JP3915799B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP3915799B2
JP3915799B2 JP2004176804A JP2004176804A JP3915799B2 JP 3915799 B2 JP3915799 B2 JP 3915799B2 JP 2004176804 A JP2004176804 A JP 2004176804A JP 2004176804 A JP2004176804 A JP 2004176804A JP 3915799 B2 JP3915799 B2 JP 3915799B2
Authority
JP
Japan
Prior art keywords
hot water
heat pump
water
water supply
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004176804A
Other languages
Japanese (ja)
Other versions
JP2006002959A (en
Inventor
宣彦 藤原
竹司 渡辺
昌宏 尾浜
啓次郎 國本
立群 毛
誠一 安木
一彦 丸本
隆幸 高谷
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004176804A priority Critical patent/JP3915799B2/en
Publication of JP2006002959A publication Critical patent/JP2006002959A/en
Application granted granted Critical
Publication of JP3915799B2 publication Critical patent/JP3915799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、ヒートポンプサイクルにより水を加熱するヒートポンプ式給湯装置に関するものである。   The present invention relates to a heat pump hot water supply apparatus that heats water by a heat pump cycle.

従来、この種のヒートポンプ式給湯装置において、貯湯タンクとヒートポンプサイクルを一体化した構成としたものが提案されている(例えば、特許文献1参照)。   Conventionally, in this type of heat pump type hot water supply apparatus, a structure in which a hot water storage tank and a heat pump cycle are integrated has been proposed (for example, see Patent Document 1).

図3は、特許文献1に記載された従来のヒートポンプ式給湯装置を示すものである。図3において1は貯湯タンクである。圧縮機2、放熱器3、減圧手段(図示せず)、吸熱器4でヒートポンプサイクルを形成している。5は吸熱器に空気を供給する送風手段である。6は注水管、7は出水管である。   FIG. 3 shows a conventional heat pump hot water supply apparatus described in Patent Document 1. As shown in FIG. In FIG. 3, 1 is a hot water storage tank. The compressor 2, the radiator 3, the pressure reducing means (not shown), and the heat absorber 4 form a heat pump cycle. Reference numeral 5 denotes air blowing means for supplying air to the heat absorber. 6 is a water injection pipe and 7 is a water discharge pipe.

送風手段5により供給される空気より吸熱器4が吸熱し、放熱器3からの放熱により貯湯タンク1の水が加熱される。貯湯タンク1の上部に圧縮機2、吸熱器4、送風手段5を配置し、装置の小型化を図っている。
特開平7−98156号公報
The heat absorber 4 absorbs heat from the air supplied by the blower 5, and the water in the hot water storage tank 1 is heated by the heat radiation from the radiator 3. The compressor 2, the heat absorber 4, and the air blowing means 5 are arranged in the upper part of the hot water storage tank 1 to reduce the size of the apparatus.
JP-A-7-98156

しかしながら上記従来のヒートポンプ式給湯装置は、蒸発器で生成するドレン水の処理に関しては開示していない。   However, the conventional heat pump type hot water supply apparatus does not disclose the treatment of drain water generated by the evaporator.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯装置は、蒸発器で発生するドレン水を受けるドレン水受けに貯湯タンクの圧力逃がし弁から出る膨張水を排出するよう構成したものである。   In order to solve the above-described conventional problems, the heat pump type hot water supply apparatus of the present invention is configured to discharge the expanded water from the pressure relief valve of the hot water storage tank to the drain water receiver that receives the drain water generated by the evaporator. is there.

本発明のヒートポンプ式給湯装置は、ドレン水受けの凍結を防止し、確実にドレン水受けからドレン水を正常に排水でき、ドレン水のオーバーフローによる他の部品の被水を防止することができる。   The heat pump hot water supply apparatus of the present invention can prevent the drain water receiver from freezing, reliably drain the drain water from the drain water receiver, and prevent other parts from getting wet due to the drain water overflow.

第1の発明は、圧縮機、給湯用熱交換器、膨張弁、蒸発器を冷媒配管で接続したヒートポンプサイクルと、前記給湯用熱交換器で加熱した水を貯留する貯湯タンクと、前記貯湯タンクの圧力逃がし弁と、前記圧力逃がし弁から出る膨張水を排出する膨張水排出手段と、前記蒸発器で発生するドレン水を受けるドレン水受けとを備え、前記膨張水排出手段を通じて前記ドレン水受けに排出することにより、ドレン水受けの凍結を防止し、確実にドレン水受けからドレン水を正常に排水でき、ドレン水のオーバーフローによる他の部品の被水を防止することができる。 A first invention includes a heat pump cycle in which a compressor, a hot water supply heat exchanger, an expansion valve, and an evaporator are connected by refrigerant piping, a hot water storage tank for storing water heated by the hot water supply heat exchanger, and the hot water storage tank A pressure relief valve, an expansion water discharge means for discharging expansion water from the pressure relief valve, and a drain water receiver for receiving drain water generated by the evaporator, and the drain water receiver through the expansion water discharge means. By discharging the drain water, the drain water receiver can be prevented from freezing, the drain water can be drained normally from the drain water receiver, and other parts can be prevented from being wet due to the drain water overflow.

第2の発明は、特に第1の発明において、膨張水をドレン水受けのドレン水排出口に向けて排出している。そして、高温の膨張水がドレン排出口に向けて排出されるので、ドレン排出口の凍結を防止できる。   In the second invention, in particular, in the first invention, the expanded water is discharged toward the drain water discharge port of the drain water receiver. And since high temperature expansion | swelling water is discharged | emitted toward a drain discharge port, freezing of a drain discharge port can be prevented.

第3の発明は、特に第1〜2のいずれか一つの発明において、圧力逃がし弁に接続された膨張水排出手段の末端が動かないように膨張水排出手段を固定している。そして、膨張水排出手段の末端が動かないので、ドレン水受けに確実に排水できる。   In the third invention, in particular, in any one of the first and second inventions, the expansion water discharge means is fixed so that the end of the expansion water discharge means connected to the pressure relief valve does not move. And since the terminal of an expansion water discharge means does not move, it can drain reliably to a drain water receptacle.

第4の発明は、特に第1〜3のいずれか一つの発明において、給湯用熱交換器の直上にドレン水受けを設けている。そして、給湯用熱交換器の放熱をドレン水受けで受熱し、ドレン水受けの凍結をさらに確実に防止できる。   According to a fourth aspect of the invention, in particular, in any one of the first to third aspects of the invention, a drain water receiver is provided immediately above the hot water heat exchanger. And the heat radiation of the heat exchanger for hot water supply is received by the drain water receiver, and the drain water receiver can be more reliably prevented from freezing.

第5の発明は、特に第1〜4のいずれか一つの発明において、ドレン水受けと膨張弁前冷媒配管とを接触させている。そして、膨張弁前冷媒配管の冷媒からドレン水受けに放熱して、ドレン水受けの凍結をさらに確実に防止できる。また冷媒の過冷却度を大きくでき、COPを向上できる。   In a fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, the drain water receiver and the refrigerant pipe before the expansion valve are brought into contact with each other. Then, heat is radiated from the refrigerant in the refrigerant pipe before the expansion valve to the drain water receiver, so that the drain water receiver can be more reliably prevented from freezing. Further, the degree of supercooling of the refrigerant can be increased, and COP can be improved.

第6の発明は、特に第1〜5のいずれか一つの発明において、蛇口等の給湯端末からの出水を検出する出水検出手段と、前記出水検出手段の信号を受けて圧縮機を制御する制御手段とを備え、前記制御手段は前記出水検出手段の信号により出水を検出すると、前記圧縮機を起動させる。そして、給湯端末から出水を検出して圧縮機を起動するので、給湯用熱交換器にて加熱した湯を給湯端末より直接出湯することができる。   In a sixth aspect of the present invention, in particular, in any one of the first to fifth aspects of the present invention, water discharge detection means for detecting water discharge from a hot water supply terminal such as a faucet, and control for controlling the compressor in response to a signal from the water discharge detection means And the control means activates the compressor when water discharge is detected by a signal from the water discharge detection means. And since water discharge is detected from a hot water supply terminal and a compressor is started, the hot water heated with the heat exchanger for hot water supply can be directly discharged from a hot water supply terminal.

第7の発明は、特に第1〜6のいずれか一つの発明において、蛇口等の給湯端末からの出水を検出する出水検出手段と、前記出水検出手段の信号を受けて前記圧縮機を制御する制御手段とを備え、前記制御手段は、前記出水検出手段の検出流量が大きいほど、前記圧縮機の回転数を大きくするように制御する。そして、幅広い出水流量において、設定温度の湯を出湯できる。   In a seventh aspect of the invention, in particular, in any one of the first to sixth aspects of the invention, the outlet is detected from a hot water supply terminal such as a faucet, and the compressor is controlled in response to a signal from the outlet detection means. Control means, and the control means controls to increase the rotational speed of the compressor as the detected flow rate of the water discharge detection means increases. And the hot water of preset temperature can be poured out in the wide discharge flow rate.

第8の発明は、特に、第1〜7のいずれか一つの発明において、給湯用熱交換器からの温水と貯湯タンクからの温水とを混合する第一混合手段を設けている。そして、ヒートポンプ運転起動時の加熱能力の不足を補うことができ、給湯端末から出水後の湯温立ち上がりを早くし、設定温度にて出湯できるまでの時間をより短縮化することができる。また定常時においても加熱能力が不足しているときはその不足を補うことができる。   In an eighth aspect of the invention, in particular, in any one of the first to seventh aspects, a first mixing means for mixing hot water from a hot water supply heat exchanger and hot water from a hot water storage tank is provided. And the lack of the heating capability at the time of heat pump driving | running | working start can be compensated, the hot-water temperature rise after water discharge from a hot-water supply terminal can be accelerated | stimulated, and the time until it can discharge at a preset temperature can be shortened more. Further, when the heating capacity is insufficient even in the steady state, the shortage can be compensated.

第9の発明は、特に、第8の発明において、第一混合手段からの温水と水道管からの冷水とを混合する第二混合手段を設けている。そして、第一混合手段から出湯する湯温が設定温度より高い場合には、水を混ぜて設定温度にすることができる。   In the ninth aspect of the invention, in particular, in the eighth aspect of the invention, the second mixing means for mixing the hot water from the first mixing means and the cold water from the water pipe is provided. And when the hot water temperature discharged from a 1st mixing means is higher than preset temperature, water can be mixed and it can be made preset temperature.

第10の発明は、特に、第1〜9のいずれか一つの発明において、ヒートポンプサイク
ルに用いる冷媒を二酸化炭素とし、高圧側では臨界圧を越える状態で運転している。そして、高温の湯を生成することができ、また高温の湯を貯留できるため貯湯タンクを小型化できる。
In a tenth aspect of the invention, in particular, in any one of the first to ninth aspects of the invention, the refrigerant used for the heat pump cycle is carbon dioxide, and the high pressure side is operated in a state exceeding the critical pressure. And hot water can be produced | generated and since hot water can be stored, a hot water storage tank can be reduced in size.

第11の発明は、特に、第1〜10のいずれか一つの発明において、ヒートポンプサイクルと貯湯タンクとを同一の筐体に収納している。そして、装置をコンパクト化できるので、設置の自由度を広げることができる。また蒸発器と貯湯タンクの距離が近くなるので、これらの熱交換関係を容易に構築できる。   In an eleventh aspect of the invention, in particular, in any one of the first to tenth aspects of the invention, the heat pump cycle and the hot water storage tank are housed in the same casing. And since an apparatus can be reduced in size, the freedom degree of installation can be expanded. Moreover, since the distance between the evaporator and the hot water storage tank is reduced, these heat exchange relationships can be easily established.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態における回路構成図である。また図2は同実施の形態における給湯用熱交換器等の配置構成図である。
(Embodiment 1)
FIG. 1 is a circuit configuration diagram according to the first embodiment of the present invention. FIG. 2 is an arrangement configuration diagram of a hot water heat exchanger and the like in the same embodiment.

まず、本実施の形態によるヒートポンプ式給湯装置の冷凍回路について説明する。図1において、ヒートポンプサイクル20は、二酸化炭素を冷媒として用い、高圧側では臨界圧を越える状態で運転することが好ましい。   First, the refrigeration circuit of the heat pump hot water supply apparatus according to this embodiment will be described. In FIG. 1, it is preferable that the heat pump cycle 20 is operated in a state where carbon dioxide is used as a refrigerant and the high pressure side exceeds the critical pressure.

ヒートポンプサイクル20は、圧縮機21、給湯用熱交換器22、風呂用熱交換器26、膨張弁23、及び蒸発器24を順に配管で接続して構成されている。また、ヒートポンプサイクル20は、給湯用熱交換器22をバイパスするバイパス回路25を備え、このバイパス回路25には制御弁25Aを設けている。また、ヒートポンプサイクル20には、圧縮機21の温度を検出する温度センサ20A、圧縮機21からの吐出冷媒温度を検出する温度センサ20B、圧縮機21からの吐出冷媒圧力を検出する圧力センサ20C、蒸発器24の出口側の低圧冷媒温度を検出する温度センサ20D、蒸発器24の吸入空気を検出する温度センサ20E、風呂用熱交換器26の入口冷媒温度を検出する温度センサ20Fを備えている。   The heat pump cycle 20 is configured by connecting a compressor 21, a hot water supply heat exchanger 22, a bath heat exchanger 26, an expansion valve 23, and an evaporator 24 in order by piping. The heat pump cycle 20 includes a bypass circuit 25 that bypasses the hot water supply heat exchanger 22, and the bypass circuit 25 is provided with a control valve 25 </ b> A. Further, the heat pump cycle 20 includes a temperature sensor 20A that detects the temperature of the compressor 21, a temperature sensor 20B that detects the refrigerant temperature discharged from the compressor 21, a pressure sensor 20C that detects the refrigerant pressure discharged from the compressor 21, A temperature sensor 20D for detecting the low-pressure refrigerant temperature on the outlet side of the evaporator 24, a temperature sensor 20E for detecting the intake air of the evaporator 24, and a temperature sensor 20F for detecting the inlet refrigerant temperature of the bath heat exchanger 26 are provided. .

ここで、温度センサ20Aはコールドスタートの検出を、圧力センサ20Cは圧縮機21又はヒートポンプサイクル20の異常検出を行う。さらに蒸発器24に送風するためのファン27と風路28を設けている。蒸発器24はいわゆるフィンチューブ式の冷媒対空気熱交換器としている。   Here, the temperature sensor 20A detects a cold start, and the pressure sensor 20C detects an abnormality of the compressor 21 or the heat pump cycle 20. Further, a fan 27 and an air passage 28 for sending air to the evaporator 24 are provided. The evaporator 24 is a so-called fin tube type refrigerant-to-air heat exchanger.

次に、本実施の形態によるヒートポンプ式給湯装置の出湯回路について説明する。給湯用熱交換器22の水用配管22Aの流入側は、流量調整弁31、減圧弁32、及び逆止弁33を介して水道管等の水供給配管34に接続されている。一方、水用配管22Aの流出側は、逆止弁35、第一混合手段36、及び第二混合手段37を介してキッチン、又は洗面所等の給湯用の蛇口38(給湯端末)に接続されている。この出湯回路には、蛇口38や浴槽60等の給湯端末からの出水を検出すると共にその流量を検出する流量センサ30A(出水検出手段)、入水温度を検出する温度センサ30B、水用配管22Aの出口温度を検出する温度センサ30C、第一混合手段36の出口温度を検出する温度センサ30D、及び第二混合手段37の出口温度を検出する温度センサ30E、給湯熱交換器22への流入流量を検出する流量センサ30Fを備えている。   Next, the hot water circuit of the heat pump type hot water supply apparatus according to the present embodiment will be described. The inflow side of the water pipe 22 </ b> A of the hot water supply heat exchanger 22 is connected to a water supply pipe 34 such as a water pipe via a flow rate adjusting valve 31, a pressure reducing valve 32, and a check valve 33. On the other hand, the outflow side of the water pipe 22A is connected to a hot water supply faucet 38 (hot water supply terminal) such as a kitchen or a washroom through a check valve 35, a first mixing means 36, and a second mixing means 37. ing. The hot water supply circuit includes a flow rate sensor 30A (outflow detection means) that detects water flow from a hot water supply terminal such as the faucet 38 and the bathtub 60 and detects the flow rate thereof, a temperature sensor 30B that detects the incoming water temperature, and a water pipe 22A. The temperature sensor 30C for detecting the outlet temperature, the temperature sensor 30D for detecting the outlet temperature of the first mixing means 36, the temperature sensor 30E for detecting the outlet temperature of the second mixing means 37, and the inflow flow rate to the hot water supply heat exchanger 22 A flow sensor 30F for detection is provided.

次に、本実施の形態によるヒートポンプ式給湯装置の貯湯回路について説明する。貯湯タンク40の底部配管42は、流量調整弁31、減圧弁32、及び逆止弁41を介して水道管等の水供給配管34に接続されている。この底部配管42は、循環ポンプ43を介して水用配管22Aの流入側と接続されている。また、貯湯タンク40の上部循環用配管4
4は、制御弁45を介して水用配管22Aの流出側と接続されている。なお、本実施の形態による貯湯タンク40は、積層式の給湯タンクであり、タンク内での撹拌が防止され、上部に高温水が底部に低温水が蓄積されるように構成されている。
Next, a hot water storage circuit of the heat pump hot water supply apparatus according to the present embodiment will be described. A bottom pipe 42 of the hot water storage tank 40 is connected to a water supply pipe 34 such as a water pipe via a flow rate adjusting valve 31, a pressure reducing valve 32, and a check valve 41. The bottom pipe 42 is connected to the inflow side of the water pipe 22 </ b> A via the circulation pump 43. The upper circulation pipe 4 of the hot water storage tank 40
4 is connected to the outflow side of the water pipe 22 </ b> A via the control valve 45. The hot water storage tank 40 according to the present embodiment is a stacked hot water tank, and is configured so that stirring in the tank is prevented and high temperature water is accumulated at the top and low temperature water is accumulated at the bottom.

一方、貯湯タンク40の上部出湯用配管51は、第一混合手段36に接続されている。また、貯湯タンク40の底部配管42から分岐させた出水用配管52は、逆止弁53を介して第二混合手段37に接続されている。なお、貯湯タンク40には、出湯温度を検出する温度センサ40Aの他に、貯湯タンク40内の湯量を検出するための複数の温度センサ40B、40C、40Dが設けられている。また、水用配管22Aの分岐前の流入側配管には、貯湯タンク40の底部配管42から導出される湯温を検出する温度センサ40Eが設けられている。   On the other hand, the upper hot water supply pipe 51 of the hot water storage tank 40 is connected to the first mixing means 36. Further, a water discharge pipe 52 branched from the bottom pipe 42 of the hot water storage tank 40 is connected to the second mixing means 37 via a check valve 53. The hot water storage tank 40 is provided with a plurality of temperature sensors 40B, 40C and 40D for detecting the amount of hot water in the hot water storage tank 40 in addition to the temperature sensor 40A for detecting the temperature of the hot water. In addition, a temperature sensor 40 </ b> E that detects the hot water temperature derived from the bottom pipe 42 of the hot water storage tank 40 is provided in the inflow side pipe before branching of the water pipe 22 </ b> A.

次に、本実施の形態によるヒートポンプ式給湯装置の浴槽加熱回路について説明する。風呂用熱交換器26の水用配管26Aは、循環ポンプ61を備えた浴槽用循環配管62と接続されている。この浴槽用循環配管62は、水用配管26Aをバイパスするバイパス配管63と、水用配管26Aとバイパス配管63とを切り換える三方弁64とを備えている。また浴槽用循環配管62には、浴槽水の循環量を検出する流量センサ60A、水用配管26Aの出口温度を検出する温度センサ60B、浴槽水の循環温度を検出する温度センサ60C、浴槽内の水位を検出する水位センサ60Dを備えている。   Next, the bathtub heating circuit of the heat pump type hot water supply apparatus according to the present embodiment will be described. The water pipe 26 </ b> A of the bath heat exchanger 26 is connected to a bathtub circulation pipe 62 including a circulation pump 61. The bathtub circulation pipe 62 includes a bypass pipe 63 that bypasses the water pipe 26 </ b> A, and a three-way valve 64 that switches between the water pipe 26 </ b> A and the bypass pipe 63. Further, the bathtub circulation pipe 62 includes a flow sensor 60A for detecting the circulation amount of the bathtub water, a temperature sensor 60B for detecting the outlet temperature of the water pipe 26A, a temperature sensor 60C for detecting the circulation temperature of the bathtub water, A water level sensor 60D for detecting the water level is provided.

なお、浴槽60への注湯は、第二混合手段37の下流側配管から分岐させた注湯用配管71を用いて行うことができる。この注湯用配管71は、浴槽用循環配管62に接続するか、又は直接浴槽60に導く。注湯用配管71には、注湯弁72及び流量を検出する流量センサ70Aが設けられている。   In addition, the pouring to the bathtub 60 can be performed using the pouring pipe 71 branched from the downstream pipe of the second mixing means 37. The pouring pipe 71 is connected to the bathtub circulation pipe 62 or directly led to the bathtub 60. The pouring pipe 71 is provided with a pouring valve 72 and a flow rate sensor 70A for detecting the flow rate.

リモコン81は、蛇口38からの出湯温度の指示や、浴槽60の沸き上げ温度及び沸き上げ開始などを指示し、このリモコン81からの指示に基づいて第1のヒートポンプサイクル10と第2のヒートポンプサイクル20とを制御手段82にて制御する。なお各種のセンサの検出値はこの制御手段82に入力される。   The remote controller 81 instructs the hot water temperature from the faucet 38, the boiling temperature of the bathtub 60, the start of boiling, and the like. Based on the instructions from the remote controller 81, the first heat pump cycle 10 and the second heat pump cycle. 20 is controlled by the control means 82. The detection values of various sensors are input to this control means 82.

次に、本実施の形態によるヒートポンプ式給湯装置の排水経路について説明する。91は蒸発器24から発生するドレン水を受けるドレン水受けである。貯湯タンク40の圧力逃がし弁92から排出される膨張水は膨張水排出手段93を通じてドレン水受け91へ排出される。膨張水排出手段93の末端は固定手段94によりドレン水排出口95に向け、ドレン水排出口95近傍にて固定されている。ドレン水受け91と膨張弁23前の冷媒配管96はロー付けにより接触している。   Next, the drainage path of the heat pump type hot water supply apparatus according to this embodiment will be described. A drain water receiver 91 receives drain water generated from the evaporator 24. The expansion water discharged from the pressure relief valve 92 of the hot water storage tank 40 is discharged to the drain water receiver 91 through the expansion water discharge means 93. The end of the expansion water discharge means 93 is fixed to the drain water discharge port 95 by the fixing means 94 and is fixed in the vicinity of the drain water discharge port 95. The drain water receiver 91 and the refrigerant pipe 96 in front of the expansion valve 23 are in contact with each other by brazing.

装置の移設、メンテナンス等の時に貯湯タンク40から排水するため、タンク排水弁97を介してタンク排水通路98を貯湯タンク40に接続している。またドレン水排水通路99をドレン水排出口95に接続している。なお、上記説明したヒートポンプ式給湯装置は筐体100に収納される。   A tank drainage passage 98 is connected to the hot water storage tank 40 via a tank drain valve 97 for draining from the hot water storage tank 40 when the apparatus is moved or maintained. Further, the drain water drainage passage 99 is connected to the drain water discharge port 95. The above-described heat pump hot water supply apparatus is housed in the housing 100.

以下、本実施の形態によるヒートポンプ式給湯装置の動作について説明する。まず、本実施の形態によるヒートポンプ式給湯装置の通常の給湯運転モードについて説明する。   Hereinafter, the operation of the heat pump hot water supply apparatus according to the present embodiment will be described. First, a normal hot water supply operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described.

蛇口38が開放され、出水を流量センサ30Aにて検知し、ヒートポンプサイクル20が運転を開始する。   The faucet 38 is opened, and water discharge is detected by the flow sensor 30A, and the heat pump cycle 20 starts operation.

圧縮機21で圧縮された冷媒は、給湯用熱交換器22で放熱し、膨張弁23で減圧された後、蒸発器24にて吸熱し、ガス状態で圧縮機21に吸入される。このとき、制御弁2
5Aは閉状態であり、バイパス回路25には冷媒は流れない。
The refrigerant compressed by the compressor 21 dissipates heat in the hot water supply heat exchanger 22, is decompressed by the expansion valve 23, absorbs heat in the evaporator 24, and is sucked into the compressor 21 in a gas state. At this time, the control valve 2
5A is in a closed state, and no refrigerant flows into the bypass circuit 25.

水供給配管34から供給される水は、流量調整弁31、減圧弁32、及び逆止弁33を順に通り、給湯用熱交換器22の水用配管22Aとにそれぞれ導かれる。水用配管22Aで加熱された温水は、逆止弁35、第一混合手段36、及び第二混合手段37を順に通り蛇口38に導かれる。   Water supplied from the water supply pipe 34 passes through the flow rate adjustment valve 31, the pressure reducing valve 32, and the check valve 33 in order, and is led to the water pipe 22 </ b> A of the hot water supply heat exchanger 22. The hot water heated by the water pipe 22 </ b> A passes through the check valve 35, the first mixing unit 36, and the second mixing unit 37 in order and is guided to the faucet 38.

圧縮機21での能力制御及び膨張弁23での開度制御は、温度センサ30Cでの検出温度がリモコン81で設定された湯温に近づくように、温度センサ20B、20D、20E、流量センサ30A、30Hからの検出値によって制御される。ここで流量センサ30Aの検出流量が多くなるほど圧縮機21の回転数が大きくなるように制御される。   In the capacity control in the compressor 21 and the opening degree control in the expansion valve 23, the temperature sensors 20B, 20D and 20E and the flow rate sensor 30A are set so that the temperature detected by the temperature sensor 30C approaches the hot water temperature set by the remote controller 81. , Controlled by the detected value from 30H. Here, the rotation speed of the compressor 21 is controlled to increase as the detected flow rate of the flow rate sensor 30A increases.

なお、ヒートポンプサイクル20での能力制御を行っても、給湯用熱交換器22からの水温が設定温度よりも高い場合には、出水用配管52から第二混合手段37に冷水を導入し、第二混合手段37での出口温度が設定温度となるように制御する。   Even if the capacity control in the heat pump cycle 20 is performed, if the water temperature from the hot water supply heat exchanger 22 is higher than the set temperature, cold water is introduced into the second mixing means 37 from the outlet pipe 52, Control is performed so that the outlet temperature at the two mixing means 37 becomes the set temperature.

また、ヒートポンプサイクル20での能力制御を行っても、給湯用熱交換器22からの水温が設定温度よりも低い場合には、貯湯タンク40から第一混合手段36に温水を導入し、第一混合手段36での出口温度が設定温度となるように制御する。さらに第一混合手段36での出口温度が設定温度よりも低い場合は、通常全開状態の流量調整弁31の開度を小さくし、蛇口38からの出湯流量を少なくして第一混合手段36での出口温度が設定温度となるように制御する。   Further, even when the capacity control in the heat pump cycle 20 is performed, if the water temperature from the hot water supply heat exchanger 22 is lower than the set temperature, hot water is introduced from the hot water storage tank 40 to the first mixing means 36, and the first Control is performed so that the outlet temperature at the mixing means 36 becomes the set temperature. Further, when the outlet temperature at the first mixing means 36 is lower than the set temperature, the first mixing means 36 reduces the opening amount of the flow regulating valve 31 in the normally fully opened state to reduce the hot water flow rate from the faucet 38. The outlet temperature is controlled to be the set temperature.

次に、本実施の形態によるヒートポンプ式給湯装置の給湯運転モードの立ち上げ制御について説明する。圧縮機21の起動から所定の時間は、給湯用熱交換器22で十分な放熱量を得られない。従って、蛇口38の開放を流量センサ30Aにて検知し、ヒートポンプサイクル20が運転を開始すると同時に、上部出湯用配管51から貯湯タンク40内の高温水を第一混合手段36に導く。このとき、温度センサ30Eと温度センサ40Aとの温度を検出し、温度センサ30Dでの検出温度が設定温度となるように第一混合手段36での混合割合を制御する。運転開始時には、給湯用熱交換器22からの水温は低いため、給湯タンク40からの温水を多く流し、その後給湯用熱交換器22からの水温が高まるにしたがって給湯タンク40からの温水を減少させる。そして給湯用熱交換器22からの水温が十分に高まった時点で給湯タンク40からの出湯を停止する。   Next, start-up control in the hot water supply operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described. A sufficient amount of heat radiation cannot be obtained by the hot water supply heat exchanger 22 for a predetermined time from the start of the compressor 21. Accordingly, the opening of the faucet 38 is detected by the flow rate sensor 30 </ b> A, and the heat pump cycle 20 starts operation, and at the same time, the hot water in the hot water storage tank 40 is guided from the upper hot water supply pipe 51 to the first mixing means 36. At this time, the temperature of the temperature sensor 30E and the temperature sensor 40A is detected, and the mixing ratio in the first mixing means 36 is controlled so that the temperature detected by the temperature sensor 30D becomes the set temperature. At the start of operation, since the water temperature from the hot water supply heat exchanger 22 is low, a large amount of hot water flows from the hot water supply tank 40, and then the hot water from the hot water supply tank 40 decreases as the water temperature from the hot water supply heat exchanger 22 increases. . And the hot water supply from the hot water supply tank 40 is stopped when the water temperature from the hot water supply heat exchanger 22 is sufficiently increased.

次に、本実施の形態によるヒートポンプ式給湯装置の貯湯運転モードについて説明する。貯湯運転モードでは、制御弁45を開として循環ポンプ43を運転する。循環ポンプ43の運転により、貯湯タンク40の底部配管42から冷水を導出し、給湯用熱交換器22の水用配管22Aに導かれる。給湯用熱交換器22で加熱された温水は、上部循環用配管44から貯湯タンク40の上部に戻される。圧縮機21での能力制御は、温度センサ40Eによる給湯用熱交換器22の入口温度と、温度センサ30Eによる給湯用熱交換器22の出口温度と、流量センサ30Fによる循環流量、温度センサ20B、20D、20Eによって制御される。貯湯タンク40内の貯湯量は、温度センサ40B、40C、40Dによって検出し、貯湯タンク40内の貯湯量が所定以下であることを検出すると貯湯運転を開始し、貯湯タンク40内の貯湯量が所定以上であることを検出すると貯湯運転を停止する。   Next, the hot water storage operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described. In the hot water storage operation mode, the control valve 45 is opened and the circulation pump 43 is operated. By operating the circulation pump 43, cold water is led out from the bottom pipe 42 of the hot water storage tank 40 and led to the water pipe 22 </ b> A of the hot water supply heat exchanger 22. The hot water heated by the hot water supply heat exchanger 22 is returned to the upper part of the hot water storage tank 40 from the upper circulation pipe 44. The capacity control in the compressor 21 includes the inlet temperature of the hot water heat exchanger 22 by the temperature sensor 40E, the outlet temperature of the hot water heat exchanger 22 by the temperature sensor 30E, the circulating flow rate by the flow sensor 30F, the temperature sensor 20B, Controlled by 20D and 20E. The amount of hot water stored in the hot water storage tank 40 is detected by the temperature sensors 40B, 40C, 40D. When the amount of hot water stored in the hot water storage tank 40 is detected to be below a predetermined value, the hot water storage operation is started. When it is detected that the temperature exceeds the predetermined value, the hot water storage operation is stopped.

次に、本実施の形態によるヒートポンプ式給湯装置の浴槽加熱運転モードについて説明する。浴槽加熱運転モードでは、制御弁25Aを開放する。圧縮機21で圧縮された冷媒は、バイパス回路25を流れ、風呂用熱交換器26で放熱し、膨張弁23で減圧された後、蒸発器24にて吸熱し、ガス状態で圧縮機21に吸入される。   Next, the bathtub heating operation mode of the heat pump hot water supply apparatus according to the present embodiment will be described. In the bathtub heating operation mode, the control valve 25A is opened. The refrigerant compressed by the compressor 21 flows through the bypass circuit 25, dissipates heat in the bath heat exchanger 26, is decompressed by the expansion valve 23, absorbs heat in the evaporator 24, and enters the compressor 21 in a gas state. Inhaled.

一方、循環ポンプ61を運転し、浴槽60内の浴槽水を浴槽用循環配管62を介して水用配管26Aに導き、水用配管26Aで加熱された浴槽水を浴槽60内に戻す。   On the other hand, the circulation pump 61 is operated, the bathtub water in the bathtub 60 is guided to the water pipe 26A through the bathtub circulation pipe 62, and the bathtub water heated by the water pipe 26A is returned into the bathtub 60.

圧縮機21での能力制御及び膨張弁23での開度制御は、温度センサ60Cでの検出温度がリモコン81で設定された湯温に近づくように、温度センサ20F、60B、60C、20B、20D、20E、20Fからの検出値によって制御される。また、循環ポンプ61での循環量は、流量センサ60Aによって制御される。浴槽60内の温度を検出するためには、三方弁64の切り換えによって風呂用熱交換器26をバイパスさせ、循環ポンプ61、バイパス配管63、及び浴槽60で浴槽水を循環させ、温度センサ60Cにて検出を行う。   In the capacity control in the compressor 21 and the opening degree control in the expansion valve 23, the temperature sensors 20F, 60B, 60C, 20B, and 20D are set so that the temperature detected by the temperature sensor 60C approaches the hot water temperature set by the remote controller 81. , 20E and 20F. The circulation amount in the circulation pump 61 is controlled by the flow sensor 60A. In order to detect the temperature in the bathtub 60, the bath heat exchanger 26 is bypassed by switching the three-way valve 64, and the bathtub water is circulated by the circulation pump 61, the bypass pipe 63, and the bathtub 60, and the temperature sensor 60C is used. To detect.

一方、浴槽60に温水を補充する場合あるいは浴槽60が空の状態から湯張りする場合には、注湯弁72を開放して給湯運転モードと同様に制御し、注湯用配管71から浴槽用循環配管62を介して浴槽60に給湯する。   On the other hand, when hot water is added to the bathtub 60 or when the bathtub 60 is filled with water from an empty state, the hot water supply valve 72 is opened and controlled in the same manner as in the hot water supply operation mode, and the hot water supply pipe 71 is used for the bathtub. Hot water is supplied to the bathtub 60 via the circulation pipe 62.

次に、本実施の形態によるヒートポンプ式給湯装置の除霜運転モードについて説明する。制御弁25Aを開、膨張弁23を全開とし、ファン27の動作を停止して行う。圧縮機21で圧縮された冷媒は、バイパス回路25を流れ、蒸発器24にて放熱し、ガス状態で圧縮機21に吸入される。こうして蒸発器24の除霜を行うことができる。なお、着霜の検出は、温度センサ20D、20Eによって行う。   Next, the defrosting operation mode of the heat pump type hot water supply apparatus according to the present embodiment will be described. The control valve 25A is opened, the expansion valve 23 is fully opened, and the operation of the fan 27 is stopped. The refrigerant compressed by the compressor 21 flows through the bypass circuit 25, dissipates heat in the evaporator 24, and is sucked into the compressor 21 in a gas state. In this way, the evaporator 24 can be defrosted. In addition, detection of frost formation is performed by the temperature sensors 20D and 20E.

以上、ヒートポンプ式給湯装置の各モードを説明したが、貯湯タンク40に湯が貯湯されている時は、運転モードに関係なく、圧力逃がし弁92から湯が排水され、貯湯タンク40の水圧が所定圧以上になることを防止している。この高温の膨張水は膨張水排出手段93によってドレン水受け91に排出される。   As described above, each mode of the heat pump hot water supply apparatus has been described. When hot water is stored in the hot water storage tank 40, the hot water is drained from the pressure relief valve 92 regardless of the operation mode, and the water pressure of the hot water storage tank 40 is predetermined. Prevents pressure over pressure. This high-temperature expansion water is discharged to the drain water receiver 91 by the expansion water discharge means 93.

以上説明したように、高温の膨張水をドレン水受け91に排出することにより、ドレン水受け91の凍結を防止し、確実にドレン水受け91からドレン水を正常に排水でき、ドレン水のオーバーフローによる他の部品の被水を防止することができる。   As described above, by discharging the high-temperature expansion water to the drain water receiver 91, the drain water receiver 91 can be prevented from freezing, and the drain water can be drained normally from the drain water receiver 91, and the drain water overflows. Can prevent other parts from getting wet.

また、膨張水をドレン水受け91のドレン水排出口95に向けて排出している。そして、高温の膨張水がドレン排出口95に向けて排出されるので、ドレン排出口95の凍結を防止できる。   Further, the expanded water is discharged toward the drain water discharge port 95 of the drain water receiver 91. And since the high temperature expansion | swelling water is discharged | emitted toward the drain discharge port 95, freezing of the drain discharge port 95 can be prevented.

また、圧力逃がし弁92に接続された膨張水排出手段93の末端が動かないように膨張水排出手段93を固定手段94で固定している。そして、膨張水排出手段93の末端が動かないので、ドレン水受け91に確実に排水できる。   The expansion water discharge means 93 is fixed by the fixing means 94 so that the end of the expansion water discharge means 93 connected to the pressure relief valve 92 does not move. And since the terminal of the expansion water discharge means 93 does not move, it can drain into the drain water receptacle 91 reliably.

また、給湯用熱交換器22の直上にドレン水受け91を設けている。そして、給湯用熱交換器22の放熱をドレン水受け91で受熱し、ドレン水受け91の凍結をさらに確実に防止できる。   Further, a drain water receiver 91 is provided immediately above the hot water heat exchanger 22. And the heat radiation of the hot water supply heat exchanger 22 is received by the drain water receiver 91, and the drain water receiver 91 can be more reliably prevented from freezing.

また、ドレン水受け91と膨張弁前の冷媒配管とを接触させている。膨張弁前冷媒配管96の冷媒からドレン水受け91に放熱して、ドレン水受け91の凍結をさらに確実に防止できる。また冷媒の過冷却度を大きくでき、COPを向上できる。   Moreover, the drain water receptacle 91 and the refrigerant | coolant piping before an expansion valve are made to contact. Heat is radiated from the refrigerant in the refrigerant pipe 96 before the expansion valve to the drain water receiver 91, so that the drain water receiver 91 can be more reliably prevented from freezing. Further, the degree of supercooling of the refrigerant can be increased, and COP can be improved.

また、流量センサ30Aの信号により出水を検出すると、圧縮機21を起動させる。そして、給湯端末から出水を検出して圧縮機21を起動するので、給湯用熱交換器22にて加熱した湯を給湯端末より直接出湯することができる。   Further, when water discharge is detected by the signal from the flow sensor 30A, the compressor 21 is started. And since water discharge is detected from a hot water supply terminal and the compressor 21 is started, the hot water heated with the heat exchanger 22 for hot water supply can be directly discharged from a hot water supply terminal.

また、流量センサ30Aの検出流量が大きいほど、圧縮機21の回転数を大きくするように制御する。そして、幅広い出水流量において、設定温度の湯を出湯できる。   Moreover, it controls so that the rotation speed of the compressor 21 becomes large, so that the detection flow volume of 30 A of flow sensors is large. And the hot water of preset temperature can be poured out in the wide discharge flow rate.

給湯用熱交換器22からの温水と貯湯タンク40からの温水とを混合する第一混合手段36を設けている。   A first mixing means 36 for mixing hot water from the hot water supply heat exchanger 22 and hot water from the hot water storage tank 40 is provided.

そして、ヒートポンプ運転起動時の加熱能力の不足を補うことができ、給湯端末から出水後の湯温立ち上がりを早くし、設定温度にて出湯できるまでの時間をより短縮化することができる。また定常時においても加熱能力が不足しているときはその不足を補うことができる。   And the lack of the heating capability at the time of heat pump driving | running | working start can be compensated, the hot-water temperature rise after water discharge from a hot-water supply terminal can be accelerated | stimulated, and the time until it can discharge at a preset temperature can be shortened more. Further, when the heating capacity is insufficient even in the steady state, the shortage can be compensated.

また、第一混合手段36からの温水と水道管からの冷水とを混合する第二混合手段37を設けている。そして、第一混合手段36から出湯する湯温が設定温度より高い場合には、水を混ぜて設定温度にすることができる。   Moreover, the 2nd mixing means 37 which mixes the warm water from the 1st mixing means 36 and the cold water from a water pipe is provided. And when the hot water temperature discharged from the 1st mixing means 36 is higher than preset temperature, water can be mixed and it can be made preset temperature.

また、ヒートポンプサイクル20に用いる冷媒を二酸化炭素とし、高圧側では臨界圧を越える状態で運転している。そして、高温の湯を生成することができ、また高温の湯を貯留できるため貯湯タンクを小型化できる。   Moreover, the refrigerant | coolant used for the heat pump cycle 20 is carbon dioxide, and it drive | operates in the state exceeding a critical pressure on the high voltage | pressure side. And hot water can be produced | generated and since hot water can be stored, a hot water storage tank can be reduced in size.

また、ヒートポンプサイクル20と貯湯タンク40とを同一の筐体111に収納している。そして、装置をコンパクト化できるので、設置の自由度を広げることができる。また貯湯タンク40と蒸発器24との熱交換関係を容易に構築できる。   Further, the heat pump cycle 20 and the hot water storage tank 40 are accommodated in the same casing 111. And since an apparatus can be reduced in size, the freedom degree of installation can be expanded. Further, the heat exchange relationship between the hot water storage tank 40 and the evaporator 24 can be easily constructed.

なお、上記実施の形態では冷媒として二酸化炭素を用いた場合で説明したが、冷媒として410A冷媒やHC冷媒などのその他の冷媒を用いてもよい。   In the above embodiment, carbon dioxide is used as the refrigerant. However, other refrigerants such as 410A refrigerant and HC refrigerant may be used as the refrigerant.

また、上記実施の形態では、単一のヒートポンプサイクル20を備えたヒートポンプ式給湯装置を用いて説明したが、2つ以上のヒートポンプサイクルを用いてもよい。   Moreover, although the said embodiment demonstrated using the heat pump type hot water supply apparatus provided with the single heat pump cycle 20, you may use two or more heat pump cycles.

また、上記実施の形態において、風呂用熱交換器26での放熱量を最大にするため、給湯用熱交換器22への冷媒流入を阻止する制御弁を設けることが更に好ましい。   Moreover, in the said embodiment, in order to maximize the thermal radiation amount in the heat exchanger 26 for baths, it is still more preferable to provide the control valve which prevents the refrigerant | coolant inflow to the heat exchanger 22 for hot water supply.

また、上記実施の形態では、給湯用熱交換器22で加熱された温水を、上部循環用配管44から貯湯タンク40の上部に戻す構成としたが、上部循環用配管44及び制御弁45を設けることなく、第一混合手段36を用いて給湯用熱交換器12及び給湯用熱交換器22の出口側配管と上部出湯用配管51とを連通させることで、給湯用熱交換器22で加熱された温水を貯湯タンク40の上部に戻す構成としてもよい。   In the above embodiment, the hot water heated by the hot water supply heat exchanger 22 is returned to the upper part of the hot water storage tank 40 from the upper circulation pipe 44. However, the upper circulation pipe 44 and the control valve 45 are provided. Without using the first mixing means 36, the outlet side pipes of the hot water supply heat exchanger 12 and the hot water supply heat exchanger 22 and the upper hot water supply pipe 51 are communicated with each other so that they are heated by the hot water supply heat exchanger 22. The warm water may be returned to the upper part of the hot water storage tank 40.

また、上記説明における風呂用熱交換器26を、例えば床暖房や温風機器などの暖房用熱交換器として利用することもできる。   The bath heat exchanger 26 in the above description can also be used as a heat exchanger for heating such as floor heating or hot air equipment.

また、ヒートポンプサイクル20と貯湯タンク40を同一の筐体111に収納したものとして説明したが、それぞれを別の筐体に収納して別設したり、あるいは、工場出荷時は別々の筐体に収納して出荷し、設置現場にてこれら筐体を集合させて一体化させることもできる。   In addition, the heat pump cycle 20 and the hot water storage tank 40 have been described as being housed in the same housing 111, but each is housed in a separate housing or installed separately, or in a separate housing at the time of factory shipment. They can be stored and shipped, and these cases can be assembled and integrated at the installation site.

以上のように、本発明にかかるヒートポンプ式給湯装置は、ヒートポンプサイクルにより水を加熱するヒートポンプ式給湯装置に応用でき、産業上の利用可能性があるものであ
る。
As described above, the heat pump hot water supply apparatus according to the present invention can be applied to a heat pump hot water supply apparatus that heats water by a heat pump cycle, and has industrial applicability.

本発明の実施の形態1におけるヒートポンプ式給湯装置の回路構成図The circuit block diagram of the heat pump type hot-water supply apparatus in Embodiment 1 of this invention 同実施の形態1における給湯用熱交換器等の配置構成図Arrangement configuration diagram of heat exchanger and the like for hot water supply in Embodiment 1 従来のヒートポンプ式給湯装置の全体構成図Overall configuration diagram of a conventional heat pump type hot water supply device

符号の説明Explanation of symbols

20 ヒートポンプサイクル
21 圧縮機
22 給湯用熱交換器
23 膨張弁
24 蒸発器
30A 流量センサ(出水検出手段)
36 第一混合手段
37 第二混合手段
38 蛇口(給湯端末)
40 貯湯タンク
82 制御手段
91 ドレン水受け
92 圧力逃がし弁
93 膨張水排出手段
94 固定手段94
95 ドレン水排出口
96 膨張弁前冷媒配管
100 筐体
DESCRIPTION OF SYMBOLS 20 Heat pump cycle 21 Compressor 22 Heat exchanger for hot water supply 23 Expansion valve 24 Evaporator 30A Flow rate sensor (outflow detection means)
36 First mixing means 37 Second mixing means 38 Faucet (hot water supply terminal)
40 Hot Water Storage Tank 82 Control Unit 91 Drain Water Receiving 92 Pressure Relief Valve 93 Expansion Water Discharge Unit 94 Fixing Unit 94
95 Drain water outlet 96 Refrigerant piping before expansion valve 100 Housing

Claims (11)

圧縮機、給湯用熱交換器、膨張弁、蒸発器を冷媒配管で接続したヒートポンプサイクルと、前記給湯用熱交換器で加熱した水を貯留する貯湯タンクと、前記貯湯タンクの圧力逃がし弁と、前記圧力逃がし弁から出る膨張水を排出する膨張水排出手段と、前記蒸発器で発生するドレン水を受けるドレン水受けとを備え、前記膨張水排出手段を通じて前記ドレン水受けに排出するよう構成したヒートポンプ式給湯装置。 A heat pump cycle in which a compressor, a hot water heat exchanger, an expansion valve, and an evaporator are connected by refrigerant piping; a hot water storage tank that stores water heated by the hot water heat exchanger; and a pressure relief valve of the hot water tank; An expansion water discharge unit that discharges the expansion water that exits from the pressure relief valve and a drain water receiver that receives the drain water generated by the evaporator are configured to be discharged to the drain water receiver through the expansion water discharge unit . Heat pump water heater. 膨張水をドレン水受けのドレン水排出口に向けて排出する請求項1記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to claim 1, wherein the expanded water is discharged toward a drain water discharge port of the drain water receiver. 圧力逃がし弁に接続された膨張水排出手段の末端が動かないように膨張水排出手段を固定する固定手段を設けた請求項1または2記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to claim 1 or 2, further comprising a fixing means for fixing the expansion water discharge means so that the end of the expansion water discharge means connected to the pressure relief valve does not move. 給湯用熱交換器の直上にドレン水受けを設けた請求項1〜3のいずれか1項記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to any one of claims 1 to 3, wherein a drain water receiver is provided immediately above the hot water supply heat exchanger. ドレン水受けと膨張弁前冷媒配管とを接触させた請求項1〜4のいずれか1項記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to any one of claims 1 to 4, wherein the drain water receiver and the refrigerant pipe before the expansion valve are brought into contact with each other. 蛇口等の給湯端末からの出水を検出する出水検出手段と、前記出水検出手段の信号を受けて圧縮機を制御する制御手段とを備え、前記制御手段は前記出水検出手段の信号により出水を検出すると、前記圧縮機を起動させる請求項1〜5のいずれか1項記載のヒートポンプ式給湯装置。 A water discharge detection means for detecting water discharge from a hot water supply terminal such as a faucet, and a control means for controlling a compressor in response to a signal from the water discharge detection means, wherein the control means detects water discharge by a signal from the water discharge detection means. Then, the heat pump type hot water supply apparatus according to any one of claims 1 to 5, wherein the compressor is started. 蛇口等の給湯端末からの出水を検出する出水検出手段と、前記出水検出手段の信号を受けて前記圧縮機を制御する制御手段とを備え、前記制御手段は、前記出水検出手段の検出流量が大きいほど、前記圧縮機の回転数を大きくするように制御する請求項1〜6のいずれか1項記載のヒートポンプ式給湯装置。 A water discharge detection means for detecting water discharge from a hot water supply terminal such as a faucet; and a control means for controlling the compressor in response to a signal from the water discharge detection means, wherein the control means has a flow rate detected by the water discharge detection means. The heat pump type hot water supply apparatus according to any one of claims 1 to 6, which is controlled so as to increase the rotational speed of the compressor as the value increases. 給湯用熱交換器からの温水と貯湯タンクからの温水とを混合する第一混合手段を設けた請
求項1〜7のいずれか1項記載のヒートポンプ式給湯装置。
The heat pump type hot water supply apparatus according to any one of claims 1 to 7, further comprising first mixing means for mixing hot water from a hot water supply heat exchanger and hot water from a hot water storage tank.
第一混合手段からの温水と水道管からの冷水とを混合する第二混合手段を設けた請求項8記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to claim 8, further comprising second mixing means for mixing hot water from the first mixing means and cold water from the water pipe. ヒートポンプサイクルに用いる冷媒を二酸化炭素とし、高圧側では臨界圧を越える状態で運転する請求項1〜9のいずれか1項記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to any one of claims 1 to 9, wherein the refrigerant used in the heat pump cycle is carbon dioxide, and the high pressure side is operated in a state exceeding a critical pressure. ヒートポンプサイクルと貯湯タンクとを同一の筐体に収納した請求項1〜10のいずれか1項記載のヒートポンプ式給湯装置。 The heat pump type hot water supply apparatus according to any one of claims 1 to 10, wherein the heat pump cycle and the hot water storage tank are housed in the same casing.
JP2004176804A 2004-06-15 2004-06-15 Heat pump type water heater Expired - Fee Related JP3915799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176804A JP3915799B2 (en) 2004-06-15 2004-06-15 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176804A JP3915799B2 (en) 2004-06-15 2004-06-15 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2006002959A JP2006002959A (en) 2006-01-05
JP3915799B2 true JP3915799B2 (en) 2007-05-16

Family

ID=35771502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176804A Expired - Fee Related JP3915799B2 (en) 2004-06-15 2004-06-15 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP3915799B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD834689S1 (en) 2015-07-28 2018-11-27 Fks Co., Ltd. Liquid pipe coupling universal joint
US10982802B2 (en) 2014-08-29 2021-04-20 Fks Co., Ltd. Liquid pipe coupling universal joint and liquid product treatment device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904856B2 (en) * 2006-03-10 2012-03-28 パナソニック株式会社 Heat pump water heater
JP2007327725A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Heat pump type water heater
JP2008145001A (en) * 2006-12-07 2008-06-26 Sharp Corp Heat pump unit
JP2013015287A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Hot water heat source machine
CN111947297B (en) * 2020-08-17 2021-11-16 珠海格力电器股份有限公司 Gas water heater, control method and device of gas water heater and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855643A (en) * 1981-09-26 1983-04-02 Matsushita Electric Ind Co Ltd Hot water supply device
JPH0798156A (en) * 1993-09-30 1995-04-11 Toshiba Corp Heat pump heat source type hot water supply apparatus
JP2003322412A (en) * 2002-04-25 2003-11-14 Mitsubishi Electric Corp Hot water storage type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982802B2 (en) 2014-08-29 2021-04-20 Fks Co., Ltd. Liquid pipe coupling universal joint and liquid product treatment device using the same
USD834689S1 (en) 2015-07-28 2018-11-27 Fks Co., Ltd. Liquid pipe coupling universal joint

Also Published As

Publication number Publication date
JP2006002959A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US7856835B2 (en) Hot water supply apparatus
EP2151633B1 (en) Hot water circulation system associated with heat pump and method for controlling the same
JP2003106653A (en) Heat pump type water heater
JP4362118B2 (en) Hot water storage water heater
JP4124258B2 (en) Heat pump water heater
JP5140398B2 (en) Refrigeration equipment
JP5245217B2 (en) Hot water storage hot water heater
JP3915799B2 (en) Heat pump type water heater
JP4082350B2 (en) Heat pump type water heater
JP3925433B2 (en) Heat pump water heater
JP4055692B2 (en) Heat pump type water heater
JP2007333340A (en) Heat pump type hot water supply apparatus
JP2005233444A (en) Heat pump hot-water supply device
JP5069955B2 (en) Heat pump type water heater
JP4077766B2 (en) Heat pump water heater
JP2004360934A (en) Heat pump hot water supply device
JP4790538B2 (en) Hot water storage hot water heater
JP4021375B2 (en) Heat pump water heater
JP4004049B2 (en) Heat pump water heater
JP2007147153A (en) Hot-water storage type hot-water supply device
JP3856003B2 (en) Heat pump water heater
JP4072140B2 (en) Hot water storage water heater
JP2005300008A (en) Heat pump hot water supply device
JP3706969B2 (en) Water heater
JP2005133972A (en) Heat pump water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees