JP3927306B2 - Displacement measuring device - Google Patents
Displacement measuring device Download PDFInfo
- Publication number
- JP3927306B2 JP3927306B2 JP04048698A JP4048698A JP3927306B2 JP 3927306 B2 JP3927306 B2 JP 3927306B2 JP 04048698 A JP04048698 A JP 04048698A JP 4048698 A JP4048698 A JP 4048698A JP 3927306 B2 JP3927306 B2 JP 3927306B2
- Authority
- JP
- Japan
- Prior art keywords
- level
- gain
- received light
- pair
- light amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、被測定物の変位量を非接触で測定する変位測定装置に係り、特に、受光量の大幅な変動に対応でき測定を高精度化できる変位測定装置に関する。
【0002】
【従来の技術】
変位測定装置は、被測定物に測定光を照射し、受光素子の受光状態に基づき被測定物の測定面の変位量を測定することができる。この変位測定装置は、例えば三角測量の原理で被測定物の測定面に測定光を照射し、ポジションセンサの受光面上で検出された反射光の受光位置に基づき被測定物の測定面の変位量を測定する。
【0003】
このような変位測定装置においては、反射光を受光する受光素子及び後段の処理回路での検出処理に適した受光量(レベル)となるよう、処理回路の増幅率(ゲイン)が複数段階にあるいは連続的に可変設定自在である。
最近では、処理回路にAGC機能が設けられ、受光量が大きい場合には処理回路での信号飽和を防止すべくゲインを下げ、一方、受光量が小さい場合にはノイズ成分を低減化させるようゲインを上げる処理がなされる。
尚、このゲインは、手動あるいはAGC機能を用いて自動可変するいずれの場合においても、受光量が飽和することなく、また、ノイズの影響を受けないために、できるだけ高い受光量が得られるゲインに設定することが望まれている。
【0004】
【発明が解決しようとする課題】
上記被測定物の測定面の変位状態に合わせた最適ゲインは、手動操作で選択しなければならない構成であり、一旦設定したゲインで測定を開始しても被測定物の測定面の状態が変化して受光量が増えた場合には信号が飽和する場合があり、この飽和時には、変位量を正確に測定できなくなる問題があった。
【0005】
また、受光量の変化に合わせて処理回路のゲインを自動的に変えるAGC機能を用いた場合においても、受光量が短時間で大きく変化する場合(例えば受光量の変化の周波数が変調周波数に近づいたとき)には追従しきれず、受光した信号が飽和して測定できなくなる問題があった。
上記状態は、被測定物の測定面の散乱状態が大きく変化するときに生じるもので、例えば被測定物が回転して測定面の変位量を測定する場合において、この被測定物が高速回転する場合に測定できなくなる問題が生じた。
【0006】
本発明は、上記課題を解決するためになされたものであり、被測定物測定時における受光量の変動に影響されず変位量を正確に測定することができる変位測定装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の変位測定装置は、請求項1記載のように、被測定物の測定面に光源の測定光を照射しその反射光を受光素子で受光して測定面の変位量を測定する非接触型の変位測定装置において、
前記被測定物の測定中に前記受光素子の受光量信号を固定されたゲインにより増幅出力する一対の増幅器10,10と、
前記一対の増幅器で増幅後の受光量信号を所定の係数αで乗算する一対の乗算器31と、前記一対の乗算器からの一対の受光量信号の和を求める加算手段32と、前記一対の乗算器からの一対の受光量信号の差分を求める減算手段33と、所定の受光量を示す閾値が設定される閾値設定手段35と、前記被測定物の測定中に前記受光量信号のレベルが前記閾値設定手段に設定された閾値を越える毎に対応して前記閾値を前記加算手段の出力で除算して算出した係数を前記一対の乗算器に設定する入力レベル可変手段36と、前記加算手段と前記減算手段の出力に基づいて前記被測定物の変位量を演算出力する変位量演算手段34とを含む演算手段11と、
を具備したことを特徴とする。
【0008】
また、請求項2記載の発明は、請求項1記載の変位測定装置において、
前記被測定物に照射する測定光の投光パワーを段階的に可変自在な光源駆動回路5と、
前記演算手段に入力された受光量信号のレベルに基づき前記一対の増幅器10,10のゲインを段階的に可変制御するものであり、前記被測定物の測定中に前記受光量信号のレベルが所定の閾値を越える毎に対応して前記一対の増幅器のゲインをゲイン初期状態で最も高いゲインから1段づつ下げる制御を行うゲイン選択手段12と、
前記演算手段に入力された受光量信号のレベルに基づき前記光源駆動回路の投光パワーを段階的に可変制御するものであり、前記被測定物の測定中に前記受光量信号のレベルが所定の閾値を越える毎に対応して前記光源駆動回路の投光パワーを現在の段階から1段づつ下げる制御を行う投光パワー選択手段20とを更に具備し、
前記ゲイン選択手段12による前記一対の増幅器のゲイン可変制御と、前記投光パワー選択手段20による前記光源駆動回路の投光パワー制御と、前記入力レベル可変手段36による前記一対の乗算器31に入力される受光量信号のレベル可変と、のいずれか一つに切替自在に、あるいはいずれも同時に実行されることを特徴とする。
【0017】
【発明の実施の形態】
図1は、本発明の変位測定装置の第1実施形態を示すブロック図である。
図示の如く、変位測定装置はセンサヘッド1と、処理手段2で大略構成されている。
センサヘッド1内部には、光源(LD)4及び光源駆動回路5が設けられ被測定物Wに対しレーザ光等の測定光を照射するとともに、被測定物Wからの反射光は受光素子(例えばポジションセンサ)6で検出され、センサヘッドと被測定物Wとの距離に応じて受光素子6上を移動する。
この受光素子6上での光スポットの像の位置と光強度に応じた信号が得られ、増幅器7で所定の増幅率で増幅されて処理手段2に出力される。
【0018】
処理手段2は、入力段に増幅器10が設けられ、入力された受光量信号を所定の増幅率で増幅して演算手段11に出力する。
増幅器10は増幅率(ゲイン)が可変自在な構成であり、ゲインを段階的に変更できる。最も高いゲインでは増幅率は100%であり、各段階別に異なる抵抗値を有する抵抗回路等によってゲインが各段階(例えば100%,90%,80%,70%,…(中略)…,50%等)に切り替えられるようになっている。
【0019】
演算手段11は、ゲイン調整後の受光量信号に基づき、被測定物Wの測定面の変位量を演算し、この変位量などを外部出力する。また、変位量を含む演算結果は、図示しない記憶手段などに格納記憶させてもよい。また、この演算手段11には、入力された受光量(レベル)を判定するための閾値が設定されており、受光量信号のレベルが閾値を越えたときにレベルオーバ信号を出力する。
この閾値は、増幅器10が出力する受光量信号のレベルが演算手段11の入力レベルで飽和する直前のレベル(飽和レベル>閾値)に設定されている。
【0020】
このゲインは、ゲイン選択手段12により切替制御される。ゲイン選択手段12は、測定モードが後述する半自動モードに設定されているときに機能するものであり、演算手段11からレベルオーバー信号が入力される毎に、増幅器10のゲイン(増幅率)を現在の段階から1段下げる切替制御を行う。
また、図示していないリセット機能で半自動モードをリセットしたときには、新たな被測定物Wの測定時に、増幅器10を最も高いゲインで作動させ、レベルオーバー信号の入力がある都度、1段づつ増幅器10のゲインを降下させる。
また、レベルオーバーが発生したときには、受光量信号に所定の係数αを乗算してレベルを下げる構成としてもよい(詳細は第3実施形態で後述する。)
【0021】
モード選択手段14は、増幅器10のゲインを手動設定する手動設定モードと、ゲイン選択手段12を機能させる半自動モードのいずれかを選択設定するものであり、操作者のスイッチ操作等で選択設定される。
【0022】
図2は、測定開始時の設定画面を示す図である。図示のように、処理手段2には、CRTや液晶の表示部(図示略)が設けられ、表示画面上には被測定物Wを測定するに必要な各種設定の画面が表示される。
うち、上記モード選択手段14の設定画面は、図2に示す画面上に表示されており、増幅器10のゲインについて「半自動」あるいは「手動」のモードそれぞれの選択項目が表示され、いずれかを指定して選択できるようになっている。この選択は、処理手段2に設けられたキーボード、タッチスイッチ、あるいはマウスを用いて選択される。尚、上記ゲインは、画面上に表示された「半自動」の項目を指定選択することによりリセットされる。
なお、装置に設けられたコネクタの「半自動」モード選択用のピンに入力される信号レベルがHighかLow かで「半自動」モードを選択してもよい。
【0023】
上記演算手段11,ゲイン選択手段12,モード選択手段14は、CPU,ROM,RAMなどのハードウェアと、ROM等に記憶された半自動モードの制御処理プログラムで構成することができる。
【0024】
次に、上記構成による半自動モードの動作内容を説明する。図3は、半自動モード時における処理手段2のゲイン調整動作を示すフローチャート、図4は、処理手段2の各部の信号を示すタイミングチャートである。
処理手段2は、被測定物の測定開始時にゲインをリセットする(SP1-YES)。新たに被測定物Wの変位量を測定するときには、図2に示す設定画面で「半自動」の項目を指定選択することにより、増幅器10のゲインがリセットされ(SP1-YES)、この増幅器10はゲイン初期状態(例えば、最大の増幅率100%)に設定される(SP2)。
【0025】
次に、被測定物Wに変位量を測定し始める。センサヘッド1が被測定物Wに対し測定光を照射することにより、受光素子6は反射光を受光して被測定物Wとの間の距離に応じたレベルの受光量信号(図4(a)参照)を処理手段2に出力する。
そして、処理手段2の演算手段11は、増幅器10にてゲイン初期状態で受光量信号を増幅し、受光量信号に基づき変位量を演算出力するが、図4(a)中時期Aに被測定物Wに対して測定光を照射している測定面からの受光量が大きく変動し、受光量信号のレベルが予め定められた閾値を越えたときには(SP3-YES)、図4(b)に示すようにゲイン選択手段12に対しレベルオーバー信号を出力して増幅器10のゲインを現在の段階から1段下げる(SP4)。
一方、受光量信号のレベルが予め定められた閾値より小さい状態のままのときには(SP3-NO )、被測定物Wの測定期間中はSP1を経由してこのSP3における比較処理を連続的に実行する。
【0026】
これにより、時期Aにて受光量信号のレベルが予め定められた閾値を越えると、増幅器10のゲインが現在の段階から1段下げされるため、図4(c)に示す如く、受光量信号のレベルが演算手段11で処理可能(閾値以下)なレベルとなる。 以降、増幅器10のゲインはこの1段下げられた状態となるが、再び、以降の時期に受光量信号のレベルが閾値を越えたときには、レベルオーバー信号を出力して増幅器10はさらに1段下(初期状態の段階から2段下)のゲインに設定される。
【0027】
このように、処理手段2は、ゲイン初期状態で最も高いゲインに設定し、被測定物Wの測定中に受光量信号が大きくレベル変動し閾値を越える毎に増幅器10のゲインが1段下げられる構成であるため、演算手段11は常時演算処理を正確に行えるようになる。これは、受光量が飽和せず、また、ノイズの影響を受けずにできるだけ高い受光量を得ることができる制御であることに起因する。ところで、閾値は、飽和レベルに達する直前のレベルに設定されているため、演算手段11に入力される受光量信号のレベルの変動が変位量の演算処理に影響を与えることはない。
【0028】
上記実施形態では、ゲイン選択手段12が処理手段2内部の増幅器10のゲインを可変制御する構成について説明したが、この他、センサヘッド1内部の前段増幅器7のゲインを可変制御する構成としてもよく、また、これら増幅器7,10のゲインをいずれも可変制御する構成としてもよい。
【0029】
次に、図5は、本発明の変位測定装置の第2実施形態を示すブロック図である。同実施形態において前記第1実施形態と同一の構成部には同一符号を附して説明を省略する。
前記実施形態では、受光素子6の出力を増幅する増幅器10のゲインを可変する構成について説明したが、本実施形態ではセンサヘッド1の光源4の測定光の投光パワーを可変制御する。また、増幅器10のゲインは固定されている。
【0030】
上記構成においては、演算手段11は、入力される受光量信号のレベルが予め定められた閾値を越えたときに投光パワー選択手段20に対しレベルオーバー信号を出力し、投光パワー選択手段20は光源駆動回路5に対し投光パワーを現在の段階から1段下げる制御を行う。
このように、前述のゲイン選択手段12に代えて投光パワー選択手段20を設け、光源4の投光パワーを段階的に下げていく制御を行う構成においても、第1実施形態同様に受光レベルが飽和することなく演算手段11で常時安定した変位量の演算処理を行えるようになる。
【0031】
次に、上記実施形態で説明したゲイン、投光パワーの可変制御のみならず、増幅器10の出力に閾値を定めて演算手段11に入力される受光量信号のレベルを可変制御する構成としてもよい。
図6は、この第3実施形態における演算手段11の内部構成を示すブロック図である。
同図において、増幅器10のゲインは固定されている。この増幅器10から出力される増幅後の受光量信号は、A/D変換器30でA/D変換された後、乗算器31で係数αで乗算される。この後、一対の受光量信号は、加算手段32で和が求められ、減算手段33で差分が求められる。加算手段32の出力では受光量に相当する信号が得られ、減算手段33の出力では受光量と光スポットの位置に相当する相当する信号が得られる。変位量演算手段34は、これら出力に基づき被測定物Wの変位量を求める。
【0032】
また、閾値設定手段35には、所定の受光量を示す閾値が設定される。入力レベル可変手段36は、前記加算手段32の出力(受光量のレベル)と、閾値設定手段35に設定された閾値とに基づき、(閾値/和出力)を演算して係数αを算出する。この係数αは、乗算器31に設定される。
これにより、増幅器10から出力される受光量信号のレベルは、乗算器31で設定された係数αで調整出力される。
上記構成においても、図3記載のフローチャートに基づきSP3の閾値比較処理で閾値より受光量信号のレベルが高いときに、乗算器31に設定されるαが1以下に設定されてこの受光量信号のレベルを可変する。
この受光量信号の可変時の段階は、係数αの値に対応する段階となり、係数αの値を細かく算出するに従い段階的ではなく連続的に可変できるようになる。
【0033】
ところで、上記第1実施形態で説明した増幅器10のゲイン可変と、第2実施形態で説明した光源4の投光パワー可変と、第3実施形態での受光量信号のレベル可変のいずれかに切り替えて制御する、あるいは組合わせて制御する構成にできることは言うまでもない。
また、上記各実施形態では、ゲイン選択手段12あるいは投光パワー選択手段20は、受光量信号のレベルが閾値を越えたときに図4(b)に示すレベルオーバー信号を単パルス出力し増幅器10、光源4がこの単パルスの入力でゲイン、投光パワーを可変する構成としたが、これに限らず、例えば、増幅器10のゲインあるいは光源駆動回路5の投光パワーを直接所定の段に変更させる制御信号を出力し、この制御信号に基づき増幅器10のゲイン、光源4の投光パワーを変更する構成としてもよい。
【0034】
被測定物Wが高速回転する場合には、受光量信号のレベルが短時間で大幅に変動するが、上記構成によればレベルオーバーが出たときのみゲインあるいは投光パワーを1段下げる制御を行うため、変位量を常時安定して求めることができるようになる。本発明はこのような高速回転に限らず、測定面からの受光量が大きく変わる被測定物Wに用いて同様の作用効果を得ることができることは言うまでもない。
【0035】
【発明の効果】
本発明の変位測定装置によれば、被測定物の測定中に受光量信号のレベルが閾値設定手段に設定された閾値を越える毎に対応して閾値を加算手段の出力で除算して算出した係数を一対の乗算器に設定し、増幅器から出力される受光量信号のレベルを一対の乗算器に設定された係数で調整する構成であるため、閾値より受光量信号のレベルが高いときに、一対の乗算器に設定される係数が1以下に設定され、受光量信号のレベルを可変することができる。これにより、被測定物の測定中に測定面の散乱状態が大きく変化し受光量信号のレベルが大きく変動しても演算手段に対する入力が飽和することなく、変位量の演算を安定して実行することができる。そして、受光量信号の可変時の段階は、係数の値に対応する段階となり、係数の値を細かく算出するに従って、段階的ではなく連続的に可変できるようになる。
また、上記変位量の演算に用いる信号のレベル制御と、被測定物の測定中に演算手段に入力される受光量信号のレベルが所定の閾値を越える毎に対応してゲイン初期状態で最も高いゲインが設定された増幅器のゲインを1段づつ段階的に下げるゲイン制御と、前記演算手段に入力された受光量信号のレベルに基づき投光パワー選択手段が光源駆動回路の投光パワーを現在の段階から1段づつ下げる投光パワー制御とを、いずれか一つに切替自在、あるいはいずれも同時に実行すれば、受光量信号のレベルが飽和することなく、また、ノイズの影響を受けずにできるだけ高い信号レベルが得られるため、変位量を正確に求めることができるようになる。
特に、被測定物の測定面が高速に移動する場合、例えば測定面が高速回転する場合などにおいて短時間で受光量信号のレベルが大きく変動してもこれに対応でき、変位量の演算を継続して安定状態のまま行えるようになる。
【図面の簡単な説明】
【図1】本発明の変位測定装置の第1実施形態を示すブロック図。
【図2】測定開始時の設定画面を示す図。
【図3】半自動モード時における処理手段のゲイン調整動作を示すフローチャート。
【図4】処理手段の各部の信号を示すタイミングチャート。
【図5】本発明の変位測定装置の第2実施形態を示すブロック図。
【図6】本発明の第3実施形態における演算手段の内部構成を示すブロック図。
【符号の説明】
1…センサヘッド、2…処理手段、4…光源、5…光源駆動回路、6…受光素子、7…増幅器、10…増幅器、11…演算手段、12…ゲイン選択手段、14…モード選択手段、20…投光パワー選択手段、36…入力レベル可変手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a displacement measuring apparatus that measures a displacement amount of an object to be measured in a non-contact manner, and more particularly, to a displacement measuring apparatus that can cope with a large variation in the amount of received light and can improve measurement accuracy.
[0002]
[Prior art]
The displacement measuring apparatus can irradiate the measurement object with measurement light and measure the displacement amount of the measurement surface of the measurement object based on the light receiving state of the light receiving element. This displacement measuring device irradiates the measurement surface of the object to be measured on the principle of triangulation, for example, and the displacement of the measurement surface of the object to be measured based on the light receiving position of the reflected light detected on the light receiving surface of the position sensor. Measure the amount.
[0003]
In such a displacement measuring apparatus, the amplification factor (gain) of the processing circuit is set in a plurality of stages so that the received light amount (level) is suitable for the detection process in the light receiving element that receives the reflected light and the subsequent processing circuit. Continuously variable setting is possible.
Recently, the processing circuit is provided with an AGC function, and when the amount of received light is large, the gain is lowered to prevent signal saturation in the processing circuit, while when the amount of received light is small, the gain is reduced to reduce the noise component. The process to raise is made.
It should be noted that this gain is such that the received light amount is as high as possible because the received light amount is not saturated and is not affected by noise in either case of manual or automatic variable using the AGC function. It is desired to set.
[0004]
[Problems to be solved by the invention]
The optimum gain according to the displacement state of the measurement surface of the object to be measured is a configuration that must be selected manually, and the measurement surface state of the object to be measured will change even if measurement is started with the gain once set. When the amount of received light increases, the signal may be saturated. At this time, there is a problem that the amount of displacement cannot be measured accurately.
[0005]
Even when the AGC function that automatically changes the gain of the processing circuit according to the change in the amount of received light is used, if the amount of received light changes greatly in a short time (for example, the frequency of change in the amount of received light approaches the modulation frequency). In other words, the received signal is saturated and the measurement cannot be performed.
The above state occurs when the scattering state of the measurement surface of the object to be measured changes greatly. For example, when the object to be measured rotates to measure the displacement amount of the measurement surface, the object to be measured rotates at a high speed. In some cases, the problem of being unable to measure has occurred.
[0006]
The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a displacement measuring apparatus that can accurately measure the amount of displacement without being affected by fluctuations in the amount of light received during measurement of the object to be measured. It is said.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a displacement measuring apparatus according to the present invention radiates measurement light from a light source onto a measurement surface of an object to be measured and receives the reflected light by a light receiving element. In a non-contact type displacement measuring device that measures the amount of displacement,
A pair of
A pair of
It is characterized by comprising.
[0008]
The invention according to
A light
The gain of the pair of
The projection power of the light source driving circuit is variably controlled stepwise based on the level of the received light amount signal input to the arithmetic means, and the received light amount signal level is set to a predetermined level during measurement of the object to be measured. And a projection power selection means 20 for performing control to lower the projection power of the light source driving circuit one step at a time from the current stage corresponding to each time the threshold is exceeded,
The
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the displacement measuring apparatus of the present invention.
As shown in the figure, the displacement measuring apparatus is roughly composed of a sensor head 1 and a processing means 2.
Inside the sensor head 1, a light source (LD) 4 and a light
A signal corresponding to the position and light intensity of the image of the light spot on the
[0018]
The
The
[0019]
The calculating means 11 calculates the displacement amount of the measurement surface of the workpiece W based on the received light amount signal after gain adjustment, and outputs this displacement amount to the outside. The calculation result including the displacement amount may be stored and stored in a storage means (not shown). In addition, a threshold for determining the input light reception amount (level) is set in the calculation means 11, and a level over signal is output when the level of the light reception amount signal exceeds the threshold.
This threshold value is set to a level (saturation level> threshold) immediately before the level of the received light amount signal output from the
[0020]
This gain is controlled to be switched by the gain selection means 12. The
Further, when the semi-automatic mode is reset by a reset function (not shown), the
Further, when a level over occurs, the received light amount signal may be multiplied by a predetermined coefficient α to lower the level (details will be described later in the third embodiment).
[0021]
The
[0022]
FIG. 2 is a diagram showing a setting screen at the start of measurement. As shown in the figure, the processing means 2 is provided with a CRT or liquid crystal display (not shown), and a screen for various settings necessary for measuring the workpiece W is displayed on the display screen.
Among them, the setting screen of the mode selection means 14 is displayed on the screen shown in FIG. 2, and the selection items of the “semi-automatic” and “manual” modes are displayed for the gain of the
The “semi-automatic” mode may be selected depending on whether the signal level input to the “semi-automatic” mode selection pin of the connector provided in the apparatus is high or low.
[0023]
The computing means 11, the
[0024]
Next, the operation content of the semi-automatic mode configured as described above will be described. FIG. 3 is a flowchart showing the gain adjustment operation of the processing means 2 in the semi-automatic mode, and FIG. 4 is a timing chart showing signals of each part of the processing means 2.
The processing means 2 resets the gain at the start of measurement of the object to be measured (SP1-YES). When newly measuring the amount of displacement of the workpiece W, the gain of the
[0025]
Next, measurement of the displacement amount of the workpiece W is started. When the sensor head 1 irradiates the measurement object W with the measurement light, the
Then, the calculation means 11 of the processing means 2 amplifies the received light amount signal in the gain initial state by the
On the other hand, when the level of the received light amount signal remains smaller than a predetermined threshold value (SP3-NO), the comparison processing in SP3 is continuously executed via SP1 during the measurement period of the workpiece W. To do.
[0026]
As a result, when the level of the received light amount signal exceeds a predetermined threshold value at time A, the gain of the
[0027]
In this way, the processing means 2 sets the highest gain in the initial gain state, and the gain of the
[0028]
In the above-described embodiment, the configuration in which the
[0029]
Next, FIG. 5 is a block diagram showing a second embodiment of the displacement measuring apparatus of the present invention. In the embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In the above-described embodiment, the configuration in which the gain of the
[0030]
In the above configuration, the calculation means 11 outputs a level over signal to the light projection power selection means 20 when the level of the received light amount signal exceeds a predetermined threshold value, and the light projection power selection means 20. Controls the light
As described above, in the configuration in which the light projection
[0031]
Next, not only the variable control of the gain and the light projection power described in the above embodiment, but also a configuration in which a threshold value is set for the output of the
FIG. 6 is a block diagram showing the internal configuration of the computing means 11 in the third embodiment.
In the figure, the gain of the
[0032]
The threshold value setting means 35 is set with a threshold value indicating a predetermined amount of received light. The input level varying means 36 calculates (threshold / sum output) based on the output (level of received light amount) of the adding means 32 and the threshold set in the threshold setting means 35 to calculate the coefficient α. This coefficient α is set in the
As a result, the level of the received light amount signal output from the
Also in the above configuration, when the received light amount signal level is higher than the threshold value in the threshold value comparison process of SP3 based on the flowchart shown in FIG. 3, α set in the
The step of changing the received light amount signal corresponds to the value of the coefficient α, and can be continuously changed instead of stepwise as the value of the coefficient α is finely calculated.
[0033]
By the way, it is switched to any one of the variable gain of the
Further, in each of the above embodiments, the
[0034]
When the workpiece W rotates at a high speed, the level of the received light amount signal fluctuates greatly in a short time. However, according to the above configuration, the gain or the projection power is controlled to be lowered by one step only when the level is over. As a result, the amount of displacement can always be obtained stably. Needless to say, the present invention is not limited to such high-speed rotation but can be used for the workpiece W in which the amount of light received from the measurement surface changes greatly.
[0035]
【The invention's effect】
According to the displacement measuring apparatus of the present invention, the threshold value is calculated by dividing the threshold value by the output of the adding means every time the level of the received light amount signal exceeds the threshold value set in the threshold value setting means during measurement of the object to be measured . Since the coefficient is set in a pair of multipliers and the level of the received light amount signal output from the amplifier is adjusted by the coefficient set in the pair of multipliers, when the received light amount signal level is higher than the threshold value, The coefficient set for the pair of multipliers is set to 1 or less, and the level of the received light amount signal can be varied. Thus, even when the scattering state of the measurement surface changes greatly during measurement of the object to be measured and the level of the received light amount signal fluctuates greatly, the input to the calculation means is not saturated and the calculation of the displacement is stably performed. it is possible. Their to, variable time steps the amount of received light signal becomes a phase corresponding to the value of the coefficient, in accordance with finely calculate the value of the coefficient, it becomes possible to continuously variable rather than gradual.
Further, the level control of the signal used for calculating the displacement amount and the highest level in the initial gain state corresponding to every time the level of the received light amount signal input to the calculation means during measurement of the object to be measured exceeds a predetermined threshold value. The gain control for decreasing the gain of the amplifier for which the gain is set step by step, and the light projection power selection means based on the level of the received light amount signal input to the calculation means, If the projection power control, which is lowered by one step from the stage, can be switched to any one or both at the same time, the level of the received light amount signal will not be saturated, and as much as possible without being affected by noise Since a high signal level can be obtained, the displacement amount can be accurately obtained.
In particular, when the measurement surface of the object to be measured moves at high speed, for example, when the measurement surface rotates at high speed, even if the level of the received light amount signal fluctuates in a short time, this can be dealt with, and the displacement amount calculation continues. It will be possible to remain in a stable state.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of a displacement measuring apparatus of the present invention.
FIG. 2 is a diagram showing a setting screen at the start of measurement.
FIG. 3 is a flowchart showing a gain adjustment operation of a processing unit in a semi-automatic mode.
FIG. 4 is a timing chart showing signals at various parts of the processing means.
FIG. 5 is a block diagram showing a second embodiment of the displacement measuring apparatus of the present invention.
FIG. 6 is a block diagram showing an internal configuration of a calculation unit in the third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sensor head, 2 ... Processing means, 4 ... Light source, 5 ... Light source drive circuit, 6 ... Light receiving element, 7 ... Amplifier, 10 ... Amplifier, 11 ... Calculation means, 12 ... Gain selection means, 14 ... Mode selection means, 20 ... Projection power selection means, 36 ... Input level variable means.
Claims (2)
前記被測定物の測定中に前記受光素子の受光量信号を固定されたゲインにより増幅出力する一対の増幅器(10,10)と、
前記一対の増幅器で増幅後の受光量信号を所定の係数(α)で乗算する一対の乗算器(31)と、前記一対の乗算器からの一対の受光量信号の和を求める加算手段(32)と、前記一対の乗算器からの一対の受光量信号の差分を求める減算手段(33)と、所定の受光量を示す閾値が設定される閾値設定手段(35)と、前記被測定物の測定中に前記受光量信号のレベルが前記閾値設定手段に設定された閾値を越える毎に対応して前記閾値を前記加算手段の出力で除算して算出した係数を前記一対の乗算器に設定する入力レベル可変手段(36)と、前記加算手段と前記減算手段の出力に基づいて前記被測定物の変位量を演算出力する変位量演算手段(34)とを含む演算手段(11)と、
を具備したことを特徴とする変位測定装置。In a non-contact type displacement measuring device that irradiates the measurement surface of the object to be measured with the measurement light of the light source and receives the reflected light by the light receiving element to measure the displacement amount of the measurement surface.
A pair of amplifiers (10, 10) for amplifying and outputting the received light amount signal of the light receiving element with a fixed gain during measurement of the measured object;
A pair of multipliers (31) for multiplying the received light amount signals amplified by the pair of amplifiers by a predetermined coefficient (α), and addition means (32) for calculating the sum of the pair of received light amount signals from the pair of multipliers ), A subtracting means (33) for obtaining a difference between a pair of received light amount signals from the pair of multipliers, a threshold value setting means (35) for setting a threshold value indicating a predetermined received light amount, and the measurement object A coefficient calculated by dividing the threshold value by the output of the adding means is set in the pair of multipliers corresponding to each time the level of the received light amount signal exceeds the threshold value set in the threshold setting means during measurement. A calculation means (11) including an input level variable means (36), and a displacement amount calculation means (34) for calculating and outputting a displacement amount of the device under test based on outputs of the addition means and the subtraction means;
A displacement measuring apparatus comprising:
前記被測定物に照射する測定光の投光パワーを段階的に可変自在な光源駆動回路(5)と、
前記演算手段に入力された受光量信号のレベルに基づき前記一対の増幅器(10,10)のゲインを段階的に可変制御するものであり、前記被測定物の測定中に前記受光量信号のレベルが所定の閾値を越える毎に対応して前記一対の増幅器のゲインをゲイン初期状態で最も高いゲインから1段づつ下げる制御を行うゲイン選択手段(12)と、
前記演算手段に入力された受光量信号のレベルに基づき前記光源駆動回路の投光パワーを段階的に可変制御するものであり、前記被測定物の測定中に前記受光量信号のレベルが所定の閾値を越える毎に対応して前記光源駆動回路の投光パワーを現在の段階から1段づつ下げる制御を行う投光パワー選択手段(20)とを更に具備し、
前記ゲイン選択手段(12)による前記一対の増幅器のゲイン可変制御と、前記投光パワー選択手段(20)による前記光源駆動回路の投光パワー制御と、前記入力レベル可変手段(36)による前記一対の乗算器(31)に入力される受光量信号のレベル可変と、のいずれか一つに切替自在に、あるいはいずれも同時に実行されることを特徴とする変位測定装置。 The displacement measuring device according to claim 1,
A light source drive circuit (5) capable of stepwise changing the light projection power of the measurement light applied to the object to be measured;
The gain of the pair of amplifiers (10, 10) is variably controlled stepwise based on the level of the received light amount signal input to the arithmetic means, and the level of the received light amount signal during the measurement of the object to be measured. A gain selection means (12) for performing a control to lower the gain of the pair of amplifiers one step at a time from the highest gain in the initial gain state corresponding to each time when exceeds a predetermined threshold;
The projection power of the light source driving circuit is variably controlled stepwise based on the level of the received light amount signal input to the arithmetic means, and the received light amount signal level is set to a predetermined level during measurement of the object to be measured. And a projection power selection means (20) for performing control to lower the projection power of the light source driving circuit by one step from the current level in response to each time the threshold is exceeded,
Before the gain variable control of the pair of amplification device according Kige in selection means (12), a light projecting power control before the light source driving circuits by Kito light power selection means (20), the entering force level varying means The displacement measuring device is characterized in that it can be switched to any one of the variable level of the received light amount signal input to the pair of multipliers (31 ) according to (36), or both can be performed simultaneously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04048698A JP3927306B2 (en) | 1998-02-23 | 1998-02-23 | Displacement measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04048698A JP3927306B2 (en) | 1998-02-23 | 1998-02-23 | Displacement measuring device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006350125A Division JP2007147635A (en) | 2006-12-26 | 2006-12-26 | Displacement measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11237208A JPH11237208A (en) | 1999-08-31 |
JP3927306B2 true JP3927306B2 (en) | 2007-06-06 |
Family
ID=12581934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04048698A Expired - Fee Related JP3927306B2 (en) | 1998-02-23 | 1998-02-23 | Displacement measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3927306B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007060873A1 (en) * | 2005-11-24 | 2007-05-31 | Kirin Techno-System Corporation | Surface examination device |
JP2008304215A (en) * | 2007-06-05 | 2008-12-18 | Anritsu Corp | Sensor head and displacement measuring instrument |
JP6071103B2 (en) * | 2012-03-09 | 2017-02-01 | 株式会社ニデック | Eyeglass frame shape measuring device |
-
1998
- 1998-02-23 JP JP04048698A patent/JP3927306B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11237208A (en) | 1999-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04316205A (en) | High frequency power amplifier | |
JP2010041721A (en) | Polar modulation transmission apparatus | |
JP3927306B2 (en) | Displacement measuring device | |
JP2909159B2 (en) | Smoothing processing method, noise elimination apparatus by smoothing processing, and optical pulse test apparatus using the same | |
JP2007147635A (en) | Displacement measuring device | |
JP2005117282A (en) | Gain control circuit | |
JPH1164405A (en) | Modulation analysis device and spectrum analyzer | |
JP2528521B2 (en) | Automatic measurement range switching device for surface area measuring device | |
JP3974670B2 (en) | Optical displacement measuring device | |
JP3456202B2 (en) | Receive level monitor circuit | |
JPH11326426A (en) | Noise adding method, and device | |
JP2001285211A (en) | Amplifier measurement instrument | |
KR970062522A (en) | Method and circuit for compensating food temperature in microwave oven | |
JP2652559B2 (en) | Level sweep device | |
JPH07307631A (en) | Automatic output controller | |
JPH07111790A (en) | Control method for optimal speed in variable speed control equipment | |
JP2008295050A (en) | Signal processing device and signal processing method | |
JPH11136057A (en) | Fast alc circuit | |
JP3251461B2 (en) | Control method of photoelectric switch | |
JPS62215850A (en) | Photometric apparatus for emission spectrum analysis | |
JP2000304784A (en) | Spectrum analyzer | |
JP2000314662A (en) | Fourier spectroscope | |
JPH07147518A (en) | Linear amplifier | |
JPH05322559A (en) | Optical displacement sensor | |
JPH04151507A (en) | Active distance measuring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070302 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |