。この炭素繊維織物は形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。また、ドレープ性に富み、3インチ紙管に巻いても織目接着の剥離などは起こらなかった。
【0041】
(実施例4)
コアにMMA/nBA/EDMAが重量比で46/50/2、シェルにMMA/nBA/グリシジルメタクリレート(GMA)が重量比で42/48/10、コア/シェル比40/60なるアクリルエマルジョン4を乳化重合で調製した。コアのTgは1.7℃、シェルのTgは3.8℃と算出された。このエマルジョン4は樹脂分含量が重量分率で約35%であった。また、エマルジョン中の樹脂粒子径を測定したところ、平均で119nmであった。
【0042】
炭素繊維束の一表面にエマルジョン4をスプレー塗布し、乾燥させ、炭素繊維束を得た。炭素繊維束の粒子付着量は重量分率で約1.6%であった。炭素繊維束は形態的に安定であり、持ち上げてもトウ幅を保持していた。また、炭素繊維束は強化繊維束Aより心持ち硬く感じるものの柔軟性に富むものであった。
【0043】
たて糸、よこ糸いずれにも強化繊維束6を用い、実施例1と同様にして、炭素繊維織物を作製した。この炭素繊維織物は形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。また、ドレープ性に富み、3インチ紙管に巻いても織目接着の剥離などは起こらなかった。
【0044】
(実施例5)
コアにMMA/nBAが重量比で74/26、シェルにMMA/nBA/GMAが重量比で42/48/10、コア/シェル比40/60なるアクリルエマルジョン5を乳化重合で調製した。コアのTgは40.9℃、シェルのTgは3.8℃と算出された。このエマルジョン5は樹脂分含量が重量分率で約33%であった。また、エマルジョン中の樹脂粒子径を測定したところ、平均で92nmであった。
【0045】
炭素繊維束の一表面にエマルジョン5をスプレー塗布し、乾燥させ、炭素繊維束Mを得た。炭素繊維束の粒子付着量は重量分率で約1.7%であった。炭素繊維束は形態的に安定であり、持ち上げてもトウ幅を保持していた。また、炭素繊維束炭素繊維束Aより心持ち硬く感じるものの柔軟性に富むものであった。
【0046】
たて糸、よこ糸いずれにも炭素繊維束を用い、実施例1と同様にして、炭素繊維織物を作製した。この炭素繊維織物は形態安定性が高く、持ち上げても目ずれやトウ幅の収縮が起こらず、取り扱い性の良いものであった。また、ドレープ性に富み、3インチ紙管に巻いても織目接着の剥離などは起こらなかった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber bundle excellent in handleability while maintaining a form, and a woven fabric comprising the carbon fiber bundle.
[0002]
[Prior art]
Most fabrics formed using reinforcing fibers such as glass fibers, carbon fibers, and aramid fibers are used as fiber-reinforced plastics impregnated and cured with a resin. In order to maximize the mechanical properties of these woven fiber reinforced plastics, it is required that the yarn constituting the woven fabric has less disturbance such as meandering and misalignment, and that the woven form is stable. In many cases, woven fiber reinforced plastics are required to have a beautiful appearance in combination with mechanical properties.
[0003]
Many studies have been made as a method for maintaining the woven form of the reinforcing fiber woven fabric. Usually, a woven fabric is formed by covering a reinforcing fiber with a low-melting-point heat-fusible resin, and then heating the woven fabric. There is a method of fusing resin.
[0004]
Further, for example, in Japanese Patent Application Laid-Open No. 64-40632, the reinforcing fiber bundles are aligned in one direction or in the crossing direction, and the woven structure is formed by the first and second auxiliary yarns arranged in a crossing manner between the adjacent reinforcing fiber bundles. And the thermoplastic fiber bundle is continuously or discontinuously attached to the filament along the first auxiliary yarn or the second auxiliary yarn, and the reinforcing fiber bundle is integrally held by the thermoplastic polymer. Auxiliary yarns that cross each other are joined.
[0005]
Further, for example, according to Japanese Patent Application Laid-Open No. 7-314443, a shape stabilizer composed of a thermosetting resin or a thermoplastic resin having a glass transition temperature of 70 ° C. or higher is set to 0 with respect to the fiber material weight of the carbon fiber fabric. By adhering in the range of 5 to 10% by weight, settling of the matrix resin of the surface layer portion in the prepreg into the carbon fiber fabric is prevented, so that the tackiness as the prepreg is maintained for a long time, and the prepreg Is a fiber-reinforced composite material having excellent surface smoothness with no resin defects on the surface of the molded article.
[0006]
Further, for example, in Japanese Patent Application Laid-Open No. 8-158207, when weaving a woven fabric by setting warps and wefts made of high heat-resistant fibers on a loom, the weaving portion 1 and the winding portion 1 after the weaving. By applying a hot melt resin to the woven fabric, solidifying the resin, and binding the warp and the weft, the constituent fibers are coated with the resin, and the warp and the weft are firmly bound, and the loom It is said that it is possible to obtain a woven fabric that maintains a clean fabric immediately after weaving without disturbing the arrangement of warps and wefts, since the woven fabric can be spotted in the state of being set in the process.
[0007]
[Problems to be solved by the invention]
However, in the method of forming a woven fabric by previously covering the reinforcing fiber with a low-melting-point heat-fusible resin, the reinforcing fiber bundle is covered with the heat-fusible resin, and the matrix resin extends to the inside of the reinforcing fiber bundle. Is hard to penetrate. Further, in the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-314443, it is merely a point adhesion between the first and second auxiliary yarns that become warp yarns and weft yarns arranged in an intersecting manner between adjacent reinforcing fiber bundles. For this reason, the cross-sectional shape of the reinforcing fiber bundle is deformed relatively easily, and in particular, in a woven fabric with a small number of driven-in, it is not possible to suppress opening and misalignment.
[0008]
On the other hand, in the methods disclosed in JP-A-7-314443 and JP-A-8-158207, the draping property of the fabric is remarkably lowered and the resin impregnation property is often lowered. Moreover, when it deform | transforms in order to give a shape to such a textile fabric, an adhesion point may peel.
[0009]
The present invention has been made to solve such a problem, and a specific object thereof is to improve the shape stability of the reinforcing fiber bundle and the reinforcing fiber bundle fabric at room temperature, making it easy to handle and high drapeability. An object of the present invention is to provide a woven fabric using a carbon fiber bundle and a reinforcing fiber bundle capable of maintaining the same.
[0010]
[Means for solving the problems and effects]
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention.
That is, the present invention is a carbon fiber bundle provided with fine particles having an average particle diameter of 10 to 20000 nm, the fine particles having a surface layer and a core, and the surface layer is a monomer containing an acroyl group or a methacryloyl group. A carbon fiber formed of a non-crystalline thermoplastic resin having a glass transition temperature of −10 to + 20 ° C. and having a core mainly composed of a monomer containing an acryloyl group or a methacryloyl group. a textile using a flux and their carbon fiber bundle. Thereby, it becomes possible to improve the form stability of the carbon fiber bundle and the reinforcing fiber bundle fabric at room temperature to facilitate handling and maintain high drape. In particular, the effect is exhibited in the spread widened fiber bundle and its woven fabric.
[0011]
A carbon fiber bundle is used as the reinforcing fiber bundle used in the present invention . Although organic fiber bundles such as orientation fiber bundles such as glass fibers and alumina fibers and aramid fibers can also be mentioned, carbon fibers are particularly lightweight and excellent in specific strength and specific modulus, and also in heat resistance and chemical resistance. This is particularly preferable.
[0012]
The fine particles imparted to the carbon fiber bundle are the most important in the present invention.
It is essential that the fine particle is an amorphous thermoplastic resin having at least a surface layer having a glass transition temperature of −10 to + 20 ° C. When the melting point of the crystalline thermoplastic resin is lower than room temperature, it is difficult to obtain sufficient shape retention in the carbon fiber bundle and the woven fabric including the carbon fiber bundle due to high fluidity, and the melting point is higher than room temperature. The carbon fiber bundle and the draping property of the fabric composed of the carbon fiber bundle are deteriorated, and a large stress is applied to the bonded portion due to deformation of the carbon fiber bundle or the carbon fiber fabric such as unwinding or shape imparting. Depending on the case, the adhesion may be peeled off.
[0013]
Here, the fine particles need to be a core / shell type, and as a requirement of the present invention, the glass transition temperature of the shell serving as the surface layer is −10 to + 20 ° C. Thereby, it becomes possible to achieve both drape maintenance in improving the normal temperature of shape stability of the fabric comprising a carbon fiber bundle and carbon fiber bundle.
[0014]
When the glass transition temperature of the fine particle surface layer is lower than −10 ° C., the shape stability is lowered, and in some cases, the surface of the carbon fiber bundle or the carbon fiber fabric may be sticky, and the handleability may be lowered. When the glass transition temperature of the fine particle surface layer exceeds + 20 ° C., the resin of the fine particle surface layer becomes a glass state at room temperature, so that the drapeability of the carbon fiber bundle and the woven fabric composed of the carbon fiber bundle is reduced. Since a large stress is applied to the bonding portion due to the deformation of the carbon fiber fabric, the bonding may be peeled off in some cases.
[0015]
Here, the glass transition temperature can be usually measured by DSC or dynamic viscoelasticity measurement, but is not in the range for the core / shell type fine particles. Accordingly, these glass transition temperatures (Tg) are obtained by the following formula.
1 / (Tg + 273) = W1 / {100 × (Tg1 + 273)} + W2 / {100 × (Tg2 + 273)} +... + Wn / {100 × (Tgn + 273)}
Where Tg is the glass transition temperature (° C.) of the amorphous thermoplastic resin, and Tg1, Tg2,..., Tgn are the glass transition temperatures (° C.) of the homopolymers of the monomer units constituting the amorphous thermoplastic resin. , W1, W2,..., Wn are the weight fractions (%) of each monomer unit constituting the amorphous thermoplastic resin.
[0016]
The resin of the fine particle surface layer is not particularly limited as long as it is an amorphous thermoplastic resin having a glass transition temperature of −10 to + 20 ° C. Any resin can be used. From the viewpoint of wettability with a matrix resin when producing fiber reinforced plastics and adhesion to the matrix resin, an amorphous thermoplastic resin mainly composed of a monomer containing an acryloyl group and / or a methacryloyl group is used. Preferably used. Also, from the standpoint of mechanical properties when made into fiber reinforced plastic and the impregnation property of the matrix resin, a resin containing a glycidyl group as a reactive functional group, for example, a resin containing glycidyl acrylate, glycidyl methacrylate or the like as a monomer unit is preferably used. Can be used.
[0017]
When the fine particles have a multilayer structure, a polymer having a monomer containing an acryloyl group or a methacryloyl group as a main component can be used as the core, that is, the core. When performing melt bonding by heating, by suppressing the flow of the fine particles, it becomes easier to maintain a partially bonded state of the filament, and from the point of view of mechanical properties when it is made fiber reinforced plastic, An amorphous resin having a glass transition temperature of 30 ° C. or higher can be suitably used.
[0018]
The amorphous resin having a glass transition temperature of 30 ° C. or higher is not particularly limited as long as it has a glass transition temperature of 30 ° C. or higher, and a normal amorphous thermoplastic resin is used .
[0019]
The fine particle diameter is preferably 10 to 20000 nm in average particle diameter. If it is less than 10 nm, many upon imparted to the carbon fiber bundle is buried in the carbon fiber bundle, it must be applied a large amount of fine particles in order to ensure the adhesion between the carbon fiber bundle. If it exceeds 20000 nm, the particles are large, so that adhesion spots are likely to occur. Further, in some cases, there is a possibility that a feeling of unevenness appears finely on the surface of the carbon fiber bundle or the carbon fiber fabric. More preferably, the thickness is 30 to 10,000 nm.
[0020]
The amount of fine particles applied to the carbon fiber bundle is preferably 0.1 to 5% by weight of the reinforcing fiber bundle. If it is less than 0.1% by weight, the adhesion between the carbon fiber bundles is insufficient, and if it exceeds 5% by weight, the mechanical properties of the fiber-reinforced plastic may be affected. Further, the fine particles may be applied to the entire surface layer of the carbon fiber bundle, or a part thereof may be selected and applied. For example, in a flat carbon fiber bundle, it is possible to form the imparted portion and the non-applied portion with a constant or irregular pitch that imparts fine particles only to one surface thereof.
[0021]
Examples of the method for applying the fine particles include a method in which the fine particles are sprayed on the carbon fiber bundle, and a fine particle emulsion is applied to the carbon fiber bundle and dried, but is not particularly limited. In view of the low glass transition temperature (Tg) on the surface of the fine particles and the control of the amount of fine particles attached, a method of applying the fine particles to the carbon fiber bundle in an emulsion state is preferably used.
[0022]
This emulsion may be either emulsified during polymerization or emulsified after polymerization, but the fine particles obtained by emulsification during polymerization can be suitably used because the particle size can be easily controlled. Further, water is preferable as the solvent of the emulsion, but it is also possible to add a small amount of an organic solvent such as alcohols and ketones as long as the stability of the emulsion is not impaired. Examples of the method for imparting to the carbon fiber when the fine particles are made into an emulsion include immersion, touch roll, roll coat, spray, and passage in a spray atmosphere, but are not particularly limited.
[0023]
The carbon fiber bundle of the present invention is particularly preferably used for the fiber that has been spread and widened. This is because according to the present invention, not only the woven form of the carbon fiber fabric but also the form of the carbon fiber bundle can be favorably maintained. Examples of the spreading and widening method for carbon fiber bundles include fluid injection, peristaltic movement of guide means, abrasion, air suction, ultrasonic waves, and high linear pressure. However, there is no particular limitation. As the provision of fine particles to the carbon fiber bundle subjected to the spread widening treatment, fine particles may be imparted to the carbon fiber bundle before performing the widening spread treatment, and then the widening treatment may be performed, or after the widening treatment. Fine particles may be imparted to the carbon fiber bundle.
[0024]
In the spread and widening process such as jet fluid, air suction, and ultrasonic waves, it is possible to apply the spread process. For example, in the spread widening by the jet fluid, it is possible to spray the emulsion directly or to spray the air in which the emulsion is dispersed, and in the air suction opening, to spray the emulsion in the atmosphere around the suction, etc. Is possible.
[0025]
The carbon fiber bundle of the present invention may be formed as it is by a method such as filament winding or drawing, or may be formed into a woven fabric by weaving, or as a prepreg impregnated with a matrix resin in one or multiple directions. Also good. Of course, it is good also as a prepreg by making a textile fabric and impregnating with matrix resin. In particular, it can be suitably used as a reinforcing fiber fabric or a reinforcing fiber fabric prepreg. When a reinforced fiber fabric is used, a woven fabric having a more stable woven form and excellent drape can be obtained by heat-sealing after weaving.
[0026]
The matrix resin impregnated in the carbon fiber bundle and carbon fiber fabric of the present invention is a resin used as a matrix of fiber reinforced plastic such as epoxy resin, unsaturated polyester resin, vinyl ester resin, acrylic resin, BT resin, etc. There is no particular limitation. Among these, an epoxy resin is preferably used because of its adhesiveness to the reinforced fiber and the mechanical strength when it is made into a fiber reinforced plastic.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to typical examples.
[0028]
(Comparative Example 1)
A carbon fiber bundle 12,000 filaments (Pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd.) was spread by air suction to obtain a carbon fiber bundle A having a tow width of 20 mm. The widened state of the carbon fiber bundle A was unstable, and the tow width contracted only by lifting.
[0029]
Carbon fiber bundle A was used for both the warp and the weft, and both the warp and the weft were driven into a plain weave structure with a pitch of 20 mm to produce a carbon fiber fabric B. This carbon fiber woven fabric B had very low form stability, causing misalignment and shrinkage of the tow width just by touching, and the handleability was very poor.
[0030]
Example 1
Methyl methacrylate (MMA) / n-butyl acrylate (nBA) / ethylene glycol dimethacrylate (EDMA) is 41.4 / 55.2 / 3.4 by weight in the core, and MMA / n-BA / methyl acrylate is in the shell. An acrylic emulsion having a weight ratio of 40.6 / 56.4 / 3.0 and a core / shell ratio of 40/60 was prepared by emulsion polymerization. The Tg of the core was calculated to be 1.7 ° C., and the Tg of the shell was calculated to be 3.8 ° C. This emulsion had a resin content of about 38% by weight. Further, the resin particle diameter in the emulsion was measured by a laser diffraction / scattering particle size distribution analyzer HORIBA LA-910, and it was 93 nm on average.
[0031]
The emulsion was spray-coated on one surface of the carbon fiber bundle A and dried to obtain a carbon fiber bundle C provided with fine particles . The amount of particles attached to the carbon fiber bundle C was about 0.6% by weight. The carbon fiber bundle C was morphologically stable and retained the toe width even when lifted. The carbon fiber bundle C was richer in flexibility although it felt harder than the reinforcing fiber bundle A when no particles were applied.
[0032]
Warp, weft also used carbon fiber bundles C the particles have been applied to any, both come Arise, a plain weave of implantation pitch 20mm organized, heat sealed over the further 80 ° C., fusing pressed under the conditions of 40 sec, the carbon fibers Fabric D was made. This carbon fiber fabric D had high form stability and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. Further, it was rich in drapability, and even when it was wound around a 3-inch paper tube, peeling or the like did not occur at the textured bonded portion.
[0033]
(Example 2)
A carbon fiber bundle E was obtained in the same manner as in Example 1 except that the particle adhesion amount was 1.5%. The carbon fiber bundle E was morphologically stable and retained the toe width even when lifted. Moreover, the carbon fiber bundle E felt richer and harder than the carbon fiber bundle A , but was rich in flexibility.
[0034]
Warp, weft using carbon fiber bundle E either to plain weave implantation pitch 20 mm, further 80 ° C., heat sealed over the fusing pressed under the conditions of 40 sec, to prepare a carbon fiber woven fabric F. This carbon fiber woven fabric E had high form stability, and even when it was lifted, the misalignment and shrinkage of the tow width did not occur, and the carbon fiber woven fabric E had good handleability. Further, it was rich in drapability, and even when wound on a 3-inch paper tube, no peeling of the texture adhesion occurred.
[0035]
(Comparative Example 2)
An acrylic emulsion 2 having a weight ratio of MMA / ethyl acrylate (EA) / n-octyl mercaptan (n-OM) of 80/20 / 0.03 was prepared by emulsion polymerization. The Tg of the resin component in the emulsion was calculated to be 71 ° C. The emulsion 2 had a resin content of about 38% by weight. Moreover, the resin particle diameter in the emulsion was 188 nm on average.
[0036]
The emulsion 2 was spray-coated on one surface of the reinforcing fiber bundle A and dried to obtain a carbon fiber bundle G. The particle adhesion amount of the carbon fiber bundle G was about 1.5% by weight fraction. The carbon fiber bundle G was morphologically stable and retained the tow width even when lifted, but it was much harder than the carbon fiber bundle A.
[0037]
Carbon fiber bundles G were used for both the warp and weft, and both the warp and weft were driven into a plain weave structure with a pitch of 20 mm, and further subjected to fusing press at 120 ° C. for 40 sec to produce a carbon fiber fabric H. This reinforcing fiber woven fabric H had high form stability and did not cause misalignment or shrinkage of the tow width even when lifted, and was easy to handle. However, the draping property is low, and when it is wound around a 3-inch paper tube, the texture adhesion peels off, and thereafter, the misalignment easily occurs.
[0038]
(Example 3)
Acrylic emulsion 3 with MMA / nBA of 74/26 by weight in the core, MMA / nBA / methyl acrylate (MAA) of 46/50/4 by weight, and core / shell ratio of 40/60 by emulsion is prepared by emulsion polymerization. did. The Tg of the core was calculated to be 40.9 ° C, and the Tg of the shell was calculated to be 3.8 ° C. The emulsion 3 had a resin content of about 38% by weight. Moreover, when the resin particle diameter in an emulsion was measured, it was 96 nm on average.
[0039]
Emulsion 3 was sprayed on one surface of carbon fiber bundle A and dried to obtain carbon fiber bundle I. The particle adhesion amount of the carbon fiber bundle I was about 1.5% by weight. The carbon fiber bundle I was morphologically stable and retained the toe width even when lifted. Moreover, the carbon fiber bundle I felt richer and harder than the carbon fiber bundle A , but was rich in flexibility.
[0040]
Reinforcing fiber fabric J was produced in the same manner as in Example 1 using carbon fiber bundle I for both warp and weft. This carbon fiber woven fabric J had high form stability, and even when lifted, the misalignment and shrinkage of the tow width did not occur, and the carbon fiber woven fabric J had good handleability. Further, it was rich in drapability, and even when wound on a 3-inch paper tube, no peeling of the texture adhesion occurred.
[0041]
Example 4
Acrylic emulsion 4 having a weight ratio of MMA / nBA / EDMA of 46/50/2 in the core and a weight ratio of MMA / nBA / glycidyl methacrylate (GMA) of 42/48/10 and a core / shell ratio of 40/60 in the shell. Prepared by emulsion polymerization. The Tg of the core was calculated to be 1.7 ° C., and the Tg of the shell was calculated to be 3.8 ° C. The emulsion 4 had a resin content of about 35% by weight. Moreover, when the resin particle diameter in an emulsion was measured, it was 119 nm on average.
[0042]
Emulsion 4 was spray-coated on one surface of carbon fiber bundle A and dried to obtain carbon fiber bundle K. The amount of particles attached to the carbon fiber bundle K was about 1.6% by weight. The carbon fiber bundle K was morphologically stable and retained the toe width even when lifted. Moreover, the carbon fiber bundle K felt richer and harder than the reinforcing fiber bundle A, but was rich in flexibility.
[0043]
A carbon fiber fabric L was produced in the same manner as in Example 1 using the reinforcing fiber bundle 6 for both the warp and the weft. This carbon fiber woven fabric L has high form stability, and even when lifted, the misalignment and shrinkage of the tow width do not occur, and the carbon fiber woven fabric L has good handleability. Further, it was rich in drapability, and even when wound on a 3-inch paper tube, no peeling of the texture adhesion occurred.
[0044]
(Example 5)
Acrylic emulsion 5 having a weight ratio of MMA / nBA of 74/26 in the core, a weight ratio of MMA / nBA / GMA of 42/48/10, and a core / shell ratio of 40/60 was prepared by emulsion polymerization. The Tg of the core was calculated to be 40.9 ° C, and the Tg of the shell was calculated to be 3.8 ° C. The emulsion 5 had a resin content of about 33% by weight. Moreover, when the resin particle diameter in an emulsion was measured, it was 92 nm on average.
[0045]
Emulsion 5 was spray-coated on one surface of carbon fiber bundle A and dried to obtain carbon fiber bundle M. The amount of particles attached to the carbon fiber bundle M was about 1.7% by weight. The carbon fiber bundle M was morphologically stable and retained the toe width even when lifted. The carbon fiber bundle M felt richer and harder than the carbon fiber bundle A, but was rich in flexibility.
[0046]
A carbon fiber woven fabric N was produced in the same manner as in Example 1 using the carbon fiber bundle M for both the warp and the weft. This carbon fiber woven fabric N had high form stability, and even when it was lifted, the misalignment and shrinkage of the tow width did not occur, and the carbon fiber woven fabric N had good handleability. Further, it was rich in drapability, and even when wound on a 3-inch paper tube, no peeling of the texture adhesion occurred.

Claims (8)

平均粒子径が10〜20000nmである微粒子付与された炭素繊維束であって、
前記微粒子は、表層と芯部とを有し、
表層はアクロイル基又はメタクリロイル基を含有するモノマーを主成分とする、ガラス転移温度−10〜+20℃の非晶性熱可塑性樹脂で形成され、
芯部はアクロイル基又はメタクリロイル基を含有するモノマーを主成分とする重合体で形成された炭素繊維束。
A carbon fiber bundle provided with fine particles having an average particle size of 10 to 20000 nm,
The fine particles have a surface layer and a core part,
The surface layer is formed of an amorphous thermoplastic resin having a glass transition temperature of −10 to + 20 ° C. based on a monomer containing an acryloyl group or a methacryloyl group,
The core is a carbon fiber bundle formed of a polymer whose main component is a monomer containing an acryloyl group or a methacryloyl group.
芯部を構成する重合体のガラス転移温度が30℃以上である、請求項1記載の炭素繊維束。 The carbon fiber bundle of Claim 1 whose glass transition temperature of the polymer which comprises a core part is 30 degreeC or more . 微粒子中に反応基としてグリシジル基を含有する、請求項1又は2記載の炭素繊維束 The carbon fiber bundle according to claim 1 or 2, wherein the fine particles contain a glycidyl group as a reactive group . 微粒子がエマルジョンとして供される、請求項1〜3のいずれか一項記載の炭素繊維束。The carbon fiber bundle according to any one of claims 1 to 3, wherein the fine particles are provided as an emulsion. 微粒子の付着量が強化繊維束の0.1〜5重量%である請求項1〜4のいずれか一項記載の炭素繊維束。The carbon fiber bundle according to any one of claims 1 to 4, wherein the adhesion amount of the fine particles is 0.1 to 5% by weight of the reinforcing fiber bundle. 微粒子を付与する以前の強化繊維束が開繊拡幅処理されている請求項1〜5のいずれか一項記載の炭素繊維束。The carbon fiber bundle according to any one of claims 1 to 5, wherein the reinforcing fiber bundle before the fine particles are applied is subjected to a fiber spreading process. 請求項1〜6のいずれか一項記載の強化繊維束を製織して得られる、織物。A woven fabric obtained by weaving the reinforcing fiber bundle according to any one of claims 1 to 6. 請求項7記載の織物を加熱することによって得られる、目止め織物。A sealing fabric obtained by heating the fabric according to claim 7.
JP2001363599A 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric Expired - Lifetime JP3927795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363599A JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363599A JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Publications (3)

Publication Number Publication Date
JP2003166174A JP2003166174A (en) 2003-06-13
JP2003166174A5 JP2003166174A5 (en) 2005-07-21
JP3927795B2 true JP3927795B2 (en) 2007-06-13

Family

ID=19173916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363599A Expired - Lifetime JP3927795B2 (en) 2001-11-29 2001-11-29 Carbon fiber bundle and its textile fabric

Country Status (1)

Country Link
JP (1) JP3927795B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675707B1 (en) * 2003-07-31 2007-02-02 미츠비시 레이온 가부시키가이샤 Carbon fiber bundle, process for producing the same, and thermoplastic resin composition and molded article thereof
JP2005231151A (en) * 2004-02-18 2005-09-02 Maruhachi Kk Reinforcing fiber orientation sheet for composite material, multi-axial laminated reinforcing fiber sheet using it and its manufacturing method
JP4819340B2 (en) * 2004-11-02 2011-11-24 丸八株式会社 Reinforced fiber lamination joining device
JP5107387B2 (en) * 2010-04-23 2012-12-26 松本油脂製薬株式会社 Sizing agent for carbon fiber, carbon fiber strand and method for producing the same, and fiber reinforced composite material
JP2011121372A (en) * 2011-01-24 2011-06-23 Maruhachi Kk Multi-shaft laminate reinforced fiber sheet manufacturing method, long inclination reinforced fiber sheet, and multi-shaft laminate reinforced fiber sheet
EP2748235B1 (en) * 2011-08-26 2017-12-20 Basf Se Process for producing moulded parts
WO2013058200A1 (en) * 2011-10-21 2013-04-25 松本油脂製薬株式会社 Sizing agent for carbon fibers, carbon fiber strand, and fiber-reinforced composite material
KR20150008868A (en) * 2012-05-15 2015-01-23 데이진 가부시키가이샤 Reinforcing carbon fiber bundle, manufacturing process therefor, and composite-manufacturing process using same
WO2014045981A1 (en) * 2012-09-20 2014-03-27 帝人株式会社 Reinforcing fiber bundle and composite material using same
US9587076B2 (en) 2014-09-23 2017-03-07 The Boeing Company Polymer nanoparticles for controlling resin reaction rates
US10808123B2 (en) 2014-09-23 2020-10-20 The Boeing Company Nanoparticles for improving the dimensional stability of resins
US10072126B2 (en) 2014-09-23 2018-09-11 The Boeing Company Soluble nanoparticles for composite performance enhancement
US10160840B2 (en) * 2014-09-23 2018-12-25 The Boeing Company Polymer nanoparticles for controlling permeability and fiber volume fraction in composites
US10472472B2 (en) * 2014-09-23 2019-11-12 The Boeing Company Placement of modifier material in resin-rich pockets to mitigate microcracking in a composite structure
US10662302B2 (en) 2014-09-23 2020-05-26 The Boeing Company Polymer nanoparticles for improved distortion capability in composites
CN107406552B (en) * 2014-12-02 2020-06-02 德国昕特玛有限公司 Polymer latex composition for fiber bonding
KR101814057B1 (en) * 2015-09-25 2018-01-03 지에스칼텍스 주식회사 Manufacturing method of fiber reinforced resin composite, fiber reinforced resin composite and molded article using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX161482A (en) * 1986-09-02 1990-10-05 Sequa Corp METHOD FOR PREPARING A NON-INTERLACEED PRODUCT
US4942086A (en) * 1988-09-09 1990-07-17 National Starch And Chemical Investment Holding Corporation Two-stage heat resistant binders for nonwovens
JP2868922B2 (en) * 1991-03-27 1999-03-10 日本エヌエスシー株式会社 Resin cotton and polymer emulsion used for it
EP0614919A1 (en) * 1993-03-12 1994-09-14 Shell Internationale Researchmaatschappij B.V. A latex composition containing polymer particles having core/shell structure
JP3717244B2 (en) * 1995-09-28 2005-11-16 旭化成ケミカルズ株式会社 Polymer emulsion and fiber treatment composition
JP3656864B2 (en) * 1996-02-14 2005-06-08 東レ株式会社 Carbon fiber, method for producing the same, and prepreg using the carbon fiber
JPH11293119A (en) * 1998-04-09 1999-10-26 Asahi Chem Ind Co Ltd Aqueous resin dispersion composition
JP2000169663A (en) * 1998-12-03 2000-06-20 Kanegafuchi Chem Ind Co Ltd Elastomer composition and thermoplastic resin composition including the same
JP4707814B2 (en) * 1999-10-12 2011-06-22 株式会社クラレ Multilayer structure polymer particles, production method and use thereof
JP2001226850A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
JP3894035B2 (en) * 2001-07-04 2007-03-14 東レ株式会社 Carbon fiber reinforced substrate, preform and composite material comprising the same

Also Published As

Publication number Publication date
JP2003166174A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3927795B2 (en) Carbon fiber bundle and its textile fabric
EP0361796B1 (en) Method of producing a formable composite material
US5529826A (en) Fabric-faced thermoplastic composite panel
JP3821467B2 (en) Reinforcing fiber base material for composite materials
CA1210683A (en) Non-woven reinforcement for composite
US5766724A (en) Thermoplastic orthopedic brace and method of manufacturing same
JPS63152637A (en) Preform material for reinforcement of resin
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
JPH08260276A (en) Composite yarn,permanently deformable and shrinkable or shrunk fabric material prepared of this yarn and its preparation and use
JP2002249984A (en) Rolled material of reinforcing fiber cloth, method and apparatus for producing the same
JP2001226850A (en) Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
US20180222146A1 (en) Strength enhancing laminar composite material ply layer pre-form and method of manufacturing the same
JP2002013040A (en) Carbon fiber woven fabric for reinforcement and wet prepreg using the woven fabric, and method for producing the same
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP3633221B2 (en) Unidirectional reinforced fabric and repair or reinforcement method
JP2001226849A (en) Reinforcing woven fabric
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
JPWO2020137442A1 (en) Resin integrated reinforced fiber sheet and its manufacturing method
JP3846252B2 (en) Reinforcing fabric
JP3405497B2 (en) Reinforced fiber sheet for structural reinforcement
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JPH04294136A (en) Manufacture of honeycomb sandwich panel
JPH08156152A (en) Reinforcing use fabric base material
JP7052233B2 (en) Mesh sheet laminate and concrete exfoliation prevention material
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R151 Written notification of patent or utility model registration

Ref document number: 3927795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term