JPH11237208A - Measuring device for displacement - Google Patents

Measuring device for displacement

Info

Publication number
JPH11237208A
JPH11237208A JP4048698A JP4048698A JPH11237208A JP H11237208 A JPH11237208 A JP H11237208A JP 4048698 A JP4048698 A JP 4048698A JP 4048698 A JP4048698 A JP 4048698A JP H11237208 A JPH11237208 A JP H11237208A
Authority
JP
Japan
Prior art keywords
light
level
gain
displacement
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4048698A
Other languages
Japanese (ja)
Other versions
JP3927306B2 (en
Inventor
Kenji Matsumaru
憲司 松丸
Atsuro Tanuma
敦郎 田沼
Koji Omori
浩二 大森
Shinji Hamano
信治 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP04048698A priority Critical patent/JP3927306B2/en
Publication of JPH11237208A publication Critical patent/JPH11237208A/en
Application granted granted Critical
Publication of JP3927306B2 publication Critical patent/JP3927306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure quantity of displacement without influence by fluctuation of received light quantity when a measured object is measured. SOLUTION: Measurement light from a light source 4 of a sensor-head 1 irradiates a measured side of a measured object W, and its reflected light is received by a photodetector 6. Thereby, quantity of displacement of the measured side is measured. The detection signal of the photodetector 6 is amplified by an amplifier 10 to output to a calculation means 11. The calculation means 11 calculates the quantity of the displacement of the measured object W based upon the detection signal amplified to output. A gain selection means 12 performs control that lowers the gain of the amplifier 10 a stage to prevent the saturation of the detection signal when the level of the detection signal input by the calculation means 11 exceeds a predetermined threshold value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物の変位量
を非接触で測定する変位測定装置に係り、特に、受光量
の大幅な変動に対応でき測定を高精度化できる変位測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device for measuring a displacement of an object to be measured in a non-contact manner, and more particularly to a displacement measuring device capable of coping with a large fluctuation of a received light amount and improving the measurement accuracy. .

【0002】[0002]

【従来の技術】変位測定装置は、被測定物に測定光を照
射し、受光素子の受光状態に基づき被測定物の測定面の
変位量を測定することができる。この変位測定装置は、
例えば三角測量の原理で被測定物の測定面に測定光を照
射し、ポジションセンサの受光面上で検出された反射光
の受光位置に基づき被測定物の測定面の変位量を測定す
る。
2. Description of the Related Art A displacement measuring device irradiates a measuring object with measuring light and can measure a displacement amount of a measuring surface of the measuring object based on a light receiving state of a light receiving element. This displacement measuring device
For example, the measuring surface of the object is irradiated with the measuring light based on the principle of triangulation, and the displacement of the measuring surface of the object is measured based on the light receiving position of the reflected light detected on the light receiving surface of the position sensor.

【0003】このような変位測定装置においては、反射
光を受光する受光素子及び後段の処理回路での検出処理
に適した受光量(レベル)となるよう、処理回路の増幅
率(ゲイン)が複数段階にあるいは連続的に可変設定自
在である。最近では、処理回路にAGC機能が設けら
れ、受光量が大きい場合には処理回路での信号飽和を防
止すべくゲインを下げ、一方、受光量が小さい場合には
ノイズ成分を低減化させるようゲインを上げる処理がな
される。尚、このゲインは、手動あるいはAGC機能を
用いて自動可変するいずれの場合においても、受光量が
飽和することなく、また、ノイズの影響を受けないため
に、できるだけ高い受光量が得られるゲインに設定する
ことが望まれている。
In such a displacement measuring device, a plurality of amplification factors (gains) of a processing circuit are provided so that a light receiving element for receiving reflected light and a light receiving amount (level) suitable for detection processing in a subsequent processing circuit are obtained. It can be variably set stepwise or continuously. Recently, an AGC function is provided in a processing circuit, and when the amount of received light is large, the gain is reduced to prevent signal saturation in the processing circuit, while when the amount of received light is small, the gain is reduced so as to reduce noise components. Is raised. It should be noted that the gain is set to a gain that can obtain the highest possible amount of received light because the amount of received light does not saturate and is not affected by noise regardless of whether the gain is manually or automatically changed using the AGC function. It is desired to set.

【0004】[0004]

【発明が解決しようとする課題】上記被測定物の測定面
の変位状態に合わせた最適ゲインは、手動操作で選択し
なければならない構成であり、一旦設定したゲインで測
定を開始しても被測定物の測定面の状態が変化して受光
量が増えた場合には信号が飽和する場合があり、この飽
和時には、変位量を正確に測定できなくなる問題があっ
た。
The optimum gain in accordance with the displacement state of the measurement surface of the object to be measured must be manually selected. Even if the measurement is started with the gain once set, the optimum gain is not affected. When the amount of received light increases due to a change in the state of the measurement surface of the measurement object, the signal may be saturated. At the time of this saturation, there has been a problem that the displacement amount cannot be measured accurately.

【0005】また、受光量の変化に合わせて処理回路の
ゲインを自動的に変えるAGC機能を用いた場合におい
ても、受光量が短時間で大きく変化する場合(例えば受
光量の変化の周波数が変調周波数に近づいたとき)には
追従しきれず、受光した信号が飽和して測定できなくな
る問題があった。上記状態は、被測定物の測定面の散乱
状態が大きく変化するときに生じるもので、例えば被測
定物が回転して測定面の変位量を測定する場合におい
て、この被測定物が高速回転する場合に測定できなくな
る問題が生じた。
[0005] Further, even when the AGC function for automatically changing the gain of the processing circuit according to the change in the received light amount is used, when the received light amount changes greatly in a short time (for example, the frequency of the change in the received light amount is modulated). (When the frequency approaches), there is a problem that the signal cannot be measured because the received signal is saturated and cannot be measured. The above-described state occurs when the scattering state of the measurement surface of the measurement object greatly changes. For example, when the measurement object is rotated and the displacement amount of the measurement surface is measured, the measurement object rotates at a high speed. In such a case, there was a problem that the measurement could not be performed.

【0006】本発明は、上記課題を解決するためになさ
れたものであり、被測定物測定時における受光量の変動
に影響されず変位量を正確に測定することができる変位
測定装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a displacement measuring apparatus capable of accurately measuring a displacement amount without being affected by fluctuations in a received light amount when measuring an object to be measured. It is intended to be.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の変位測定装置は、請求項1記載のように、
被測定物の測定面に光源の測定光を照射しその反射光を
受光素子で受光して測定面の変位量を測定する非接触型
の変位測定装置において、前記受光素子の受光量信号に
基づき前記被測定物の変位量を演算出力する演算手段
と、前記演算手段に入力される受光量信号のレベルを検
出して前記被測定物の測定中に前記受光量信号のレベル
が所定の閾値を越える毎に対応して変位量の演算に用い
る信号のレベルを下げるための制御を行う手段と、を具
備したことを特徴とする。
In order to achieve the above object, a displacement measuring device according to the present invention has the following features.
In a non-contact type displacement measuring device that irradiates measurement light of a light source to a measurement surface of an object to be measured and receives reflected light thereof with a light receiving element to measure a displacement amount of the measurement surface, based on a light reception amount signal of the light receiving element Calculating means for calculating and outputting the displacement amount of the device under test, and detecting the level of the light receiving amount signal input to the calculating device and setting the level of the light receiving amount signal to a predetermined threshold during the measurement of the device under test. Means for performing control for lowering the level of a signal used for calculating the amount of displacement each time the value exceeds the threshold.

【0008】また、請求項2記載の発明は、被測定物の
測定面に光源の測定光を照射しその反射光を受光素子で
受光して測定面の変位量を測定する非接触型の変位測定
装置において、前記受光素子の受光量信号を増幅出力し
そのゲインが可変自在な増幅器と(10)、前記増幅器
で増幅後の受光量信号に基づき前記被測定物の変位量を
演算出力する演算手段(11)と、前記演算手段に入力
された受光量信号のレベルに基づき前記増幅器のゲイン
を可変制御するものであり、前記被測定物の測定中に前
記受光量信号のレベルが所定の閾値を越える毎に対応し
て前記増幅器のゲインを下げる制御を行うゲイン選択手
段(12)と、を具備したことを特徴とする。
According to a second aspect of the present invention, there is provided a non-contact type displacement measuring device which irradiates a measuring surface of an object to be measured with a measuring light of a light source and receives a reflected light thereof by a light receiving element to measure a displacement of the measuring surface. In the measuring device, an amplifier that amplifies and outputs a light-receiving amount signal of the light-receiving element and has a variable gain (10), and a calculation that calculates and outputs a displacement amount of the object to be measured based on the light-receiving amount signal amplified by the amplifier. Means (11) for variably controlling the gain of the amplifier based on the level of the received light signal input to the arithmetic means, wherein the level of the received light signal is set to a predetermined threshold during the measurement of the device under test. And a gain selecting means (12) for performing control to reduce the gain of the amplifier in response to every time the gain is exceeded.

【0009】また、請求項3記載のように、前記増幅器
(10)は、ゲインが複数の段階に可変自在であり、前
記ゲイン選択手段(12)は、前記被測定物の測定中に
前記受光量信号のレベルに基づき前記増幅器のゲインを
対応する段階に下げる制御を行う構成としてもよい。
According to a third aspect of the present invention, in the amplifier (10), the gain can be changed in a plurality of stages, and the gain selecting means (12) controls the light receiving during the measurement of the device under test. It may be configured to perform control to reduce the gain of the amplifier to a corresponding stage based on the level of the amount signal.

【0010】また、請求項4記載のように、前記増幅器
(10)は、ゲインが複数の段階に可変自在であり、前
記ゲイン選択手段(12)は、前記被測定物の測定中に
前記受光量信号のレベルが所定の閾値を越える毎に対応
して前記増幅器のゲインを1段づつ下げる制御を行う構
成としてもよい。
According to a fourth aspect of the present invention, in the amplifier (10), the gain can be changed in a plurality of stages, and the gain selecting means (12) controls the light receiving during the measurement of the device under test. A configuration may be adopted in which control is performed to decrease the gain of the amplifier one step at a time, each time the level of the amount signal exceeds a predetermined threshold.

【0011】請求項5記載の発明は、被測定物の測定面
に光源の測定光を照射しその反射光を受光素子で受光し
て測定面の変位量を測定する非接触型の変位測定装置に
おいて、前記被測定物に照射する測定光の投光パワーを
可変自在な光源駆動回路(5)と、前記受光素子で検出
された受光量信号に基づき前記被測定物の変位量を演算
出力する演算手段(11)と、前記演算手段に入力され
た受光量信号のレベルに基づき前記光源駆動回路の投光
パワーを可変制御するものであり、前記被測定物の測定
中に前記受光量信号のレベルが所定の閾値を越える毎に
対応して前記光源駆動回路の投光パワーを下げる制御を
行う投光パワー選択手段(20)と、を具備したことを
特徴とする。
According to a fifth aspect of the present invention, there is provided a non-contact type displacement measuring device for irradiating a measuring surface of an object to be measured with a measuring light of a light source, receiving a reflected light thereof by a light receiving element and measuring a displacement amount of the measuring surface. And a light source drive circuit (5) capable of changing the projection power of the measurement light applied to the object to be measured, and calculating and outputting a displacement amount of the object to be measured based on a light reception amount signal detected by the light receiving element. Calculating means (11) for variably controlling the light emission power of the light source drive circuit based on the level of the received light amount signal input to the calculating means; And a projection power selection means (20) for performing control to reduce the projection power of the light source drive circuit each time the level exceeds a predetermined threshold value.

【0012】また、請求項6記載のように、前記光源駆
動回路(5)は、投光パワーが複数の段階で可変自在で
あり、前記投光パワー選択手段(20)は、前記被測定
物の測定中に前記受光量信号のレベルに基づき前記光源
駆動回路の投光パワーを対応する段階に下げる制御を行
う構成としてもよい。
According to a sixth aspect of the present invention, in the light source driving circuit (5), the light projecting power can be changed in a plurality of stages, and the light projecting power selecting means (20) is provided in the light source driving circuit (5). During the measurement, the control may be performed to reduce the light projection power of the light source drive circuit to a corresponding stage based on the level of the received light amount signal.

【0013】また、請求項7記載のように、前記光源駆
動回路(5)は、投光パワーが複数の段階で可変自在で
あり、前記投光パワー選択手段(20)は、前記被測定
物の測定中に前記受光量信号のレベルが所定の閾値を越
える毎に対応して前記光源駆動回路の投光パワーを1段
づつ下げる制御を行う構成としてもよい。
According to a seventh aspect of the present invention, in the light source driving circuit (5), the light projection power can be changed in a plurality of stages, and the light projection power selecting means (20) is provided with the object to be measured. The control may be performed such that the light emission power of the light source drive circuit is decreased by one step each time the level of the received light amount signal exceeds a predetermined threshold during the measurement of the above.

【0014】請求項8記載の発明は、被測定物の測定面
に光源の測定光を照射しその反射光を受光素子で受光し
て測定面の変位量を測定する非接触型の変位測定装置に
おいて、前記受光素子の受光量信号に基づき前記被測定
物の変位量を演算出力する演算手段(11)と、前記演
算手段に入力された受光量信号のレベルを検出して前記
被測定物の測定中に前記受光量信号のレベルが所定の閾
値を越える毎に対応して前記演算手段に入力された受光
量信号のレベルを下げる制御を行う入力レベル可変手段
(36)と、を具備したことを特徴とする。
According to an eighth aspect of the present invention, there is provided a non-contact type displacement measuring device for irradiating a measuring surface of an object to be measured with a measuring light of a light source and receiving a reflected light thereof by a light receiving element to measure a displacement amount of the measuring surface. A calculating means (11) for calculating and outputting a displacement amount of the object to be measured based on a light receiving amount signal of the light receiving element; and detecting a level of the light receiving amount signal inputted to the calculating means to detect a level of the object to be measured. Input level varying means (36) for performing control to lower the level of the received light amount signal input to the arithmetic means in response to every time the level of the received light amount signal exceeds a predetermined threshold during the measurement. It is characterized by.

【0015】また、請求項9記載のように、前記請求項
2に記載のゲイン選択手段(12)による前記増幅器
(10)のゲイン可変制御と、前記請求項5に記載の投
光パワー選択手段(20)による前記光源駆動回路
(5)の投光パワー制御と、前記請求項8に記載の入力
レベル可変手段(36)による演算手段(11)に入力
される受光量信号のレベル可変と、のいずれか一つに切
替自在に、あるいはいずれも同時に実行する構成として
もよい。
According to a ninth aspect of the present invention, the variable gain control of the amplifier (10) by the gain selecting means (12) according to the second aspect and the light projection power selecting means according to the fifth aspect. (20) light projection power control of the light source driving circuit (5) by the light source driving circuit (5); and input light level change of the received light amount signal input to the calculating means (11) by the input level changing means (36). It is also possible to switch to any one of them, or to execute them simultaneously.

【0016】上記請求項4記載の構成の作用を説明する
と、被測定物の反射光を受光する受光素子からの検出出
力は増幅器10で増幅され、演算手段11で変位量が演
算出力される。ゲイン選択手段12は、演算手段11に
入力される受光量信号のレベルが所定の閾値を越える毎
に対応して前記増幅器のゲインを1段づつ下げる制御を
行う。また、投光パワー選択手段20を設けた構成で
は、演算手段11に入力される受光量信号のレベルが所
定の閾値を越える毎に対応して光源4の光源駆動回路5
の投光パワーを1段づつ下げる制御を行う。いずれの構
成においても、被測定物Wの測定中、測定面の位置が大
きく変動し受光量信号のレベルが大きく変化しても演算
手段11に対する入力が飽和することなく変位量を正確
に演算することができる。
The operation of the configuration according to the fourth aspect will be described. The detection output from the light receiving element that receives the reflected light from the object to be measured is amplified by the amplifier 10, and the displacement amount is calculated and output by the calculating means 11. The gain selection means 12 performs control to decrease the gain of the amplifier one by one in response to every time the level of the received light amount signal input to the calculation means 11 exceeds a predetermined threshold. Further, in the configuration in which the light projection power selecting means 20 is provided, the light source driving circuit 5 of the light source 4 corresponds to every time the level of the received light amount signal inputted to the arithmetic means 11 exceeds a predetermined threshold value.
Control for lowering the light projection power of each of the steps one by one. In any of the configurations, even when the position of the measurement surface fluctuates greatly and the level of the received light amount signal greatly changes during the measurement of the workpiece W, the displacement amount is accurately calculated without saturating the input to the calculation means 11. be able to.

【0017】[0017]

【発明の実施の形態】図1は、本発明の変位測定装置の
第1実施形態を示すブロック図である。図示の如く、変
位測定装置はセンサヘッド1と、処理手段2で大略構成
されている。センサヘッド1内部には、光源(LD)4
及び光源駆動回路5が設けられ被測定物Wに対しレーザ
光等の測定光を照射するとともに、被測定物Wからの反
射光は受光素子(例えばポジションセンサ)6で検出さ
れ、センサヘッドと被測定物Wとの距離に応じて受光素
子6上を移動する。この受光素子6上での光スポットの
像の位置と光強度に応じた信号が得られ、増幅器7で所
定の増幅率で増幅されて処理手段2に出力される。
FIG. 1 is a block diagram showing a first embodiment of a displacement measuring device according to the present invention. As shown in the drawing, the displacement measuring device is generally constituted by a sensor head 1 and a processing means 2. Inside the sensor head 1, a light source (LD) 4
And a light source driving circuit 5 for irradiating the object W with measurement light such as a laser beam, and the reflected light from the object W is detected by a light receiving element (for example, a position sensor) 6 so that the sensor head and the object It moves on the light receiving element 6 according to the distance from the measurement object W. A signal corresponding to the position of the image of the light spot on the light receiving element 6 and the light intensity is obtained, amplified by the amplifier 7 at a predetermined amplification rate, and output to the processing means 2.

【0018】処理手段2は、入力段に増幅器10が設け
られ、入力された受光量信号を所定の増幅率で増幅して
演算手段11に出力する。増幅器10は増幅率(ゲイ
ン)が可変自在な構成であり、ゲインを段階的に変更で
きる。最も高いゲインでは増幅率は100%であり、各
段階別に異なる抵抗値を有する抵抗回路等によってゲイ
ンが各段階(例えば100%,90%,80%,70
%,…(中略)…,50%等)に切り替えられるように
なっている。
The processing means 2 is provided with an amplifier 10 at an input stage. The processing means 2 amplifies an input received light amount signal at a predetermined amplification factor and outputs the amplified signal to a computing means 11. The amplifier 10 has a configuration in which the amplification factor (gain) can be varied, and the gain can be changed stepwise. At the highest gain, the amplification factor is 100%, and the gain is increased at each stage (for example, 100%, 90%, 80%, 70%) by a resistance circuit having a different resistance value for each stage.
%,... (Omitted),..., 50%).

【0019】演算手段11は、ゲイン調整後の受光量信
号に基づき、被測定物Wの測定面の変位量を演算し、こ
の変位量などを外部出力する。また、変位量を含む演算
結果は、図示しない記憶手段などに格納記憶させてもよ
い。また、この演算手段11には、入力された受光量
(レベル)を判定するための閾値が設定されており、受
光量信号のレベルが閾値を越えたときにレベルオーバ信
号を出力する。この閾値は、増幅器10が出力する受光
量信号のレベルが演算手段11の入力レベルで飽和する
直前のレベル(飽和レベル>閾値)に設定されている。
The calculating means 11 calculates the amount of displacement of the measurement surface of the workpiece W based on the received light amount signal after the gain adjustment, and outputs the amount of displacement and the like to the outside. Further, the calculation result including the displacement amount may be stored in a storage unit (not shown) or the like. In addition, a threshold for determining the input light receiving amount (level) is set in the calculating means 11, and a level over signal is output when the level of the light receiving amount signal exceeds the threshold. This threshold is set to a level (saturation level> threshold) immediately before the level of the received light amount signal output from the amplifier 10 is saturated at the input level of the arithmetic unit 11.

【0020】このゲインは、ゲイン選択手段12により
切替制御される。ゲイン選択手段12は、測定モードが
後述する半自動モードに設定されているときに機能する
ものであり、演算手段11からレベルオーバー信号が入
力される毎に、増幅器10のゲイン(増幅率)を現在の
段階から1段下げる切替制御を行う。また、図示してい
ないリセット機能で半自動モードをリセットしたときに
は、新たな被測定物Wの測定時に、増幅器10を最も高
いゲインで作動させ、レベルオーバー信号の入力がある
都度、1段づつ増幅器10のゲインを降下させる。ま
た、レベルオーバーが発生したときには、受光量信号に
所定の係数αを乗算してレベルを下げる構成としてもよ
い(詳細は第3実施形態で後述する。)
The gain is controlled to be switched by the gain selecting means 12. The gain selection means 12 functions when the measurement mode is set to a semi-automatic mode to be described later. Each time a level over signal is input from the calculation means 11, the gain (amplification rate) of the amplifier 10 is set to the present value. The switching control for lowering by one stage from the stage is performed. When the semi-automatic mode is reset by a reset function (not shown), the amplifier 10 is operated at the highest gain when a new DUT is measured, and each time a level over signal is input, the amplifier 10 is switched one stage at a time. Decrease the gain of Further, when a level over occurs, the received light amount signal may be multiplied by a predetermined coefficient α to lower the level (the details will be described later in a third embodiment).

【0021】モード選択手段14は、増幅器10のゲイ
ンを手動設定する手動設定モードと、ゲイン選択手段1
2を機能させる半自動モードのいずれかを選択設定する
ものであり、操作者のスイッチ操作等で選択設定され
る。
The mode selection means 14 includes a manual setting mode for manually setting the gain of the amplifier 10 and the gain selection means 1.
In this case, any one of the semi-automatic modes for making the second function function is selected and set by an operator's switch operation or the like.

【0022】図2は、測定開始時の設定画面を示す図で
ある。図示のように、処理手段2には、CRTや液晶の
表示部(図示略)が設けられ、表示画面上には被測定物
Wを測定するに必要な各種設定の画面が表示される。う
ち、上記モード選択手段14の設定画面は、図2に示す
画面上に表示されており、増幅器10のゲインについて
「半自動」あるいは「手動」のモードそれぞれの選択項
目が表示され、いずれかを指定して選択できるようにな
っている。この選択は、処理手段2に設けられたキーボ
ード、タッチスイッチ、あるいはマウスを用いて選択さ
れる。尚、上記ゲインは、画面上に表示された「半自
動」の項目を指定選択することによりリセットされる。
なお、装置に設けられたコネクタの「半自動」モード選
択用のピンに入力される信号レベルがHighかLow かで
「半自動」モードを選択してもよい。
FIG. 2 is a diagram showing a setting screen at the start of measurement. As shown in the figure, the processing unit 2 is provided with a display unit (not shown) of a CRT or a liquid crystal, and displays various setting screens necessary for measuring the object W on the display screen. The setting screen of the mode selection means 14 is displayed on the screen shown in FIG. 2, and the selection items of the "semi-automatic" or "manual" mode for the gain of the amplifier 10 are displayed, and one of them is designated. You can choose. This selection is made using a keyboard, a touch switch, or a mouse provided in the processing means 2. The gain is reset by designating and selecting the "semi-automatic" item displayed on the screen.
Note that the “semi-automatic” mode may be selected based on whether the signal level input to the “semi-automatic” mode selection pin of the connector provided in the apparatus is High or Low.

【0023】上記演算手段11,ゲイン選択手段12,
モード選択手段14は、CPU,ROM,RAMなどの
ハードウェアと、ROM等に記憶された半自動モードの
制御処理プログラムで構成することができる。
The calculating means 11, the gain selecting means 12,
The mode selection means 14 can be configured by hardware such as a CPU, a ROM, and a RAM, and a control processing program in a semi-automatic mode stored in a ROM or the like.

【0024】次に、上記構成による半自動モードの動作
内容を説明する。図3は、半自動モード時における処理
手段2のゲイン調整動作を示すフローチャート、図4
は、処理手段2の各部の信号を示すタイミングチャート
である。処理手段2は、被測定物の測定開始時にゲイン
をリセットする(SP1-YES)。新たに被測定物Wの変
位量を測定するときには、図2に示す設定画面で「半自
動」の項目を指定選択することにより、増幅器10のゲ
インがリセットされ(SP1-YES)、この増幅器10は
ゲイン初期状態(例えば、最大の増幅率100%)に設
定される(SP2)。
Next, the operation of the semi-automatic mode with the above configuration will be described. FIG. 3 is a flowchart showing the gain adjustment operation of the processing means 2 in the semi-automatic mode,
5 is a timing chart showing signals of respective units of the processing unit 2. The processing means 2 resets the gain at the start of the measurement of the device under test (SP1-YES). When a new displacement amount of the object W is measured, the gain of the amplifier 10 is reset (SP1-YES) by designating and selecting the item "semi-automatic" on the setting screen shown in FIG. The gain is set to the initial state (for example, the maximum amplification factor is 100%) (SP2).

【0025】次に、被測定物Wに変位量を測定し始め
る。センサヘッド1が被測定物Wに対し測定光を照射す
ることにより、受光素子6は反射光を受光して被測定物
Wとの間の距離に応じたレベルの受光量信号(図4
(a)参照)を処理手段2に出力する。そして、処理手
段2の演算手段11は、増幅器10にてゲイン初期状態
で受光量信号を増幅し、受光量信号に基づき変位量を演
算出力するが、図4(a)中時期Aに被測定物Wに対し
て測定光を照射している測定面からの受光量が大きく変
動し、受光量信号のレベルが予め定められた閾値を越え
たときには(SP3-YES)、図4(b)に示すようにゲ
イン選択手段12に対しレベルオーバー信号を出力して
増幅器10のゲインを現在の段階から1段下げる(SP
4)。一方、受光量信号のレベルが予め定められた閾値
より小さい状態のままのときには(SP3-NO )、被測
定物Wの測定期間中はSP1を経由してこのSP3にお
ける比較処理を連続的に実行する。
Next, the measurement of the displacement of the workpiece W is started. When the sensor head 1 irradiates the measuring object W with the measuring light, the light receiving element 6 receives the reflected light and receives a light receiving amount signal of a level corresponding to the distance from the measuring object W (FIG. 4).
(See (a)) to the processing means 2. Then, the calculating means 11 of the processing means 2 amplifies the received light amount signal in the initial gain state by the amplifier 10 and calculates and outputs the displacement amount based on the received light amount signal. When the amount of light received from the measurement surface that is irradiating the object W with the measurement light greatly fluctuates and the level of the amount of received light signal exceeds a predetermined threshold (SP3-YES), FIG. As shown, a level over signal is output to the gain selection means 12 to lower the gain of the amplifier 10 by one stage from the current stage (SP
4). On the other hand, when the level of the light reception amount signal remains smaller than the predetermined threshold value (SP3-NO), the comparison process in SP3 is continuously performed via SP1 during the measurement period of the device under test W. I do.

【0026】これにより、時期Aにて受光量信号のレベ
ルが予め定められた閾値を越えると、増幅器10のゲイ
ンが現在の段階から1段下げされるため、図4(c)に
示す如く、受光量信号のレベルが演算手段11で処理可
能(閾値以下)なレベルとなる。 以降、増幅器10の
ゲインはこの1段下げられた状態となるが、再び、以降
の時期に受光量信号のレベルが閾値を越えたときには、
レベルオーバー信号を出力して増幅器10はさらに1段
下(初期状態の段階から2段下)のゲインに設定され
る。
As a result, when the level of the received light amount signal exceeds a predetermined threshold at the time A, the gain of the amplifier 10 is reduced by one stage from the current stage, as shown in FIG. The level of the received light amount signal becomes a level that can be processed (below a threshold) by the calculating means 11. Thereafter, the gain of the amplifier 10 is reduced by this one stage. However, when the level of the received light amount signal exceeds the threshold value again at a later time,
By outputting the level over signal, the amplifier 10 is set to a gain one stage lower (two stages lower than the initial stage).

【0027】このように、処理手段2は、ゲイン初期状
態で最も高いゲインに設定し、被測定物Wの測定中に受
光量信号が大きくレベル変動し閾値を越える毎に増幅器
10のゲインが1段下げられる構成であるため、演算手
段11は常時演算処理を正確に行えるようになる。これ
は、受光量が飽和せず、また、ノイズの影響を受けずに
できるだけ高い受光量を得ることができる制御であるこ
とに起因する。ところで、閾値は、飽和レベルに達する
直前のレベルに設定されているため、演算手段11に入
力される受光量信号のレベルの変動が変位量の演算処理
に影響を与えることはない。
As described above, the processing means 2 sets the highest gain in the initial state of the gain, and the gain of the amplifier 10 is increased by 1 every time the received light amount signal greatly changes during the measurement of the device under test W and exceeds the threshold value. Since the step can be lowered, the arithmetic means 11 can always perform the arithmetic processing accurately. This is because the control is such that the light reception amount is not saturated and the light reception amount is as high as possible without being affected by noise. By the way, since the threshold value is set to the level immediately before reaching the saturation level, the fluctuation of the level of the received light amount signal input to the calculating means 11 does not affect the calculation processing of the displacement amount.

【0028】上記実施形態では、ゲイン選択手段12が
処理手段2内部の増幅器10のゲインを可変制御する構
成について説明したが、この他、センサヘッド1内部の
前段増幅器7のゲインを可変制御する構成としてもよ
く、また、これら増幅器7,10のゲインをいずれも可
変制御する構成としてもよい。
In the above embodiment, the configuration in which the gain selecting means 12 variably controls the gain of the amplifier 10 in the processing means 2 has been described. In addition, the configuration in which the gain of the pre-amplifier 7 in the sensor head 1 is variably controlled. The configuration may be such that the gains of the amplifiers 7 and 10 are both variably controlled.

【0029】次に、図5は、本発明の変位測定装置の第
2実施形態を示すブロック図である。同実施形態におい
て前記第1実施形態と同一の構成部には同一符号を附し
て説明を省略する。前記実施形態では、受光素子6の出
力を増幅する増幅器10のゲインを可変する構成につい
て説明したが、本実施形態ではセンサヘッド1の光源4
の測定光の投光パワーを可変制御する。また、増幅器1
0のゲインは固定されている。
Next, FIG. 5 is a block diagram showing a second embodiment of the displacement measuring device of the present invention. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the above-described embodiment, the configuration in which the gain of the amplifier 10 that amplifies the output of the light receiving element 6 is changed, but in the present embodiment, the light source 4 of the sensor head 1 is changed.
Variably controls the projection power of the measurement light. Amplifier 1
The gain of 0 is fixed.

【0030】上記構成においては、演算手段11は、入
力される受光量信号のレベルが予め定められた閾値を越
えたときに投光パワー選択手段20に対しレベルオーバ
ー信号を出力し、投光パワー選択手段20は光源駆動回
路5に対し投光パワーを現在の段階から1段下げる制御
を行う。このように、前述のゲイン選択手段12に代え
て投光パワー選択手段20を設け、光源4の投光パワー
を段階的に下げていく制御を行う構成においても、第1
実施形態同様に受光レベルが飽和することなく演算手段
11で常時安定した変位量の演算処理を行えるようにな
る。
In the above configuration, the calculating means 11 outputs a level over signal to the light emitting power selecting means 20 when the level of the received light quantity signal exceeds a predetermined threshold value, The selection means 20 controls the light source drive circuit 5 to lower the projection power by one stage from the current stage. As described above, even in the configuration in which the light projection power selecting means 20 is provided in place of the above-described gain selecting means 12 and the control for gradually lowering the light projection power of the light source 4 is performed, the first
As in the embodiment, the calculation means 11 can always perform a stable calculation process of the displacement amount without the light receiving level being saturated.

【0031】次に、上記実施形態で説明したゲイン、投
光パワーの可変制御のみならず、増幅器10の出力に閾
値を定めて演算手段11に入力される受光量信号のレベ
ルを可変制御する構成としてもよい。図6は、この第3
実施形態における演算手段11の内部構成を示すブロッ
ク図である。同図において、増幅器10のゲインは固定
されている。この増幅器10から出力される増幅後の受
光量信号は、A/D変換器30でA/D変換された後、
乗算器31で係数αで乗算される。この後、一対の受光
量信号は、加算手段32で和が求められ、減算手段33
で差分が求められる。加算手段32の出力では受光量に
相当する信号が得られ、減算手段33の出力では受光量
と光スポットの位置に相当する相当する信号が得られ
る。変位量演算手段34は、これら出力に基づき被測定
物Wの変位量を求める。
Next, in addition to the variable control of the gain and the projection power described in the above embodiment, a configuration in which a threshold value is set for the output of the amplifier 10 and the level of the received light amount signal input to the calculating means 11 is variably controlled. It may be. FIG. 6 illustrates this third
FIG. 3 is a block diagram illustrating an internal configuration of a calculation unit 11 according to the embodiment. In the figure, the gain of the amplifier 10 is fixed. The amplified received light amount signal output from the amplifier 10 is subjected to A / D conversion by the A / D converter 30,
Multiplier 31 multiplies by coefficient α. Thereafter, the sum of the pair of received light amount signals is obtained by the adding means 32, and the subtracting means 33
The difference is obtained by At the output of the adding means 32, a signal corresponding to the amount of received light is obtained, and at the output of the subtracting means 33, a corresponding signal corresponding to the amount of received light and the position of the light spot is obtained. The displacement calculating means 34 calculates the displacement of the workpiece W based on these outputs.

【0032】また、閾値設定手段35には、所定の受光
量を示す閾値が設定される。入力レベル可変手段36
は、前記加算手段32の出力(受光量のレベル)と、閾
値設定手段35に設定された閾値とに基づき、(閾値/
和出力)を演算して係数αを算出する。この係数αは、
乗算器31に設定される。これにより、増幅器10から
出力される受光量信号のレベルは、乗算器31で設定さ
れた係数αで調整出力される。上記構成においても、図
3記載のフローチャートに基づきSP3の閾値比較処理
で閾値より受光量信号のレベルが高いときに、乗算器3
1に設定されるαが1以下に設定されてこの受光量信号
のレベルを可変する。この受光量信号の可変時の段階
は、係数αの値に対応する段階となり、係数αの値を細
かく算出するに従い段階的ではなく連続的に可変できる
ようになる。
In the threshold setting means 35, a threshold indicating a predetermined amount of received light is set. Input level variable means 36
Is based on the output of the adding means 32 (the level of the amount of received light) and the threshold value set by the threshold value setting means 35.
(Sum output) to calculate a coefficient α. This coefficient α is
The value is set in the multiplier 31. Thus, the level of the received light amount signal output from the amplifier 10 is adjusted and output by the coefficient α set by the multiplier 31. Also in the above configuration, when the level of the received light amount signal is higher than the threshold value in the threshold value comparison process of SP3 based on the flowchart of FIG.
Α set to 1 is set to 1 or less to vary the level of the received light amount signal. The stage when the amount of received light signal varies is a stage corresponding to the value of the coefficient α. As the value of the coefficient α is finely calculated, it can be varied continuously rather than stepwise.

【0033】ところで、上記第1実施形態で説明した増
幅器10のゲイン可変と、第2実施形態で説明した光源
4の投光パワー可変と、第3実施形態での受光量信号の
レベル可変のいずれかに切り替えて制御する、あるいは
組合わせて制御する構成にできることは言うまでもな
い。また、上記各実施形態では、ゲイン選択手段12あ
るいは投光パワー選択手段20は、受光量信号のレベル
が閾値を越えたときに図4(b)に示すレベルオーバー
信号を単パルス出力し増幅器10、光源4がこの単パル
スの入力でゲイン、投光パワーを可変する構成とした
が、これに限らず、例えば、増幅器10のゲインあるい
は光源駆動回路5の投光パワーを直接所定の段に変更さ
せる制御信号を出力し、この制御信号に基づき増幅器1
0のゲイン、光源4の投光パワーを変更する構成として
もよい。
The variable gain of the amplifier 10 described in the first embodiment, the variable projection power of the light source 4 described in the second embodiment, and the variable level of the received light signal in the third embodiment are used. It goes without saying that a configuration in which control is performed by switching between the two or a combination of control is possible. In each of the above embodiments, when the level of the received light amount signal exceeds the threshold, the gain selection unit 12 or the projection power selection unit 20 outputs the level over signal shown in FIG. The light source 4 is configured to vary the gain and the projection power by the input of the single pulse. However, the present invention is not limited to this. For example, the gain of the amplifier 10 or the projection power of the light source driving circuit 5 is directly changed to a predetermined stage. And outputs a control signal to the amplifier 1 based on the control signal.
A configuration in which the gain of 0 and the projection power of the light source 4 are changed may be adopted.

【0034】被測定物Wが高速回転する場合には、受光
量信号のレベルが短時間で大幅に変動するが、上記構成
によればレベルオーバーが出たときのみゲインあるいは
投光パワーを1段下げる制御を行うため、変位量を常時
安定して求めることができるようになる。本発明はこの
ような高速回転に限らず、測定面からの受光量が大きく
変わる被測定物Wに用いて同様の作用効果を得ることが
できることは言うまでもない。
When the object to be measured W rotates at high speed, the level of the received light amount signal fluctuates greatly in a short time. According to the above configuration, the gain or the projected power is reduced by one step only when the level exceeds. Since the lowering control is performed, the displacement amount can always be obtained stably. The present invention is not limited to such a high-speed rotation, and it goes without saying that the same effect can be obtained by using the object to be measured W in which the amount of light received from the measurement surface changes greatly.

【0035】[0035]

【発明の効果】本発明の変位測定装置によれば、被測定
物の変位量を演算出力する演算手段に入力される受光量
信号のレベルを検出して前記被測定物の測定中に前記受
光量信号のレベルが所定の閾値を越える毎に対応して変
位量の演算に用いる信号のレベルを下げるための制御を
行う手段を設けた構成であるため、被測定物の測定中に
測定面の散乱状態が大きく変化し受光量信号のレベルが
大きく変動しても演算手段に対する入力が飽和すること
なく、変位量の演算を安定して実行することができる。
また、前記演算手段に入力される受光量信号のレベルに
基づきゲイン選択手段が増幅器のゲインを下げる制御を
行う構成としても同様の効果が得られる。また、前記演
算手段に入力された受光量信号のレベルに基づき投光パ
ワー選択手段が光源駆動回路の投光パワーを下げる制御
の構成としても同様の効果が得られる。このように、ゲ
イン、投光パワー、あるいは受光量信号のレベルを下げ
る制御によって、受光量信号のレベルが飽和することな
く、また、ノイズの影響を受けずにできるだけ高い信号
レベルが得られるため、変位量を正確に求めることがで
きるようになる。特に、被測定物の測定面が高速に移動
する場合、例えば測定面が高速回転する場合などにおい
て短時間で受光量信号のレベルが大きく変動してもこれ
に対応でき、変位量の演算を継続して安定状態のまま行
えるようになる。ところで、上記のゲイン制御と、投光
パワー制御と、変位量の演算に用いる信号のレベル制御
は、いずれか一つに切替自在、あるいはいずれも同時に
実行しても同様の効果を得ることができる。
According to the displacement measuring apparatus of the present invention, the level of the received light signal input to the calculating means for calculating and outputting the displacement of the object is detected, and the level of the received light is measured during the measurement of the object. Each time the level of the amount signal exceeds a predetermined threshold value, a means for performing control for lowering the level of the signal used for calculating the displacement amount is provided. Even if the scattering state changes greatly and the level of the received light amount signal changes greatly, the input to the calculating means does not saturate, and the calculation of the displacement amount can be executed stably.
Also, the same effect can be obtained by a configuration in which the gain selecting means performs control to lower the gain of the amplifier based on the level of the received light amount signal input to the calculating means. The same effect can be obtained even when the light emitting power selecting means controls the light emitting power of the light source driving circuit to lower the light emitting power based on the level of the received light amount signal input to the arithmetic means. As described above, by controlling the gain, the projection power, or the level of the received light amount signal, the signal level can be obtained as high as possible without saturating the level of the received light amount signal and without being affected by noise. The displacement amount can be accurately obtained. In particular, when the measurement surface of the object to be measured moves at high speed, for example, when the measurement surface rotates at high speed, even if the level of the received light amount signal fluctuates greatly in a short time, it can cope with this, and the calculation of the displacement amount is continued. Then, it can be performed in a stable state. By the way, the gain control, the light projection power control, and the level control of the signal used for the calculation of the displacement can be switched to any one, or the same effect can be obtained even if both are executed simultaneously. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の変位測定装置の第1実施形態を示すブ
ロック図。
FIG. 1 is a block diagram showing a first embodiment of a displacement measuring device according to the present invention.

【図2】測定開始時の設定画面を示す図。FIG. 2 is a diagram showing a setting screen at the start of measurement.

【図3】半自動モード時における処理手段のゲイン調整
動作を示すフローチャート。
FIG. 3 is a flowchart illustrating a gain adjustment operation of a processing unit in a semi-automatic mode.

【図4】処理手段の各部の信号を示すタイミングチャー
ト。
FIG. 4 is a timing chart showing signals of respective parts of the processing means.

【図5】本発明の変位測定装置の第2実施形態を示すブ
ロック図。
FIG. 5 is a block diagram showing a second embodiment of the displacement measuring device of the present invention.

【図6】本発明の第3実施形態における演算手段の内部
構成を示すブロック図。
FIG. 6 is a block diagram showing an internal configuration of a calculation unit according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…センサヘッド、2…処理手段、4…光源、5…光源
駆動回路、6…受光素子、7…増幅器、10…増幅器、
11…演算手段、12…ゲイン選択手段、14…モード
選択手段、20…投光パワー選択手段、36…入力レベ
ル可変手段。
DESCRIPTION OF SYMBOLS 1 ... Sensor head, 2 ... Processing means, 4 ... Light source, 5 ... Light source drive circuit, 6 ... Light receiving element, 7 ... Amplifier, 10 ... Amplifier
11 arithmetic operation means, 12 gain selection means, 14 mode selection means, 20 light projection power selection means, 36 input level variable means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 信治 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shinji Hamano 5--10-27 Minamiazabu, Minato-ku, Tokyo Anritsu Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の測定面に光源の測定光を照射
しその反射光を受光素子で受光して測定面の変位量を測
定する非接触型の変位測定装置において、 前記受光素子の受光量信号に基づき前記被測定物の変位
量を演算出力する演算手段と、 前記演算手段に入力される受光量信号のレベルを検出し
て前記被測定物の測定中に前記受光量信号のレベルが所
定の閾値を越える毎に対応して変位量の演算に用いる信
号のレベルを下げるための制御を行う手段と、を具備し
たことを特徴とする変位測定装置。
1. A non-contact type displacement measuring device which irradiates a measuring surface of an object to be measured with a measuring light of a light source and receives a reflected light thereof by a light receiving element to measure a displacement amount of the measuring surface. Calculating means for calculating and outputting the displacement of the object based on the received light signal; detecting the level of the received light signal input to the calculating means to detect the level of the received light signal during the measurement of the measured object A means for performing control for lowering the level of a signal used for calculating a displacement amount in response to every time a value exceeds a predetermined threshold value.
【請求項2】 被測定物の測定面に光源の測定光を照射
しその反射光を受光素子で受光して測定面の変位量を測
定する非接触型の変位測定装置において、 前記受光素子の受光量信号を増幅出力しそのゲインが可
変自在な増幅器と(10)、 前記増幅器で増幅後の受光量信号に基づき前記被測定物
の変位量を演算出力する演算手段(11)と、 前記演算手段に入力された受光量信号のレベルに基づき
前記増幅器のゲインを可変制御するものであり、前記被
測定物の測定中に前記受光量信号のレベルが所定の閾値
を越える毎に対応して前記増幅器のゲインを下げる制御
を行うゲイン選択手段(12)と、を具備したことを特
徴とする変位測定装置。
2. A non-contact type displacement measuring device which irradiates a measuring surface of an object with measuring light of a light source and receives a reflected light thereof by a light receiving element to measure a displacement amount of the measuring surface. An amplifier for amplifying and outputting the received light amount signal and having a variable gain; (10) calculating means for calculating and outputting a displacement amount of the device under test based on the received light amount signal amplified by the amplifier; and The gain of the amplifier is variably controlled based on the level of the received light amount signal input to the means, and each time the level of the received light amount signal exceeds a predetermined threshold during the measurement of the device under test, A displacement measuring device, comprising: a gain selecting means (12) for performing control to lower the gain of the amplifier.
【請求項3】 前記増幅器(10)は、ゲインが複数の
段階に可変自在であり、 前記ゲイン選択手段(12)は、前記被測定物の測定中
に前記受光量信号のレベルに基づき前記増幅器のゲイン
を対応する段階に下げる制御を行う請求項2記載の変位
測定装置。
3. The amplifier (10) has a variable gain in a plurality of stages, and the gain selecting means (12) is configured to adjust the gain of the amplifier based on the level of the received light amount signal during measurement of the device under test. 3. The displacement measuring device according to claim 2, wherein control is performed to reduce the gain of the second stage to a corresponding stage.
【請求項4】 前記増幅器(10)は、ゲインが複数の
段階に可変自在であり、 前記ゲイン選択手段(12)は、前記被測定物の測定中
に前記受光量信号のレベルが所定の閾値を越える毎に対
応して前記増幅器のゲインを1段づつ下げる制御を行う
請求項2記載の変位測定装置。
4. The amplifier (10) has a variable gain in a plurality of stages, and the gain selecting means (12) adjusts the level of the received light amount signal to a predetermined threshold during the measurement of the device under test. 3. The displacement measuring apparatus according to claim 2, wherein control is performed to decrease the gain of the amplifier one step at a time in response to each of the steps.
【請求項5】 被測定物の測定面に光源の測定光を照射
しその反射光を受光素子で受光して測定面の変位量を測
定する非接触型の変位測定装置において、 前記被測定物に照射する測定光の投光パワーを可変自在
な光源駆動回路(5)と、 前記受光素子で検出された受光量信号に基づき前記被測
定物の変位量を演算出力する演算手段(11)と、 前記演算手段に入力された受光量信号のレベルに基づき
前記光源駆動回路の投光パワーを可変制御するものであ
り、前記被測定物の測定中に前記受光量信号のレベルが
所定の閾値を越える毎に対応して前記光源駆動回路の投
光パワーを下げる制御を行う投光パワー選択手段(2
0)と、を具備したことを特徴とする変位測定装置。
5. A non-contact type displacement measuring device which irradiates a measuring surface of a measuring object with measuring light of a light source and receives a reflected light thereof by a light receiving element to measure a displacement amount of the measuring surface. A light source drive circuit (5) capable of changing the light projection power of the measurement light applied to the light source; and a calculating means (11) for calculating and outputting a displacement amount of the object to be measured based on a received light amount signal detected by the light receiving element. The light emitting power of the light source driving circuit is variably controlled based on the level of the received light amount signal input to the arithmetic means, and the level of the received light amount signal is set to a predetermined threshold during the measurement of the device under test. A projecting power selecting means (2) for controlling the projecting power of the light source driving circuit to decrease in response to every time it exceeds
0), and a displacement measuring device.
【請求項6】 前記光源駆動回路(5)は、投光パワー
が複数の段階で可変自在であり、 前記投光パワー選択手段(20)は、前記被測定物の測
定中に前記受光量信号のレベルに基づき前記光源駆動回
路の投光パワーを対応する段階に下げる制御を行う請求
項5記載の変位測定装置。
6. The light source drive circuit (5) is capable of changing the light projection power in a plurality of stages, and the light projection power selection means (20) is configured to control the light reception amount signal during the measurement of the device under test. 6. The displacement measuring apparatus according to claim 5, wherein control is performed to lower the projection power of the light source driving circuit to a corresponding stage based on the level of the light source driving circuit.
【請求項7】 前記光源駆動回路(5)は、投光パワー
が複数の段階で可変自在であり、 前記投光パワー選択手段(20)は、前記被測定物の測
定中に前記受光量信号のレベルが所定の閾値を越える毎
に対応して前記光源駆動回路の投光パワーを1段づつ下
げる制御を行う請求項5記載の変位測定装置。
7. The light source drive circuit (5) has a variable light projection power in a plurality of stages, and the light projection power selection means (20) controls the light reception signal during measurement of the device under test. 6. The displacement measuring apparatus according to claim 5, wherein control is performed to lower the projection power of the light source drive circuit by one step each time the level exceeds a predetermined threshold.
【請求項8】 被測定物の測定面に光源の測定光を照射
しその反射光を受光素子で受光して測定面の変位量を測
定する非接触型の変位測定装置において、 前記受光素子の受光量信号に基づき前記被測定物の変位
量を演算出力する演算手段(11)と、 前記演算手段に入力された受光量信号のレベルを検出し
て前記被測定物の測定中に前記受光量信号のレベルが所
定の閾値を越える毎に対応して前記演算手段に入力され
た受光量信号のレベルを下げる制御を行う入力レベル可
変手段(36)と、を具備したことを特徴とする変位測
定装置。
8. A non-contact type displacement measuring device which irradiates a measuring surface of an object to be measured with measuring light of a light source and receives a reflected light thereof by a light receiving element to measure a displacement amount of the measuring surface. Calculating means for calculating and outputting a displacement amount of the object based on the received light signal; detecting a level of the received light signal input to the calculating means to detect the level of the received light during measurement of the measured object; Displacement measuring means (36) for performing control to lower the level of the received light amount signal input to the calculating means in response to each time the signal level exceeds a predetermined threshold value. apparatus.
【請求項9】 前記請求項2に記載のゲイン選択手段
(12)による前記増幅器(10)のゲイン可変制御
と、前記請求項5に記載の投光パワー選択手段(20)
による前記光源駆動回路(5)の投光パワー制御と、前
記請求項8に記載の入力レベル可変手段(36)による
演算手段(11)に入力される受光量信号のレベル可変
と、のいずれか一つに切替自在に、あるいはいずれも同
時に実行されることを特徴とする変位測定装置。
9. The variable gain control of the amplifier (10) by the gain selecting means (12) according to claim 2, and the light projection power selecting means (20) according to claim 5.
And a variable level of a received light amount signal input to the calculating means (11) by the input level varying means (36) according to claim 8. Displacement measuring device characterized in that it can be switched to one or both are executed simultaneously.
JP04048698A 1998-02-23 1998-02-23 Displacement measuring device Expired - Fee Related JP3927306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04048698A JP3927306B2 (en) 1998-02-23 1998-02-23 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04048698A JP3927306B2 (en) 1998-02-23 1998-02-23 Displacement measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006350125A Division JP2007147635A (en) 2006-12-26 2006-12-26 Displacement measuring device

Publications (2)

Publication Number Publication Date
JPH11237208A true JPH11237208A (en) 1999-08-31
JP3927306B2 JP3927306B2 (en) 2007-06-06

Family

ID=12581934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04048698A Expired - Fee Related JP3927306B2 (en) 1998-02-23 1998-02-23 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP3927306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060873A1 (en) * 2005-11-24 2007-05-31 Kirin Techno-System Corporation Surface examination device
JP2008304215A (en) * 2007-06-05 2008-12-18 Anritsu Corp Sensor head and displacement measuring instrument
JP2013186045A (en) * 2012-03-09 2013-09-19 Nidek Co Ltd Spectacle frame shape measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060873A1 (en) * 2005-11-24 2007-05-31 Kirin Techno-System Corporation Surface examination device
JP2008304215A (en) * 2007-06-05 2008-12-18 Anritsu Corp Sensor head and displacement measuring instrument
JP2013186045A (en) * 2012-03-09 2013-09-19 Nidek Co Ltd Spectacle frame shape measurement device

Also Published As

Publication number Publication date
JP3927306B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP2662113B2 (en) Laser measuring device
KR20060020723A (en) Video signal processing circuit, video display apparatus, and video display method
JPH04316205A (en) High frequency power amplifier
JP3927306B2 (en) Displacement measuring device
JP2909159B2 (en) Smoothing processing method, noise elimination apparatus by smoothing processing, and optical pulse test apparatus using the same
JPH1123419A (en) Apparatus for measuring characteristics of optical fiber
JP2007147635A (en) Displacement measuring device
JP2007132777A (en) Impedance measuring apparatus
JP2001148230A (en) Scanning electron microscope
JP2006010361A (en) Optical displacement gage
JP3002343B2 (en) Optical pulse tester
JPH1164405A (en) Modulation analysis device and spectrum analyzer
JP2007139489A (en) Displacement sensor
JP3974670B2 (en) Optical displacement measuring device
JP2002236049A (en) Counting scale
JPH05322559A (en) Optical displacement sensor
JPH01226153A (en) Etching end point detector
JP3251461B2 (en) Control method of photoelectric switch
JPH06109465A (en) Displacement measuring device
JPH0346508A (en) Optical position measuring instrument
JP2927031B2 (en) Suspended solids concentration measurement device
JPH05126719A (en) Light modulation measuring device
JPH0194236A (en) Light pulse tester
JPH11326426A (en) Noise adding method, and device
JP2814389B2 (en) Distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041027

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060629

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees