JP3926708B2 - Hydrogen permeable membrane - Google Patents

Hydrogen permeable membrane Download PDF

Info

Publication number
JP3926708B2
JP3926708B2 JP2002240080A JP2002240080A JP3926708B2 JP 3926708 B2 JP3926708 B2 JP 3926708B2 JP 2002240080 A JP2002240080 A JP 2002240080A JP 2002240080 A JP2002240080 A JP 2002240080A JP 3926708 B2 JP3926708 B2 JP 3926708B2
Authority
JP
Japan
Prior art keywords
hydrogen
permeable membrane
hydrogen permeable
alloy
hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002240080A
Other languages
Japanese (ja)
Other versions
JP2004074070A (en
Inventor
剛 佐々木
正史 高橋
孝 海老沢
勝廣 寺尾
俊樹 兜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2002240080A priority Critical patent/JP3926708B2/en
Publication of JP2004074070A publication Critical patent/JP2004074070A/en
Application granted granted Critical
Publication of JP3926708B2 publication Critical patent/JP3926708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素透過膜に関するものである。
【0002】
【従来の技術及びその課題】
燃料電池の水素源として天然ガスや都市ガス等を使用する際、水素透過膜が組み込まれたメンブレンリアクタ方式の水蒸気改質器の適用が検討されている。当該方式の水蒸気改質器では、触媒上で天然ガス、都市ガス等の炭化水素と水蒸気とが反応することにより、水素、CO、CO2 などの混合ガスが生成する。水素透過膜は水素のみを透過することから、水素透過膜表面に到達した混合ガスのうち、水素のみが水素透過膜を透過して膜の反対側から放出される。当該方式の水蒸気改質器では、理論上、純度100%の純水素を得ることができ、これらの水素は水素利用装置である燃料電池等に供給される。
【0003】
現在の水素透過膜としては、主としてPdやPd合金が用いられている。純Pdでは水素透過性能が低く、水素透過速度を稼ぐためには大きな膜面積を必要とし、結果として水蒸気改質器も大きなものとなつてしまう。また、純Pdでは低温において水素雰囲気中で保持した場合、水素化物が生成する。一方、水蒸気改質器で緊急停止が生じる場合、水素雰囲気中で水素透過膜が冷却されることが予想される。このため、純Pdを水素透過膜として使用した場合、水素化物の生成により体積膨張が生じ、膜が破損する。
【0004】
そこで、Pdの水素透過性の向上及び低温における水素化物の生成を抑制するために、PdにAgを添加させた合金が使用されている。
【0005】
しかしながら、Pdは非常に高価であるので、従来のPdを多量に使用する水素透過膜では、改質器の価格が大きく上昇する。従つて、Pd又はPd合金に代わる安価でかつ入手が容易な材料による水素透過膜の開発が期待されている。
【0006】
水素透過能は、水素固溶度と水素拡散速度との積に比例することが知られており、この値がPdより大きい金属元素として、V、Nb、Ta等を挙げることができるが、これらは、水素が金属中に侵入することによつて水素化物を生成し易いので、水素透過膜として使用する際の温度や圧力などの条件によつては、水素化物の生成によつて体積膨張などの現象が生じ、膜が破損する。
【0007】
特公平4−74045公報、特公平5−79367公報、特公平6−98281公報には、Pdに代えてVにNi、Co、Moなどを添加した合金で構成させた水素透過膜が開示されている。VはPdと比較して安価であり、Pdを主成分とした水素透過膜と比較して原料価格は1/10以下となるが、水素透過係数はPd−Agと同等あるいはそれ以下である。
【0008】
特開2001−170460公報には、Pd合金より優れた水素透過性を有し、安価に製造できる水素透過膜を多孔基材の表面に備えた水素分離材料及びその製造方法を提供することを目的として、金属粉もしくはセラミック粉を焼結して得た多孔体の表面に、V、Nb又はTaの金属膜か、あるいは、V、Nb又はTaに対し、Ni、Co又はMoを5〜20wt%添加した合金膜を形成した水素分離材料が開示されている。
【0009】
しかしながら、純Taを低温において水素雰囲気中で保持した場合、水素化物が生成するので、純Taを水素透過膜として使用した場合、メンブレンリアクタ方式の水蒸気改質器における運転条件によつては、水素化物の生成により体積膨張が生じ、膜が破損することが予想される。また、上記の特開2001−170460公報では、水素透過膜材料を薄肉化する手法として、カソードアーク式イオンプレーティング法を用いている。しかし、水素透過膜材料の製造法としてこのような成膜法を用いる場合、膜内にピンホールが発生しやすいので、水素以外の成分が水素透過膜を通過してしまう原因になることに加え、製作費が高価になるという技術的課題を有している。
【0010】
本発明は、Taに、水素化物生成を抑制させる効果がある所定の金属元素を添加することにより、Taの水素透過能の低下を僅かな量に抑えつつ、水素化物の生成を抑制することができるという本発明者等による知見に基づいてなされたものであり、Pd又はPd合金の使用を抑制させた水素透過膜を提供し、その製作を容易かつ安価とすることを目的としている。すなわち、本発明は、Taをベース金属とし、Taに、水素化物生成を抑制させる機能がある所定の金属元素を添加することによりTa合金を得、このTa合金を少なくとも一部に有する水素透過膜とすることにより、高い水素透過能を維持しつつ、水素化物生成に伴う破損を抑制させた水素透過膜を提供することを第1の目的としている。
【0011】
【課題を解決するための手段】
本発明は、上記従来の技術的課題に鑑みてなされたもので、その構成は、次の通りである。
請求項1の発明は、水素透過膜2の少なくとも一部が、Taをベース金属として、Au、Cr、Fe、Pt、Ru、Wからなる群から選ばれる1種以上の金属元素を添加金属として添加したTa合金によつて形成されていると共に、前記Au、Cr、Fe、Pt、Ru、Wの含有量が、50原子%以下であることを特徴とする水素透過膜である。
請求項2の発明は、水素透過膜2の少なくとも一部が、Taをベース金属として、少なくともMoを添加金属として添加したTa合金を、圧延することによつて形成されていると共に、前記Moの含有量が、7原子%以下であることを特徴とする水素透過膜である。
【0012】
【発明の実施の形態】
図1は、本発明に係る水素透過膜を用いる水素透過膜ユニットを示し、この水素透過膜ユニット1は、Pd又はPd合金の使用を極力避けるために、Ta合金製の透過膜を有する水素透過膜2を備える。水素透過膜ユニット1は、金属製の枠体3を備え、水素透過膜2を枠体3及び多孔質支持体4の内の少なくとも一方に、接合部5によつて接合させている。接合部5は、メッキ、CVD(気相化学反応)、スパッタリングなどの方法によつて、水素透過膜2を枠体3又は多孔質支持体4の表面に形成することで、同時に形成され、或いは水素透過膜2を予め冷間圧延により製造し、拡散を利用して接合させて形成している。殊に、Moを添加金属として添加したTa合金を有する水素透過膜2の場合には、水素透過膜2を溶融させることなく加圧加熱する拡散接合法によつて枠体3及び多孔質支持体4の内の少なくとも一方に、接合部5によつて接合させることができる。
【0013】
多孔質支持体4は、セラミック、ガラス、ステンレス等の粉末や繊維の焼結体であり、水素を通過させる連通孔を有している。この枠体3と多孔質支持体4との間は、リークを生じないように溶接、ろう付けなどによつて接合され、接合部6を有している。
【0014】
水素透過膜2は、図2に示す3層構造とすることも可能である。これは、Ta合金製の透過膜2bの両面をPd又はPd合金製の透過膜2a,2cによつて覆つてある。なお、Pd又はPd合金製の透過膜2a,2cは、Ta合金製の透過膜2bの一側面のみに配置することも可能であり、Ta合金製の透過膜2bは、水素透過膜の少なくとも一部を形成していればよい。この場合にも、Pd又はPd合金製の透過膜2a,2c、Ta合金製の透過膜2b及び多孔質支持体4を図2に示すように重ね合わせた状態で、拡散接合法によつて全体を接合させることができる。
【0015】
Taは、一般に水素透過能に優れているが、水素化物生成に伴う耐破損性に乏しい。本発明者等は、Taに、水素化物生成を抑制させる効果があるAu、Cr、Fe、Mo、Pt、Ru、Wの群から選ばれる少なくとも1種以上の金属元素を添加することにより、Taの水素透過能の低下を僅かな量に抑えつつ、耐水素脆性が向上することを見いだした。ただし、これらの添加は、水素透過能を低下させる効果を有することから、大量添加は水素透過能を著しく減少させる。そこで、前記添加元素がAu、Cr、Fe、Pt、Ru、Wの場合、Taへの添加量は50原子%以下、好ましくは上限が30原子%であることが望ましい。また、前記添加元素がMoの場合、機械加工による薄肉化を考慮して、Taへの添加量は7原子%以下であることが望ましい。MoのTaへの添加量を7原子%以下とすれば、圧延中の割れを抑制しながら、薄板状の水素透過膜2を形成することができる。
【0016】
このような水素透過膜によれば、Taをベース金属とし、Au、Cr、Fe、Mo、Pt、Ru、Wの群から選ばれる少なくとも1種以上の金属元素を添加したTa合金によつて水素透過膜を形成することにより、水素透過性と水素化物生成に伴う破損の防止効果とを両立させることが可能である。
【0017】
Taをベース金属として、Au、Cr、Fe、Mo、Pt、Ru、Wからなる群から選ばれる1種以上の金属元素を添加金属として添加したTa合金のスラブを含むインゴットを作製し、これに対して均質化熱処理を行つた後、圧延により所要厚さの板材を作成し、これを鏡面研磨したものを水素透過膜2に使用すれば、水素透過膜2の大量生産が容易になる。
【0018】
【実施例1】
Taに添加するAu、Cr、Fe、Pt、Ru、Wの添加量を表1における試料名の欄のように変化させ、プラズマアーク溶解により、これらTa合金のインゴットを作製した。すなわち、実施例(1)〜(6)の試料は、TaにAu、Cr、Fe、Pt、Ru又はWの内のいずれかをそれぞれ10原子%含む。比較例(1)の試料は、PdにAgを23原子%含み、比較例(2)の試料は純Taからなる。また、比較例(3)〜(8)の試料は、TaにAu、Cr、Fe、Pt、Ru又はWの内のいずれかをそれぞれ70原子%含む。
【0019】
作製したインゴットは均質化熱処理を行つた後、冷間での圧延により厚さ1mmの板材を作成し、さらに焼鈍熱処理を行つた。焼鈍処理した板材から、直径20mmの円板を切り出して、鏡面研磨したものを水素透過膜2の試験片とした。この試験片を、水素透過試験装置に設置し、水素圧力を一次側2気圧、二次側1気圧として、500℃における水素透過速度を測定した。水素透過係数は次の式(1)により算出し、この係数により水素透過性能を比較した。
【0020】
Q=J・t/A/(P1 1/2 −P2 1/2 )・・・(1)
但し、Q:水素透過係数、J:水素透過速度、t:膜厚、A:膜面積、P1 :一次側圧力、P2 :二次側圧力
【0021】
また、低温での割れ性については、メンブレンリアクタ方式の水蒸気改質器における緊急停止及びその後の再始動を模擬するために、水素透過試験後に試験時の水素圧力を維持したままで室温まで冷却した後、室温で水素を排気してから再び500℃に昇温させた。また、室温まで水素雰囲気で冷却した時点で試験片を取り出し、X線回折測定による水素化物の生成の有無を確認した。
【0022】
表1に、これらの結果をまとめて示してある。比較例(1)のPd−23Agの水素透過係数は6.3×10-10 3 m/m2 /s/Pa1/2 である。この試験片を水素雰囲気中で室温まで冷却し、その後再加熱しても割れの発生は認められなかつた。また、水素雰囲気で室温まで冷却した直後のX線回折測定では、水素化物の生成は認められなかつた。比較例(2)のTaはPd−23Agの約8倍の水素透過係数を示すが、水素雰囲気中における冷却及びその後の加熱過程において割れが発生する。水素雰囲気で冷却した試験片についてX線回折測定を行つたところ、水素化物の生成が認められた。すなわち、Taは水素化物の生成に伴つて体積膨張が生じ、これにより内部に歪みが発生して破損に至つたと推察される。
【0023】
実施例(1)〜(6)は、TaにAu、Cr、Fe、Pt、Ru、Wをそれぞれ10原子%添加した。いずれの場合においても水素透過係数はTaより減少するものの、比較例(1)であるPd−23Agよりは高い水素透過係数を示している。これらの試験片を水素雰囲気中において冷却し、さらにその後再加熱しても、割れは認められなかつた。また、これらの合金を水素雰囲気で冷却した直後にX線回折測定を行つたところ、水素化物の生成は認められなかつた。つまり、TaにAu、Cr、Fe、Pt、Ru、Wを添加することにより、水素化物の生成に伴う割れの防止効果があると判断される。
【0024】
しかし、比較例(3)〜(8)に示すように、Taに対するAu、Cr、Fe、Pt、Ru又はWの添加量が70原子%を越えると、水素透過係数を減少させる作用が大きくなり、Pd−23Agよりも水素透過係数が小さくなる。
【0025】
【表1】

Figure 0003926708
【0026】
【実施例2】
TaにMoの添加量を表2における試料名の欄のように変化させ、プラズマアーク溶解により、これらTa合金のインゴットを作製した。すなわち、実施例及び比較例〔3〕におけるMoの添加量は、それぞれ5.5原子%、8.6原子%である。作製したインゴットは、均質化熱処理を行つた後、冷間での圧延により、厚さ0.1mmの板材を作成し、さらに焼鈍熱処理を行つた。焼鈍処理した板材は、直径20mmの円板を切り出して、鏡面研磨したものをTa合金製の水素透過膜2の試験片とした。
【0027】
この試験片を、水素透過試験装置に設置し、水素圧力を一次側1.2気圧、二次側1気圧として、500℃における水素透過速度を測定した。水素透過係数は上記(1)式により算出し、この係数により水素透過性能を比較した。比較例(1)及び(2)は、実施例1の比較例(1)及び(2)とそれぞれ同様の成分であり、実質的に同じとみなせる水素透過係数が得られた。また、低温での割れ性については、メンブレンリアクタ方式の水蒸気改質器における緊急停止及びその後の再始動を模擬するために、水素透過試験後に試験時の水素圧力を維持したままで室温まで冷却した後、室温で水素を排気してから再び500℃に昇温させた。また、室温まで水素雰囲気で冷却した時点で試験片を取り出し、X線回折測定による水素化物の生成の有無を確認した。
【0028】
表2に、これらの結果をまとめて示してある。比較例(1)のPd−23Agの水素透過係数は5.8×10-10 3 m/m2 /s/Pa1/2 である。この試験片を水素雰囲気中で室温まで冷却し、その後再加熱しても割れの発生は認められなかつた。また、水素雰囲気で室温まで冷却した直後のX線回折測定では、水素化物の生成は認められなかつた。比較例(2)のTaはPd−23Agの約8倍の水素透過係数を示すが、水素雰囲気中における冷却及びその後の加熱において割れが発生する。水素雰囲気で冷却した試験片についてX線回折測定を行つたところ、水素化物の生成が認められた。
【0029】
これに対し、実施例では、TaにMoを5.5原子%添加しており、水素透過係数はTa(比較例(2))より減少するものの、比較例(1)であるPd−23Agよりは高い水素透過係数を示している。実施例の試験片を水素雰囲気中において冷却し、さらにその後再加熱しても、割れは認められなかつた。また、実施例の合金を水素雰囲気で冷却した直後にX線回折測定を行つたところ、水素化物が認められなかつた。つまり、TaにMoを添加することにより、水素化物の生成に伴う割れの防止効果があると判断される。
【0030】
しかし、比較例〔3〕に示すように、Moの添加量が7原子%を越えると、圧延過程において水素透過膜材料に割れが生じてしまう。従つて、安価に水素透過膜材料を薄肉化することが困難となる。よつて、Moを添加金属として添加したTa合金を圧延することにより、水素透過膜2を形成させる場合、つまり、水素透過膜2の少なくとも一部を、Taをベース金属として、少なくともMoを添加金属として添加したTa合金を圧延することによつて形成する場合には、Moの含有量は7原子%以下とすることが望ましい。
【0031】
【表2】
Figure 0003926708
【0032】
【発明の効果】
以上の説明によつて理解されるように、本発明に係る水素透過膜によれば、次の効果を奏することができる。
水素透過膜の少なくとも一部を、Taをベース金属とし、Au、Cr、Fe、Mo、Pt、Ru、Wからなる群から選ばれる少なくとも1種以上の金属元素を添加したTa合金によつて形成させることにより、Pd又はPd合金より同等以上に水素透過性又は水素化物生成に伴う割れの防止効果に優れる水素透過膜を得ることができる。
【0033】
加えて、水素透過膜の少なくとも一部を入手容易かつ安価な材料によつて製作し、水素透過膜におけるPd又はPd合金の使用量を大幅に削減し、或いは零にすることも可能である。これにより、水素透過膜の製作を容易かつ安価とすることができる。
【0034】
請求項のように、水素透過膜の少なくとも一部が、Taをベース金属として、Moを添加金属として添加したTa合金を、圧延することによつて形成されていれば、ピンホールなどのない良質な水素透過膜の能率的な生産が容易かつ安価になる。
【0035】
そして、Moの含有量を7原子%以下とすれば、圧延過程における割れを生じさせることなく、所要厚さの水素透過膜を良好に形成できる。
【図面の簡単な説明】
【図1】 本発明の1実施の形態に係る水素透過膜を備える水素透過膜ユニットの概略を示す断面図。
【図2】 他の構造例に係る水素透過膜ユニットの要部を示す拡大図。
【符号の説明】
1:水素透過膜ユニット、2:水素透過膜、2a:膜(Pd又はPd合金)、2b:Ta合金製の透過膜、2c:膜(Pd又はPd合金)、3:枠体、4:多孔質支持体、5,6:接合部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen permeable membrane.
[0002]
[Prior art and problems]
When natural gas, city gas, or the like is used as a hydrogen source of a fuel cell, application of a membrane reactor type steam reformer in which a hydrogen permeable membrane is incorporated has been studied. In such a steam reformer, a hydrocarbon such as natural gas or city gas reacts with steam on the catalyst to generate a mixed gas such as hydrogen, CO, or CO 2 . Since the hydrogen permeable membrane only transmits hydrogen, only the hydrogen out of the mixed gas that has reached the surface of the hydrogen permeable membrane permeates the hydrogen permeable membrane and is released from the opposite side of the membrane. The steam reformer of this system can theoretically obtain pure hydrogen having a purity of 100%, and these hydrogen are supplied to a fuel cell or the like which is a hydrogen utilization device.
[0003]
Pd and Pd alloys are mainly used as the current hydrogen permeable membrane. Pure Pd has low hydrogen permeation performance and requires a large membrane area to increase the hydrogen permeation rate, resulting in a large steam reformer. In addition, pure Pd produces hydride when kept in a hydrogen atmosphere at a low temperature. On the other hand, when an emergency stop occurs in the steam reformer, the hydrogen permeable membrane is expected to be cooled in a hydrogen atmosphere. For this reason, when pure Pd is used as a hydrogen permeable membrane, volume expansion occurs due to generation of hydride, and the membrane is damaged.
[0004]
Therefore, an alloy in which Ag is added to Pd is used in order to improve the hydrogen permeability of Pd and suppress the formation of hydride at a low temperature.
[0005]
However, since Pd is very expensive, the price of the reformer is greatly increased in the conventional hydrogen permeable membrane using a large amount of Pd. Therefore, development of a hydrogen permeable membrane made of an inexpensive and easily available material to replace Pd or Pd alloy is expected.
[0006]
Hydrogen permeability is known to be proportional to the product of hydrogen solid solubility and hydrogen diffusion rate, and examples of metal elements having this value larger than Pd include V, Nb, Ta, etc. Is easy to produce hydride due to hydrogen entering the metal, so depending on conditions such as temperature and pressure when used as a hydrogen permeable membrane, volume expansion due to hydride production, etc. This occurs and the membrane is damaged.
[0007]
JP-B-4-74045, JP-B-5-79367, and JP-B-6-98281 disclose hydrogen permeable membranes made of an alloy in which Ni, Co, Mo or the like is added to V instead of Pd. Yes. V is less expensive than Pd, and the raw material price is 1/10 or less compared with a hydrogen permeable membrane containing Pd as a main component, but the hydrogen permeability coefficient is equal to or less than Pd-Ag.
[0008]
Japanese Patent Application Laid-Open No. 2001-170460 has an object to provide a hydrogen separation material having a hydrogen permeable membrane on the surface of a porous substrate, which has hydrogen permeability superior to that of a Pd alloy and can be produced at low cost, and a method for producing the same As described above, the surface of the porous body obtained by sintering metal powder or ceramic powder is a metal film of V, Nb or Ta, or 5 to 20 wt% of Ni, Co or Mo with respect to V, Nb or Ta. A hydrogen separation material in which an added alloy film is formed is disclosed.
[0009]
However, when pure Ta is held in a hydrogen atmosphere at a low temperature, a hydride is generated. Therefore, when pure Ta is used as a hydrogen permeable membrane, depending on the operating conditions in the membrane reactor type steam reformer, It is expected that volume expansion will occur due to the formation of the chemical compound and the membrane will be damaged. Moreover, in said Unexamined-Japanese-Patent No. 2001-170460, the cathode arc type ion plating method is used as a method of thinning a hydrogen permeable membrane material. However, when such a film formation method is used as a method for producing a hydrogen permeable membrane material, pinholes are likely to be generated in the membrane, which causes components other than hydrogen to pass through the hydrogen permeable membrane. The technical problem is that the production cost is high.
[0010]
The present invention can suppress the formation of hydride while suppressing a decrease in the hydrogen permeability of Ta to a slight amount by adding a predetermined metal element having an effect of suppressing hydride generation to Ta. The present invention has been made on the basis of the knowledge of the present inventors, and aims to provide a hydrogen permeable membrane in which the use of Pd or a Pd alloy is suppressed, and to make its manufacture easy and inexpensive. That is, the present invention provides a Ta alloy by adding a predetermined metal element having Ta as a base metal and having a function of suppressing hydride generation, and having at least part of the Ta alloy. Thus, a first object is to provide a hydrogen permeable membrane that maintains high hydrogen permeability and suppresses breakage associated with hydride generation.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of the above-described conventional technical problems, and the configuration thereof is as follows.
According to the first aspect of the present invention, at least a part of the hydrogen permeable membrane 2 includes Ta as a base metal and one or more metal elements selected from the group consisting of Au, Cr, Fe, Pt, Ru, and W as an additive metal. the added together are by connexion formed on Ta alloy, the Au, Cr, Fe, Pt, Ru, the content of W, a hydrogen permeable membrane, characterized in that at most 50 atomic%.
According to a second aspect of the invention, at least part of the hydrogen permeable membrane 2, a Ta as the base metal, a Ta alloy containing at least Mo as the additive metal, with are by connexion formed to rolling, the Mo The hydrogen permeable membrane is characterized in that the content is 7 atomic% or less .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a hydrogen permeable membrane unit using a hydrogen permeable membrane according to the present invention. This hydrogen permeable membrane unit 1 has a hydrogen permeable membrane having a Ta alloy permeable membrane in order to avoid the use of Pd or Pd alloy as much as possible. A membrane 2 is provided. The hydrogen permeable membrane unit 1 includes a metal frame 3, and the hydrogen permeable membrane 2 is bonded to at least one of the frame 3 and the porous support 4 by a bonding portion 5. The joint 5 is formed simultaneously by forming the hydrogen permeable film 2 on the surface of the frame 3 or the porous support 4 by a method such as plating, CVD (vapor phase chemical reaction), sputtering, or the like. The hydrogen permeable membrane 2 is manufactured in advance by cold rolling and joined by diffusion. In particular, in the case of the hydrogen permeable membrane 2 having a Ta alloy to which Mo is added as an additive metal, the frame 3 and the porous support by the diffusion bonding method in which the hydrogen permeable membrane 2 is heated under pressure without melting. It can be joined to at least one of 4 by a joint 5.
[0013]
The porous support 4 is a sintered body of powder or fiber such as ceramic, glass, and stainless steel, and has a communication hole through which hydrogen passes. The frame 3 and the porous support 4 are joined by welding, brazing, or the like so as not to cause a leak, and have a joint 6.
[0014]
The hydrogen permeable membrane 2 may have a three-layer structure shown in FIG. This is because both surfaces of the Ta alloy permeable membrane 2b are covered with Pd or Pd alloy permeable membranes 2a and 2c. The Pd or Pd alloy permeable membranes 2a and 2c can be disposed only on one side surface of the Ta alloy permeable membrane 2b. The Ta alloy permeable membrane 2b is at least one of the hydrogen permeable membranes. What is necessary is just to form the part. Also in this case, the Pd or Pd alloy permeable membranes 2a and 2c, the Ta alloy permeable membrane 2b and the porous support 4 are overlapped as shown in FIG. Can be joined.
[0015]
Ta is generally excellent in hydrogen permeability, but lacks breakage resistance associated with hydride generation. The inventors have added Ta to at least one metal element selected from the group consisting of Au, Cr, Fe, Mo, Pt, Ru, and W, which has an effect of suppressing hydride generation. It was found that the hydrogen embrittlement resistance was improved while suppressing the decrease in hydrogen permeability of the resin. However, since these additions have the effect of reducing the hydrogen permeability, large additions significantly reduce the hydrogen permeability. Therefore, when the additive element is Au, Cr, Fe, Pt, Ru, or W, the amount added to Ta is preferably 50 atomic% or less, and preferably the upper limit is 30 atomic%. When the additive element is Mo, the amount added to Ta is preferably 7 atomic% or less in consideration of thinning by machining. If the addition amount of Mo to Ta is 7 atomic% or less, the thin plate-like hydrogen permeable film 2 can be formed while suppressing cracking during rolling.
[0016]
According to such a hydrogen permeable membrane, hydrogen is produced by a Ta alloy containing Ta as a base metal and added with at least one metal element selected from the group consisting of Au, Cr, Fe, Mo, Pt, Ru, and W. By forming the permeable membrane, it is possible to achieve both hydrogen permeability and the effect of preventing breakage associated with hydride generation.
[0017]
An ingot including a Ta alloy slab in which Ta is a base metal and one or more metal elements selected from the group consisting of Au, Cr, Fe, Mo, Pt, Ru, and W are added as an additive metal is prepared. On the other hand, when a homogenized heat treatment is performed, a plate material having a required thickness is prepared by rolling, and a mirror-polished plate material is used for the hydrogen permeable membrane 2, mass production of the hydrogen permeable membrane 2 is facilitated.
[0018]
[Example 1]
The amounts of Au, Cr, Fe, Pt, Ru, and W added to Ta were changed as shown in the column of sample names in Table 1, and ingots of these Ta alloys were produced by plasma arc melting. That is, the samples of Examples (1) to (6) each contain 10 atomic% of any of Au, Cr, Fe, Pt, Ru, and W in Ta. The sample of the comparative example (1) contains 23 atomic% of Ag in Pd, and the sample of the comparative example (2) is made of pure Ta. Further, the samples of Comparative Examples (3) to (8) each contain 70 atomic% of any of Au, Cr, Fe, Pt, Ru, and W in Ta.
[0019]
The produced ingot was subjected to a homogenization heat treatment, and then a plate material having a thickness of 1 mm was prepared by cold rolling, followed by an annealing heat treatment. A disk having a diameter of 20 mm was cut out from the annealed plate material and mirror-polished to obtain a test piece of the hydrogen permeable membrane 2. This test piece was installed in a hydrogen permeation test apparatus, and the hydrogen permeation rate at 500 ° C. was measured with the hydrogen pressure set to 2 atm on the primary side and 1 atm on the secondary side. The hydrogen permeation coefficient was calculated by the following equation (1), and the hydrogen permeation performance was compared based on this coefficient.
[0020]
Q = J · t / A / (P 1 1/2 −P 2 1/2 ) (1)
Where Q: hydrogen permeation coefficient, J: hydrogen permeation rate, t: film thickness, A: membrane area, P 1 : primary pressure, P 2 : secondary pressure
For cracking at low temperature, the membrane reactor type steam reformer was cooled to room temperature while maintaining the hydrogen pressure during the test after the hydrogen permeation test in order to simulate an emergency stop and subsequent restart. Thereafter, hydrogen was evacuated at room temperature, and the temperature was raised to 500 ° C. again. Moreover, when it cooled to room temperature by hydrogen atmosphere, the test piece was taken out and the presence or absence of the production | generation of the hydride by X-ray diffraction measurement was confirmed.
[0022]
Table 1 summarizes these results. The hydrogen permeation coefficient of Pd-23Ag in Comparative Example (1) is 6.3 × 10 −10 m 3 m / m 2 / s / Pa 1/2 . Even when this specimen was cooled to room temperature in a hydrogen atmosphere and then reheated, no cracks were observed. Further, in the X-ray diffraction measurement immediately after cooling to room temperature in a hydrogen atmosphere, generation of hydride was not recognized. Ta of Comparative Example (2) shows a hydrogen permeation coefficient about 8 times that of Pd-23Ag, but cracking occurs during cooling in a hydrogen atmosphere and subsequent heating. When the X-ray diffraction measurement was performed on the test piece cooled in a hydrogen atmosphere, generation of hydride was observed. That is, it is presumed that the volume expansion of Ta occurs with the generation of hydride, which causes distortion inside and leads to breakage.
[0023]
In Examples (1) to (6), 10 atomic% of Au, Cr, Fe, Pt, Ru, and W was added to Ta. In any case, the hydrogen permeation coefficient is lower than that of Ta, but the hydrogen permeation coefficient is higher than that of Pd-23Ag which is the comparative example (1). Even when these test pieces were cooled in a hydrogen atmosphere and then reheated, no cracks were observed. Further, when X-ray diffraction measurement was performed immediately after these alloys were cooled in a hydrogen atmosphere, generation of hydride was not recognized. That is, by adding Au, Cr, Fe, Pt, Ru, and W to Ta, it is determined that there is an effect of preventing cracks associated with hydride generation.
[0024]
However, as shown in Comparative Examples (3) to (8), when the added amount of Au, Cr, Fe, Pt, Ru, or W with respect to Ta exceeds 70 atomic%, the effect of reducing the hydrogen permeability coefficient increases. The hydrogen permeation coefficient is smaller than that of Pd-23Ag.
[0025]
[Table 1]
Figure 0003926708
[0026]
[Example 2]
The amount of addition of Mo to Ta was changed as shown in the column of the sample name in Table 2, and ingots of these Ta alloys were produced by plasma arc melting. That is, the addition amounts of Mo in the example and the comparative example [3] are 5.5 atomic% and 8.6 atomic%, respectively. The produced ingot was subjected to a homogenization heat treatment, and then a plate material having a thickness of 0.1 mm was prepared by cold rolling, and further subjected to an annealing heat treatment. As the annealed plate material, a 20 mm diameter disk was cut out and mirror-polished to obtain a test piece of the hydrogen permeable membrane 2 made of Ta alloy.
[0027]
This test piece was installed in a hydrogen permeation test apparatus, and the hydrogen permeation rate at 500 ° C. was measured with a hydrogen pressure of 1.2 atm on the primary side and 1 atm on the secondary side. The hydrogen permeation coefficient was calculated by the above equation (1), and the hydrogen permeation performance was compared based on this coefficient. Comparative Examples (1) and (2) were the same components as Comparative Examples (1) and (2) of Example 1, respectively, and a hydrogen permeation coefficient that could be regarded as substantially the same was obtained. For cracking at low temperature, the membrane reactor type steam reformer was cooled to room temperature while maintaining the hydrogen pressure during the test after the hydrogen permeation test in order to simulate an emergency stop and subsequent restart. Thereafter, hydrogen was evacuated at room temperature, and the temperature was raised to 500 ° C. again. Moreover, when it cooled to room temperature by hydrogen atmosphere, the test piece was taken out and the presence or absence of the production | generation of the hydride by X-ray diffraction measurement was confirmed.
[0028]
Table 2 summarizes these results. The hydrogen permeation coefficient of Pd-23Ag in Comparative Example (1) is 5.8 × 10 −10 m 3 m / m 2 / s / Pa 1/2 . Even when this specimen was cooled to room temperature in a hydrogen atmosphere and then reheated, no cracks were observed. Further, in the X-ray diffraction measurement immediately after cooling to room temperature in a hydrogen atmosphere, generation of hydride was not recognized. Ta of Comparative Example (2) shows a hydrogen permeability coefficient about 8 times that of Pd-23Ag, but cracking occurs in cooling in a hydrogen atmosphere and subsequent heating. When the X-ray diffraction measurement was performed on the test piece cooled in a hydrogen atmosphere, generation of hydride was observed.
[0029]
On the other hand, in Example, 5.5 atomic% of Mo is added to Ta, and the hydrogen permeation coefficient is smaller than that of Ta (Comparative Example (2)), but from Pd-23Ag which is Comparative Example (1). Indicates a high hydrogen permeation coefficient. Even when the test piece of the example was cooled in a hydrogen atmosphere and then reheated, no cracks were observed. Further, when X-ray diffraction measurement was performed immediately after the alloy of the example was cooled in a hydrogen atmosphere, no hydride was observed. That is, by adding Mo to Ta, it is determined that there is an effect of preventing cracks associated with hydride generation.
[0030]
However, as shown in Comparative Example [3], when the amount of Mo added exceeds 7 atomic%, the hydrogen permeable membrane material is cracked during the rolling process. Therefore, it is difficult to reduce the thickness of the hydrogen permeable membrane material at a low cost. Therefore, in the case where the hydrogen permeable film 2 is formed by rolling a Ta alloy added with Mo as an additive metal, that is, at least a part of the hydrogen permeable film 2 is made of Ta as a base metal and at least Mo is added as a metal. When the Ta alloy added as is formed by rolling, the Mo content is preferably 7 atomic% or less.
[0031]
[Table 2]
Figure 0003926708
[0032]
【The invention's effect】
As understood from the above description, the hydrogen permeable membrane according to the present invention can provide the following effects.
At least a part of the hydrogen permeable film is formed of a Ta alloy containing Ta as a base metal and added with at least one metal element selected from the group consisting of Au, Cr, Fe, Mo, Pt, Ru, and W. By doing so, it is possible to obtain a hydrogen permeable membrane that is superior to Pd or Pd alloy in hydrogen permeability or the effect of preventing cracks associated with hydride generation.
[0033]
In addition, at least a part of the hydrogen permeable membrane can be made of an easily available and inexpensive material, and the amount of Pd or Pd alloy used in the hydrogen permeable membrane can be greatly reduced or made zero. Thereby, manufacture of a hydrogen permeable film can be made easy and cheap.
[0034]
If at least a part of the hydrogen permeable membrane is formed by rolling a Ta alloy containing Ta as a base metal and Mo as an additive metal as in claim 2 , there is no pinhole or the like. Efficient production of good quality hydrogen permeable membranes is easy and inexpensive.
[0035]
And if content of Mo shall be 7 atomic% or less, the hydrogen permeable film of required thickness can be favorably formed, without producing the crack in a rolling process.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a hydrogen permeable membrane unit including a hydrogen permeable membrane according to an embodiment of the present invention.
FIG. 2 is an enlarged view showing a main part of a hydrogen permeable membrane unit according to another structural example.
[Explanation of symbols]
1: hydrogen permeable membrane unit, 2: hydrogen permeable membrane, 2a: membrane (Pd or Pd alloy), 2b: permeable membrane made of Ta alloy, 2c: membrane (Pd or Pd alloy), 3: frame, 4: porous Quality support, 5, 6: joint.

Claims (2)

水素透過膜(2)の少なくとも一部が、Taをベース金属として、Au、Cr、Fe、Pt、Ru、Wからなる群から選ばれる1種以上の金属元素を添加金属として添加したTa合金によつて形成されていると共に、前記Au、Cr、Fe、Pt、Ru、Wの含有量が、50原子%以下であることを特徴とする水素透過膜。At least a part of the hydrogen permeable membrane (2) is a Ta alloy containing Ta as a base metal and one or more metal elements selected from the group consisting of Au, Cr, Fe, Pt, Ru, and W added as an additive metal. Therefore , the content of Au, Cr, Fe, Pt, Ru, and W is 50 atomic% or less . 水素透過膜(2)の少なくとも一部が、Taをベース金属として、少なくともMoを添加金属として添加したTa合金を、圧延することによつて形成されていると共に、前記Moの含有量が、7原子%以下であることを特徴とする水素透過膜。At least a part of the hydrogen permeable membrane (2) is formed by rolling a Ta alloy containing Ta as a base metal and at least Mo as an additive metal, and the Mo content is 7 A hydrogen permeable membrane characterized in that it is at most atomic% .
JP2002240080A 2002-08-21 2002-08-21 Hydrogen permeable membrane Expired - Fee Related JP3926708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240080A JP3926708B2 (en) 2002-08-21 2002-08-21 Hydrogen permeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240080A JP3926708B2 (en) 2002-08-21 2002-08-21 Hydrogen permeable membrane

Publications (2)

Publication Number Publication Date
JP2004074070A JP2004074070A (en) 2004-03-11
JP3926708B2 true JP3926708B2 (en) 2007-06-06

Family

ID=32022965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240080A Expired - Fee Related JP3926708B2 (en) 2002-08-21 2002-08-21 Hydrogen permeable membrane

Country Status (1)

Country Link
JP (1) JP3926708B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415742B2 (en) * 2004-04-21 2010-02-17 株式会社Ihi Method for producing hydrogen separation sheet, powder rolling apparatus and powder rolling method
JP4607510B2 (en) * 2004-07-26 2011-01-05 トヨタ自動車株式会社 Hydrogen permeable membrane
JP4714064B2 (en) * 2006-03-31 2011-06-29 大日本印刷株式会社 Method for producing hydrogen purification filter
KR20150014976A (en) * 2007-04-27 2015-02-09 에이치. 씨. 스타아크 아이앤씨 Tantalum based alloy that is resistant to aqueous corrosion
JP5085385B2 (en) * 2008-03-19 2012-11-28 東京瓦斯株式会社 Hydrogen separation method using Nb-W alloy membrane
JP5584477B2 (en) * 2010-01-15 2014-09-03 東京瓦斯株式会社 Two-stage hydrogen separation reformer
JP5284293B2 (en) * 2010-01-16 2013-09-11 東京瓦斯株式会社 Hydrogen separation system using 5A group metal hydrogen separation membrane
JP5732768B2 (en) * 2010-07-30 2015-06-10 東京瓦斯株式会社 Method for estimating hydrogen permeation rate, hydrogen production apparatus and operation method thereof
JP2012250234A (en) * 2012-07-28 2012-12-20 Tokyo Gas Co Ltd HYDROGEN SEPARATION MEMBRANE MADE OF Nb-W-BASED ALLOY FILM

Also Published As

Publication number Publication date
JP2004074070A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
KR101290942B1 (en) Multiple phase alloys for hydrogen separation-purification and method for preparing the alloys, and metal membranes for hydrogen separation-purification and method for preparing the metal membranes
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP5998022B2 (en) Separation membrane, hydrogen separation membrane provided with the same, and hydrogen separation apparatus provided with the hydrogen separation membrane
KR20130142467A (en) Titanium-based bulk amorphous matrix composite and method of fabricating thereof
US9266071B2 (en) Hydrogen separation alloy and method for producing same
JP3926708B2 (en) Hydrogen permeable membrane
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JP2006118035A (en) Crystalline dual-phase hydrogen permeable alloy and crystalline dual-phase hydrogen permeable alloy film
KR101493473B1 (en) Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane
JP2007077445A (en) Hydrogen permeable alloy and method for producing the same
JP2006265638A (en) Compound phase hydrogen permeation alloy and hydrogen permeation alloy membrane
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
US20060213368A1 (en) Permeable film for separating hydrogen
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2006274297A (en) Dual phase alloy for hydrogen separation and refining
JP2006274298A (en) Diplophase alloy for separating/refining hydrogen and manufacturing method therefor
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
JP4018030B2 (en) Hydrogen permeable membrane and manufacturing method thereof
JP5803928B2 (en) Hydrogen separation membrane
JP6257229B2 (en) Alloys and brazing materials
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2009291742A (en) Hydrogen permeation member and hydrogen generating reactor using the same
JP5867502B2 (en) Hydrogen separation membrane and hydrogen separator
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method
JP2005279484A (en) Hydrogen permeable membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees