JP3925317B2 - Heat sink mounting structure for board mounted components - Google Patents

Heat sink mounting structure for board mounted components Download PDF

Info

Publication number
JP3925317B2
JP3925317B2 JP2002171600A JP2002171600A JP3925317B2 JP 3925317 B2 JP3925317 B2 JP 3925317B2 JP 2002171600 A JP2002171600 A JP 2002171600A JP 2002171600 A JP2002171600 A JP 2002171600A JP 3925317 B2 JP3925317 B2 JP 3925317B2
Authority
JP
Japan
Prior art keywords
board
mounting
circuit board
component
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002171600A
Other languages
Japanese (ja)
Other versions
JP2004022591A (en
Inventor
顕 酒井
大介 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002171600A priority Critical patent/JP3925317B2/en
Publication of JP2004022591A publication Critical patent/JP2004022591A/en
Application granted granted Critical
Publication of JP3925317B2 publication Critical patent/JP3925317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、回路基板上に搭載した発熱部品に対する放熱器の取付構造及びその組立方法に関するものである。
【0002】
【従来の技術】
図10は、従来のシングルインライン構造における一般的な基板搭載部品の放熱器取付構造を示した図であり、この図において、1はL字状のシングルインライン構造のリード線足1cを有する半導体等の基板部品、3はこの半導体部品1が取り付けられ、各電気部品を接続する回路基板、4はこの回路基板3に支持部15を介して設けられ、前記半導体部品の熱を放熱する放熱フィン、5はこの放熱フィン4に前記半導体部品1を連結固定するネジ、10は半導体部品1の足を回路基板3に固着させる半田、15は放熱フィン4を支持するフィン支持部である。
【0003】
次に、このように構成された基板部品に対する放熱フィンの取付動作について説明する。
まず、回路基板3に各搭載部品としての半導体1や、放熱フィン4等の各部品を搭載して固定する時、半導体部品1をネジ5によって放熱フィン4に固着し、その後、基板に搭載して半田付けをするようにすると、半導体1とフィン支持部15の足を全て同時に回路基板3の取付穴3aに挿入してから、半田固定するため、半導体1とフィン支持部15の足位置に対する回路基板3の取付穴3aの位置が合致していない時は、互いの位置を修正しなければ、半導体1と放熱フィン4とを回路基板3に合体することできなくなり、半導体1の発熱を放熱フィン4から放出できないことになる。
【0004】
また逆に、半導体1とフィン支持部15の足を回路基板3に半田固定した後に、半導体1と放熱フィン4とを互いにネジ5によって連結するようにすると、互いの位置関係がズレた状態で半田付けされた時には、ネジ5が挿入できなくなるため、位置ズレを修正するために半田を溶融し、位置関係を適正にした後に、再度半田付けをした後にネジ5を挿入して組立なければ、放熱フィン4から半導体1の発熱を放出できないこととなる。
【0005】
以上説明したように、従来の基板搭載部品の放熱器構造では、搭載部品として半導体部品や放熱フィンの位置を修正しなければ、回路基板の固定できない構造のため、組立性が悪いという問題があった。
【0006】
また、従来の基板搭載部品の放熱器構造では、前述したように、いずれにしても放熱フィン4が金属製のフィン支持部15を介して直接基板3に取り付けられた状態で半田付けされるため、放熱フィンの放熱性能により半田の温度が下がり、基板温度をほぼ均等にすることができず、半田付が上手くいかないという問題が発生する。
【0007】
また更に、リサイクルや保守メンテナス等の目的で回路基板3から放熱フィン4のみを取外す際、フィン支持部の足の半田を除去すると共に、ネジ5を外さなければならず、除去・交換作業が複雑なものとなっていた。
【0008】
また、この他の従来の基板部品の放熱器搭載構造としては、例えば、図11に示すように、実開昭58−114047号公報に示されたようなものがある。
このものも、放熱フィン4にシングルインライン構造の半導体部品1を搭載してネジにより互いを連結し、この連結したものを回路基板3に搭載して半田付け固定する構造であるため、前述したような問題点を有する。
【0009】
【発明が解決しようとする課題】
以上説明したように、従来の基板搭載部品の放熱器取付構造及びその組立方法では、搭載部品として半導体部品や放熱フィンの位置を修正しなければ、回路基板の固定できない構造のため、組立性が悪いという問題があった。
【0010】
また、半田付け時に、フィンの放熱性能により半田温度が下がり、半田付が上手くいかないという問題があった。
【0011】
また更に、リサイクルや保守メンテナス等の目的で放熱フィン部品のみを除去する際、フィン支持部の足の半田を除去すると共に、ネジ5を外さなければず、煩雑な除去作業をしなければならないという問題があった。
【0012】
この発明は係る問題を解決するためになされたもので、基板搭載面を有効活用しながら組立・分解性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造及びその組立方法を得ることを目的とする。
【0013】
【課題を解決するための手段】
この発明においては、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成するとともに、前記基板搭載部品を搭載する面に絶縁層を有する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたものである。
【0014】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の各取付足を順次前記回路基板の各穴に挿入して半田固定できる構成にしたものである。
【0015】
また、取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたものである。
【0016】
また、放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたものである。
【0017】
また、電気絶縁物が、前記放熱フィンと前記基板搭載部品のリード線としての足との間に設けられたものである。
【0018】
また、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備え、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成とし、前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪みを吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたものである。
【0019】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1について図1を用いながら説明する。
まず、これらの図の1は回路基板3に搭載され、リード線としての足1cを有し、通電時に熱を発生するシングルインライン構造の半導体部品、2はこの半導体部品1の基板側面に取付けられ、該半導体1と回路基板3との間の風路空間を形成する支持部材、3はこの支持部材2を介して半導体部品1を保持する回路基板、4はこの回路基板に半導体部品1及び支持部材2を介して保持され、半導体部品1からの熱を放熱する放熱フィン、5はこの放熱フィン4に半導体部品1を介して支持部材2を取付ける締結手段としてのネジである。
なお、このネジ5を通すために、前述した半導体部品1及び支持部材2のそれぞれには取付穴1a及び2aが設けられており、また、放熱フィン4にはネジ5を螺着する螺着部4aが設けられている。
【0020】
また、前述した半導体部品1と放熱フィン4の間には、放熱性の関係から時として、電気絶縁性を有し、比較的熱伝導の良い物質、例えばシリコンラバー等の放熱シート16が設けられ、互いの面の凹凸による隙間の接触抵抗を小さくして熱伝導を良くする。
また、支持部材2の取付足2bの材質としては、このものを回路基板3の取付穴3bに挿入して半田で固定するため、半田の付けのし易い材質、例えば銅や黄銅などの材質、若しくはスズメッキ等を施したものを用いている。
【0021】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、ネジ5が支持部材2の取付穴2aから放熱シート16及び、または半導体部品1の各取付穴16a、1aに順次挿入され、放熱フィン4の螺着部4aに螺着されて、放熱フィン4、放熱シート16及び、または半導体部品1が支持部材2に取り付けられて一体化される。
【0022】
次に、この一体化された支持部材2の足2bとリード線足1cを回路基板3の足穴3b、3cに挿入し、この挿入により支持部材2のストップ部2eが回路基板3の表面に当たると、挿入が完了し、半田によって回路基板3に固定する。
なお、この時、放熱フィン4が熱伝導性の悪い半導体部品1を介して回路基板3に半田で固着されるので、半田の熱が放熱フィン4から放熱されなくなるため、半田温度が低下しなくなり、上手く半田付けができるようになる。
【0023】
以上説明したように、本構造のようにすれば、半田の熱が放熱フィン4から放熱しなくなるので、上手く半田付けができる基板部品の搭載構造が得られる。
しかも、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用できる共に、放熱性能が向上する。
【0024】
また、図4又は5に示すように、支持部材2の高さdをある程度設け、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
しかも、この時、支持部材2の高さd(絶縁空間距離)を3mm以上とすると、支持部材2の下の回路基板3面に100V以上の回路配線を設けても、充分に絶縁状態が確保されるため、絶縁信頼性の高い構造となる。
【0025】
また、この時、図5に示すように、支持部材足2bの挿入長さcを、半導体部品リード線足1cの長さ(a+b)の挿入長さbに合わせ、この長さを、例えば1〜3mm程度にすれば、半田付けがし易くなり、確実に固着できるようになる
【0026】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図1に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)を用いて風を送風すると、更に、放熱性を向上させることができる。
【0027】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0028】
なお、この完成品から放熱フィン4を取外す時には、支持部材2の足2bとL字状シングルインライン構造のリード線足1cの半田を溶融して外した後に、ネジ5を緩めて外すことになる。
【0029】
実施の形態2.
この実施の形態2について図2を用いながら説明する。
この実施の形態2においては、実施の形態1の構成において、放熱フィン4の螺着部4aをバカ穴4bとし、支持部材2の取付穴2aを、ネジ5を螺着する螺着部2fとして、ネジ5を放熱フィン4の取付穴4bから半導体部品1の取付穴1aを通して支持部材2の螺着部2fに螺着させるようにしたものである。
なお、その他の構成は実施の形態1とほぼ同じなので、説明を割愛する。
【0030】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、螺着部2fを有する支持部材2の足2bを回路基板3の取付穴3bに挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たり、支持部材2の挿入が完了すると、次に、この支持部材2の上に半導体部品1を載せながら、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入し、支持部材2と半導体部品1との相対位置関係をほぼ決める。
即ち、回路基板3の取付穴3b,3cを介して支持部材2と半導体部品1の互いの位置関係を決める。
【0031】
次に、この位置関係が決まった状態で、半田リフロー装置等を用いて半田で支持部材2と半導体部品1を回路基板3に固定した後、半導体部品1の上に放熱シート16及び、または放熱フィン4を載せ、互いの取付穴1aと穴4bとがほぼ合致するようにする。
【0032】
次に、この状態で、ネジ5を放熱フィンの取付穴4bから順次放熱シートの穴16b。半導体部品の穴1aを通して、支持部材2の螺着部2fに螺着させ、放熱フィン4、放熱シート16及び、または半導体部品1を回路基板3に固着させて組立を完了する。
【0033】
以上説明したように、本構成にすると、放熱フィン4が搭載されない状態で、半導体部品1と支持部材2を半田で回路基板3に固着できるので、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けができるようになる。
しかも、リサイクルや保守メンテナンス関係から放熱フィン4のみを取外す必要があるときでも、単に、ネジ5を緩るめれば外すことができるようになるため、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0034】
また、図5に示すように、支持部材2の高さdをある程度設け、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
【0035】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図1に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)で風を送風すると、更に、放熱性を向上させることができる。
【0036】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0037】
実施の形態3.
この実施の形態3について図3を用いながら説明する。
この実施の形態3においては、実施の形態1の構成において、ネジ5を通すためのネジ穴3aを回路基板3に設けたものである。
なお、その他の構成は実施の形態1とほぼ同じなので、説明を割愛する。
【0038】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、取付穴2aを有する支持部材2の足2bを回路基板3の取付穴3bに挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たり、支持部材2の挿入が完了すると、次に、この支持部材2の上に半導体部品1を載せながら、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入し、支持部材2と半導体部品1との相対位置関係をほぼ決める。
即ち、回路基板3の穴3b,3cを介して支持部材2と半導体部品1の互いの位置関係を決める。
【0039】
次に、この位置関係が決まった状態で、半田リフロー装置等を用いて半田で支持部材2と半導体部品1を回路基板3に固定した後、半導体部品1の上に放熱シート16及び、または放熱フィン4を順次載せ、互いの取付穴がほぼ合致するようにする。
【0040】
次に、この状態で、ネジ5を回路基板3のネジ穴3a貫通させて、順次、支持部材2、放熱シート16及び、または半導体部品1の各取付穴2a,16a,1aに挿入した後、このネジ5を放熱フィン4の螺着部4aに螺着させ、放熱フィン4、放熱シート16及び、または半導体部品1を放熱フィン4に取付けて一体化させる。
【0041】
以上説明したように、本構成にすると、放熱フィン4が搭載されない状態で、半導体部品1と支持部材2を半田で回路基板3に固着できるので、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けができるようになる。
しかも、リサイクルや保守メンテナンス関係から放熱フィン4のみを取外す必要があるときでも、単に、ネジ5を緩るめれば外すことができるようになるため、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0042】
また、図4又は5に示すように、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
【0043】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図3に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)で風を送風すると、更に、放熱性能が向上することになる。
【0044】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0045】
実施の形態4.
この実施の形態4について図6,7を用いながら説明する。
この実施の形態4においては、実施の形態2又は3の構成において、支持部材2の足2bの構造強度を回路基板3の構造強度よりも弱くし、図7に示すように、放熱フィン4が半導体部品1を介して支持部材2にネジ5で固定される時に生じる取付歪、即ち、半導体リード線足1cの高さ方向の取付バラツキによって生じる高さ方向の取付歪を支持部材の足2bの変形させることにより、吸収するようにしたものである。
なお、その他の構成は実施の形態3とほぼ同じなので、説明を割愛する。
【0046】
次に、このように支持部材足2bの構造強度を回路基板3の構造強度よりも弱くすると、半導体部品1のリード線足1cの挿入寸法バラツキ等によって生じる組立時の歪力が支持部材2の足2bを介して回路基板3に加えられるような状態になったとしても、支持部材足2bの板厚を薄くしたり、その材質強度を弱くしているので、回路基板3よりも先に支持部材の足2bが変形し、歪力を吸収するようになるため、紙フェノールやガラスエポキシなどの材質からなる回路基板3の割れや半田クラック、強いては半導体部品の割れや曲がり等のトラブルを防止できるようになる。
【0047】
なお、この時、半導体部品1のリード線足1cの構造強度が支持部材2の足2bの構造強度よりも弱い場合は、歪力は半導体部品1のリード線足1cの変形によって吸収されることになる。
【0048】
実施の形態5.
この実施の形態5について図8を用いながら説明する。
この実施の形態5においては、実施の形態1から4の構成において、図8に示すように、支持部材2の半導体部品1を支持する部位に絶縁部材17を設けたものである。
なお、その他の構成は実施の形態1から4とほぼ同じなので、説明を割愛する。
【0049】
なお、このように支持部材2の半導体部品1を支持する部位に、例えば、電気絶縁性の樹脂でモールドを施すと、半田付けの関係から金属材料の支持部材2と半導体部品の搭載面、もしくは半導体部品1やその他の部品を取付けるためのネジ等の締結手段とを電気的に絶縁することができるようになるため、互いの電圧差が例えば100V以上でも、充分に絶縁状態を維持できるので、信頼性の高い基板搭載部品の放熱器取付構造が得られる。
【0050】
実施の形態6.
この実施の形態6においては、実施の形態3の構成における基板部品の放熱器組立方法に関するものであり、この組立方法ついて図9を用いながら説明する。
【0051】
まず、この図9に示すように、ネジ等の締結手段5を通すネジ穴3aおよび支持部材2の足2bを通すための穴3b,並びに半導体部品1のリード線足1cを通すためのリード線穴3cを有する回路基板3の支持部取付穴3bに支持部材2の足2bを挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たった時点で、回路基板3ヘの支持部材2の搭載を完了する(S1)。
【0052】
次に、この回路基板に搭載された支持部材2の上に半導体部品1を搭載し、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入して、半導体部品1の回路基板3に対する搭載を完了する(S2)。
【0053】
次に、この搭載状態のものを半田槽に流し、リード線足1cと支持部材2の足2bを半田で回路基板3に固定し、半導体部品1と支持部材2を回路基板3に固定する(S3)。
【0054】
次に、この回路基板3に固定された半導体部品1の上に放熱フィン4を搭載し、締結手段としてのネジ5を回路基板3のネジ穴3aから、順次支持部材2の取付穴2a及び半導体部品1の取付穴1aを通して放熱フィン4の螺着部4aに螺着させて、組立を完了する(S4)。
【0055】
なお、以上各ステップのS3とS4の間に、支持部材2と半導体部品1の間に電気絶縁物や比較的熱伝導の良い物質例えばシリコンラバーやシリコングリス等を取付けるステップを挿入してもよい。
【0056】
以上説明したようなステップで製造されるため、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けできるので、信頼性の高い組立方法が得られる。
【0057】
また、以上説明した実施の形態1から6において、放熱フィン4と半導体部品1のリード線足1cとの距離が2mm以内の時は、電気絶縁を確保するため、図3に示すように、放熱フィン4とリード線足1cとの間にシリコンや樹脂モールドなどの電気絶縁物を挿入して、絶縁性を確保するような構造にしても良い。
【0058】
また、以上の説明では、シングルインライン構造の半導体部品1としたが、両足の半導体部品1でも良い。
【0059】
【発明の効果】
この発明は、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成するとともに、前記基板搭載部品を搭載する面に絶縁層を有する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたので、支持部材によって回路基板と支持部材との間に空間が設けられ、また放熱フィンが脱着自在に熱伝導の悪い基板搭載部品を介して回路基板に取付けられるため、基板搭載面を有効活用しながら組立性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造が得られる。
【0060】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の各取付足を順次前記回路基板の各穴に挿入して半田固定できる構成にしたので、組立・分解性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造が得られる。
【0061】
また、取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたので、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0062】
また、放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたので、更に確実に放熱性能が向上した基板搭載部品の放熱器取付構造が得られる。
【0063】
また、電気絶縁物が、前記放熱フィンと前記基板搭載部品のリード線としての足との間に設けられたので、放熱フィンと基板搭載部品との距離が短くても絶縁性の優れた基板搭載部品の放熱器取付構造が得られる。
【0064】
また、また、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備え、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成とし、前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪みを吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたので、回路基板に取付けられる基板搭載部品と支持部材との高さ方向のズレが生じても、このズレによる歪力を支持部材の取付足が吸収するようになるため、回路基板の割れや半田クラック、ひいては半導体部品の割れや曲がり等のトラブルを防止した基板搭載部品の放熱器取付構造が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における基板搭載部品の放熱器取付構造の概略構造図である。
【図2】 この発明の実施の形態2における基板搭載部品の放熱器取付構造の概略構造図である。
【図3】 この発明の実施の形態3における基板搭載部品の放熱器取付構造の概略構造図である。
【図4】 この発明の実施の形態1から6における支持部材の概略構造図である。
【図5】 この発明の実施の形態1から6における支持部材と基板搭載部品との関係を示した図である。
【図6】 この発明の実施の形態4における概略構造図である。
【図7】 この発明の実施の形態4における支持部材の足の変形図である。
【図8】 この発明の実施の形態5における支持部材の概略構造図である。
【図9】 この発明の実施の形態6における放熱器の組立フロー図である。
【図10】 従来の基板搭載部品の放熱器取付構造の概略構造図である。
【図11】 従来の他の基板搭載部品の放熱器取付構造の概略構造図である。
【符号の説明】
1 半導体部品、 1a 半導体取付穴、 1c リード線足、 2 支持部材、 2a 取付穴、 2b 取付足、 2c 支持深さ、 2d 支持高さ、 2f 螺着部、 2e ストップ部、 3回路基板、 3a ネジ穴、 3b 支持部穴、 3c リード線穴、 4 放熱フィン、 4a 螺着部、 4b 取付穴、 5 ネジ、 10 半田、 16 放熱シート、 17 電気絶縁物。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure for mounting a radiator to a heat generating component mounted on a circuit board and an assembling method thereof.
[0002]
[Prior art]
FIG. 10 is a diagram showing a heat sink mounting structure of a general board mounted component in a conventional single in-line structure. In this figure, reference numeral 1 denotes a semiconductor having a lead wire leg 1c having an L-shaped single in-line structure. 3 is a circuit board to which the semiconductor component 1 is attached and connects each electrical component, 4 is provided on the circuit board 3 via a support portion 15 and radiates fins for radiating heat of the semiconductor component, Reference numeral 5 denotes a screw for connecting and fixing the semiconductor component 1 to the radiating fin 4, 10 solder for fixing the legs of the semiconductor component 1 to the circuit board 3, and 15 a fin support portion for supporting the radiating fin 4.
[0003]
Next, the mounting operation of the radiating fin to the board component configured in this way will be described.
First, when mounting and fixing each component such as the semiconductor 1 as each mounted component and the heat radiation fin 4 on the circuit board 3, the semiconductor component 1 is fixed to the heat radiation fin 4 with the screws 5, and then mounted on the substrate. When the soldering is performed, the legs of the semiconductor 1 and the fin support 15 are inserted into the mounting holes 3a of the circuit board 3 at the same time and then fixed by soldering. When the positions of the mounting holes 3a of the circuit board 3 do not coincide with each other, the semiconductor 1 and the radiation fins 4 cannot be combined with the circuit board 3 unless the positions are corrected. It cannot be discharged from the fin 4.
[0004]
Conversely, if the semiconductor 1 and the fin support 15 are fixed to the circuit board 3 by soldering and then the semiconductor 1 and the radiating fin 4 are connected to each other by the screws 5, the positional relationship between the semiconductor 1 and the fin support 15 is shifted. When the soldering is performed, the screw 5 cannot be inserted. Therefore, after the solder is melted to correct the positional deviation, the positional relationship is made appropriate, the soldering is performed again, and the screw 5 is not inserted and assembled, The heat generated by the semiconductor 1 cannot be released from the radiating fins 4.
[0005]
As described above, the conventional heatsink structure for board-mounted components has a problem that the assembly is poor because the circuit board cannot be fixed unless the positions of the semiconductor parts and heatsink fins are corrected as the mounted parts. It was.
[0006]
In addition, in the conventional radiator structure of the board-mounted component, as described above, in any case, the radiating fins 4 are soldered in a state of being directly attached to the board 3 through the metal fin support portions 15. Due to the heat dissipating performance of the heat dissipating fins, the temperature of the solder is lowered, the substrate temperature cannot be made substantially uniform, and there is a problem that the soldering is not successful.
[0007]
Furthermore, when removing only the radiating fins 4 from the circuit board 3 for the purpose of recycling or maintenance, it is necessary to remove the solder on the legs of the fin support portion and remove the screws 5, which makes the removal and replacement work complicated. It was something.
[0008]
As another conventional board component radiator mounting structure, for example, as shown in FIG. 11, there is one shown in Japanese Utility Model Laid-Open No. 58-114047.
This is also a structure in which the semiconductor components 1 having a single in-line structure are mounted on the heat radiating fins 4 and connected to each other by screws, and the connected parts are mounted on the circuit board 3 and fixed by soldering. Have the following problems.
[0009]
[Problems to be solved by the invention]
As described above, in the conventional heat sink mounting structure for board mounted components and the assembly method thereof, the circuit board cannot be fixed unless the positions of the semiconductor components and the heat radiation fins are corrected as the mounted components. There was a problem of being bad.
[0010]
In addition, when soldering, there is a problem that the soldering temperature is lowered due to the heat dissipation performance of the fin, and the soldering is not successful.
[0011]
Furthermore, when removing only the heat dissipating fin parts for the purpose of recycling, maintenance, etc., it is necessary to remove the solder on the legs of the fin support part and remove the screws 5 and perform complicated removal work. There was a problem.
[0012]
The present invention has been made to solve such a problem, and has a structure for mounting a radiator on a board-mounted component that has good assembling / disassembling performance while making effective use of the board mounting surface, and that is securely fixed by solder, and an assembling method thereof. The purpose is to obtain.
[0013]
[Means for Solving the Problems]
In the present invention, the circuit board, the board mounted component that generates heat when energized, and is fixed to the circuit board by soldering via a foot as a lead wire, and the circuit board is fixed by soldering via a mounting leg, A support member that supports a substrate mounting component and forms a space between the circuit board and the substrate mounting component, and a support member having an insulating layer on a surface on which the substrate mounting component is mounted, and the substrate mounting component on the support member And a radiating fin that is detachably attached by a fastening means and radiates heat when the board mounting component is energized.
[0014]
In addition, the structure in which the radiating fin is attached to the support member via the board mounting component can be fixed by soldering by inserting the mounting feet of the board mounting component and the support member sequentially into the holes of the circuit board. It is a configuration.
[0015]
A mounting hole is provided in the circuit board so that the fastening means can be fixed from the opposite mounting surface of the circuit board.
[0016]
Further, a heat radiating sheet is provided between the heat radiating fin and the board mounting component, and the contact resistance between the heat radiating fin and the board mounting component is reduced.
[0017]
Further, an electrical insulator is provided between the heat dissipating fin and a leg as a lead wire of the board mounting component.
[0018]
Further, the circuit board, a board mounting component that is fixed to the circuit board via a lead as a lead wire and generates heat when energized, and a solder mounting to the circuit board via a mounting leg, the board mounting component And a support member that forms a space between the circuit board and the board mounting component, and is attached to the support member by a fastening means detachably via the board mounting component. A heat dissipating fin for dissipating heat at the time, and the structure in which the heat dissipating fin is attached to the support member via the substrate mounting component is configured so that the legs of the substrate mounting component and the support member are sequentially connected to the circuit. The circuit board is structured so that it can be inserted into each hole of the board and fixed by soldering, and the mounting feet of the support member absorb the distortion that occurs when the radiation fins are attached to the support member. Also it is obtained by weakening the structural strength of the mounting foot.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIG.
First, 1 in these figures is mounted on a circuit board 3 and has a leg 1c as a lead wire, and a semiconductor component having a single in-line structure that generates heat when energized, and 2 is attached to the side surface of the semiconductor component 1. , A support member that forms an air passage space between the semiconductor 1 and the circuit board 3, a circuit board 3 that holds the semiconductor component 1 via the support member 2, and a semiconductor board 1 that supports the semiconductor component 1 on the circuit board. Radiation fins 5, which are held via the member 2 and radiate heat from the semiconductor component 1, are screws as fastening means for attaching the support member 2 to the radiation fin 4 via the semiconductor component 1.
In order to pass this screw 5, mounting holes 1 a and 2 a are provided in the semiconductor component 1 and the support member 2, respectively, and a screwing portion in which the screw 5 is screwed into the radiating fin 4. 4a is provided.
[0020]
Further, a heat radiating sheet 16 made of a material having electrical insulation and relatively good thermal conductivity, such as silicon rubber, is sometimes provided between the semiconductor component 1 and the heat radiating fin 4 because of the heat radiating relationship. The heat resistance is improved by reducing the contact resistance of the gap due to the unevenness of the surfaces.
Further, as the material of the mounting foot 2b of the support member 2, since this is inserted into the mounting hole 3b of the circuit board 3 and fixed with solder, a material that is easy to solder, for example, a material such as copper or brass, Or what gave tin plating etc. is used.
[0021]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, screws 5 are sequentially inserted from the mounting holes 2a of the support member 2 into the heat radiating sheet 16 and / or the mounting holes 16a and 1a of the semiconductor component 1 and screwed into the screwed portions 4a of the radiating fins 4, 4. The heat radiation sheet 16 and / or the semiconductor component 1 are attached to and integrated with the support member 2.
[0022]
Next, the foot 2b and the lead wire foot 1c of the integrated support member 2 are inserted into the foot holes 3b and 3c of the circuit board 3, and the stop portion 2e of the support member 2 hits the surface of the circuit board 3 by this insertion. Then, the insertion is completed, and the circuit board 3 is fixed with solder.
At this time, since the radiating fin 4 is fixed to the circuit board 3 by solder via the semiconductor component 1 having poor thermal conductivity, the heat of the solder is not radiated from the radiating fin 4, so that the solder temperature does not decrease. Can be soldered well.
[0023]
As described above, according to this structure, since the heat of the solder does not radiate from the radiation fins 4, a board component mounting structure that can be successfully soldered is obtained.
In addition, since a space is provided between the semiconductor component 1 and the substrate 3, the wiring can be drawn without touching the support member 2 and air can be passed therethrough. improves.
[0024]
Further, as shown in FIG. 4 or 5, the height d of the support member 2 is provided to some extent, and a space is provided between the semiconductor component 1 and the substrate 3, so that wiring can be drawn without touching the support member 2, Since the air can be passed, the board mounting surface can be used effectively and the heat dissipation performance can be improved.
Moreover, at this time, if the height d (insulation space distance) of the support member 2 is 3 mm or more, even if circuit wiring of 100 V or more is provided on the surface of the circuit board 3 below the support member 2, a sufficient insulation state is secured. Therefore, a structure with high insulation reliability is obtained.
[0025]
At this time, as shown in FIG. 5, the insertion length c of the support member foot 2b is matched with the insertion length b of the length (a + b) of the semiconductor component lead wire foot 1c, and this length is, for example, 1 If it is set to about 3 mm, soldering is easy and it can be securely fixed. [0026]
Next, when the finished product is energized, the heat released from the semiconductor component 1 at the time of energization is as shown in FIG. 1, as shown in FIG. 1, the heat radiation fins 4 and the support member 2, and the semiconductor surface of the mounting surface of the support member 2 Therefore, heat radiation can be further improved by blowing air through these parts using a blower or the like (not shown).
[0027]
Further, if the heat radiation sheet 16 is provided between the semiconductor component 1 and the heat radiation fins 4, the adhesion is improved, so that the heat radiation performance can be further improved.
[0028]
When removing the radiating fins 4 from the finished product, the screws 2 are loosened and removed after the solder of the legs 2b of the support member 2 and the lead wire legs 1c of the L-shaped single in-line structure are melted and removed. .
[0029]
Embodiment 2. FIG.
The second embodiment will be described with reference to FIG.
In the second embodiment, in the configuration of the first embodiment, the screwed portion 4a of the radiating fin 4 is used as the fool hole 4b, and the mounting hole 2a of the support member 2 is used as the screwed portion 2f to which the screw 5 is screwed. The screws 5 are screwed from the mounting holes 4b of the radiation fins 4 to the screwing portions 2f of the support member 2 through the mounting holes 1a of the semiconductor component 1.
Since other configurations are almost the same as those of the first embodiment, description thereof is omitted.
[0030]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, the foot 2b of the support member 2 having the threaded portion 2f is inserted into the mounting hole 3b of the circuit board 3, and by this insertion, the stopper portion 2e of the support member 2 hits the surface of the circuit board 3, and the support member 2 is inserted. When completed, next, while placing the semiconductor component 1 on the support member 2, the lead wire foot 1 c of the semiconductor component 1 is inserted into the lead wire hole 3 c of the circuit board 3, and the support member 2 and the semiconductor component 1 are connected. Determine the relative position.
That is, the mutual positional relationship between the support member 2 and the semiconductor component 1 is determined via the mounting holes 3 b and 3 c of the circuit board 3.
[0031]
Next, after the positional relationship is determined, the support member 2 and the semiconductor component 1 are fixed to the circuit board 3 with solder using a solder reflow apparatus or the like, and then the heat dissipation sheet 16 and / or the heat dissipation on the semiconductor component 1. The fins 4 are placed so that the mounting holes 1a and the holes 4b are substantially matched.
[0032]
Next, in this state, the screws 5 are sequentially provided from the mounting holes 4b of the radiating fins to the holes 16b of the radiating sheet. Through the hole 1a of the semiconductor component, it is screwed to the screwed portion 2f of the support member 2, and the heat radiation fin 4, the heat radiation sheet 16, and / or the semiconductor component 1 are fixed to the circuit board 3 to complete the assembly.
[0033]
As described above, with this configuration, since the semiconductor component 1 and the support member 2 can be fixed to the circuit board 3 with solder without the radiation fins 4 mounted, the solder temperature is reduced due to heat radiation from the radiation fins 4. It will be possible to solder well while preventing.
Moreover, even when it is necessary to remove only the heat radiating fins 4 due to recycling or maintenance, the screws 5 can be removed simply by loosening the screws. A device mounting structure is obtained.
[0034]
Further, as shown in FIG. 5, since the support member 2 is provided with a certain height d and a space is provided between the semiconductor component 1 and the substrate 3, the wiring can be drawn without touching the support member 2 and wind can be generated. Therefore, the board mounting surface can be used effectively and the heat dissipation performance can be improved.
[0035]
Next, when the finished product is energized, the heat released from the semiconductor component 1 at the time of energization is as shown in FIG. 1 , as shown in FIG. 1 , the heat radiation fins 4 and the support member 2, and the semiconductor surface of the mounting surface of the support member 2 Therefore, when the wind is blown to these parts by a blower or the like (not shown), the heat dissipation can be further improved.
[0036]
Further, if the heat radiation sheet 16 is provided between the semiconductor component 1 and the heat radiation fins 4, the adhesion is improved, so that the heat radiation performance can be further improved.
[0037]
Embodiment 3 FIG.
The third embodiment will be described with reference to FIG.
In the third embodiment, in the configuration of the first embodiment, the circuit board 3 is provided with a screw hole 3a through which the screw 5 is passed.
Since other configurations are almost the same as those of the first embodiment, description thereof is omitted.
[0038]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, the foot 2b of the support member 2 having the mounting hole 2a is inserted into the mounting hole 3b of the circuit board 3. By this insertion, the stopper portion 2e of the support member 2 hits the surface of the circuit board 3, and the insertion of the support member 2 is completed. Then, while placing the semiconductor component 1 on the support member 2, the lead wire foot 1 c of the semiconductor component 1 is inserted into the lead wire hole 3 c of the circuit board 3, and the relative relationship between the support member 2 and the semiconductor component 1 is reached. Determine the positional relationship.
That is, the mutual positional relationship between the support member 2 and the semiconductor component 1 is determined through the holes 3 b and 3 c of the circuit board 3.
[0039]
Next, after the positional relationship is determined, the support member 2 and the semiconductor component 1 are fixed to the circuit board 3 with solder using a solder reflow apparatus or the like, and then the heat dissipation sheet 16 and / or the heat dissipation on the semiconductor component 1. The fins 4 are sequentially placed so that the mounting holes of the fins 4 are substantially matched.
[0040]
Next, in this state, the screw 5 is passed through the screw hole 3a of the circuit board 3, and sequentially inserted into the support member 2, the heat radiation sheet 16, and the mounting holes 2a, 16a, 1a of the semiconductor component 1, The screw 5 is screwed onto the screwed portion 4 a of the heat radiating fin 4, and the heat radiating fin 4, the heat radiating sheet 16, or the semiconductor component 1 is attached to the heat radiating fin 4 and integrated.
[0041]
As described above, with this configuration, since the semiconductor component 1 and the support member 2 can be fixed to the circuit board 3 with solder without the radiation fins 4 mounted, the solder temperature is reduced due to heat radiation from the radiation fins 4. It will be possible to solder well while preventing.
Moreover, even when it is necessary to remove only the heat radiating fins 4 due to recycling or maintenance, the screws 5 can be removed simply by loosening the screws. A device mounting structure is obtained.
[0042]
Further, as shown in FIG. 4 or 5, since a space is provided between the semiconductor component 1 and the substrate 3, the wiring can be drawn without touching the support member 2 and air can be passed through. Can be used effectively and the heat dissipation performance can be improved.
[0043]
Next, when this finished product is energized, the heat released from the semiconductor component 1 at the time of energization is as shown in FIG. 3, as shown in FIG. 3, the heat dissipating fins 4 and the supporting member 2, and the semiconductor surface of the mounting surface of the supporting member 2 Therefore, if the wind is blown to these parts by a blower or the like (not shown), the heat dissipation performance is further improved.
[0044]
Further, if the heat radiation sheet 16 is provided between the semiconductor component 1 and the heat radiation fins 4, the adhesion is improved, so that the heat radiation performance can be further improved.
[0045]
Embodiment 4 FIG.
The fourth embodiment will be described with reference to FIGS.
In the fourth embodiment, in the configuration of the second or third embodiment, the structural strength of the foot 2b of the support member 2 is made weaker than the structural strength of the circuit board 3, and as shown in FIG. The mounting distortion generated when the semiconductor member 1 is fixed to the support member 2 with the screw 5, that is, the mounting distortion in the height direction caused by the mounting variation in the height direction of the semiconductor lead wire foot 1c is caused by the mounting member foot 2b. It is made to absorb by deforming.
Since other configurations are almost the same as those of the third embodiment, description thereof is omitted.
[0046]
Next, when the structural strength of the support member foot 2b is made weaker than the structural strength of the circuit board 3 in this way, the distortion force during assembly caused by variations in the insertion size of the lead wire foot 1c of the semiconductor component 1 or the like is caused. Even if it is added to the circuit board 3 via the foot 2b, the support member foot 2b is thinned or its material strength is weakened. Since the member's foot 2b is deformed and absorbs the distortion force, it is possible to prevent troubles such as cracks and solder cracks in the circuit board 3 made of paper phenol, glass epoxy, or other materials, or even breaks or bends in the semiconductor components. become able to.
[0047]
At this time, if the structural strength of the lead wire foot 1 c of the semiconductor component 1 is weaker than the structural strength of the foot 2 b of the support member 2, the strain force is absorbed by the deformation of the lead wire foot 1 c of the semiconductor component 1. become.
[0048]
Embodiment 5 FIG.
The fifth embodiment will be described with reference to FIG.
In the fifth embodiment, in the configuration of the first to fourth embodiments, as shown in FIG. 8, an insulating member 17 is provided at a portion of the support member 2 that supports the semiconductor component 1.
Since other configurations are almost the same as those of the first to fourth embodiments, the description thereof is omitted.
[0049]
In addition, when a portion of the support member 2 that supports the semiconductor component 1 is molded with, for example, an electrically insulating resin, the mounting surface of the metal material support member 2 and the semiconductor component, Since it becomes possible to electrically insulate the fastening means such as screws for mounting the semiconductor component 1 and other components, even if the voltage difference between each other is, for example, 100 V or more, the insulation state can be sufficiently maintained. A highly reliable heat sink mounting structure for board-mounted components can be obtained.
[0050]
Embodiment 6 FIG.
The sixth embodiment relates to a method of assembling a radiator for board components in the configuration of the third embodiment, and this assembling method will be described with reference to FIG.
[0051]
First, as shown in FIG. 9, a screw hole 3 a for passing fastening means 5 such as a screw, a hole 3 b for passing a foot 2 b of the support member 2, and a lead wire for passing a lead wire foot 1 c of the semiconductor component 1. When the foot 2b of the support member 2 is inserted into the support portion mounting hole 3b of the circuit board 3 having the hole 3c and the stopper portion 2e of the support member 2 hits the surface of the circuit board 3 by this insertion, the circuit board 3 is The mounting of the support member 2 is completed (S1).
[0052]
Next, the semiconductor component 1 is mounted on the support member 2 mounted on the circuit board, the lead wire foot 1c of the semiconductor component 1 is inserted into the lead wire hole 3c of the circuit board 3, and the circuit of the semiconductor component 1 The mounting on the substrate 3 is completed (S2).
[0053]
Next, this mounted state is poured into the solder bath, the lead wire foot 1c and the foot 2b of the support member 2 are fixed to the circuit board 3 with solder, and the semiconductor component 1 and the support member 2 are fixed to the circuit board 3 ( S3).
[0054]
Next, the radiating fins 4 are mounted on the semiconductor component 1 fixed to the circuit board 3, and screws 5 as fastening means are sequentially attached from the screw holes 3a of the circuit board 3 to the mounting holes 2a of the support member 2 and the semiconductor. Assembling is completed by screwing into the screwing portion 4a of the radiating fin 4 through the mounting hole 1a of the component 1 (S4).
[0055]
It should be noted that a step of attaching an electrical insulator or a material having relatively good thermal conductivity, such as silicon rubber or silicon grease, may be inserted between the support member 2 and the semiconductor component 1 between S3 and S4 of the above steps. .
[0056]
Since it is manufactured in the steps as described above, it is possible to perform soldering well while preventing a decrease in solder temperature due to heat radiation from the heat radiation fins 4, so that a highly reliable assembly method can be obtained.
[0057]
In the first to sixth embodiments described above, when the distance between the radiation fin 4 and the lead wire foot 1c of the semiconductor component 1 is within 2 mm, as shown in FIG. An electrical insulator such as silicon or resin mold may be inserted between the fin 4 and the lead wire foot 1c to ensure insulation.
[0058]
In the above description, the semiconductor component 1 has a single in-line structure, but the semiconductor component 1 on both legs may be used.
[0059]
【The invention's effect】
The present invention provides a circuit board, a board-mounted component that is soldered to the circuit board via legs as lead wires, and generates heat when energized, and is solder-fixed to the circuit board via mounting legs. A mounting member is supported to form a space between the circuit board and the board mounting component , a support member having an insulating layer on a surface on which the board mounting component is mounted, and the board mounting component to the support member. And a radiating fin for radiating heat when the board mounting component is energized, so that a space is provided between the circuit board and the supporting member. Since the heat-dissipating fins are detachably attached to the circuit board via a board-mounted component with poor heat conduction, the board-mounted component heatsink can be assembled with good efficiency while using the board-mounting surface effectively. With structure is obtained.
[0060]
In addition, the structure in which the radiating fin is attached to the support member via the board mounting component can be fixed by soldering by inserting the mounting feet of the board mounting component and the support member sequentially into the holes of the circuit board. Since the structure is adopted, it is possible to obtain a radiator mounting structure for a board mounted component that is easy to assemble and disassemble and that can be securely fixed by soldering.
[0061]
Further, since the mounting hole is provided in the circuit board and the fastening means can be fixed from the non-mounting surface of the circuit board, a radiator mounting structure for a board mounting component with good assembling / disassembling property can be obtained.
[0062]
Further, since the heat radiation sheet is provided between the heat radiation fin and the board mounting component and the contact resistance between the heat radiation fin and the board mounting component is reduced, the heat radiation performance is further improved. The radiator mounting structure is obtained.
[0063]
In addition, since the electrical insulator is provided between the radiating fin and the foot as the lead wire of the board mounting component, the board mounting with excellent insulation even if the distance between the radiating fin and the board mounting component is short A radiator mounting structure for parts is obtained.
[0064]
Further, the circuit board, a board mounting component that generates heat when energized, and is fixed to the circuit board via a foot as a lead wire, and is soldered to the circuit board via a mounting leg, A support member that supports a mounting component and forms a space between the circuit board and the substrate mounting component, and is attached to the supporting member by a fastening means detachably via the substrate mounting component. A heat dissipating fin that dissipates heat when energized, and the structure in which the heat dissipating fin is attached to the support member via the substrate mounting component sequentially supports the legs of the substrate mounting component and the support member. The structure of the circuit board is configured such that it can be inserted into each hole of the circuit board and fixed by soldering, and the mounting leg of the support member absorbs distortion generated when the radiating fin is attached to the support member. Since the structural strength of the mounting foot is weaker than this, even if there is a deviation in the height direction between the board mounting component attached to the circuit board and the supporting member, the mounting force of the supporting member absorbs the distortion force due to this deviation. As a result, a radiator mounting structure for a board-mounted component that prevents troubles such as cracks in the circuit board, solder cracks, and cracks or bending of the semiconductor component can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a radiator mounting structure for a board-mounted component according to Embodiment 1 of the present invention.
FIG. 2 is a schematic structural diagram of a radiator mounting structure for a board-mounted component according to Embodiment 2 of the present invention.
FIG. 3 is a schematic structural diagram of a radiator mounting structure for a board-mounted component according to Embodiment 3 of the present invention.
FIG. 4 is a schematic structural diagram of a support member in Embodiments 1 to 6 of the present invention.
FIG. 5 is a diagram showing a relationship between a support member and a board mounted component in the first to sixth embodiments of the present invention.
FIG. 6 is a schematic structural diagram in a fourth embodiment of the present invention.
FIG. 7 is a modified view of a foot of a support member according to Embodiment 4 of the present invention.
FIG. 8 is a schematic structural diagram of a support member according to Embodiment 5 of the present invention.
FIG. 9 is an assembly flow diagram of a radiator in the sixth embodiment of the present invention.
FIG. 10 is a schematic structural diagram of a conventional radiator mounting structure for board-mounted components.
FIG. 11 is a schematic structural diagram of a conventional radiator mounting structure for other board-mounted components.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor component, 1a Semiconductor mounting hole, 1c Lead wire leg, 2 Support member, 2a Mounting hole, 2b Mounting leg, 2c Support depth, 2d Support height, 2f Screwing part, 2e Stop part, 3 Circuit board, 3a Screw hole, 3b Support part hole, 3c Lead wire hole, 4 Heat radiation fin, 4a Screwed part, 4b Mounting hole, 5 Screw, 10 Solder, 16 Heat radiation sheet, 17 Electrical insulator

Claims (6)

回路基板と、
この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、
前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成するとともに、前記基板搭載部品を搭載する面に絶縁層を有する支持部材と、
この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたことを特徴とする基板搭載部品の放熱器取付構造。
A circuit board;
Board-mounted components that are soldered to the circuit board via legs as lead wires and generate heat when energized,
Solder-fixed to the circuit board via mounting feet, supports the board mounting component, forms a space between the circuit board and the board mounting component, and an insulating layer on a surface on which the board mounting component is mounted A support member having
A radiator for a board mounted component, comprising: a heat dissipating fin that is detachably attached to the support member via the board mounted component by a fastening means and radiates heat when the board mounted component is energized. Mounting structure.
前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の各取付足を順次前記回路基板の各穴に挿入して半田固定するようにしたことを特徴とする請求項1に記載の基板搭載部品の放熱器取付構造。The structure in which the heat radiating fins are attached to the support member via the board mounting component is such that the mounting feet of the board mounting component and the support member are sequentially inserted into the holes of the circuit board and fixed by soldering. The radiator mounting structure for a board-mounted component according to claim 1, wherein: 前記取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたことを特徴とする請求項2に記載の基板搭載部品の放熱器取付構造。  3. The radiator mounting structure for a board mounting component according to claim 2, wherein the mounting hole is provided in the circuit board so that the fastening means can be fixed from an opposite mounting surface of the circuit board. 放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたことを特徴とする請求項1乃至3のいずれか一項に記載の基板搭載部品の放熱器取付構造。  4. The heat dissipation sheet is provided between the heat dissipation fin and the board mounting component to reduce contact resistance between the heat dissipation fin and the substrate mounting component. The heat sink mounting structure for board-mounted components as described in 1. 電気絶縁物が、前記放熱フィンと前記基板搭載部品のリード線としての足との間に設けられたことを特徴とする請求項1乃至4のいずれか一項に記載の基板搭載部品の放熱器取付構造。5. The board mounted component radiator according to claim 1, wherein an electrical insulator is provided between the radiation fin and a leg as a lead wire of the board mounted component. 6. Mounting structure. 回路基板と、A circuit board;
この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、  Board-mounted components that are soldered to the circuit board via legs as lead wires and generate heat when energized,
前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、  A support member that is solder-fixed to the circuit board via mounting legs, and that supports the board mounting component to form a space between the circuit board and the board mounting component;
この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備え、A radiating fin that is detachably attached to the support member via the board mounting component with a fastening means and radiates heat when the board mounting component is energized, and
前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成とし、The structure in which the radiating fin is attached to the support member via the board mounting component is configured such that the legs of the board mounting component and the support member can be inserted into the holes of the circuit board sequentially and fixed by soldering. ,
前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪みを吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたことを特徴とする基板搭載部品の放熱器取付構造。The board mounting feature is characterized in that the mounting leg of the supporting member has a lower structural strength than the structural strength of the circuit board so as to absorb distortion generated when the radiating fin is attached to the supporting member. Parts radiator mounting structure.
JP2002171600A 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components Expired - Fee Related JP3925317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171600A JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171600A JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Publications (2)

Publication Number Publication Date
JP2004022591A JP2004022591A (en) 2004-01-22
JP3925317B2 true JP3925317B2 (en) 2007-06-06

Family

ID=31171412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171600A Expired - Fee Related JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Country Status (1)

Country Link
JP (1) JP3925317B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310552A (en) * 2005-04-28 2006-11-09 Densei Lambda Kk Heat sink mounting structure
WO2016162991A1 (en) * 2015-04-08 2016-10-13 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017098392A (en) * 2015-11-24 2017-06-01 パナソニックIpマネジメント株式会社 Electronic circuit device
CN110429070B (en) * 2019-07-03 2024-05-28 无锡市乾野微纳科技有限公司 Power element capable of radiating heat from two sides

Also Published As

Publication number Publication date
JP2004022591A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
TW550979B (en) Electronic circuit device and method for manufacturing the same
JP5936310B2 (en) Power semiconductor module and its mounting structure
JP2002217343A (en) Electronic device
JP2009117612A (en) Circuit module and method of manufacturing the same
JP2010186953A (en) Power semiconductor device and method of manufacturing the same
JP3925317B2 (en) Heat sink mounting structure for board mounted components
JP2009081246A (en) Semiconductor mounting substrate, and manufacturing method thereof
JP6652144B2 (en) Electronic parts, manufacturing method of electronic parts, mechanical parts
JP2001186706A (en) Molded motor, manufacturing method of molded motor and air conditioner
JP2004235481A (en) Heat sink holder, semiconductor device having heat sink and method of mounting semiconductor device
JP2006060139A (en) Inverter control board
JP2011082344A (en) Method for locking electronic component and electronic apparatus
JP4913798B2 (en) System comprising thermal conductor and method of assembly
JP4009630B2 (en) Heat-dissipating member holding metal fittings and electronic device heat-dissipating structure
JP3134860B2 (en) Hybrid integrated circuit device
JP3150106B2 (en) Connection structure of semiconductor device
JP2011124452A (en) Attachment device for heating component and method for mounting attachment device of heating component to heat sink
JP3621602B2 (en) Heat dissipation device for heat generating electronic components
JPH10270810A (en) Board for mounting part and its manufacture
JP2000323875A (en) Equipment and method for cooling electronic component
JP6021722B2 (en) Current auxiliary member and high current substrate using current auxiliary member
JPH10200022A (en) Heat radiator of heat generating semiconductor element
JP2003332506A (en) Heat dissipating structure of heating element
JP2005038878A (en) Heatsink device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees