JP3925433B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3925433B2
JP3925433B2 JP2003055517A JP2003055517A JP3925433B2 JP 3925433 B2 JP3925433 B2 JP 3925433B2 JP 2003055517 A JP2003055517 A JP 2003055517A JP 2003055517 A JP2003055517 A JP 2003055517A JP 3925433 B2 JP3925433 B2 JP 3925433B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
water
hot
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055517A
Other languages
Japanese (ja)
Other versions
JP2004263954A (en
Inventor
龍太 近藤
竹司 渡辺
宣彦 藤原
立群 毛
一彦 丸本
英樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003055517A priority Critical patent/JP3925433B2/en
Publication of JP2004263954A publication Critical patent/JP2004263954A/en
Application granted granted Critical
Publication of JP3925433B2 publication Critical patent/JP3925433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯装置としては、例えば、ヒートポンプサイクル中の放熱器に給水管と給湯回路とを接続し、給水管からの水道水を放熱器で加熱してそのまま給湯端末へ出湯するいわゆる瞬間湯沸し方の給湯装置構成を備え、圧縮機の回転数を変化させて出湯温度を制御しているものがあった(特許文献1参照)。
【0003】
図7は前記文献に記載された従来のヒートポンプ給湯装置を示すものである。図7において、閉回路に構成される冷媒流路1で圧縮機2、放熱器である給湯熱交換器3、減圧手段4、吸熱器5が接続された冷媒循環回路7と、給湯熱交換器3の冷媒流路8と熱交換を行う給湯熱交換器3内の水流路9と、この水流路9に水道水を供給する給水管11と、前記水流路9とシャワーや蛇口等の給湯端末12とを接続する給湯回路13と、給湯回路13に設け給湯温度を検出する温度センサ14と、圧縮機2の回転数を制御するインバータ15を備え、圧縮機2を温度センサ14の検出温度と設定温度との差に応じてインバータ15の出力周波数を変換するようにしていた。すなわち従来の給湯装置では設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御するようにしていた。
【0004】
【特許文献1】
特開平2−223767号公報
【0005】
【発明が解決しようとする課題】
一般に給湯時における給湯負荷は一定ではない。特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変ってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと小流量である。また、季節による給水温度の変化によっても給湯負荷は大きく変る。
【0006】
しかしながら、前記従来の構成では、単一の給湯熱交換器や吸熱器に対して単一の圧縮機の回転数を変えるだけで給湯熱量を制御しようとした場合に、まずシャワー等の大流量の給湯負荷に対応するために大型の圧縮機に大型の給湯熱交換器や吸熱器が必要になり、こうした大型の装置では温度や圧力の立ち上がりが遅くなるうえに、設置スペースが大きくなる。そして、大型の給湯熱交換器や吸熱器を有する装置では、流量や水温の変化により給湯負荷は大きくかわるので、小さな給湯負荷に対して能力を低くしようとする場合に限界があり、こうした低負荷に対応しにくくなる不都合が生じてくる。例えば冬場のシャワーと風呂の湯張りの同時使用といった大能力から、夏場の食器洗いなどの微小能力までの幅広い給湯能力をカバーできず、シャワー温度が低下したり、食器洗いで熱い湯がでたりするなどの不都合がでる可能性があった。さらにまた、給湯熱交換器を大能力化して大熱量を熱交換できるようにすると、伝熱面積の確保のために水流路の流路長が長くなったり流路断面積が小さくなったりして流路抵抗が増大し、大流量の水を流通させにくくなっていた。
【0007】
以上のように上記従来のヒートポンプ給湯装置では、給湯負荷の大小に関わりなく給水管からの水道水を給湯熱交換器で瞬時に加熱し給湯を行うので、大流量の給湯負荷に対応するために、非常に大型の装置が必要になるという課題を有していた。また、大きい給湯負荷に対応するために装置が大型化するとともに、大型の装置で圧縮機の回転数を変えるだけの制御では能力変更幅に限界があり、幅広い給湯負荷への対応が困難であると同時に大流量への対応も困難になるという課題があった。
【0008】
一方、深夜蓄熱型の電気温水器のように深夜電力を利用して貯湯タンクに湯を沸かすタイプのものも従来より知られている。しかしながら、このようなタイプのヒートポンプ給湯装置は、一日分の給湯負荷を賄うだけの湯を深夜に沸かすため、貯湯タンクの容量を300Lから400Lを超えるような大きな蓄熱サイズが必要で、このような大容量のタンクは、例えば集合住宅のパイプシャフトなどには格納できないなど、設置のために大きなスペースが必要となり、設置性が非常に悪いという課題もあった。
【0009】
本発明は、前記従来の課題を解決するもので、広い能力幅を有し、貯湯タンクの大型化が必要ないヒートポンプ給湯装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、放熱器と吸熱器とを有してヒートポンプサイクルをなす冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた給湯熱交換器と、前記水流路に水道水を供給する第1給水管と、前記水流路で加熱された給湯用水を給湯端末へと通水するように接続する第1給湯管と、湯を貯えるタンクと、前記タンクと前記水流路を接続し前記タンク内の水を前記水流路で加熱して前記タンクに戻す循環路と、前記タンクの貯湯を給湯端末へと通水するように接続する第2給湯管と、前記第1給湯管と前記第2給湯管とを接続する第1混合手段とを備えたものである。
【0011】
これによって、水道水を給湯熱交換器で加熱するのとは別にタンクに貯めた湯を出湯して足し合わせるので、給湯熱交換器での加熱量が不足していても給湯使用量に対する不足分を補って出湯でき、給湯熱交換器での加熱能力を大幅に大能力化しなくても良い。また、給湯熱交換器をある程度大能力化して流路抵抗が増大しても、第2給湯管からタンクの湯を並列に同時出湯するので大流量の給湯が可能となり、大負荷や大流量への対応とヒートポンプ熱源やタンクの小型化との両立が同時出湯により実現でき、省スペース化できる。
【0012】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、放熱器と吸熱器とを有してヒートポンプサイクルをなす冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた給湯熱交換器と、前記水流路に水道水を供給する第1給水管と、前記水流路で加熱された給湯用水を給湯端末へと通水するように接続する第1給湯管と、湯を貯えるタンクと、前記タンクと前記水流路を接続し前記タンク内の水を前記水流路で加熱して前記タンクに戻す循環路と、前記タンクの貯湯を給湯端末へと通水するように接続する第2給湯管と、前記第1給湯管と前記第2給湯管とを接続する第1混合手段とを備えたものである。
【0013】
この発明によれば、使用者が要求する給湯流量に対して、水道水を給湯熱交換器で加熱して第1給湯管から給湯するとともに、ヒートポンプ熱源単独で要求流量の水道水を加熱するだけの加熱量が不足していてもタンクに貯めた湯を第2給湯管から出湯して足し合わせるので、不足分を補って出湯でき、給湯熱交換器での加熱能力を大幅に大能力化しなくても良い。一方、タンクを小容量化するために給湯熱交換器をある程度大能力化すると水流路の流路長が長くなり、流路抵抗が大きくて大流量の給湯が必要なときに第1給湯管から十分な流量の出湯が得られなくなるが、第2給湯管からタンクの湯を並列に同時出湯するので大流量の給湯が可能となり、大負荷や大流量への対応とヒートポンプ熱源やタンクの小型化との両立が同時出湯により実現できる。また、タンクに深夜貯湯して第2給湯管からのみ出湯するわけではないので、一日の給湯量のすべてを賄うような大型のタンクは必要なく、ヒートポンプ熱源とタンク双方の小型化が図れて省スペース化できる。
【0014】
請求項2に記載の発明のヒートポンプ給湯装置は、特に請求項1に記載の発明において、温度設定手段を備え、循環路を用いてタンクに貯湯するときは温度設定手段で設定可能な最高温度の設定値と等しいかそれ以上の高温で貯湯し、温度設定手段の設定値に基づき第1給湯管からの出湯温度または出湯流量または第2給湯管からの出湯温度または出湯流量のうちの少なくとも一つを制御するものである。
【0015】
この発明によれば、タンクへの貯湯温度を高くすることにより、蓄熱密度すなわち貯湯熱量が増大して蓄熱サイズを小さくできるのでタンクの小容量化が可能となり、設置スペースや重量を少なくすることができる。そして、小流量から大流量までの広い流量範囲で使用者の要求に応じて給湯温度の温度調節が可能となり、利便性向上を図った流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。
【0016】
請求項3に記載の発明のヒートポンプ給湯装置は、請求項1または2記載のタンクを、その底部から天部までの高さを吸熱器の高さよりも低くしたものである。
【0017】
この発明によれば、タンクの高さを低くすることで水を貯めたときの設置安定性がよく、給湯熱交換器での必要加熱能力が給湯負荷に対応して大きくなるほど吸熱器のサイズは大きくなり高さも高くなるので、設置面積を小さくして設置性を向上するためにタンクと吸熱器を含む構成要素を一体のユニットとしてタンクを下に吸熱器を上にして段積みする際には、タンク高さが低いほど段積み一体化が容易になり重心も低くなるので、タンク高
さを低くすることで設置面積が小さく安定性のよい一体化ユニットが可能となる。
【0018】
請求項4に記載の発明のヒートポンプ給湯装置は、特に請求項1〜3のいずれか1項に記載の循環路を、タンク内略底部の吸水部とタンク内略天部の吐水部と水循環手段とでタンクと水流路を接続して形成するとともに、上向流阻止手段を有した第2給水管をタンク略底部に接続してタンクに水道水を供給するように設けたものである。
【0019】
この発明によれば、水循環手段によりタンク下部から水を取り出し給湯熱交換器水流路で高温湯にしてタンク上部に戻すので、タンク内が上部の高温湯部分と下部の低温水部分に分割される温度成層が形成され、必要なときに必要な量だけ蓄熱密度の高い高温湯でタンクに貯めておくことが可能となりタンクの小容量化が実現できる。また、タンク高さを低くして小型化・小容量化すると、第2給水管からの給水流れの勢いにより入水した低温水が温度成層を崩し、低温水がそのまま第2給湯管から吐出されやすくなるが、上向流阻止手段により温度成層の崩壊と低温水の吐出を防止できるので、タンクの高蓄熱密度と第2給湯管からの出湯熱量を維持し、装置の小型化を図ることができる。
【0020】
請求項5に記載の発明のヒートポンプ給湯装置は、特に請求項4に記載の発明において、循環路はタンク内の吸水部と水流路とを水循環手段を介して接続して構成し、第1給水管は水循環手段と並列に設けた逆止手段を備え、第1給水管から水道水の流入があるときは順方向に逆止手段を通って水流路に流通し、水道水の流入がなく水循環手段の動作中は第1給水管の逆方向への流通を阻止するようにしたものである。
【0021】
この発明によれば、第1給水管から水道水の流入がなく貯湯運転を行う場合は、水循環手段を動作させてもバイパス流路には逆止手段を設けているので、水循環手段を出た流水がすぐ水循環手段に入るという短絡方向は逆方向となり、短絡が生じずに貯湯運転に問題が生じない。また、第1給水管から水道水の流入があるときは、第1給水管から給湯熱交換器の水流路への経路中に水循環手段があると、水流路に大流量の水を流通させようとしても水循環手段の流路抵抗が大きくて大流量を流すことが困難であるが、水循環手段をバイパスするように並列に逆止手段を設けた第1給水管を通るので大流量化が可能となる。したがって、給湯熱交換器に大流量を流すことが可能となり、小流量から大流量まで流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。
【0022】
請求項6に記載の発明のヒートポンプ給湯装置は、請求項4または5記載のタンク略天部の吐水部に、タンク内上部で循環水の少なくとも一部がタンクの略全周にわたって内壁に沿うように拡散する拡散手段を備えたものである。
【0023】
この発明によれば、タンク高さを低くして小型化・小容量化すると、循環路吐水部からの高温湯流れの勢いにより、入水した高温湯がその下向き流れで温度成層の崩壊を招き、結果としてタンク内上部の温度低下が生じて第2給湯管からの出湯温度低下を招きやすくなるが、下向流阻止作用を有する拡散手段により温度成層の崩壊を防止できるので、タンクの高蓄熱密度と第2給湯管からの出湯熱量を維持し、装置の小型化を図ることができる。
【0024】
請求項7に記載の発明のヒートポンプ給湯装置は、特に請求項1〜6のいずれか1項に記載の発明において、水流路の給湯熱交換器出口側の一部もしくは全部を2経路に構成した水流路出口管Aと水流路出口管Bとを備え、少なくとも一方を第1給湯管に直接接続したものである。
【0025】
この発明によれば、給湯熱交換器の水流路出口側の2経路のうちの一方を、流水の高温加熱用としてスケール析出が顕著になる温度以上の加熱専用にすることで、メンテナンス
容易な構成やスケール堆積による目詰まりに強い大断面積化や駆動部品の使用を避けるといった対策を行うことが可能となり耐スケール性が向上するとともに、他方の水流路出口管はスケールによる目詰まりなどが生じにくくなり、この低温側の水流路出口管が給湯使用のほとんどを占めるので長期にわたり問題なく使用できるようになる。また前述の方法とは異なり、低温加熱の場合は1経路だけで、高温加熱の場合は水流路出口管Aと水流路出口管Bの2経路両方を用いることにより、流水が通る管断面積が倍増するのでスケール堆積の進行を遅らせて、長寿命化を図ることができる。したがって、耐久性があり小型省スペースの装置を実現できる。
【0026】
請求項8に記載の発明のヒートポンプ給湯装置は、請求項7に記載の2経路に構成した水流路出口管Aと水流路出口管Bとにおいて、水流路出口管Aを第1給湯管に接続し、水流路出口管Bを開閉手段を介してタンクに接続し循環路の一部としたものである。
【0027】
この発明によれば、水流路出口管Bを高温加熱用として循環路に用い開閉手段を設けているので、通常の給湯の場合は開閉手段を閉止することでスケール析出温度以下の出湯は水流路出口管Aだけに流れて第2給湯管から給湯端末に流れる。スケール析出温度以上の高温でタンクに貯湯運転する場合は開閉手段を開くことで高温湯が水流路出口管Bにだけ流れるので、第2給湯管側に耐スケール性の低い精密部品等を使用していても高温湯が流れてスケールが顕著に発生することなく、また開閉手段は簡単構造に構成しやすいので耐スケール性が高い。そしてこの構成によりタンクへの高温貯湯が容易になりタンクが小容量化できる。したがって、長寿命で小型省スペースの装置を実現できる。
【0028】
請求項9に記載の発明のヒートポンプ給湯装置は、特に請求項1〜8のいずれか1項に記載の発明において、装置を構成する要素のうち通水要素である少なくとも給湯熱交換器、タンク、循環路の水循環手段のいずれか一つと、ヒートポンプサイクルを構成する圧縮機とを備えて一つのユニット内に収納し、圧縮機を通水要素よりも上方に配置したものである。
【0029】
この発明によれば、万一通水要素からの水漏れが生じたり、施工やメンテナンス時の配管作業に伴うユニット内での水の滴下が有っても、圧縮機は上方に配置されているので圧縮機の脚部に長時間水がかかったり脚部が水没して腐食が生じるのを防止し、耐久性を有した小型で設置性のよい一体構成の装置を実現できる。
【0030】
請求項10に記載の発明のヒートポンプ給湯装置は、特に請求項1〜9のいずれか1項に記載の発明において、冷媒循環回路において給湯熱交換器と並列の放熱器となる風呂熱交換器と、浴槽と給湯熱交換器との浴槽水の循環管路を形成する風呂往き管と、風呂戻り管と、風呂循環手段とを備えたものである。
【0031】
この発明によれば、風呂熱交換器を設けたので浴槽水の加熱運転である風呂追焚き運転が可能となり、給湯熱交換器と並列に配置されているので給湯運転と風呂追焚き運転のどちらの運転の場合も、運転開始後すぐに冷媒循環回路を流れる高温冷媒が運転に必要な熱交換器に流入し、使用側の熱交換器の水流と熱交換するので、水の温度立ち上がりが早くなる。したがって、利便性のよい小型省スペースのヒートポンプ給湯装置が実現できる。
【0032】
請求項11に記載の発明のヒートポンプ給湯装置は、特に請求項1〜9のいずれか1項に記載の発明において、冷媒循環回路において給湯熱交換器と直列に設けた風呂熱交換器と、給湯熱交換器と風呂熱交換器との間の冷媒の通路に設けた減圧量可変の高圧側減圧手段と、給湯熱交換器と風呂熱交換器のどちらか下流側の熱交換器と吸熱器との間に設けた減圧量可変の低圧側減圧手段と、浴槽と給湯熱交換器との風呂循環路を形成する風呂往き管と、風呂戻り管と、風呂循環手段とを備えたものである。
【0033】
この発明によれば、給湯熱交換器と風呂熱交換器とを直列に接続して同時に冷媒を流通させ、高圧側減圧手段と低圧側減圧手段とによりそれぞれの熱交換器内の流通冷媒の温度条件を個別に設定可能となるので、給湯と風呂追焚きの同時運転が可能となる。したがって、風呂追焚きしながらシャワーを使える利便性のよい小型省スペースのヒートポンプ給湯装置が実現できる。
【0034】
請求項12に記載の発明のヒートポンプ給湯装置は、請求項10または11記載の風呂循環手段を、直流モーターを用いた水流量可変の風呂ポンプとしたものである。
【0035】
この発明によれば、水流量可変の風呂ポンプを設けているので冷媒側の条件だけでなく風呂熱交換器を流通する浴槽水の条件を変化させることができ、給湯熱交換器と風呂熱交換器それぞれの熱交換条件をより一層きめ細かく設定できるので、給湯と風呂追焚きの同時運転が容易となる。また、直流モーターを用いてその回転数を変化させ水流量を可変するので効率よく水流量を変化させることができ、効率がよくCOPの高い風呂追焚き運転が可能となる。したがって、効率と利便性のよい小型省スペースのヒートポンプ給湯装置が実現できる。
【0036】
請求項13に記載の発明のヒートポンプ給湯装置は、特に請求項1〜12のいずれか1項に記載の発明において、給湯熱交換器の水流路と、風呂熱交換器の浴槽水が流れる風呂水流路のそれぞれ熱交換器の流水の入口を下方に設け、出口を上方に設けたものである。
【0037】
この発明によれば、一般に水中には空気が溶け込んでおり、熱交換器によって加熱すると水温上昇に伴って空気が気泡となって出てくる。したがって、熱交換器への流水の入口を下方に、出口を上方に設けることによって、出てきた気泡は水より軽いので上方の出口から熱交換器の外へ排出され、実際に寄与する熱交換器内の水への伝熱面積を縮小しないので、熱交換器のサイズを小さくすることが可能となり、装置の小型化、省スペース化が図れる。
【0038】
請求項14に記載の発明のヒートポンプ給湯装置は、特に請求項1〜13のいずれか1項に記載の発明において、給湯熱交換器の水流路と風呂熱交換器の風呂水流路との少なくともどちらか一方を、複数の並列流路を有する多経路構成としたものである。
【0039】
この発明によれば、熱交換器内の水の流通を多経路構成としたので、大流量を流しても流路抵抗が小さくて伝熱面積も十分確保できる構成となり、熱交換器に大流量を流すことが可能となる。したがって、小流量から大流量まで流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。
【0040】
請求項15に記載の発明のヒートポンプ給湯装置は、特に請求項1〜14のいずれか1項に記載の冷媒循環回路を、冷媒の圧力が臨界圧力以上となる超臨界冷媒循環回路とし、臨界圧力以上に昇圧された冷媒により放熱器の水流路の流水を加熱するものである。
【0041】
この発明によれば、放熱器の冷媒流路を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、放熱器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって放熱器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0042】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明
を省略する。
【0043】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ給湯装置の回路構成図である。図1において、21はタンク、22はヒートポンプ熱源となる冷媒循環回路であり、冷媒循環回路22は、冷媒配管により圧縮機23、第1放熱器24、第1減圧手段25、第2放熱器26、第2減圧手段27、吸熱器28が環状閉回路に接続されて構成されている。この冷媒循環回路22は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機23は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。
【0044】
また、第1放熱器24の第1冷媒流路29と熱交換を行う風呂水流路30とで構成される風呂熱交換器31と、第2放熱器26の第2冷媒流路32と熱交換を行う水流路33とで構成される給湯熱交換器34とを備えている。水流路33の入口側には、水道を直結して水道水を直接供給する第1給水管35が接続され、途中に設けられた逆止手段である逆止弁36の順方向に水道水が第1給水管35を通って水流路33に流れるようになっている。水流路33の出口は水流路出口管A37と水流路出口管B38に分岐し、水流路出口管A37は風呂蛇口39やシャワー40、台所蛇口41等の給湯端末42から出湯される湯を供給する第1給湯管43に接続される。水流路出口管B38は途中に開閉手段である貯湯開閉弁44を有し、タンク21の内部略天部の吐水部45に設けられた拡散手段であるノズル46に接続されて、水流路33で加熱された湯を貯湯する貯湯管の役目を行う。
【0045】
第1給水管35の逆止弁36上流からは非通電時は開である給水開閉弁47を有する第2給水管48が分岐しており、タンク21の底部に水道水を供給するように接続されている。第2給水管48の給水開閉弁47下流側と第1給水管35の間は水循環手段となる循環ポンプ49で接続され、循環ポンプ49が逆止弁36と並列になるように配置されている。そしてタンク21内部の底部から僅かに突出した第2給水管48の先端近傍が吸水部50となり、この吸水部50から順に第2給水管48、循環ポンプ49、第1給水管35、水流路33を経て水流路出口管B38の貯湯開閉弁44を通り、吐水部45に設けられたノズル46に至る貯湯加熱用の循環路51が形成されている。
【0046】
一方、タンク21内部の第2給水管48先端から少し上方には、上向流阻止手段であるバッフル板52が設けられているとともに、タンク21天部には貯められている給湯用水を出湯する第2給湯管53が接続されて給湯端末42に繋がっている。
【0047】
54は浴槽であり、風呂熱交換器31の風呂水流路30の入口側とこの浴槽54とが、風呂循環手段である風呂ポンプ55を有する風呂戻り管56で接続され、風呂水流路30の出口側と浴槽54が風呂往き管57で接続されることで風呂循環路58を形成している。ここで風呂ポンプ55には直流モーターが使用されている。また、第1給湯管43と第2給湯管53は第1混合手段59において合流し第3給湯管60に流れ、さらに水道水を混合するための混合水管61と第3給湯管60とが第2混合手段62において合流し、給湯端末42が接続される第4給湯管63に流れるように構成されているとともに、浴槽54に「湯張り」または「差し湯」と称する湯を給湯する動作を行うための風呂注湯路64が、第4給湯管63と風呂循環路58との間に接続されて設けられ、この風呂注湯路64には給湯する湯の量を調節するための流量可変手段となる注湯弁65を備えている。
【0048】
タンク21は、断熱材(図示せず)で覆われており、その大きさは、使用者の給湯使用量の最大値である最大負荷を想定し、給湯熱交換器34での最大加熱能力とタンク21での貯湯量を併用して最大負荷に不足無く対応して給湯できるだけの貯湯量としたものであ
る。
【0049】
冷媒循環回路22においては、2つの並列な圧縮機23の出口と第2放熱器26入口とを接続する給湯弁66が、圧縮機23出口と吸熱器28入口とを接続する除霜弁67が設けられて、それぞれのバイパス経路への流れを調節する働きをしている。
【0050】
71はCPU、メモリ、入出力インターフェース等を有するマイクロコンピュータ(図示せず)を用いて構成された制御手段であり、この制御手段71の中には給湯熱交換器34の加熱量を制御する加熱制御手段72が設けられている。第1給水管35の最も上流には給水温度センサ73が設けられ、水流路33の入口側には給湯熱交換器34への給水温度を検出する入口温度センサ74が、出口側には出口温度センサ75が設けられている。また第2混合手段62下流の第4給湯管63には給湯端末42への給湯温度を検出する給湯温度センサ76が設けられている。第4給湯管63には別に給湯端末42への給湯流量が検出できる流量センサ77も設けられている。タンク21の壁面には、その天部にタンク21内の湯温を検出する温度検知手段である貯湯温度センサ78が設けられているとともに、さらに温度検知手段である3個のサーミスタが、残湯第1センサ79、残湯第2センサ80、残湯第3センサ81として、図における上部から下部に向かって所定の間隔を置いて配置され、各位置の湯温を検出している。
【0051】
風呂戻り管56には浴槽54の湯温を測定するための風呂温度センサ82と、浴槽54の水位を検知する水位センサ83と、風呂ポンプ55の運転による流れが検出できる風呂流量センサ84が設けられ、風呂水流路30の出口近傍の風呂往き管57には風呂出口温度センサ85が備えられている。86は吸熱器28近傍に設けた気温を検出する気温センサ、87は圧縮機23のシェル温度を検出するシェル温度センサである。
【0052】
それぞれの温度センサであるサーミスタ73〜76および78〜82、85〜87や、他のセンサである77、83、84からの検出信号は、制御手段71にそれぞれ入力されるよう構成されており、制御手段71は所定時間内に入力される各検出信号の変化から適切な給湯運転制御を選択して、運転指令を発する機能を有している。例えば、制御手段71内の加熱制御手段72は、気温センサ86の検出値に応じてヒートポンプサイクルの運転条件である圧縮機23の回転数を変更して給湯熱交換器34での加熱量を制御する。給湯熱交換器34での加熱量は、気温が定まれば圧縮機23の回転数に比例的に可変できる。そこで、加熱制御手段72は予め各気温毎の給湯熱交換器34の加熱量と圧縮機23の回転数の関係を記憶しておき、気温に応じて回転数を設定制御し給湯熱交換器34の加熱量を制御を行うことができる。
【0053】
88は制御手段71と電気的に接続されて給湯の目標温度を設定する温度設定手段で、使用者が任意に温度を設定する。湯張り設定手段89も制御手段71と電気的に接続され、浴槽54に自動で湯を張る運転を使用者が開始設定するために設けられたものである。
【0054】
図2は本発明の実施例1におけるヒートポンプ式給湯装置の構成配置図である。図2において、吸熱器28は炭酸ガス冷媒が流れるチューブにフィンを設けた構成のフィンチューブ型熱交換器と称される形状に形成されており、ヒートポンプサイクル上で蒸発器として作用し、大気熱と熱交換して吸熱するものである。この吸熱器28は幅方向を略Uの字状に曲げられて幅寸法が短縮するように形成されており、その高さはタンク21の底部から天部までの高さよりも低く設定されている。そして、ファン91を含む送風装置とこの吸熱器28で1つの上ユニット92を構成しており、圧縮機23や放熱器24、26などのヒートポンプサイクルを構成する他の要素とタンク21と水が流れる部品である通水要素とで下ユニット93を構成し、下ユニット93の上に上ユニット92を段積みしている。下ユニット93の主な通水要素としては、タンク21、風呂熱交換器31、給湯熱交換器34、循環ポンプ49、風呂ポンプ55などがあり、これらが固定されている通水要素ベース94よりも一段上方に2台の圧縮機23を固定する圧縮機ベース95が配置されている。また、制御手段71が収納される制御基板96は圧縮機ベース95よりも上方に配置されている。
【0055】
風呂熱交換器31の風呂水流路30、および給湯熱交換器34の水流路33、それぞれの入口97は下方に、出口98は上方に配設されており、流水は下から上へ流れるようになっているとともに、冷媒流路はこれと対向して上から下へ流れるように構成されている。すなわち、第1放熱器24の冷媒流れ方向と風呂水流路30の流れ方向、および第2放熱器26の冷媒流れ方向と水流路33の流れ方向をそれぞれ対向流とすることで、常に温度差を持った冷媒と水の熱交換が可能になり、各流路間を熱移動が容易になるように密着して構成されている。この構成により、それぞれの冷媒流路と水流路の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。
【0056】
以上の構成において、その動作、作用について説明する。図1、図2に示す実施例のヒートポンプ給湯機において、その運転動作は「給湯運転」、「湯張り運転」、「風呂追焚き運転」、「貯湯運転」、「除霜運転」といった少なくとも5つの運転モードがある。
【0057】
まず、使用者がお湯を蛇口等の給湯端末から出湯させて使用する「給湯運転」について説明する。図1に示すタンク21に高温湯が貯留され、給水開閉弁47が開弁し貯湯開閉弁44と注湯弁65が閉弁した状態において、使用者が温度設定手段88により給湯温度を42℃等の適温に設定し、台所蛇口41などの給湯端末42が開くと、第1給水管35から水道水が水圧により流れ込み始め、第4給湯管63内の水も水圧で押されて給湯端末42から出る水流が生じる。これを流量センサ77が検知し制御手段71に信号が送られ、制御手段71により給湯弁66を開弁し2台の圧縮機23の運転を行う給湯運転が開始される。
【0058】
このとき冷媒循環回路22が冷え切った状態の場合、圧縮機23が運転されてもサイクル全体の圧力および温度が定常状態に達するのに時間がかかり、圧縮機23や給湯熱交換器34の熱容量もあるために、しばらくの間水流路33からは加熱不足で給水温度に近い水が出てしまう。そうならないために、温度設定手段88が使用者に設定されたことで給湯使用が近いと制御手段71が判定すると、圧縮機23を間欠的に運転したり、圧縮機23内の電動モータが回転しない程度に微小電流を流して暖機運転をして待機しておくこともできる。
【0059】
それでも冷媒循環回路22が冷えている場合、制御手段71は水流路33出口の出口温度センサ75やシェル温度センサ87の信号に基づいて判定し、第1混合手段59の初期状態として第1給湯管43と第2給湯管53を流れる流量が例えば同量で混合する位置に設定する。ここで、給水温度5℃、貯湯温度80℃として、水流路33からの出口温度がまだ5℃とすると、給湯温度センサ76部での温度はおよそ(80℃+5℃)/2=42.5℃の出湯温度となる。
【0060】
給湯中の制御手段71では、出口温度センサ75と温度設定手段88とのそれぞれが出力する出湯温度と目標温度との偏差に基づいて加熱制御手段72が圧縮機23の回転数を制御している。そして、圧縮機23から吐出され第2放熱器26へ流入する高温高圧の冷媒ガスは、水流路33を流れる水を加熱する。加熱された水は第1給湯管43を経て給湯端末42から出湯する。一方、第2放熱器26で冷却された冷媒は第2減圧手段27で減圧されて吸熱器28に流入し、ここで大気熱、太陽熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機23に戻る。運転開始からしばらくすると、冷媒系も十分に温度上昇して水流路33の出口温度は上昇し、出口温度が目標温度に到達すると制御手段71は第1給湯管43からの出湯量が増大するように第1混合手段59の開度を調節し、給湯温度センサ76の検知温度に基づき、温度設定手段88で設定された目標温度になるように第1給湯管43と第2給湯管53をそれぞれ流れる流量を変化させて混合する。そして、水流路33で加熱された湯は第1給湯管43から第3給湯管60と第4給湯管63とを経て給湯端末42から給湯される。このとき、さらに冷媒循環回路22の各要素を制御して第1給湯管43を流れる出湯温度を出口温度センサ75に基づき変化させてもよい。
【0061】
出湯が台所蛇口37などの小流量が主の場合、制御手段71では流量センサ77により検出した流量を認識し、第1混合手段59を制御して第1給湯管43からの通水を優先し、可能な限り第2給湯管53からの通水を閉止状態にし、加熱制御手段72が圧縮機23の回転数を制御して出口温度センサ75の出力する出湯温度が目標温度になるようにする。給湯負荷が給湯熱交換器34での最大加熱能力を超え、圧縮機23を制御しても目標温度に到達しないような場合は、第1混合手段59の第2給湯管53側を所定の割合に開度調節し、タンク21内に貯めた湯を出湯する量を多くし、給湯温度センサ76の出力する検出温度が目標温度になるようにする。
【0062】
また、出湯が少流量の場合には、タンク21だけから出湯するという方法もあり、さらに起動時の立ち上がりを早くするために、圧縮機23を起動時から最大回転数のフルパワーを目標としてまわすという方法も可能である。
【0063】
一方、風呂蛇口35等の一つが開けられて大量に出湯した場合や、二つ以上の給湯端末42から同時に出湯した場合、制御手段71は流量センサ77の信号から大流量であると認識し、加熱制御手段72で制御する所要加熱量を給湯熱交換器34での最大加熱能力に設定して圧縮機23の回転数を制御するとともに、給湯温度センサ76の検知温度が目標温度となるように、給湯温度と目標温度との偏差からフィードバック制御を用いて第1混合手段59の開度を調節し、操作する。この第1混合手段59の開度調節によって、水道から第1給水管35を通り水流路33を経た湯と、水道から第1給水管35を分岐して第2給水管48からタンク21に導入された水によってタンク21から押し出された湯との、それぞれからの湯の第3給湯管60を通る混合割合が決まり、第1混合手段59を制御して目標の出湯温度を得るのである。
【0064】
上記温度制御を具体的に説明すると、給水温度が5℃、貯湯温度が85℃で、温度設定手段88により45℃の給湯を風呂蛇口35の開栓で15L/minの流量で要求があると、例えば給湯熱交換器34での最大加熱能力を14kWとして、制御手段71はこの14kWで加熱運転を行うように圧縮機23を制御する。そして、第1混合手段59の開度を調節を行い第2給湯管53の流量を調節して、タンクからの出湯量を5L/minにすると、給湯温度センサ76の検知温度が目標温度である45℃になり給湯できる。なお、このとき残り10L/minがヒートポンプ熱源に流れるので最大加熱能力から逆算して、第1給水管35水流路33に供給されて加熱された水道水は、出口温度センサ75部で約25℃になっている。
【0065】
このように、使用者が要求する給湯流量に対して、水道水を給湯熱交換器34で瞬間加熱して第1給湯管43から給湯するのとは別に、タンク21に貯めた湯を第2給湯管53から出湯して足し合わせるので、ヒートポンプサイクルによる給湯熱交換器34での瞬間加熱量が不足していても、不足分を補ってタンク21から湯量を加えることができ、給湯熱交換器34での加熱能力を大幅に大能力化しなくても良い。
【0066】
一方、タンクを有しない構成においては、瞬間加熱のみで給湯できるように給湯熱交換器を大能力化して大熱量を熱交換できるようにすると、伝熱面積の確保のために水流路の流路長が長くなったりして流路抵抗が増大し、大流量の水を流通させにくくなる。また、タンク21を有する本発明の構成でも、タンク21を小容量化するために給湯熱交換器34をある程度大能力化すると、同様に流路抵抗の増大が生じやすい。そして、タンク21と水流路33との間は循環路51により接続されているので、給湯運転中のタンク21と水流路33にかかる水圧はほぼ等しくなり、タンク21の耐水圧の点から水流路33への給水圧を低く抑える必要があり、低い給水圧では流路抵抗により一層十分な流量が得られなくなる。しかしながら大流量の給湯が必要なときに、水流路33につながる第1給湯管43と、タンク21につながる第2給湯管53とから、それぞれからの湯を並列に同時出湯するので大流量の給湯が可能となり、大負荷や大流量への対応とヒートポンプ熱源やタンクの小型化との両立が同時出湯により実現できる。また、タンク21に深夜貯湯して第2給湯管53からのみ出湯するわけではないので、一日の給湯量のすべてを賄うような大型のタンクは必要なく、ヒートポンプ熱源とタンク双方の小型化が図れて省スペース化できる。
【0067】
次に、使用者が設定することで浴槽に自動でお湯を張ったり少量の湯を差し湯する「湯張り運転」について説明する。使用者が湯張り設定手段89を操作して湯張り運転を開始許可すると、除霜弁67が閉弁した状態で制御手段71は給湯弁66を開き2台の圧縮機23の運転を行うとともに、給水開閉弁47が開弁し貯湯開閉弁44が閉弁した状態で注湯弁65を開弁し湯張り運転が開始される。すると、第1給水管35から分岐した第2給水管48を流れる水の給水圧によって、タンク21内に貯溜された高温の温湯が押し上げられ、第2給湯管53を通って第1混合手段59に達する。同時に、第1給水管35から水流路33を経て第1給湯管43に流通する温湯も上記第1混合手段59に流入し、ここで二方からの温湯が一定の割合で混合される。そして混合された温湯は第3給湯管60を通って第2混合手段62に流入し、混合水管61から上記第2混合手段62に流入し、ここで水と温湯が一定の割合で混合され、第2混合手段62の流出側から第4給湯管63を通り風呂注湯路64の注湯弁65を介して、風呂戻り管56と風呂往き管57を流通して浴槽54に供給される。風呂温度センサ82と水位センサ83の信号により浴槽54内に所定温度で所定量の湯が供給されたことを検出すると、制御手段71は湯張り運転を終了する。ここでは、流量センサ77の信号に基づき積算流量を演算して湯張り量を決めてもよい。
【0068】
さらに、上記ヒートポンプ式給湯装置における「風呂追焚き運転」について説明する。風呂追焚き設定手段90により浴槽54の追焚きをする場合、制御手段71は注湯弁65を閉止した後、風呂ポンプ55を駆動させて浴槽の水を風呂循環路58に循環させるとともに、浴槽水の循環を風呂流量センサ84で検出し、給湯弁66と除霜弁67が閉じた状態で2台の圧縮機23の運転を行って風呂追焚き運転が開始される。風呂ポンプ55により浴槽水が風呂戻り管56から風呂熱交換器31に送水されると、風呂水流路30で第1冷媒流路29と熱交換が行われ、浴槽水は加熱されて風呂往き管57を通り再び浴槽54に戻される。この間、風呂温度センサ82によって風呂水温が検出され、風呂水温が目標温度に達するまで循環が続けられる。
【0069】
上記のように、流量センサ77や風呂流量センサ84の信号に基づき、水流を検出して圧縮機23の運転を開始するので、2つの熱交換器31、34において空焚きが生じ、冷媒循環回路22中の冷媒圧力が過昇するなどの以上が発生することを防止できるのである。
【0070】
ここで、本実施例の特徴的な動作、作用について説明する。給湯運転中に風呂追焚き設定手段90の操作があった場合、あるいは風呂追焚き運転中に給湯端末42の使用があった場合、すなわち「給湯運転」と「風呂追焚き運転」の同時運転の要求があった場合、制御手段71は「風呂追焚き運転」と同様の動作を行う。このとき、給湯弁66と除霜弁67が閉じた状態であるので冷媒循環回路22では、第1放熱器24と第2放熱器26との両方に冷媒が流れており、高圧側減圧手段である第1減圧手段25と低圧側減圧手段である第2減圧手段27の両方を制御手段71が調節することで、風呂熱交換器30と給湯熱交換器34のそれぞれの流通冷媒の温度条件を個別に設定可能となるので、給湯と風呂追焚きの同時運転が可能となる。また、風呂ポンプ55には直流モーターを用いているので、風呂水流路30を流れる浴槽水の流量をきめ細かに効率よく調節することができる。したがって、制御手段71は冷媒側の条件だけでなく風呂熱交換器30を流通する浴槽水の条件を変化させることができ、給湯熱交換器34と風呂熱交換器30それぞれの熱交換条件をより一層きめ細かく設定できるので、給湯と風呂追焚きの同時運転が容易となる。また、直流モーターを用いてその回転数を変化させ水流量を可変するので高い消費電力効率で水流量を変化させることができ、効率がよくCOPの高い風呂追焚き運転が可能となる。よって、効率と利便性のよい小型省スペースのヒートポンプ給湯装置が実現できる。
【0071】
さらに、上記ヒートポンプ式給湯装置における「除霜運転」について説明する。吸熱器28が大気熱や太陽熱を吸熱する構成の場合、吸熱器周辺の空気温度が低温(例えば10℃未満)であると、吸熱器28に霜付きが発生する。霜付きが生じた場合に制御手段71は、冷媒循環回路22の除霜弁67を開き、圧縮機23を所定の回転数で運転する。これにより高温高圧の冷媒が除霜弁67を通って吸熱器28に流れ、吸熱器28を加熱することで氷結していた霜が溶けて除霜が可能となる。
【0072】
この除霜運転においては、吸熱器28の温度を検出する吸熱器温度センサ(図示しない)等を用いて、吸熱器28の温度が所定温度以下に低下したことを検出した場合や給湯運転が停止した直後の場合など、制御手段71に設定された種々の条件によって運転開始され、吸熱器28の温度が所定温度以上に上昇した場合や、所定時間経過した場合などに運転停止される。
【0073】
さらに、上記ヒートポンプ式給湯装置におけるタンク21の湯沸かしを行う「貯湯運転」について説明する。給湯運転後は、タンク21内は出湯により貯湯量(高温湯量)が減少している。また、タンク21は断熱材で覆われているが、貯湯温度は放熱により徐々に低下する。これらの場合に制御手段71は、冷媒循環回路22の除霜弁67が閉弁した状態で給湯弁66を開き、水系統回路の注湯弁65が閉じた状態で貯湯開閉弁44を開く。そして、圧縮機23を所定の回転数で運転し、循環ポンプ49を駆動する。これにより高温高圧の冷媒が給湯弁66を通って第2冷媒流路32に流れ、水流路33を加熱し、循環ポンプ49により生じさせた水流でタンク21から第2給水管48、第1給水管35の順に流れてきた水がここで加熱される。そして高温湯となった水は、水流路出口管B38の貯湯開閉弁44を通り、吐水部45に設けられたノズル46からタンク21内の上層部に拡散されて戻る。そしてこのような動作を継続して行うことによって、タンク21内の上層部から下層部へ順に温度が上昇する。
【0074】
この貯湯運転においては、出口温度センサ75が給湯熱交換器34で加熱された高温湯の温度を検出し、制御手段71が高温湯の温度を決定した所定値(例えば二酸化炭素冷媒では加熱温度85℃に設定)になるように、この検出信号に基づき運転制御する。そしてタンク壁面下方の残湯第3センサ81の検知温度が所定温度(例えば80℃)を超えれば、制御手段71は貯湯運転の終了が近いと判定して、圧縮機23の回転数(運転周波数で変更する)や循環ポンプ49の回転数を減少させる。その後、入り口温度センサ74がタンク21から流入する水の温度を検出し、タンクからの流入温度が所定の加熱終了温度(例えば、60℃)より高温になると、その信号に基づき制御手段71はタンク21全量が高温湯となったと判断し、貯湯運転を停止する。この貯湯運転の繰り返しでタンク21内は所定温度の高温に維持される。この保温の所定温度を給湯の目標温度(例えば45℃)より充分に高くすることにより、蓄熱密度を上げることができ、タンク21の大きさを小さくすることができる。
【0075】
そして、一般に水道水には高度成分が含まれスケールとして析出することがあるが、この貯湯運転のように水道水を高温に加熱すると、ある温度(約70℃あたり)以上でこのスケール析出が顕著になる。そこで、給湯熱交換器34の水流路33の特に出口側を2分岐させた2経路構成にし、貯湯用である水流路出口管B38を流水の高温加熱用としてスケール析出が顕著になる温度以上の加熱専用にして複雑構造の混合手段を配設せず、メンテナンス容易な構成やスケール堆積による目詰まりに強い大断面積化や駆動部品の使用を避けるといった対策を行うことで耐スケール性が向上する。また、水流路出口管B38を高温加熱用として循環路51に用い貯湯開閉弁44を設けているので、貯湯運転専用にできる。スケール析出温度以上の高温でタンク21に貯湯運転する場合は貯湯開閉弁44を開くことで高温湯が水流路出口管B38にだけ流れるので、第2給湯管53側に耐スケール性の低い混合手段などの精密部品等を使用していても高温湯が流れてスケールが顕著に発生することなく、また貯湯開閉弁44は簡単構造に構成しやすいので耐スケール性が高い。この構成によりタンクへの高温貯湯が容易になりタンクが小容量化できる。したがって、長寿命で小型省スペースの装置を実現できる。一方、通常の給湯の場合は貯湯開閉弁44を閉止することでスケール析出温度以下の出湯は水流路出口管A37だけに流れて第2給湯管53から給湯端末42に流れる。したがって水流路出口管A37は高温使用の機会が激減してスケールによる目詰まりなどが生じにくくなり、この低温側の水流路出口管A37が給湯使用のほとんどを占めるので長期にわたり問題なく使用できるようになる。
【0076】
前述の方法と異なり、低温加熱の場合は水流路出口管A37の1経路だけ、高温加熱の場合は水流路出口管A37と水流路出口管B38の2経路両方を用いて貯湯するという方法もある。この方法を用いると、流水が通る管断面積が倍増するのでスケール堆積の進行を遅らせて、長寿命化を図ることができる。したがって、耐久性があり小型省スペースの装置を実現できる。
【0077】
このような貯湯運転によりタンク21の全量(例えば、100リットルタンクであれば100リットル)が高温湯となって貯められた状態から、給湯使用すると高温湯の湯量が減少してくる。例えば台所蛇口41を開栓すると第2給水配管48を流れる水の給水圧によってタンク21内に貯留された約85℃の高温湯が押し上げられ、第2給湯配管53を通って使用する台所蛇口41に供給される。このときタンク21内は、その詳細を図3に示したように、水温による比重差によって、タンク内上部は高温湯の高温層W1、下部は給水が加熱されず低温のままの低温層W3、高温層W1と低温層W3の間に挟まれた薄い層をなす中間温度の中温層W2に自然に分離されており、上から高温層W1、中温層W2、低温層W3の3層構造となっている。このように、循環ポンプ49によりタンク下部から水を取り出し給湯熱交換器34の水流路33で高温湯にしてタンク上部に戻すので、タンク内が上部の高温層W1と下部の低温層W3に分割される温度成層が形成され、必要なときに必要な量だけ蓄熱密度の高い高温湯でタンクに貯めておくことが可能となりタンクの小容量化が実現できる。また、タンク高さを低くして小型化・小容量化すると、第2給水管48からの給水流れの勢いにより入水した低温水が温度成層を崩し、低温水がそのまま第2給湯管53から吐出されやすくなるが、タンク内にはバッフル板52が設けられて第2給水管48の給湯使用時の上向流を阻止しているので、温度成層の崩壊と低温水の吐出を防止でき温度成層が維持されるので、タンクの高蓄熱密度と第2給湯管53からの出湯熱量を維持し、装置の小型化を図ることができる。
【0078】
さらに、吸熱器高さよりもタンク高さを低くするなど、タンク高さを低くして小型化・小容量化すると、循環路吐水部45からの高温湯流れの勢いにより、入水した高温湯がその下向き流れで温度成層の崩壊を招き、結果としてタンク内上部の温度低下が生じて第2給湯管53からの出湯温度低下を招きやすくなるが、下向流阻止作用を有するノズル46により温度成層の崩壊を防止できるので、タンク21の高蓄熱密度と第2給湯管53から
の出湯熱量を維持し、装置の小型化を図ることができる。
【0079】
そして、貯湯運転は通常給湯停止中に行われるが、給湯運転中であっても貯湯運転が必要で、かつ給湯運転に要する加熱能力を差し引いてもまだ給湯熱交換器34での加熱能力に余裕があるときは、給水開閉弁47を閉じることで「給湯運転」と「貯湯運転」の同時運転が可能となる。
【0080】
また、この貯湯運転は残湯第1センサ79によって貯湯温度が下限温度(例えば75℃)より下がり貯湯温度が放熱で低下したことを検出した場合や、残湯第2センサ80による検出温度が所定温度よりも下がって高温層W1の高温湯量が残り少なくなった場合や、給湯運転が停止した直後の場合など、制御手段71に設定された種々の条件によって運転開始される。
【0081】
ここで図1に示した水系統回路のように、貯湯運転の循環路51には循環ポンプ49を通る経路を用い、給湯運転時には逆止弁36を通る経路を用いて流路抵抗を小さくしている。そして、第1給水管35から水道水の流入がなく貯湯運転を行う場合は、循環ポンプ49を動作させても第1給水管35には逆止弁36を設けているので、循環ポンプ49を出た流水がすぐ循環ポンプ49に入るという短絡方向は逆方向となり、短絡が生じずに貯湯運転に問題が生じない。また、給湯運転時に第1給水管35から水道水の流入があるときは、第1給水管35から給湯熱交換器34の水流路33への経路中に循環ポンプ49があると、水流路33に大流量の水を流通させようとしても循環ポンプ49の流路抵抗が大きくて大流量を流すことが困難であるが、循環ポンプ49をバイパスするように並列に逆止弁36を設けた第1給水管35を通るので大流量化が可能となる。したがって、給湯熱交換器34に大流量を流すことが可能となり、小流量から大流量まで流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。
【0082】
そして、以上の動作説明のように、タンク21への貯湯運転のときは温度設定手段88で設定可能な最高温度の設定値と等しいかそれ以上の高温(例えば85℃)で貯湯し、第1給湯管43からの出湯温度を出口温度センサ75で検出して加熱量で制御したり、第1給湯管43と第2給湯管53とからの流量を第1混合手段59で制御したりして、第1給湯管からの出湯温度または出湯流量または第2給湯管からの出湯温度または出湯流量のうちの少なくとも一つを温度設定手段88の設定値に基づき制御する。
【0083】
例えば第1給湯管43からの温度を制御するだけで所定温度を給湯する場合は、第1混合手段59を変化させずに、第2給湯管53から一定温度で出湯される湯に、給湯流量に応じて一定割合の成り行きで決定される流量となる第1給湯管からの出湯の出湯温度を変化させて混合することで、給湯温度を給湯温度センサ76で検出して制御する。混合水管61から水を混合し、その混合量を変化させて温度調節してもよい。第2給湯管からの温度だけで給湯温度を制御する場合も同様である。また、それぞれの出湯温度が一定の場合は、第1混合手段59により少なくともどちらか一方の流量を変化させることで混合される流量割合が変化して給湯端末42での給湯温度を制御することができる。このようにして、小流量から大流量までの広い流量範囲で使用者の要求に応じて給湯温度の温度調節が可能となり、利便性向上を図った流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。
【0084】
さらに、第1放熱器24および第2放熱器26を流れる冷媒は、圧縮機23で臨界圧力以上に加圧されているので、風呂熱交換器31の風呂水流路30、または給湯熱交換器34の水流路33の流水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0085】
そして、図2の構成配置図に示したように、タンク21の底部から天部までの高さを吸熱器28の高さよりも低くしてタンク高さを低くしたことで、水を貯めたときに重心が低くなり設置安定性がよくなっている。また、設置面積を小さくして設置性を向上するためにタンク21と吸熱器28を含む構成要素を一体のユニットとして、タンク21を含む下ユニット93と吸熱器28を含む上ユニット92を段積みする際には、給湯熱交換器34での必要加熱能力が給湯負荷に対応して大きくなるほど吸熱器28のサイズは大きくなり高さも高くなるが、タンク高さが低いほど段積み一体化が容易になり重心も低くなるので、タンク高さを低くすることで設置面積が小さく安定性のよい一体化ユニットが可能となる。
【0086】
また、装置を構成する要素のうち通水要素であるタンク21、風呂熱交換器31、給湯熱交換器34、循環ポンプ49、風呂ポンプ55と、ヒートポンプサイクルを構成する圧縮機23とを一つのユニットである下ユニット93内に収納し、通水要素ベース94よりも一段上方に2台の圧縮機23を固定する圧縮機ベース95が配置され、制御手段71が収納される制御基板96は圧縮機ベース95よりも上方に配置されているので、万一通水要素からの水漏れが生じたり、施工やメンテナンス時の配管作業に伴うユニット内での水の滴下が有っても、圧縮機23は上方に配置されているので圧縮機23の脚部に長時間水がかかったり脚部が水没して腐食が生じたり、圧縮機23や制御手段71の電気接続部分が水没するのを防止し、耐久性や安全性を有した小型で設置性のよい一体構成の装置を実現できる。
【0087】
さらには、一般に水中には空気が溶け込んでおり、熱交換器によって水を加熱すると水温上昇に伴って空気が気泡となって出てくるが、風呂熱交換器31の風呂水流路30、および給湯熱交換器34の水流路33、それぞれの入口97は下方に、出口98は上方に配設されており、流水は下から上へ流れるようになっているので、水より軽い気泡は上方の出口98から熱交換器外へ確実に排出され、熱交換器内での水への伝熱が気泡により邪魔されず、実際に寄与する伝熱面積を確保できるので、熱交換器のサイズを小さくすることが可能となり、装置の小型化、省スペース化が図れる。
【0088】
なお、本実施例では、第2給水管48によってタンク21への給水と、循環路51を形成し循環ポンプ49の吸水とを行っているが、図4に示すように給水開閉弁を設けずに、第1給水管35の逆止弁36上流から分岐する第2給水管99を設けてタンク21の底部に水道水を供給するとともに、タンク21底部にポンプ管100を設けて先端近傍を吸水部50とし、この吸水部50から順にポンプ管100、循環ポンプ49、第1給水管35、水流路33を経て水流路出口管B38の貯湯開閉弁44を通り、吐水部45に設けられたノズル46に至る貯湯加熱用の循環路51が形成してもよい。この場合でも、バッフル板52を設けたことにより第2給水管99からの上向流とポンプ管100への下向流を阻止して、温度成層を維持する同様の効果が得られる。
【0089】
(実施例2)
図5は本発明の実施例2におけるヒートポンプ給湯装置の構成図である。なお、実施例1の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図5において、実施例1の構成と異なるところは、2台の並列な圧縮機23のそれぞれの吸入側に冷媒逆止弁101を設け、風呂熱交換器102の第1放熱器103と給湯熱交換器104の第2放熱器105とは圧縮機23の吐出側に並列に設け、それぞれの上流側に第1放熱制御手段106と第2放熱制御手段107、およびそれぞれの下流側に第1減圧手段108と第2減圧手段109が配設されている点にある。また、第4給湯管63にはバッファタンク110が設けられているとともに、水流路33近傍の第1給水管35には熱交流量センサ111がある。さらに、水流路33は詳細を図6に示したように、給湯熱交換器104の内部で複数の並列経路33a、33b、・・・に分岐した多経路構成となっている点が実施例1と異なっている。
【0090】
以上の構成で、その動作、作用について説明する。図5、図6に示す実施例のヒートポンプ給湯機において、制御手段71がいずれかの運転モードで圧縮機23の駆動を行うとき、2台の圧縮機の運転回転数が異なったり、特に1台のみで運転して他方の一台が停止しているときには、冷媒逆止弁101が設けられているので、圧縮機23に過大または異常な負荷が掛かったり冷媒が逆流することを防ぎ、圧縮機23による冷媒循環量の低下を防いで加熱能力の確保を図るとともに、装置の信頼性を向上させている。そして給湯運転だけを行う場合は、除霜弁67を閉じた状態で第2放熱制御手段107を全開にし、第1放熱制御手段106を全閉もしくは僅かしか冷媒が流れない開度に調節し、給湯運転を行う。一方、風呂追焚き運転だけを行う場合は、除霜弁67を閉じた状態で第1放熱制御手段106を全開にし、第2放熱制御手段107を全閉もしくは僅かしか冷媒が流れない開度に調節し風呂追焚き運転を行うことで、単独運転が可能となる。
【0091】
一方、給湯運転中に風呂追焚き設定手段90の操作があった場合など、「給湯運転」と「風呂追焚き運転」の同時運転を行う場合、除霜弁67が閉じた状態で制御手段71は、第1放熱制御手段106と第2放熱制御手段107をそれぞれ所定の開度に開き、第1放熱器103と第2放熱器105の両方に冷媒を流す。そして、第1減圧手段108と第2減圧手段109の両方を制御手段71が調節することで、風呂熱交換器102と給湯熱交換器104のそれぞれの流通冷媒の温度条件を個別に設定可能となるので、給湯と風呂追焚きの同時運転が可能となる。また、風呂ポンプ55には直流モーターを用いているので、風呂水流路30を流れる浴槽水の流量をきめ細かに効率よく調節することができる。したがって、制御手段71は冷媒側の条件だけでなく風呂熱交換器30を流通する浴槽水の条件を変化させることができ、風呂熱交換器102と給湯熱交換器104それぞれの熱交換条件をより一層きめ細かく設定できるので、給湯と風呂追焚きの同時運転が容易となる。なお、これらの単独運転や同時運転の場合、第1放熱制御手段106と第2放熱制御手段107設けずに、第1減圧手段108と第2減圧手段109の開度を調節することで運転することも可能である。
【0092】
そして、このように風呂熱交換器102を設けているので浴槽水の加熱運転である風呂追焚き運転が可能となり、給湯熱交換器104と並列に配置されているので給湯運転と風呂追焚き運転のどちらの運転の場合も、運転開始後すぐに冷媒循環回路21を流れる高温冷媒が運転に必要な熱交換器に圧縮機23から直接流入し、使用側の熱交換器の水流と熱交換するので、水の温度上昇立ち上がりが早くなる。したがって、利便性のよい小型省スペースのヒートポンプ給湯装置が実現できる。
【0093】
また給湯運転時において、複数の給湯端末42から出湯中にいくつかの端末が閉じられるなどして出湯流量が急減した場合、給湯熱交換器104での加熱能力の低減速度が追いつかないと出湯温度が上昇して瞬間的に高温湯が出湯される恐れが生じるが、容積部であるバッファタンク110が第4給湯管63には設けられているので、この高温湯の出湯が鈍りバッファタンク110内で高温湯が通常出湯温の湯と混合してピーク温度を下げ、高温出湯を防止し緩やかで許容範囲の温度上昇で済ますことができる。
【0094】
さらに、熱交流量センサ111を設けてその信号を制御手段71で処理しているので、給湯運転時に第1混合手段59の操作量と熱交流量センサ111からの第1給湯管43を通る流量とを比較することで、混合手段の故障や異常を判定したり、貯湯運転時に循環ポンプ49の操作量と水流路33を通る流量とを比較することで、循環ポンプ49の異常や水流路33等へのスケールの堆積を判定したり、貯湯運転時の給湯熱交換器104での加熱能力制御にフィードフォワード制御を加えて高速高精度の温度制御行ったりすることが
可能となる。
【0095】
そして、給湯熱交換器104の水流路33を、複数の並列流路を有する多経路構成としたしたので、熱交換器内の水の流通が多経路に並列分岐することで、大流量を流しても流路抵抗が小さくて伝熱面積も十分確保できる構成となり、給湯熱交換器104に大流量を流すことが可能となる。したがって、小流量から大流量まで流量範囲の広い小型省スペースのヒートポンプ給湯装置が実現できる。なお、ここでは給湯熱交換器104の水流路33のみを多経路構成にして説明したが、風呂熱交換器102の風呂水流路30を多経路構成としても同様の効果がある。
【0096】
【発明の効果】
以上のように、本発明によれば、ヒートポンプサイクルの大きさを抑えても十分な給湯能力があり、耐久性や信頼性も向上し、タンクを小容量化しても給湯熱交換器で大流量加熱ができる流量範囲の広い、小型、小設置面積のヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置の回路構成図
【図2】 本発明の実施例1におけるヒートポンプ給湯装置の構成配置を示す斜視図
【図3】 本発明の実施例1におけるヒートポンプ給湯装置のタンクの構成を示す図
【図4】 本発明の実施例1におけるヒートポンプ給湯装置の他の回路構成図
【図5】 本発明の実施例2におけるヒートポンプ給湯装置の回路構成図
【図6】 本発明の実施例2におけるヒートポンプ給湯装置の給湯熱交換器の構成を示す図
【図7】 従来のヒートポンプ給湯装置の構成図
【符号の説明】
21 タンク
22 冷媒循環回路
24 第1放熱器
25 第1減圧手段(高圧側減圧手段)
26 第2放熱器
27 第2減圧手段(低圧側減圧手段)
28 吸熱器
31 風呂熱交換器
33 水流路
33a、33b、33c 複数の並列流路
34 給湯熱交換器
35 第1給水管
36 逆止弁(逆止手段)
37 水流路出口管A
38 水流路出口管B
42 給湯端末
43 第1給湯回路
44 貯湯開閉弁(開閉手段)
45 吐水部
46 ノズル(拡散手段)
48 第2給水管
49 循環ポンプ(水循環手段)
50 吸水部
51 循環路
52 バッフル板(上向流阻止手段)
53 第2給湯回路
54 浴槽
55 風呂ポンプ(風呂循環手段)
56 風呂戻り管
57 風呂往き管
58 風呂循環路
88 温度設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
Conventionally, as this type of heat pump hot water supply apparatus, for example, a water supply pipe and a hot water supply circuit are connected to a radiator in a heat pump cycle, and tap water from the water supply pipe is heated by the radiator and discharged to the hot water supply terminal as it is. Some have a hot water heater configuration that instantaneously boils water and controls the tapping temperature by changing the rotation speed of the compressor (see Patent Document 1).
[0003]
FIG. 7 shows a conventional heat pump water heater described in the above-mentioned document. In FIG. 7, a refrigerant circulation circuit 7 in which a compressor 2, a hot water supply heat exchanger 3 as a radiator, a decompression means 4, and a heat absorber 5 are connected in a refrigerant flow path 1 configured in a closed circuit, and a hot water supply heat exchanger. A water flow path 9 in the hot water supply heat exchanger 3 that exchanges heat with the refrigerant flow path 3, a water supply pipe 11 that supplies tap water to the water flow path 9, and a hot water supply terminal such as the water flow path 9 and a shower or a faucet 12 is provided with a hot water supply circuit 13 for connecting the electric power supply 12, a temperature sensor 14 provided in the hot water supply circuit 13 for detecting the hot water supply temperature, and an inverter 15 for controlling the rotational speed of the compressor 2. The output frequency of the inverter 15 is converted according to the difference from the set temperature. That is, in the conventional hot water supply apparatus, the control is performed such that the rotation speed of the compressor 2 is increased when the hot water supply temperature is lower than the set temperature, and the rotation speed is decreased when the hot water supply temperature is high.
[0004]
[Patent Document 1]
JP-A-2-223767
[0005]
[Problems to be solved by the invention]
Generally, the hot water supply load during hot water supply is not constant. In particular, since the flow rate is varied by the user depending on the purpose of hot water supply, the hot water supply load changes greatly. For example, in the case of hot water supply for home use, a large flow rate of 10 to 20 L / min is used when supplying hot water to a shower or bath, but 3 to 5 L / min for washing dishes in the kitchen or hot water supply to the wash surface. Small flow rate. Also, the hot water supply load varies greatly depending on the seasonal change in the temperature of the water supply.
[0006]
However, in the conventional configuration, when the amount of hot water supply is controlled only by changing the rotational speed of a single compressor for a single hot water supply heat exchanger or heat sink, first, a large flow rate such as a shower is used. In order to cope with the hot water supply load, a large compressor needs a large hot water supply heat exchanger and heat sink, and in such a large apparatus, the rise of temperature and pressure is slowed and installation space is increased. In a device having a large hot water supply heat exchanger or heat sink, the hot water supply load varies greatly depending on changes in flow rate or water temperature, so there is a limit when trying to reduce the capacity for a small hot water supply load. The inconvenience that it becomes difficult to cope with arises. For example, it cannot cover a wide range of hot water supply capabilities, such as the simultaneous use of showers and hot water baths in the winter, to a small capacity such as dishwashing in the summer, etc., the shower temperature falls, hot water comes out by dishwashing, etc. There was a possibility of inconvenience. Furthermore, if the capacity of the hot water supply heat exchanger is increased so that a large amount of heat can be exchanged, the flow path length of the water flow path becomes longer or the cross-sectional area of the flow path becomes smaller in order to secure a heat transfer area. The channel resistance increased, making it difficult to distribute a large flow of water.
[0007]
As described above, in the conventional heat pump hot water supply apparatus, hot water is instantaneously heated with a hot water supply heat exchanger to supply hot water regardless of the size of the hot water supply load. The problem is that a very large device is required. In addition, the size of the device is increased in order to cope with a large hot water supply load, and there is a limit to the capacity change range only by changing the rotation speed of the compressor with a large device, and it is difficult to cope with a wide range of hot water supply loads. At the same time, there is a problem that it becomes difficult to cope with a large flow rate.
[0008]
On the other hand, a type in which hot water is boiled in a hot water storage tank using midnight power, such as a midnight heat storage type electric water heater, has been known. However, since this type of heat pump hot-water supply apparatus boils hot water just enough to cover the hot water supply load for one day at night, it requires a large heat storage size such that the capacity of the hot water storage tank exceeds 300L to 400L. Such a large-capacity tank cannot be stored in, for example, a pipe shaft of a housing complex, so that a large space is required for installation, and there is a problem that installation is very poor.
[0009]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a heat pump hot water supply apparatus that has a wide capacity range and does not require an increase in the size of a hot water storage tank.
[0010]
[Means for Solving the Problems]
In order to solve the conventional problem, the heat pump water heater of the present invention is A refrigerant circulation circuit having a radiator and a heat absorber to form a heat pump cycle, a hot water supply heat exchanger having a water flow path for exchanging heat with the heat radiator, and a first water supply for supplying tap water to the water flow path A pipe, a first hot water pipe connected so as to pass hot water for heating heated in the water flow path to a hot water supply terminal, a tank for storing hot water, and the tank and the water flow path connected to water in the tank. A circulation path for heating the water flow path back to the tank, a second hot water pipe connecting the hot water stored in the tank to the hot water supply terminal, the first hot water pipe and the second hot water pipe; And a first mixing means for connecting Is.
[0011]
As a result, the hot water stored in the tank is drained and added separately from heating the tap water with the hot water heat exchanger, so even if the heating amount in the hot water heat exchanger is insufficient, the shortage relative to the amount of hot water used It is not necessary to greatly increase the heating capacity in the hot water supply heat exchanger. Also, even if the hot water supply heat exchanger is increased in capacity to some extent and the flow resistance increases, the hot water in the tank is discharged in parallel from the second hot water supply pipe so that a large flow of hot water can be supplied. This can be achieved by simultaneous hot water and space saving.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The heat pump hot water supply apparatus of the invention described in claim 1 includes a refrigerant circulation circuit having a heat radiator and a heat absorber to form a heat pump cycle, and a hot water supply heat exchanger having a water flow path for exchanging heat with the heat radiator. A first water supply pipe for supplying tap water to the water flow path; a first water supply pipe for connecting hot water heated in the water flow path to the hot water supply terminal; a tank for storing hot water; A circulation path that connects the tank and the water flow path, heats the water in the tank through the water flow path and returns the water to the tank, and a second hot water supply pipe that connects the hot water storage in the tank to the hot water supply terminal. First mixing means for connecting the first hot water supply pipe and the second hot water supply pipe; It is equipped with.
[0013]
According to this invention, with respect to the hot water supply flow rate required by the user, the tap water is heated by the hot water supply heat exchanger to supply hot water from the first hot water supply pipe, and the heat pump heat source alone heats the required flow rate of tap water. Even if the amount of heating is insufficient, the hot water stored in the tank is drained from the second hot water supply pipe and added together, so that the shortage can be compensated and the hot water supply heat exchanger does not significantly increase the heating capacity. May be. On the other hand, if the capacity of the hot water supply heat exchanger is increased to some extent in order to reduce the capacity of the tank, the length of the water flow path becomes longer, and when the flow resistance is large and a large flow rate of hot water is required, the first hot water supply pipe Although it will not be possible to obtain a hot water flow with sufficient flow rate, the hot water in the tank will be discharged simultaneously in parallel from the second hot water supply pipe, so it will be possible to supply a large flow of hot water, respond to large loads and flow rates, and reduce the size of the heat pump heat source and tank. Can be achieved by simultaneous hot water. In addition, since hot water is not stored in the tank at night and discharged only from the second hot water supply pipe, there is no need for a large tank that can cover all of the daily hot water supply, and both the heat pump heat source and the tank can be downsized. Space can be saved.
[0014]
The heat pump hot water supply apparatus according to the second aspect of the present invention is the heat pump hot water supply apparatus according to the first aspect of the present invention, particularly comprising the temperature setting means, and when storing hot water in the tank using the circulation path, the maximum temperature that can be set by the temperature setting means. Hot water is stored at a temperature equal to or higher than the set value, and at least one of the hot water temperature or hot water flow rate from the first hot water supply pipe or the hot water temperature or hot water flow rate from the second hot water pipe based on the set value of the temperature setting means. Is to control.
[0015]
According to the present invention, by increasing the temperature of the hot water stored in the tank, the heat storage density, that is, the amount of stored hot water can be increased and the heat storage size can be reduced, so that the capacity of the tank can be reduced, and the installation space and weight can be reduced. it can. In addition, the temperature of the hot water supply temperature can be adjusted according to the user's request in a wide flow rate range from a small flow rate to a large flow rate, and a small space-saving heat pump hot water supply device having a wide flow rate range and improved convenience can be realized.
[0016]
A heat pump hot water supply apparatus according to a third aspect of the present invention is the tank according to the first or second aspect, wherein the height from the bottom to the top of the tank is lower than the height of the heat absorber.
[0017]
According to this invention, the installation stability when water is stored by reducing the height of the tank is good, and the size of the heat absorber increases as the required heating capacity in the hot water heat exchanger increases corresponding to the hot water supply load. As the size increases and the height increases, the components including the tank and the heat absorber are integrated as a unit to reduce the installation area and improve the installation. The lower the tank height, the easier the stacking integration and the lower the center of gravity.
By reducing the height, an integrated unit having a small installation area and good stability is possible.
[0018]
The heat pump hot-water supply apparatus according to the invention described in claim 4 is the heat pump hot-water supply device according to any one of claims 1 to 3, particularly comprising the water absorption part at the bottom part in the tank, the water discharge part at the top part in the tank, and the water circulation means. The tank and the water flow path are connected to each other, and a second water supply pipe having an upward flow blocking means is connected to the bottom of the tank so as to supply tap water to the tank.
[0019]
According to the present invention, the water is taken out from the lower part of the tank by the water circulation means and converted into the hot water in the hot water supply heat exchanger water flow path and returned to the upper part of the tank, so that the inside of the tank is divided into the upper hot water part and the lower cold water part. Temperature stratification is formed, and when necessary, the tank can be stored in the tank with high-temperature hot water having a high heat storage density by the required amount, and the capacity of the tank can be reduced. In addition, if the tank height is reduced to reduce the size and capacity, the low temperature water that has entered due to the momentum of the water supply flow from the second water supply pipe will collapse the temperature stratification, and the low temperature water will be easily discharged from the second hot water supply pipe as it is. However, since the upward flow blocking means can prevent the temperature stratification from collapsing and the discharge of low-temperature water, the high heat storage density of the tank and the amount of discharged hot water from the second hot water supply pipe can be maintained, and the apparatus can be downsized. .
[0020]
In the heat pump hot water supply apparatus according to the invention described in claim 5, in the invention described in claim 4 in particular, the circulation path is constituted by connecting the water absorption part in the tank and the water flow path via the water circulation means, and the first water supply The pipe is provided with check means provided in parallel with the water circulation means. When there is inflow of tap water from the first water supply pipe, it flows through the check means in the forward direction to the water flow path, and there is no inflow of tap water. During the operation of the means, the flow of the first water supply pipe in the reverse direction is prevented.
[0021]
According to the present invention, when there is no inflow of tap water from the first water supply pipe and the hot water storage operation is performed, the non-return means is provided in the bypass flow path even if the water circulation means is operated. The short-circuit direction in which the flowing water immediately enters the water circulation means is reversed, and no short-circuit occurs and no problem occurs in the hot water storage operation. In addition, when there is an inflow of tap water from the first water supply pipe, if there is a water circulation means in the path from the first water supply pipe to the water flow path of the hot water supply heat exchanger, let a large flow of water flow through the water flow path. However, since the flow resistance of the water circulation means is large and it is difficult to flow a large flow rate, it is possible to increase the flow rate because it passes through the first water supply pipe provided with a check means in parallel so as to bypass the water circulation means. Become. Therefore, a large flow rate can be allowed to flow through the hot water supply heat exchanger, and a small space-saving heat pump water heater having a wide flow rate range from a small flow rate to a large flow rate can be realized.
[0022]
A heat pump hot water supply apparatus according to a sixth aspect of the present invention is configured so that at least a part of the circulating water along the inner wall of the upper portion of the tank extends substantially along the inner wall of the upper portion of the tank. Is provided with a diffusion means for diffusing.
[0023]
According to the present invention, when the tank height is lowered to reduce the size and the capacity, the hot hot water entering from the circulation water discharge part causes the temperature stratification to collapse in the downward flow, As a result, the temperature in the upper part of the tank is lowered, and the temperature of the discharged hot water from the second hot water supply pipe is likely to be lowered. However, the diffusion means having the downward flow blocking action can prevent the temperature stratification from collapsing, so the high heat storage density of the tank And the amount of hot water discharged from the second hot water supply pipe can be maintained, and the apparatus can be downsized.
[0024]
The heat pump hot-water supply apparatus according to a seventh aspect of the present invention is the invention according to any one of the first to sixth aspects, wherein part or all of the water flow path outlet side of the hot water supply heat exchanger is configured in two paths. A water channel outlet pipe A and a water channel outlet pipe B are provided, and at least one of them is directly connected to the first hot water supply pipe.
[0025]
According to the present invention, one of the two paths on the outlet side of the water flow path of the hot water heat exchanger is dedicated to heating at a temperature higher than the temperature at which scale deposition becomes remarkable for high-temperature heating of flowing water, thereby maintaining the maintenance.
It is possible to take measures such as easy construction and large cross-sectional area that is resistant to clogging due to scale accumulation and avoiding the use of drive parts, improving scale resistance, and the other water channel outlet pipe is clogged by scale, etc. This low temperature side water flow path outlet pipe occupies most of the hot water supply and can be used without any problem for a long time. In addition, unlike the above-described method, only one path is used for low-temperature heating, and in the case of high-temperature heating, by using both the water flow path outlet pipe A and the water flow path outlet pipe B, the pipe cross-sectional area through which the flowing water passes is reduced. Since it doubles, the progress of scale deposition can be delayed and the life can be extended. Therefore, a durable and small space-saving device can be realized.
[0026]
The heat pump hot water supply apparatus according to an eighth aspect of the present invention connects the water flow path outlet pipe A to the first hot water supply pipe in the water flow path outlet pipe A and the water flow path outlet pipe B configured in the two paths according to the seventh aspect. The water channel outlet pipe B is connected to the tank via the opening / closing means to form a part of the circulation path.
[0027]
According to the present invention, since the water channel outlet pipe B is used for the high-temperature heating in the circulation path and the opening / closing means is provided, in the case of normal hot water supply, the opening / closing means is closed, so It flows only to the outlet pipe A and flows from the second hot water supply pipe to the hot water supply terminal. When hot water is stored in the tank at a temperature higher than the scale deposition temperature, the hot water flows only to the water channel outlet pipe B by opening the opening / closing means. Use precision parts with low scale resistance on the second hot water supply pipe side. Even if hot water flows, scale does not occur remarkably, and the opening and closing means is easy to construct in a simple structure, so the scale resistance is high. With this configuration, high-temperature hot water storage in the tank is facilitated, and the capacity of the tank can be reduced. Therefore, it is possible to realize a small-sized and space-saving device.
[0028]
The heat pump hot water supply apparatus of the invention according to claim 9 is the invention according to any one of claims 1 to 8, particularly, at least a hot water supply heat exchanger, tank, One of the water circulation means of the circulation path and a compressor constituting a heat pump cycle are provided and housed in one unit, and the compressor is disposed above the water element.
[0029]
According to this invention, even if water leaks from the water flow element or if there is dripping of water in the unit due to piping work during construction or maintenance, the compressor is disposed above. Therefore, it is possible to prevent the legs of the compressor from dripping with water for a long time or the legs to be submerged and prevent corrosion, and to realize a small-sized and highly-integrated apparatus with good installation.
[0030]
A heat pump hot water supply apparatus according to a tenth aspect of the present invention is the bath heat exchanger as a radiator in parallel with the hot water supply heat exchanger in the refrigerant circulation circuit, particularly in the invention according to any one of the first to ninth aspects. , And a bath return pipe that forms a circulation line of the bathtub water between the bathtub and the hot water supply heat exchanger, a bath return pipe, and a bath circulation means.
[0031]
According to the present invention, since the bath heat exchanger is provided, the bath reheating operation which is the bath water heating operation is possible, and since it is arranged in parallel with the hot water supply heat exchanger, whichever of the hot water supply operation and the bath renewal operation is performed? In the case of operation, the high temperature refrigerant flowing in the refrigerant circuit immediately after the start of operation flows into the heat exchanger required for operation and exchanges heat with the water flow of the heat exchanger on the use side, so the temperature rise of water is quick. Become. Therefore, a small and space-saving heat pump hot water supply apparatus that is convenient can be realized.
[0032]
A heat pump hot water supply apparatus according to an eleventh aspect of the invention is the bath heat exchanger provided in series with the hot water supply heat exchanger in the refrigerant circulation circuit, in particular, in the invention according to any one of the first to ninth aspects, A high pressure side pressure reducing means with variable pressure reduction amount provided in a refrigerant passage between the heat exchanger and the bath heat exchanger, and a heat exchanger and a heat sink on the downstream side of either the hot water heat exchanger or the bath heat exchanger. , A low pressure side pressure reducing means with variable pressure reduction amount, a bath outlet pipe forming a bath circulation path between the bathtub and the hot water supply heat exchanger, a bath return pipe, and a bath circulation means.
[0033]
According to this invention, the hot water supply heat exchanger and the bath heat exchanger are connected in series and the refrigerant is circulated at the same time, and the temperature of the circulating refrigerant in each heat exchanger is increased by the high pressure side pressure reducing means and the low pressure side pressure reducing means. Since the conditions can be individually set, simultaneous operation of hot water supply and bath renewal is possible. Therefore, it is possible to realize a small and space-saving heat pump hot water supply apparatus that is convenient and can be used while bathing.
[0034]
In a heat pump hot water supply apparatus according to a twelfth aspect of the present invention, the bath circulation means according to the tenth or eleventh aspect is a water pump with a variable water flow rate using a DC motor.
[0035]
According to the present invention, since the bath pump with a variable water flow rate is provided, not only the condition on the refrigerant side but also the condition of the bath water flowing through the bath heat exchanger can be changed, and the hot water supply heat exchanger and the bath heat exchange can be changed. Since the heat exchange conditions of each unit can be set more finely, simultaneous operation of hot water supply and bath reheating becomes easy. Moreover, since the water flow rate is varied by changing the number of rotations using a DC motor, the water flow rate can be changed efficiently, and a bath chasing operation with high efficiency and high COP becomes possible. Therefore, a small and space-saving heat pump water heater that is efficient and convenient can be realized.
[0036]
The heat pump hot-water supply apparatus of the invention described in claim 13 is the bath water flow in which the water flow path of the hot-water supply heat exchanger and the bath water of the bath heat exchanger flow in the invention of any one of claims 1-12. The inlet of the flowing water of each heat exchanger of the path is provided below, and the outlet is provided above.
[0037]
According to the present invention, air is generally dissolved in water, and when heated by a heat exchanger, air comes out as bubbles as the water temperature rises. Therefore, by providing the inlet of running water to the heat exchanger downward and the outlet upward, the bubbles that come out are lighter than water, so they are discharged out of the heat exchanger from the upper outlet, and the heat exchange that actually contributes Since the heat transfer area to the water in the vessel is not reduced, the size of the heat exchanger can be reduced, and the apparatus can be reduced in size and space.
[0038]
The heat pump hot-water supply apparatus of the invention described in claim 14 is the invention described in any one of claims 1 to 13, particularly, at least one of the water flow path of the hot water supply heat exchanger and the bath water flow path of the bath heat exchanger. One of them has a multi-path configuration having a plurality of parallel flow paths.
[0039]
According to this invention, since the flow of water in the heat exchanger has a multi-path configuration, the flow resistance is small and a heat transfer area can be sufficiently secured even when a large flow rate is passed, and the heat exchanger has a large flow rate. It becomes possible to flow. Therefore, a small space-saving heat pump water heater having a wide flow rate range from a small flow rate to a large flow rate can be realized.
[0040]
A heat pump hot water supply apparatus according to a fifteenth aspect of the invention is characterized in that the refrigerant circulation circuit according to any one of the first to fourteenth aspects is a supercritical refrigerant circulation circuit in which the refrigerant pressure is equal to or higher than the critical pressure, and the critical pressure The flowing water in the water flow path of the radiator is heated by the refrigerant whose pressure has been increased as described above.
[0041]
According to the present invention, since the refrigerant flowing through the refrigerant flow path of the radiator is pressurized to a critical pressure or higher by the compressor, it is condensed even if the temperature is lowered due to heat deprived by the flowing water in the water flow path of the radiator. There is nothing to do. Therefore, it becomes easy to form a temperature difference between the refrigerant and water throughout the radiator, so that hot water can be obtained and the heat exchange efficiency can be increased.
[0042]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and each example, parts having the same configuration and the same operation are denoted by the same reference numerals, and detailed description is given.
Is omitted.
[0043]
Example 1
FIG. 1 is a circuit configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. In FIG. 1, 21 is a tank, 22 is a refrigerant circulation circuit serving as a heat pump heat source, and the refrigerant circulation circuit 22 is composed of a compressor 23, a first radiator 24, a first decompression means 25, and a second radiator 26 by refrigerant piping. The second decompression means 27 and the heat absorber 28 are connected to an annular closed circuit. The refrigerant circulation circuit 22 uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 23 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a pressure exceeding the critical pressure.
[0044]
Also, the heat exchange between the bath heat exchanger 31 including the first refrigerant flow path 29 of the first radiator 24 and the bath water flow path 30 that performs heat exchange, and the second refrigerant flow path 32 of the second radiator 26 are performed. The hot water supply heat exchanger 34 comprised with the water flow path 33 which performs is provided. A first water supply pipe 35 is connected to the inlet side of the water flow path 33 to directly supply tap water and supply tap water. Tap water is supplied in the forward direction of a check valve 36 which is a check means provided in the middle. The water flows through the first water supply pipe 35 to the water flow path 33. The outlet of the water channel 33 branches into a water channel outlet tube A37 and a water channel outlet tube B38, and the water channel outlet tube A37 supplies hot water discharged from a hot water supply terminal 42 such as a bath faucet 39, a shower 40, a kitchen faucet 41, and the like. Connected to the first hot water supply pipe 43. The water passage outlet pipe B38 has a hot water storage opening / closing valve 44 that is an opening / closing means in the middle, and is connected to a nozzle 46 that is a diffusion means provided in the water discharge portion 45 in the substantially upper interior of the tank 21. It acts as a hot water storage pipe that stores hot water.
[0045]
From the upstream of the check valve 36 of the first water supply pipe 35, a second water supply pipe 48 having a water supply opening / closing valve 47 that is open when not energized is branched and connected to supply tap water to the bottom of the tank 21. Has been. The downstream side of the water supply opening / closing valve 47 of the second water supply pipe 48 and the first water supply pipe 35 are connected by a circulation pump 49 as water circulation means, and the circulation pump 49 is arranged in parallel with the check valve 36. . The vicinity of the tip of the second water supply pipe 48 that slightly protrudes from the bottom of the tank 21 becomes the water absorption section 50, and the second water supply pipe 48, the circulation pump 49, the first water supply pipe 35, and the water flow path 33 are sequentially formed from the water absorption section 50. Then, a hot water storage heating circulation path 51 is formed which passes through the hot water storage opening / closing valve 44 of the water flow path outlet pipe B38 and reaches the nozzle 46 provided in the water discharge section 45.
[0046]
On the other hand, a baffle plate 52, which is an upward flow blocking means, is provided slightly above the tip of the second water supply pipe 48 inside the tank 21, and hot water stored in the tank 21 is discharged. A second hot water supply pipe 53 is connected to the hot water supply terminal 42.
[0047]
54 is a bathtub, the inlet side of the bath water flow path 30 of the bath heat exchanger 31 and this bathtub 54 are connected by a bath return pipe 56 having a bath pump 55 that is a bath circulation means, and the outlet of the bath water flow path 30 The bath circulation path 58 is formed by connecting the side and the bathtub 54 with a bath outlet pipe 57. Here, a direct current motor is used for the bath pump 55. In addition, the first hot water supply pipe 43 and the second hot water supply pipe 53 are merged in the first mixing means 59 and flow to the third hot water supply pipe 60. Further, the mixed water pipe 61 and the third hot water supply pipe 60 for mixing tap water are the first. The two mixing means 62 are combined to flow to the fourth hot water supply pipe 63 to which the hot water supply terminal 42 is connected, and an operation of supplying hot water called “hot water” or “hot water” to the bathtub 54 is performed. A bath pouring path 64 for performing is connected between the fourth hot water supply pipe 63 and the bath circulation path 58, and the bath pouring path 64 has a variable flow rate for adjusting the amount of hot water supplied. A pouring valve 65 serving as a means is provided.
[0048]
The tank 21 is covered with a heat insulating material (not shown), and its size is assumed to be the maximum load that is the maximum amount of hot water used by the user, and the maximum heating capacity in the hot water heat exchanger 34 is The amount of hot water stored in the tank 21 is also used in combination with the maximum load so that the amount of hot water can be supplied without any shortage.
The
[0049]
In the refrigerant circulation circuit 22, a hot water supply valve 66 that connects the outlets of the two parallel compressors 23 and the inlet of the second radiator 26 and a defrost valve 67 that connects the outlet of the compressor 23 and the inlet of the heat absorber 28 are provided. It is provided and functions to regulate the flow to each bypass path.
[0050]
Reference numeral 71 denotes a control means configured using a microcomputer (not shown) having a CPU, a memory, an input / output interface, and the like. The control means 71 includes heating for controlling the heating amount of the hot water supply heat exchanger 34. Control means 72 is provided. A water supply temperature sensor 73 is provided at the most upstream side of the first water supply pipe 35, an inlet temperature sensor 74 for detecting a water supply temperature to the hot water supply heat exchanger 34 is provided at the inlet side of the water flow path 33, and an outlet temperature at the outlet side. A sensor 75 is provided. The fourth hot water supply pipe 63 downstream of the second mixing means 62 is provided with a hot water supply temperature sensor 76 for detecting the hot water supply temperature to the hot water supply terminal 42. The fourth hot water supply pipe 63 is also provided with a flow rate sensor 77 that can detect the hot water supply flow rate to the hot water supply terminal 42. The wall surface of the tank 21 is provided with a hot water storage temperature sensor 78 which is a temperature detection means for detecting the temperature of the hot water in the tank 21 at its top, and three thermistors as temperature detection means are further provided for remaining hot water. The first sensor 79, the remaining hot water second sensor 80, and the remaining hot water third sensor 81 are arranged at predetermined intervals from the upper part to the lower part in the drawing, and detect the hot water temperature at each position.
[0051]
The bath return pipe 56 is provided with a bath temperature sensor 82 for measuring the hot water temperature of the bath 54, a water level sensor 83 for detecting the water level of the bath 54, and a bath flow rate sensor 84 that can detect the flow caused by the operation of the bath pump 55. The bath outlet pipe 57 near the outlet of the bath water flow path 30 is provided with a bath outlet temperature sensor 85. Reference numeral 86 denotes an air temperature sensor that detects the air temperature provided in the vicinity of the heat absorber 28, and 87 denotes a shell temperature sensor that detects the shell temperature of the compressor 23.
[0052]
The detection signals from thermistors 73 to 76 and 78 to 82, 85 to 87, which are the respective temperature sensors, and 77, 83, and 84, which are other sensors, are configured to be input to the control means 71, respectively. The control means 71 has a function of selecting an appropriate hot water supply operation control from changes in each detection signal input within a predetermined time and issuing an operation command. For example, the heating control means 72 in the control means 71 controls the amount of heat in the hot water supply heat exchanger 34 by changing the rotation speed of the compressor 23 which is the operating condition of the heat pump cycle according to the detection value of the temperature sensor 86. To do. The heating amount in the hot water supply heat exchanger 34 can be varied in proportion to the rotational speed of the compressor 23 if the air temperature is determined. Therefore, the heating control means 72 stores in advance the relationship between the heating amount of the hot water supply heat exchanger 34 for each temperature and the rotation speed of the compressor 23, and sets and controls the rotation speed according to the air temperature to control the hot water supply heat exchanger 34. The amount of heating can be controlled.
[0053]
Reference numeral 88 denotes temperature setting means that is electrically connected to the control means 71 and sets a target temperature for hot water supply, and the user arbitrarily sets the temperature. The hot water filling setting means 89 is also electrically connected to the control means 71 and provided for the user to start and set the operation of automatically filling the bathtub 54 with hot water.
[0054]
FIG. 2 is a configuration layout diagram of the heat pump hot water supply apparatus according to the first embodiment of the present invention. In FIG. 2, the heat absorber 28 is formed in a shape called a fin tube heat exchanger having a structure in which fins are provided in a tube through which carbon dioxide refrigerant flows, and acts as an evaporator on the heat pump cycle. Heat is absorbed and absorbed. The heat absorber 28 is formed so that the width dimension is shortened by bending the width direction into a substantially U shape, and the height is set lower than the height from the bottom of the tank 21 to the top. . The air blower including the fan 91 and the heat absorber 28 constitute one upper unit 92, and other elements constituting the heat pump cycle such as the compressor 23 and the radiators 24 and 26, the tank 21, and the water A lower unit 93 is constituted by a water flow element that is a flowing part, and the upper unit 92 is stacked on the lower unit 93. The main water flow elements of the lower unit 93 include the tank 21, the bath heat exchanger 31, the hot water supply heat exchanger 34, the circulation pump 49, the bath pump 55, and the like. In addition, a compressor base 95 for fixing the two compressors 23 is arranged one stage above. Further, the control board 96 in which the control means 71 is accommodated is disposed above the compressor base 95.
[0055]
The bath water flow path 30 of the bath heat exchanger 31 and the water flow path 33 of the hot water supply heat exchanger 34, the respective inlets 97 are arranged downward, and the outlets 98 are arranged upward, so that the flowing water flows from the bottom to the top. In addition, the refrigerant flow path is configured to flow from top to bottom facing this. That is, the refrigerant flow direction of the first radiator 24 and the flow direction of the bath water flow path 30, and the refrigerant flow direction of the second heat radiator 26 and the flow direction of the water flow path 33 are respectively opposed to each other. Heat exchange between the refrigerant and water is possible and the heat transfer between each flow path is facilitated. With this configuration, heat transfer between the respective refrigerant flow paths and water flow paths is made uniform, and heat exchange efficiency is improved. In addition, hot water can be discharged.
[0056]
The operation and action of the above configuration will be described. In the heat pump water heater of the embodiment shown in FIGS. 1 and 2, the operation operation is at least 5 such as “hot water supply operation”, “hot water operation”, “bath reheating operation”, “hot water storage operation”, and “defrost operation”. There are two operation modes.
[0057]
First, “hot water supply operation” in which a user uses hot water discharged from a hot water supply terminal such as a faucet will be described. In a state where hot water is stored in the tank 21 shown in FIG. 1, the water supply opening / closing valve 47 is opened, and the hot water storage opening / closing valve 44 and the pouring valve 65 are closed, the user sets the hot water supply temperature to 42 ° C. with the temperature setting means 88. When the hot water supply terminal 42 such as the kitchen faucet 41 is opened, tap water starts to flow from the first water supply pipe 35 due to the water pressure, and the water in the fourth hot water supply pipe 63 is also pushed by the water pressure. A stream of water exits from. This is detected by the flow sensor 77 and a signal is sent to the control means 71, and the hot water supply operation for opening the hot water supply valve 66 and operating the two compressors 23 is started by the control means 71.
[0058]
At this time, when the refrigerant circulation circuit 22 is in a cold state, it takes time for the pressure and temperature of the entire cycle to reach a steady state even when the compressor 23 is operated, and the heat capacity of the compressor 23 and the hot water supply heat exchanger 34 is long. For this reason, water close to the water supply temperature comes out from the water flow path 33 due to insufficient heating for a while. For this reason, when the control means 71 determines that the hot water supply is nearly used because the temperature setting means 88 is set by the user, the compressor 23 is operated intermittently, or the electric motor in the compressor 23 rotates. It is also possible to wait for a warm-up operation by passing a minute current to such an extent as not to occur.
[0059]
If the refrigerant circulation circuit 22 is still cold, the control means 71 makes a determination based on the signals from the outlet temperature sensor 75 and the shell temperature sensor 87 at the outlet of the water flow path 33 and sets the first hot water supply pipe as the initial state of the first mixing means 59. 43 and the 2nd hot-water supply pipe | tube 53 are set to the position which mixes the flow volume which flows through the same quantity, for example. Here, assuming that the water supply temperature is 5 ° C. and the hot water storage temperature is 80 ° C., and the outlet temperature from the water flow path 33 is still 5 ° C., the temperature at the hot water supply temperature sensor 76 is approximately (80 ° C. + 5 ° C.) / 2 = 42.5. The tapping temperature is ℃.
[0060]
In the control means 71 during hot water supply, the heating control means 72 controls the rotational speed of the compressor 23 based on the deviation between the hot water temperature output from the outlet temperature sensor 75 and the temperature setting means 88 and the target temperature. . The high-temperature and high-pressure refrigerant gas discharged from the compressor 23 and flowing into the second radiator 26 heats the water flowing through the water flow path 33. The heated water is discharged from the hot water supply terminal 42 through the first hot water supply pipe 43. On the other hand, the refrigerant cooled by the second radiator 26 is decompressed by the second decompression means 27 and flows into the heat absorber 28, where it absorbs natural energy such as atmospheric heat and solar heat to evaporate and is converted into the compressor 23. Return. After a while from the start of operation, the temperature of the refrigerant system also rises sufficiently, the outlet temperature of the water flow path 33 rises, and when the outlet temperature reaches the target temperature, the control means 71 increases the amount of hot water discharged from the first hot water supply pipe 43. Then, the opening degree of the first mixing means 59 is adjusted, and the first hot water supply pipe 43 and the second hot water supply pipe 53 are respectively adjusted to the target temperature set by the temperature setting means 88 based on the temperature detected by the hot water supply temperature sensor 76. Mix by changing the flow rate. The hot water heated in the water flow path 33 is supplied from the first hot water supply pipe 43 through the third hot water supply pipe 60 and the fourth hot water supply pipe 63 to the hot water supply terminal 42. At this time, each element of the refrigerant circulation circuit 22 may be further controlled to change the temperature of the hot water flowing through the first hot water supply pipe 43 based on the outlet temperature sensor 75.
[0061]
When the hot water is mainly a small flow rate such as the kitchen faucet 37, the control unit 71 recognizes the flow rate detected by the flow rate sensor 77 and controls the first mixing unit 59 to give priority to water flow from the first hot water supply pipe 43. The water flow from the second hot water supply pipe 53 is closed as much as possible, and the heating control means 72 controls the rotation speed of the compressor 23 so that the hot water temperature output from the outlet temperature sensor 75 becomes the target temperature. . When the hot water supply load exceeds the maximum heating capacity of the hot water supply heat exchanger 34 and the target temperature is not reached even if the compressor 23 is controlled, the second hot water supply pipe 53 side of the first mixing means 59 is set to a predetermined ratio. The amount of hot water stored in the tank 21 is increased so that the detected temperature output from the hot water supply temperature sensor 76 becomes the target temperature.
[0062]
In addition, when there is a small flow rate of hot water, there is a method in which the hot water is discharged only from the tank 21. Further, in order to speed up the start-up at the time of start-up, the compressor 23 is turned to the full power at the maximum rotation speed from the start-up. This method is also possible.
[0063]
On the other hand, when one of the bath faucets 35 or the like is opened and a large amount of hot water is discharged, or when hot water is discharged simultaneously from two or more hot water supply terminals 42, the control means 71 recognizes that the flow rate sensor 77 has a large flow rate, The required heating amount controlled by the heating control means 72 is set to the maximum heating capacity in the hot water supply heat exchanger 34 to control the number of revolutions of the compressor 23, and the temperature detected by the hot water supply temperature sensor 76 becomes the target temperature. Then, the opening degree of the first mixing means 59 is adjusted and operated using feedback control from the deviation between the hot water supply temperature and the target temperature. By adjusting the opening degree of the first mixing means 59, the hot water passing through the first water supply pipe 35 from the water supply and passing through the water flow path 33 and the first water supply pipe 35 are branched from the water supply and introduced into the tank 21 from the second water supply pipe 48. The mixing ratio of the hot water pushed out from the tank 21 by the water that has passed through the third hot water supply pipe 60 of each is determined, and the first mixing means 59 is controlled to obtain the target hot water temperature.
[0064]
The temperature control will be specifically explained. When the water supply temperature is 5 ° C., the hot water storage temperature is 85 ° C., and the temperature setting means 88 requires 45 ° C. hot water supply at the flow rate of 15 L / min by opening the bath faucet 35. For example, assuming that the maximum heating capacity in the hot water supply heat exchanger 34 is 14 kW, the control means 71 controls the compressor 23 to perform the heating operation at 14 kW. And if the opening degree of the 1st mixing means 59 is adjusted, the flow volume of the 2nd hot water supply pipe 53 is adjusted, and the amount of hot water discharged from a tank will be 5 L / min, the detection temperature of the hot water supply temperature sensor 76 will be target temperature. Hot water can be supplied at 45 ° C. At this time, since the remaining 10 L / min flows to the heat pump heat source, the tap water supplied to the first water supply pipe 35 and the water flow path 33 is heated to about 25 ° C. at 75 parts of the outlet temperature sensor. It has become.
[0065]
In this way, for the hot water flow rate required by the user, the hot water stored in the tank 21 is stored in the tank 21 separately from the instantaneous heating of the tap water by the hot water supply heat exchanger 34 and the hot water supply from the first hot water supply pipe 43. Since the hot water is discharged from the hot water supply pipe 53 and added, even if the instantaneous heating amount in the hot water supply heat exchanger 34 due to the heat pump cycle is insufficient, the amount of hot water can be added from the tank 21 to compensate for the shortage, and the hot water supply heat exchanger The heating capacity at 34 need not be greatly increased.
[0066]
On the other hand, in a configuration that does not have a tank, the capacity of the hot water supply heat exchanger is increased so that hot water can be supplied only by instantaneous heating so that a large amount of heat can be exchanged. The length becomes longer and the flow resistance increases, making it difficult to distribute a large flow of water. Even in the configuration of the present invention having the tank 21, if the hot water supply heat exchanger 34 is increased to some extent in order to reduce the capacity of the tank 21, the flow path resistance is likely to increase similarly. Since the tank 21 and the water flow path 33 are connected by the circulation path 51, the water pressure applied to the tank 21 and the water flow path 33 during the hot water supply operation is substantially equal, and the water flow path is in view of the water pressure resistance of the tank 21. It is necessary to keep the feed water pressure to 33 low, and at a low feed water pressure, a more sufficient flow rate cannot be obtained due to the channel resistance. However, when a large flow rate of hot water supply is required, hot water from each of the first hot water supply pipe 43 connected to the water flow path 33 and the second hot water supply pipe 53 connected to the tank 21 is simultaneously discharged in parallel. Therefore, it is possible to realize both compatibility with a large load and a large flow rate and a reduction in the size of the heat pump heat source and tank by simultaneous hot water. In addition, since the hot water is not stored in the tank 21 at midnight and the hot water is discharged only from the second hot water supply pipe 53, there is no need for a large tank that can cover all of the hot water supply amount of the day, and both the heat pump heat source and the tank can be downsized. This can save space.
[0067]
Next, a “hot water operation” in which hot water is automatically added to the bathtub or a small amount of hot water is poured by setting by the user will be described. When the user operates the hot water filling setting means 89 to permit the start of the hot water filling operation, the control means 71 opens the hot water supply valve 66 and operates the two compressors 23 with the defrost valve 67 closed. Then, with the water supply opening / closing valve 47 opened and the hot water storage opening / closing valve 44 closed, the pouring valve 65 is opened and the hot water filling operation is started. Then, the hot hot water stored in the tank 21 is pushed up by the supply pressure of the water flowing through the second water supply pipe 48 branched from the first water supply pipe 35, and passes through the second hot water supply pipe 53 to form the first mixing means 59. To reach. At the same time, the hot water flowing from the first water supply pipe 35 to the first hot water supply pipe 43 through the water flow path 33 also flows into the first mixing means 59, where the hot water from the two directions is mixed at a constant rate. Then, the mixed hot water flows into the second mixing means 62 through the third hot water supply pipe 60, and flows into the second mixing means 62 from the mixed water pipe 61, where water and hot water are mixed at a constant rate, From the outflow side of the second mixing means 62, it passes through the fourth hot water supply pipe 63, flows through the bath return pipe 56 and the bath outlet pipe 57 through the hot water supply valve 65 of the bath hot water supply path 64, and is supplied to the bathtub 54. When it is detected by the signals of the bath temperature sensor 82 and the water level sensor 83 that a predetermined amount of hot water is supplied into the bathtub 54 at a predetermined temperature, the control means 71 ends the hot water filling operation. Here, the amount of hot water filling may be determined by calculating the integrated flow rate based on the signal of the flow rate sensor 77.
[0068]
Further, “bath reheating operation” in the heat pump type hot water supply apparatus will be described. In the case where the bath 54 is chased by the bath chasing setting means 90, the control means 71 closes the pouring valve 65 and then drives the bath pump 55 to circulate the bath water to the bath circulation path 58. The circulation of water is detected by the bath flow sensor 84, and the two compressors 23 are operated in a state where the hot water supply valve 66 and the defrost valve 67 are closed, and the bath renewal operation is started. When bath water is sent from the bath return pipe 56 to the bath heat exchanger 31 by the bath pump 55, heat exchange is performed with the first refrigerant channel 29 in the bath water channel 30, and the bath water is heated and the bath water pipe is heated. 57 is returned to the bathtub 54 again. During this time, the bath water temperature is detected by the bath temperature sensor 82, and the circulation is continued until the bath water temperature reaches the target temperature.
[0069]
As described above, based on the signals from the flow rate sensor 77 and the bath flow rate sensor 84, the water flow is detected and the operation of the compressor 23 is started. Thus, it is possible to prevent the refrigerant pressure in 22 from being excessively increased.
[0070]
Here, characteristic operations and operations of the present embodiment will be described. When the bath reheating setting means 90 is operated during the hot water supply operation, or when the hot water supply terminal 42 is used during the bath reheating operation, that is, the simultaneous operation of the “hot water operation” and the “bath reheating operation”. When requested, the control means 71 performs the same operation as the “bath chasing operation”. At this time, since the hot water supply valve 66 and the defrost valve 67 are closed, the refrigerant flows through both the first radiator 24 and the second radiator 26 in the refrigerant circulation circuit 22, The control means 71 adjusts both the first pressure reducing means 25 and the second pressure reducing means 27 that is the low pressure side pressure reducing means, so that the temperature conditions of the circulating refrigerant in the bath heat exchanger 30 and the hot water supply heat exchanger 34 are adjusted. Since it can be set individually, simultaneous operation of hot water supply and bath renewal is possible. Further, since the direct current motor is used for the bath pump 55, the flow rate of the bath water flowing through the bath water channel 30 can be finely and efficiently adjusted. Therefore, the control means 71 can change not only the condition on the refrigerant side but also the condition of the bath water flowing through the bath heat exchanger 30, and the heat exchange conditions of the hot water supply heat exchanger 34 and the bath heat exchanger 30 can be changed. Since it can be set more finely, simultaneous operation of hot water supply and bath chasing becomes easy. Further, since the water flow rate is varied by changing the rotation speed using a DC motor, the water flow rate can be changed with high power consumption efficiency, and the bath chasing operation with high efficiency and high COP becomes possible. Therefore, a small and space-saving heat pump water heater that is efficient and convenient can be realized.
[0071]
Furthermore, the “defrosting operation” in the heat pump type hot water supply apparatus will be described. In the case where the heat absorber 28 is configured to absorb atmospheric heat or solar heat, frost is generated in the heat absorber 28 when the air temperature around the heat absorber is low (for example, less than 10 ° C.). When frost is generated, the control means 71 opens the defrost valve 67 of the refrigerant circulation circuit 22 and operates the compressor 23 at a predetermined rotational speed. As a result, the high-temperature and high-pressure refrigerant flows to the heat absorber 28 through the defrost valve 67, and by heating the heat absorber 28, the frozen frost melts and defrosting becomes possible.
[0072]
In this defrosting operation, a heat absorber temperature sensor (not shown) that detects the temperature of the heat absorber 28 is used to detect that the temperature of the heat absorber 28 has dropped below a predetermined temperature, or the hot water supply operation is stopped. The operation is started under various conditions set in the control means 71 such as immediately after the operation, and the operation is stopped when the temperature of the heat absorber 28 rises above a predetermined temperature or when a predetermined time elapses.
[0073]
Further, the “hot water storage operation” for boiling the tank 21 in the heat pump hot water supply apparatus will be described. After the hot water supply operation, the amount of hot water stored (high temperature hot water amount) in the tank 21 is reduced due to hot water. Moreover, although the tank 21 is covered with a heat insulating material, the hot water storage temperature gradually decreases due to heat dissipation. In these cases, the control means 71 opens the hot water supply valve 66 with the defrost valve 67 of the refrigerant circulation circuit 22 closed, and opens the hot water storage opening / closing valve 44 with the hot water injection valve 65 of the water system circuit closed. Then, the compressor 23 is operated at a predetermined rotational speed, and the circulation pump 49 is driven. As a result, the high-temperature and high-pressure refrigerant flows through the hot water supply valve 66 to the second refrigerant flow path 32, heats the water flow path 33, and the water flow generated by the circulation pump 49 from the tank 21 to the second water supply pipe 48 and the first water supply water. The water flowing in the order of the pipe 35 is heated here. Then, the water that has become hot water passes through the hot water storage opening / closing valve 44 of the water flow path outlet pipe B38, diffuses back from the nozzle 46 provided in the water discharge section 45 to the upper layer section in the tank 21. By continuously performing such an operation, the temperature rises in order from the upper layer portion to the lower layer portion in the tank 21.
[0074]
In this hot water storage operation, the outlet temperature sensor 75 detects the temperature of the high temperature hot water heated by the hot water supply heat exchanger 34, and the control means 71 determines the temperature of the high temperature hot water (for example, the heating temperature 85 for carbon dioxide refrigerant). The operation is controlled based on this detection signal so as to be set to ° C. If the detected temperature of the remaining hot water third sensor 81 below the tank wall surface exceeds a predetermined temperature (for example, 80 ° C.), the control means 71 determines that the hot water storage operation is almost finished and determines the rotation speed (operating frequency) of the compressor 23. Or the rotational speed of the circulation pump 49 is decreased. Thereafter, the inlet temperature sensor 74 detects the temperature of the water flowing in from the tank 21, and when the inflow temperature from the tank becomes higher than a predetermined heating end temperature (for example, 60 ° C.), the control means 71 controls the tank 71 based on the signal. 21 It is determined that the entire amount has become hot water, and hot water storage operation is stopped. By repeating this hot water storage operation, the inside of the tank 21 is maintained at a high temperature of a predetermined temperature. By making this predetermined temperature for heat insulation sufficiently higher than the target temperature of hot water supply (for example, 45 ° C.), the heat storage density can be increased and the size of the tank 21 can be reduced.
[0075]
In general, tap water contains high-level components and may precipitate as scales. However, when tap water is heated to a high temperature as in this hot water storage operation, this scale deposition is remarkable at a certain temperature (about 70 ° C.) or higher. become. Therefore, the water flow path 33 of the hot water supply heat exchanger 34 has a two-path configuration in which the outlet side in particular is branched into two, and the water flow path outlet pipe B38 for hot water storage is used for high-temperature heating of flowing water at a temperature higher than the temperature at which scale precipitation becomes remarkable. Scaling resistance is improved by taking measures such as avoiding the use of complex parts with a structure that is easy to maintain, a large cross-sectional area that is resistant to clogging due to scale accumulation, and the use of drive parts, without dedicated mixing means dedicated to heating. . Further, since the water channel outlet pipe B38 is used for the high temperature heating in the circulation path 51 and the hot water storage opening / closing valve 44 is provided, it can be dedicated to the hot water storage operation. When the hot water storage operation is performed in the tank 21 at a temperature higher than the scale precipitation temperature, the hot water flows only to the water channel outlet pipe B38 by opening the hot water on / off valve 44, and therefore, mixing means having low scale resistance on the second hot water supply pipe 53 side. Even if precision parts such as are used, high temperature hot water does not flow and scale does not occur remarkably, and the hot water storage on / off valve 44 is easy to construct and has high scale resistance. With this configuration, it is easy to store hot water in the tank, and the capacity of the tank can be reduced. Therefore, it is possible to realize a small-sized and space-saving device. On the other hand, in the case of normal hot water supply, the hot water storage opening / closing valve 44 is closed so that the hot water having a temperature equal to or lower than the scale deposition temperature flows only to the water flow path outlet pipe A37 and flows from the second hot water supply pipe 53 to the hot water supply terminal 42. Therefore, the water channel outlet pipe A37 drastically reduces the chances of high temperature use and is less likely to be clogged with scale, and the low temperature side water channel outlet pipe A37 occupies most of the hot water supply so that it can be used without problems for a long time. Become.
[0076]
Unlike the above-described method, there is also a method of storing hot water using only one path of the water flow path outlet pipe A37 in the case of low temperature heating, and using both of the two paths of the water flow path outlet pipe A37 and the water flow path outlet pipe B38 in the case of high temperature heating. . When this method is used, the cross-sectional area of the pipe through which the running water doubles can be doubled, so that the progress of scale deposition can be delayed and the life can be extended. Therefore, a durable and small space-saving device can be realized.
[0077]
From the state in which the entire amount of the tank 21 (for example, 100 liters in the case of a 100 liter tank) is stored as hot water by such hot water storage operation, the amount of hot water decreases when hot water is used. For example, when the kitchen faucet 41 is opened, hot water of about 85 ° C. stored in the tank 21 is pushed up by the feed pressure of the water flowing through the second feed water pipe 48, and the kitchen faucet 41 used through the second hot water feed pipe 53. To be supplied. At this time, as shown in FIG. 3 in detail, the inside of the tank 21 has a high temperature layer W1 of high temperature hot water in the upper part of the tank, and a low temperature layer W3 in which the water supply is not heated and heated at the lower part due to the specific gravity difference due to the water temperature. It is naturally separated into an intermediate temperature medium temperature layer W2 forming a thin layer sandwiched between the high temperature layer W1 and the low temperature layer W3, and has a three-layer structure of the high temperature layer W1, the intermediate temperature layer W2, and the low temperature layer W3 from above. ing. In this way, water is taken out from the lower part of the tank by the circulation pump 49 and converted into hot water in the water flow path 33 of the hot water supply heat exchanger 34 and returned to the upper part of the tank, so that the inside of the tank is divided into the upper high temperature layer W1 and the lower low temperature layer W3. The required temperature stratification is formed, and when necessary, the tank can be stored in the tank with high-temperature hot water having a high heat storage density by the required amount, and the capacity of the tank can be reduced. Further, when the tank height is lowered to reduce the size and the capacity, the low temperature water that has entered due to the momentum of the water supply flow from the second water supply pipe 48 collapses the temperature stratification, and the low temperature water is discharged from the second hot water supply pipe 53 as it is. However, since the baffle plate 52 is provided in the tank to prevent the upward flow when the second water supply pipe 48 is used, it is possible to prevent the temperature stratification from collapsing and the low temperature water to be discharged. Therefore, it is possible to maintain the high heat storage density of the tank and the amount of heat discharged from the second hot water supply pipe 53, and to reduce the size of the apparatus.
[0078]
Furthermore, when the tank height is lowered to reduce the size and capacity, for example, by lowering the tank height than the heat sink height, the hot water that has entered the water is affected by the momentum of the hot water flow from the circulation water discharge unit 45. The downward flow causes the temperature stratification to collapse, and as a result, the temperature in the upper part of the tank decreases, and the temperature of the hot water discharged from the second hot water supply pipe 53 tends to decrease. However, the nozzle 46 having the downward flow blocking action prevents the temperature stratification. Since collapse can be prevented, from the high heat storage density of the tank 21 and the second hot water supply pipe 53
Therefore, it is possible to reduce the size of the apparatus.
[0079]
The hot water storage operation is normally performed while the hot water supply is stopped. However, even during the hot water supply operation, the hot water storage operation is necessary, and even if the heating capacity required for the hot water supply operation is subtracted, there is still room for the heating capacity in the hot water supply heat exchanger 34. When there is, the “hot water supply operation” and the “hot water storage operation” can be performed simultaneously by closing the water supply opening / closing valve 47.
[0080]
Further, in this hot water storage operation, when the remaining hot water first sensor 79 detects that the stored hot water temperature has fallen below a lower limit temperature (for example, 75 ° C.) and the stored hot water temperature has decreased due to heat dissipation, or the detected temperature by the remaining hot water second sensor 80 is predetermined. The operation is started under various conditions set in the control means 71, such as when the amount of hot water remaining in the high temperature layer W1 decreases below the temperature or immediately after the hot water supply operation is stopped.
[0081]
Here, as in the water system circuit shown in FIG. 1, a path passing through the circulation pump 49 is used for the circulation path 51 in the hot water storage operation, and a path passing through the check valve 36 is used to reduce the flow resistance in the hot water supply operation. ing. When the hot water storage operation is performed without inflow of tap water from the first water supply pipe 35, the check valve 36 is provided in the first water supply pipe 35 even if the circulation pump 49 is operated. The short-circuit direction in which the discharged water immediately enters the circulation pump 49 is reversed, and no short-circuit occurs and no problem occurs in the hot water storage operation. Further, when there is an inflow of tap water from the first water supply pipe 35 during the hot water supply operation, if the circulation pump 49 is present in the path from the first water supply pipe 35 to the water flow path 33 of the hot water supply heat exchanger 34, the water flow path 33. Although it is difficult to flow a large flow rate through the circulation pump 49 due to the large flow resistance of the circulation pump 49, a check valve 36 is provided in parallel so as to bypass the circulation pump 49. Since one water supply pipe 35 is passed, a large flow rate can be achieved. Therefore, a large flow rate can be passed through the hot water supply heat exchanger 34, and a small space-saving heat pump hot water supply device having a wide flow rate range from a small flow rate to a large flow rate can be realized.
[0082]
As described above, during the hot water storage operation to the tank 21, the hot water is stored at a high temperature (for example, 85 ° C.) equal to or higher than the set value of the maximum temperature that can be set by the temperature setting means 88. The outlet hot water temperature from the hot water supply pipe 43 is detected by the outlet temperature sensor 75 and controlled by the heating amount, or the flow rate from the first hot water supply pipe 43 and the second hot water supply pipe 53 is controlled by the first mixing means 59. At least one of the hot water temperature or hot water flow rate from the first hot water supply pipe or the hot water temperature or hot water flow rate from the second hot water supply pipe is controlled based on the set value of the temperature setting means 88.
[0083]
For example, when hot water is supplied at a predetermined temperature simply by controlling the temperature from the first hot water supply pipe 43, the hot water flow rate is changed to the hot water discharged from the second hot water supply pipe 53 at a constant temperature without changing the first mixing means 59. Accordingly, the hot water temperature is detected by the hot water temperature sensor 76, and the hot water temperature is detected by the hot water temperature sensor 76, and the hot water temperature is detected by the hot water temperature sensor 76. Water may be mixed from the mixed water pipe 61, and the temperature may be adjusted by changing the mixing amount. The same applies to the case where the hot water supply temperature is controlled only by the temperature from the second hot water supply pipe. In addition, when each hot water temperature is constant, the flow rate ratio mixed by changing at least one of the flow rates by the first mixing unit 59 changes, and the hot water supply temperature at the hot water supply terminal 42 can be controlled. it can. In this way, the temperature of the hot water supply temperature can be adjusted according to the user's request in a wide flow range from a small flow rate to a large flow rate, and a small and space-saving heat pump hot water supply device with a wide flow range for improved convenience. realizable.
[0084]
Furthermore, since the refrigerant flowing through the first radiator 24 and the second radiator 26 is pressurized to a critical pressure or higher by the compressor 23, the bath water flow path 30 of the bath heat exchanger 31 or the hot water supply heat exchanger 34. Condensation does not occur even when the temperature is lowered due to heat being taken away by the flowing water in the water channel 33. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.
[0085]
Then, as shown in the configuration diagram of FIG. 2, when the water from the bottom to the top of the tank 21 is made lower than the height of the heat absorber 28 to reduce the tank height, The center of gravity is lowered and the installation stability is improved. Further, in order to reduce the installation area and improve the installation property, the components including the tank 21 and the heat absorber 28 are integrated, and the lower unit 93 including the tank 21 and the upper unit 92 including the heat absorber 28 are stacked. When the required heating capacity in the hot water supply heat exchanger 34 increases corresponding to the hot water supply load, the size of the heat absorber 28 increases and the height increases. However, the lower the tank height, the easier the stacking integration is. Since the center of gravity is reduced, the tank height is lowered, and an integrated unit having a small installation area and high stability becomes possible.
[0086]
In addition, the tank 21, the bath heat exchanger 31, the hot water supply heat exchanger 34, the circulation pump 49, the bath pump 55, and the compressor 23 constituting the heat pump cycle, which are water passage elements among the elements constituting the apparatus, are combined into one. A compressor base 95 which is housed in a lower unit 93 which is a unit and which fixes the two compressors 23 one step above the water flow element base 94 is disposed, and the control board 96 in which the control means 71 is housed is compressed. Since it is arranged above the machine base 95, even if water leaks from the water flow element or water drops in the unit due to piping work during construction or maintenance, the compressor Since 23 is arranged above, it prevents the legs of the compressor 23 from being splashed with water for a long time, the legs to be submerged and causing corrosion, and the electrical connection portions of the compressor 23 and the control means 71 from being submerged. And durable It can be realized an apparatus installation of good integrally formed compact having a safety.
[0087]
Further, generally, air is dissolved in water, and when water is heated by a heat exchanger, air comes out as bubbles as the water temperature rises. However, the bath water flow path 30 of the bath heat exchanger 31 and the hot water supply The water flow path 33 of the heat exchanger 34, the respective inlets 97 are disposed below, and the outlets 98 are disposed above, so that the flowing water flows from the bottom to the top. The heat exchanger is surely discharged from 98 to the heat exchanger, and heat transfer to the water in the heat exchanger is not obstructed by the bubbles, so that a heat transfer area that actually contributes can be secured, so the size of the heat exchanger is reduced. This makes it possible to reduce the size and space of the apparatus.
[0088]
In this embodiment, the water is supplied to the tank 21 by the second water supply pipe 48 and the water is absorbed by the circulation pump 49 by forming the circulation path 51. However, as shown in FIG. In addition, a second water supply pipe 99 branched from the upstream of the check valve 36 of the first water supply pipe 35 is provided to supply tap water to the bottom of the tank 21, and a pump pipe 100 is provided at the bottom of the tank 21 to absorb water near the tip. The nozzle provided in the water discharge part 45 through the hot water storage opening / closing valve 44 of the water flow path outlet pipe B38 through the pump pipe 100, the circulation pump 49, the first water supply pipe 35 and the water flow path 33 in this order from the water absorption part 50. A circulation path 51 for heating hot water storage leading to 46 may be formed. Even in this case, the provision of the baffle plate 52 prevents the upward flow from the second water supply pipe 99 and the downward flow to the pump pipe 100, and the same effect of maintaining temperature stratification can be obtained.
[0089]
(Example 2)
FIG. 5 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention. In addition, the thing of the same structure as the hot water supply apparatus of Example 1 gives the same code | symbol, and abbreviate | omits description. In FIG. 5, the difference from the configuration of the first embodiment is that a refrigerant check valve 101 is provided on each suction side of two parallel compressors 23, and the first radiator 103 of the bath heat exchanger 102 and hot water supply heat are provided. The second radiator 105 of the exchanger 104 is provided in parallel on the discharge side of the compressor 23, the first heat radiation control means 106 and the second heat radiation control means 107 on the upstream side, and the first pressure reduction on the downstream side of each. Means 108 and second decompression means 109 are provided. The fourth hot water supply pipe 63 is provided with a buffer tank 110, and the first water supply pipe 35 in the vicinity of the water flow path 33 has a thermal AC amount sensor 111. Further, as shown in detail in FIG. 6, the water flow path 33 has a multi-path configuration that branches into a plurality of parallel paths 33 a, 33 b,... Within the hot water supply heat exchanger 104. Is different.
[0090]
The operation and action of the above configuration will be described. In the heat pump water heater of the embodiment shown in FIGS. 5 and 6, when the control means 71 drives the compressor 23 in any of the operation modes, the operation speeds of the two compressors are different or particularly one The refrigerant check valve 101 is provided when only one of the compressors is stopped and the compressor is stopped. Therefore, an excessive or abnormal load is applied to the compressor 23 or the refrigerant is prevented from flowing backward. The refrigerant circulation amount is prevented from being lowered by 23 to ensure the heating capacity, and the reliability of the apparatus is improved. When performing only the hot water supply operation, the second heat radiation control means 107 is fully opened while the defrost valve 67 is closed, and the first heat radiation control means 106 is fully closed or adjusted to an opening degree at which only a small amount of refrigerant flows. Perform hot water operation. On the other hand, when performing only the bath renewal operation, the first heat release control means 106 is fully opened while the defrost valve 67 is closed, and the second heat release control means 107 is fully closed, or the opening is such that only a small amount of refrigerant flows. By adjusting and performing bath renewal operation, independent operation becomes possible.
[0091]
On the other hand, when simultaneous operation of “hot water supply operation” and “bath reheating operation” is performed, such as when the bath reheating setting means 90 is operated during the hot water supply operation, the control means 71 with the defrost valve 67 closed. Opens the first heat radiation control means 106 and the second heat radiation control means 107 to a predetermined opening, respectively, and causes the refrigerant to flow through both the first heat radiator 103 and the second heat radiator 105. And the control means 71 adjusts both the 1st pressure reduction means 108 and the 2nd pressure reduction means 109, and the temperature conditions of each distribution | circulation refrigerant | coolant of the bath heat exchanger 102 and the hot water supply heat exchanger 104 can be set separately. Therefore, simultaneous operation of hot water supply and bath renewal becomes possible. Further, since the direct current motor is used for the bath pump 55, the flow rate of the bath water flowing through the bath water channel 30 can be finely and efficiently adjusted. Therefore, the control means 71 can change not only the condition on the refrigerant side but also the condition of the bath water flowing through the bath heat exchanger 30, and the heat exchange conditions of the bath heat exchanger 102 and the hot water supply heat exchanger 104 can be changed. Since it can be set more finely, simultaneous operation of hot water supply and bath chasing becomes easy. In the case of these independent operation and simultaneous operation, the first heat release control means 106 and the second heat release control means 107 are not provided, and the operation is performed by adjusting the opening degrees of the first pressure reduction means 108 and the second pressure reduction means 109. It is also possible.
[0092]
And since the bath heat exchanger 102 is provided in this way, the bath reheating operation which is the bath water heating operation becomes possible, and since it is arranged in parallel with the hot water supply heat exchanger 104, the hot water supply operation and the bath renewal operation are possible. In either of these operations, the high-temperature refrigerant flowing in the refrigerant circuit 21 immediately after the operation starts flows directly from the compressor 23 into the heat exchanger necessary for the operation, and exchanges heat with the water flow of the use-side heat exchanger. Therefore, the temperature rise rises quickly. Therefore, a small and space-saving heat pump hot water supply apparatus that is convenient can be realized.
[0093]
Also, during hot water supply operation, when the outlet flow rate suddenly decreases due to several terminals being closed from the plurality of hot water supply terminals 42, the temperature of the hot water supply is not sufficient to keep up with the rate of reduction of the heating capacity in the hot water supply heat exchanger 104. However, since the buffer tank 110 which is a volume part is provided in the 4th hot water supply pipe 63, the hot water discharge becomes dull and the buffer tank 110 becomes dull in the buffer tank 110. Hot water can be mixed with normal hot water to lower the peak temperature to prevent hot hot water and can be done with a moderate and acceptable temperature increase.
[0094]
Further, since the thermal AC amount sensor 111 is provided and the signal is processed by the control means 71, the operation amount of the first mixing means 59 and the flow rate through the first hot water supply pipe 43 from the thermal AC amount sensor 111 during the hot water supply operation. Are compared, and the malfunction or abnormality of the mixing means is determined, or the operation amount of the circulation pump 49 and the flow rate through the water flow path 33 are compared during hot water storage operation. It is possible to determine the accumulation of scale on the hot water, etc., or to perform high-speed and high-accuracy temperature control by adding feedforward control to the heating capacity control in the hot water supply heat exchanger 104 during hot water storage operation.
It becomes possible.
[0095]
And since the water flow path 33 of the hot water supply heat exchanger 104 has a multi-path configuration having a plurality of parallel flow paths, the flow of water in the heat exchanger branches in parallel to the multi-path so that a large flow rate flows. However, the flow resistance is small and the heat transfer area can be sufficiently secured, and a large flow rate can be passed through the hot water supply heat exchanger 104. Therefore, a small space-saving heat pump water heater having a wide flow rate range from a small flow rate to a large flow rate can be realized. Here, only the water flow path 33 of the hot water supply heat exchanger 104 has been described as having a multi-path configuration, but the same effect can be obtained even if the bath water flow path 30 of the bath heat exchanger 102 is configured as a multi-path configuration.
[0096]
【The invention's effect】
As described above, according to the present invention, there is sufficient hot water supply capability even if the size of the heat pump cycle is suppressed, durability and reliability are improved, and a large flow rate is obtained with a hot water supply heat exchanger even if the capacity of the tank is reduced. A heat pump water heater having a small size and a small installation area with a wide flow rate range capable of heating can be provided.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 2 is a perspective view showing the configuration of the heat pump water heater in Embodiment 1 of the present invention.
FIG. 3 is a diagram showing a configuration of a tank of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 4 is another circuit configuration diagram of the heat pump water heater in Embodiment 1 of the present invention.
FIG. 5 is a circuit configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.
FIG. 6 is a view showing a configuration of a hot water supply heat exchanger of a heat pump hot water supply apparatus according to Embodiment 2 of the present invention.
FIG. 7 is a block diagram of a conventional heat pump water heater
[Explanation of symbols]
21 tanks
22 Refrigerant circuit
24 First radiator
25 1st pressure reduction means (high pressure side pressure reduction means)
26 Second radiator
27 Second pressure reducing means (low pressure side pressure reducing means)
28 Heat absorber
31 Bath heat exchanger
33 Water channel
33a, 33b, 33c Multiple parallel flow paths
34 Hot water heat exchanger
35 1st water supply pipe
36 Check valve (check means)
37 Water channel outlet pipe A
38 Water channel outlet pipe B
42 Hot water terminal
43 First hot water supply circuit
44 Hot water storage opening / closing valve (opening / closing means)
45 Water discharge part
46 Nozzle (Diffusion means)
48 Second water supply pipe
49 Circulation pump (water circulation means)
50 water absorption part
51 Circuit
52 Baffle plate (upward flow blocking means)
53 Second hot water supply circuit
54 Bathtub
55 Bath pump (bath circulation means)
56 Bath return pipe
57 Bath tube
58 Bath Circulation Path
88 Temperature setting means

Claims (15)

放熱器と吸熱器とを有してヒートポンプサイクルをなす冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた給湯熱交換器と、前記水流路に水道水を供給する第1給水管と、前記水流路で加熱された給湯用水を給湯端末へと通水するように接続する第1給湯管と、湯を貯えるタンクと、前記タンクと前記水流路を接続し前記タンク内の水を前記水流路で加熱して前記タンクに戻す循環路と、前記タンクの貯湯を給湯端末へと通水するように接続する第2給湯管と、前記第1給湯管と前記第2給湯管とを接続する第1混合手段とを備えたヒートポンプ給湯装置。A refrigerant circulation circuit having a radiator and a heat absorber to form a heat pump cycle, a hot water supply heat exchanger having a water flow path for exchanging heat with the heat radiator, and a first water supply for supplying tap water to the water flow path A pipe, a first hot water pipe connected so as to pass hot water for heating heated in the water flow path to a hot water supply terminal, a tank for storing hot water, and the tank and the water flow path connected to water in the tank. A circulation path for heating the water flow path back to the tank, a second hot water pipe connecting the hot water stored in the tank to the hot water supply terminal, the first hot water pipe and the second hot water pipe; A heat pump hot water supply apparatus comprising first mixing means for connecting the two . 温度設定手段を備え、循環路を用いてタンクに貯湯するときは前記温度設定手段で設定可能な最高温度の設定値と等しいかそれ以上の高温で貯湯し、前記温度設定手段の設定値に基づき第1給湯管からの出湯温度または出湯流量または第2給湯管からの出湯温度または出湯流量のうちの少なくとも一つを制御する請求項1記載のヒートポンプ給湯装置。  When the hot water is stored in the tank using the circulation path, the hot water is stored at a high temperature equal to or higher than the set value of the maximum temperature that can be set by the temperature setting means, and based on the set value of the temperature setting means. The heat pump hot-water supply apparatus of Claim 1 which controls at least one of the hot-water temperature from the 1st hot-water supply pipe, the hot-water supply flow rate, or the hot-water supply temperature from the 2nd hot-water supply pipe, or the hot-water flow rate. タンクの底部から天部までの高さを、吸熱器の高さよりも低くした請求項1または2記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus of Claim 1 or 2 which made the height from the bottom part of a tank to the top part lower than the height of a heat absorber. 循環路はタンク内略底部の吸水部と前記タンク内略天部の吐水部と水循環手段とで前記タンクと水流路を接続して形成するとともに、上向流阻止手段を有した第2給水管を前記タンク略底部に接続して前記タンクに水道水を供給するように設けた請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。  A circulation path is formed by connecting the tank and the water flow path by a water absorption part at a substantially bottom part in the tank, a water discharge part at a substantially top part in the tank, and a water circulation means, and a second water supply pipe having an upward flow prevention means The heat pump hot water supply apparatus of any one of Claims 1-3 provided so that tap may be connected to the said tank substantially bottom part and a tap water may be supplied to the said tank. 循環路はタンク内の吸水部と水流路とを水循環手段を介して接続して構成し、第1給水管は前記水循環手段と並列に設けた逆止手段を備え、前記第1給水管から水道水の流入があるときは順方向に前記逆止手段を通って前記水流路に流通し、水道水の流入がなく前記水循環手段の動作中は前記第1給水管の逆方向への流通を阻止するようにした請求項4記載のヒートポンプ給湯装置。  The circulation path is constituted by connecting a water absorption part in the tank and a water flow path via a water circulation means, and the first water supply pipe is provided with a check means provided in parallel with the water circulation means, and the water supply from the first water supply pipe When there is an inflow of water, it flows in the forward direction through the non-return means to the water flow path, and when there is no inflow of tap water, it prevents the first water supply pipe from flowing in the reverse direction during operation of the water circulation means. The heat pump hot-water supply apparatus of Claim 4 made to do. タンク略天部の吐水部には、タンク内上部で循環水の少なくとも一部がタンクの略全周にわたって内壁に沿うように拡散する拡散手段を備えた請求項4または5記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to claim 4 or 5, further comprising a diffusing means for diffusing at least part of the circulating water along the inner wall over substantially the entire circumference of the tank in the water discharge portion of the tank top. 水流路の給湯熱交換器出口側の一部もしくは全部を2経路に構成した水流路出口管Aと水流路出口管Bとを備え、少なくとも一方を第1給湯管に直接接続した請
求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。
A water flow path outlet pipe A and a water flow path outlet pipe B, each of which comprises part or all of the water flow path outlet side of the water flow path in two paths, and at least one of them is directly connected to the first hot water supply pipe. The heat pump hot-water supply apparatus of any one of 6.
2経路に構成した水流路出口管Aと水流路出口管Bとにおいて、水流路出口管Aを第1給湯管に接続し、水流路出口管Bを開閉手段を介してタンクに接続し循環路の一部とした請求項7記載のヒートポンプ給湯装置。  In the two water passage outlet pipes A and B, the water passage outlet pipe A is connected to the first hot water supply pipe, and the water passage outlet pipe B is connected to the tank via the opening / closing means. The heat pump hot-water supply apparatus of Claim 7 made into a part of. 装置を構成する要素のうち通水要素である少なくとも給湯熱交換器、タンク、循環路の水循環手段のいずれか一つと、ヒートポンプサイクルを構成する圧縮機とを備えて一つのユニット内に収納し、前記圧縮機を前記通水要素よりも上方に配置した請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。  A unit comprising at least one of a water supply heat exchanger, a tank, and a water circulation means of a circulation path, which is a water passage element among the elements constituting the apparatus, and a compressor constituting a heat pump cycle, and housed in one unit, The heat pump hot-water supply apparatus of any one of Claims 1-8 which has arrange | positioned the said compressor above the said water flow element. 冷媒循環回路において給湯熱交換器と並列の放熱器となる風呂熱交換器と、浴槽と前記給湯熱交換器との浴槽水の循環管路を形成する風呂往き管と、風呂戻り管と、風呂循環手段とを備えた請求項1〜9のいずれか1項に記載のヒートポンプ給湯装置。  A bath heat exchanger that is a radiator in parallel with the hot water supply heat exchanger in the refrigerant circulation circuit, a bath outlet pipe that forms a circulation line of bathtub water between the bathtub and the hot water heat exchanger, a bath return pipe, and a bath The heat pump hot-water supply apparatus of any one of Claims 1-9 provided with the circulation means. 冷媒循環回路において給湯熱交換器と直列に設けた風呂熱交換器と、前記給湯熱交換器と前記風呂熱交換器との間の冷媒の通路に設けた減圧量可変の高圧側減圧手段と、前記給湯熱交換器と前記風呂熱交換器のどちらか下流側の熱交換器と吸熱器との間に設けた減圧量可変の低圧側減圧手段と、浴槽と前記給湯熱交換器との風呂循環路を形成する風呂往き管と、風呂戻り管と、風呂循環手段とを備えた請求項1〜9のいずれか1項に記載のヒートポンプ給湯装置。  A bath heat exchanger provided in series with the hot water supply heat exchanger in the refrigerant circulation circuit, and a high pressure side pressure reducing means of variable pressure reduction provided in a refrigerant passage between the hot water supply heat exchanger and the bath heat exchanger; Low pressure side decompression means with variable amount of decompression provided between a heat exchanger and a heat sink downstream of either the hot water heat exchanger or the bath heat exchanger, and a bath circulation between the bathtub and the hot water heat exchanger The heat pump hot-water supply apparatus of any one of Claims 1-9 provided with the bath going pipe which forms a path, the bath return pipe, and the bath circulation means. 風呂循環手段として直流モーターを用いた水流量可変の風呂ポンプを備えた請求項10または11記載のヒートポンプ給湯装置。  The heat pump hot-water supply apparatus of Claim 10 or 11 provided with the bath pump of the water flow rate variable using a DC motor as a bath circulation means. 給湯熱交換器の水流路と、風呂熱交換器の浴槽水が流れる風呂水流路のそれぞれ熱交換器の流水の入口を下方に設け、出口を上方に設けた請求項1〜12のいずれか1項に記載のヒートポンプ給湯装置。  The water flow path of the hot water supply heat exchanger and the bath water flow path through which the bath water of the bath heat exchanger flows are each provided with an inlet of flowing water of the heat exchanger at the lower side and an outlet at the upper side. The heat pump hot water supply apparatus according to item. 給湯熱交換器の水流路と風呂熱交換器の風呂水流路との少なくともどちらか一方を、複数の並列流路を有する多経路構成とした請求項1〜13のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump according to any one of claims 1 to 13, wherein at least one of the water flow path of the hot water supply heat exchanger and the bath water flow path of the bath heat exchanger has a multipath configuration having a plurality of parallel flow paths. Hot water supply device. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により放熱器の水流路の流水を加熱する請求項1〜14のいずれか1項に記載のヒートポンプ給湯装置。  The refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the flowing water in the water flow path of the radiator is heated by the refrigerant whose pressure is increased to the critical pressure or higher. The heat pump hot water supply apparatus according to item.
JP2003055517A 2003-03-03 2003-03-03 Heat pump water heater Expired - Fee Related JP3925433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055517A JP3925433B2 (en) 2003-03-03 2003-03-03 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055517A JP3925433B2 (en) 2003-03-03 2003-03-03 Heat pump water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006345525A Division JP4124258B2 (en) 2006-12-22 2006-12-22 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004263954A JP2004263954A (en) 2004-09-24
JP3925433B2 true JP3925433B2 (en) 2007-06-06

Family

ID=33119511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055517A Expired - Fee Related JP3925433B2 (en) 2003-03-03 2003-03-03 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3925433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196654A1 (en) 2019-03-27 2020-10-01 ダイキン工業株式会社 Hot water supply device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839871B2 (en) * 2006-02-13 2011-12-21 パナソニック株式会社 Hot water storage water heater
JP4839878B2 (en) * 2006-02-17 2011-12-21 パナソニック株式会社 Hot water storage water heater
JP4839879B2 (en) * 2006-02-17 2011-12-21 パナソニック株式会社 Hot water storage water heater
JP4839877B2 (en) * 2006-02-17 2011-12-21 パナソニック株式会社 Hot water storage water heater
JP4893020B2 (en) * 2006-02-20 2012-03-07 パナソニック株式会社 Hot water storage water heater
JP4930357B2 (en) * 2007-12-17 2012-05-16 三菱電機株式会社 Heat pump water heater
JP5335036B2 (en) * 2011-07-06 2013-11-06 三菱電機株式会社 Heat pump water heater
CN105318559B (en) * 2014-07-01 2023-05-09 贵州中建建筑科研设计院有限公司 Solar energy and air source heat pump hot water system and control method
JP6543798B2 (en) * 2015-01-23 2019-07-17 パナソニックIpマネジメント株式会社 Heat pump water heater
JP7254344B2 (en) * 2019-08-01 2023-04-10 株式会社アタゴ製作所 Dish washing equipment
CN113531887A (en) * 2021-08-20 2021-10-22 伍柏峰 High-efficient intelligent automatically cleaning water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196654A1 (en) 2019-03-27 2020-10-01 ダイキン工業株式会社 Hot water supply device

Also Published As

Publication number Publication date
JP2004263954A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4124258B2 (en) Heat pump water heater
KR100567491B1 (en) Heat pump water heater
JP3925433B2 (en) Heat pump water heater
JP5245217B2 (en) Hot water storage hot water heater
JP4502020B2 (en) Heating and hot water supply equipment
JP4082350B2 (en) Heat pump type water heater
JP2008057857A (en) Heat pump water heater
JP3915799B2 (en) Heat pump type water heater
JP2004218909A (en) Water heater
JP3888117B2 (en) Hot water storage water heater
JP4790538B2 (en) Hot water storage hot water heater
JP2004116889A (en) Hot water storage-type hot water supply device
JP4893165B2 (en) Heat pump type water heater
JP4055692B2 (en) Heat pump type water heater
JP4033184B2 (en) Multi-function water heater
JP2005009747A (en) Hot water storage type hot-water supply device
JP4155162B2 (en) Hot water storage water heater
JP4021375B2 (en) Heat pump water heater
JP4567909B2 (en) Heat pump type water heater
JP4055695B2 (en) Heat pump water heater
JP2004156845A (en) Heat pump water heater device
JP2005233444A (en) Heat pump hot-water supply device
JP2004218920A (en) Water heater
JP3664168B2 (en) Heat pump water heater
JP3855942B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R151 Written notification of patent or utility model registration

Ref document number: 3925433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees