JP2004022591A - Heat radiating unit mounting structure for board mounted components and its assembling method - Google Patents

Heat radiating unit mounting structure for board mounted components and its assembling method Download PDF

Info

Publication number
JP2004022591A
JP2004022591A JP2002171600A JP2002171600A JP2004022591A JP 2004022591 A JP2004022591 A JP 2004022591A JP 2002171600 A JP2002171600 A JP 2002171600A JP 2002171600 A JP2002171600 A JP 2002171600A JP 2004022591 A JP2004022591 A JP 2004022591A
Authority
JP
Japan
Prior art keywords
board
circuit board
support member
mounted component
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002171600A
Other languages
Japanese (ja)
Other versions
JP3925317B2 (en
Inventor
Akira Sakai
酒井 顕
Daisuke Iwasaki
岩崎 大介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002171600A priority Critical patent/JP3925317B2/en
Publication of JP2004022591A publication Critical patent/JP2004022591A/en
Application granted granted Critical
Publication of JP3925317B2 publication Critical patent/JP3925317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiating unit mounting structure for board-mounting components, which has good assemblability, while effectively utilizing a board-mounted component, and soldering is surely achieved. <P>SOLUTION: The heat radiating unit mounting structure comprises a circuit board, board mounting parts soldered to the circuit board via a leg as a lead wire and producing heat on power supply, a support member soldered to the circuit board via a mounting leg and supporting the board mounting parts to form a space between the circuit board and the board mounting parts, and a heat radiating fin detouchably attached to the support member by a clamping means via the board mounting parts for radiating the heat on power supply to the board-mounting components. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、回路基板上に搭載した発熱部品に対する放熱器の取付構造及びその組立方法に関するものである。
【0002】
【従来の技術】
図10は、従来のシングルインライン構造における一般的な基板搭載部品の放熱器取付構造を示した図であり、この図において、1はL字状のシングルインライン構造のリード線足1cを有する半導体等の基板部品、3はこの半導体部品1が取り付けられ、各電気部品を接続する回路基板、4はこの回路基板3に支持部15を介して設けられ、前記半導体部品の熱を放熱する放熱フィン、5はこの放熱フィン4に前記半導体部品1を連結固定するネジ、10は半導体部品1の足を回路基板3に固着させる半田、15は放熱フィン4を支持するフィン支持部である。
【0003】
次に、このように構成された基板部品に対する放熱フィンの取付動作について説明する。
まず、回路基板3に各搭載部品としての半導体1や、放熱フィン4等の各部品を搭載して固定する時、半導体部品1をネジ5によって放熱フィン4に固着し、その後、基板に搭載して半田付けをするようにすると、半導体1とフィン支持部15の足を全て同時に回路基板3の取付穴3aに挿入してから、半田固定するため、半導体1とフィン支持部15の足位置に対する回路基板3の取付穴3aの位置が合致していない時は、互いの位置を修正しなければ、半導体1と放熱フィン4とを回路基板3に合体することできなくなり、半導体1の発熱を放熱フィン4から放出できないことになる。
【0004】
また逆に、半導体1とフィン支持部15の足を回路基板3に半田固定した後に、半導体1と放熱フィン4とを互いにネジ5によって連結するようにすると、互いの位置関係がズレた状態で半田付けされた時には、ネジ5が挿入できなくなるため、位置ズレを修正するために半田を溶融し、位置関係を適正にした後に、再度半田付けをした後にネジ5を挿入して組立なければ、放熱フィン4から半導体1の発熱を放出できないこととなる。
【0005】
以上説明したように、従来の基板搭載部品の放熱器構造では、搭載部品として半導体部品や放熱フィンの位置を修正しなければ、回路基板の固定できない構造のため、組立性が悪いという問題があった。
【0006】
また、従来の基板搭載部品の放熱器構造では、前述したように、いずれにしても放熱フィン4が金属製のフィン支持部15を介して直接基板3に取り付けられた状態で半田付けされるため、放熱フィンの放熱性能により半田の温度が下がり、基板温度をほぼ均等にすることができず、半田付が上手くいかないという問題が発生する。
【0007】
また更に、リサイクルや保守メンテナス等の目的で回路基板3から放熱フィン4のみを取外す際、フィン支持部の足の半田を除去すると共に、ネジ5を外さなければならず、除去・交換作業が複雑なものとなっていた。
【0008】
また、この他の従来の基板部品の放熱器搭載構造としては、例えば、図11に示すように、実開昭58−114047号公報に示されたようなものがある。
このものも、放熱フィン4にシングルインライン構造の半導体部品1を搭載してネジにより互いを連結し、この連結したものを回路基板3に搭載して半田付け固定する構造であるため、前述したような問題点を有する。
【0009】
【発明が解決しようとする課題】
以上説明したように、従来の基板搭載部品の放熱器取付構造及びその組立方法では、搭載部品として半導体部品や放熱フィンの位置を修正しなければ、回路基板の固定できない構造のため、組立性が悪いという問題があった。
【0010】
また、半田付け時に、フィンの放熱性能により半田温度が下がり、半田付が上手くいかないという問題があった。
【0011】
また更に、リサイクルや保守メンテナス等の目的で放熱フィン部品のみを除去する際、フィン支持部の足の半田を除去すると共に、ネジ5を外さなければず、煩雑な除去作業をしなければならないという問題があった。
【0012】
この発明は係る問題を解決するためになされたもので、基板搭載面を有効活用しながら組立・分解性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造及びその組立方法を得ることを目的とする。
【0013】
【課題を解決するための手段】
この発明においては、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたものである。
【0014】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の足を前記回路基板の各穴へ同時に挿入して半田固定できる構成にしたものである。
【0015】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成にしたものである。
【0016】
また、取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたものである。
【0017】
また、前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪を吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたものである。
【0018】
また、前記支持部材が、前記基板搭載部品を搭載する面に絶縁層を有するもである。
【0019】
また、放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたものである。
【0020】
また、電気絶縁物が、前記放熱フィンと前記基板搭載部品との端面空間の間を埋めるように設けられたものである。
【0021】
また、前記支持部材の足が、前記回路基板から前記支持部材までの空間距離を3mm以上維持するように構成されたものである。
【0022】
また、送風機が、前記放熱フィンに風を送るように設けられたものである。
【0023】
また、回路基板と、この回路基板にリード線としての足を介して固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して固定され、前記基板搭載部品の搭載面を支持する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えた基板搭載部品の放熱器取付構造において、
ネジ等の締結手段を通す穴、並びに支持部材の取付足及び半導体部品のリード線足を通す穴を有する回路基板の穴に支持部材の取付足をそのストッパ部が当たるまで挿入して支持部材を回路基板に搭載する第1のステップと、
この搭載された支持部材の上に基板搭載部品を搭載しながら、そのリード線足を回路基板の穴に挿入して基板搭載部品を回路基板に組立てる第2のステップと、
これらの搭載状態で半田槽によってリード線足及び取付足を回路基板に半田で固定する第3のステップと、
この固定された基板搭載部品の上に放熱フィンを搭載し、締結手段を回路基板の取付穴から順次支持部材の取付穴、基板搭載部品の取付穴を経て放熱フィンの螺着部に螺着させる第4のステップと、を備えたものである。
【0024】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態1について図1を用いながら説明する。
まず、これらの図の1は回路基板3に搭載され、リード線としての足1cを有し、通電時に熱を発生するシングルインライン構造の半導体部品、2はこの半導体部品1の基板側面に取付けられ、該半導体1と回路基板3との間の風路空間を形成する支持部材、3はこの支持部材2を介して半導体部品1を保持する回路基板、4はこの回路基板に半導体部品1及び支持部材2を介して保持され、半導体部品1からの熱を放熱する放熱フィン、5はこの放熱フィン4に半導体部品1を介して支持部材2を取付ける締結手段としてのネジである。
なお、このネジ5を通すために、前述した半導体部品1及び支持部材2のそれぞれには取付穴1a及び2aが設けられており、また、放熱フィン4にはネジ5を螺着する螺着部4aが設けられている。
【0025】
また、前述した半導体部品1と放熱フィン4の間には、放熱性の関係から時として、電気絶縁性を有し、比較的熱伝導の良い物質、例えばシリコンラバー等の放熱シート16が設けられ、互いの面の凹凸による隙間の接触抵抗を小さくして熱伝導を良くする。
また、支持部材2の取付足2bの材質としては、このものを回路基板3の取付穴3bに挿入して半田で固定するため、半田の付けのし易い材質、例えば銅や黄銅などの材質、若しくはスズメッキ等を施したものを用いている。
【0026】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、ネジ5が支持部材2の取付穴2aから放熱シート16及び、または半導体部品1の各取付穴16a、1aに順次挿入され、放熱フィン4の螺着部4aに螺着されて、放熱フィン4、放熱シート16及び、または半導体部品1が支持部材2に取り付けられて一体化される。
【0027】
次に、この一体化された支持部材2の足2bとリード線足1cを回路基板3の足穴3b、3cに挿入し、この挿入により支持部材2のストップ部2eが回路基板3の表面に当たると、挿入が完了し、半田によって回路基板3に固定する。
なお、この時、放熱フィン4が熱伝導性の悪い半導体部品1を介して回路基板3に半田で固着されるので、半田の熱が放熱フィン4から放熱されなくなるため、半田温度が低下しなくなり、上手く半田付けができるようになる。
【0028】
以上説明したように、本構造のようにすれば、半田の熱が放熱フィン4から放熱しなくなるので、上手く半田付けができる基板部品の搭載構造が得られる。
しかも、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用できる共に、放熱性能が向上する。
【0029】
また、図4又は5に示すように、支持部材2の高さdをある程度設け、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
しかも、この時、支持部材2の高さd(絶縁空間距離)を3mm以上とすると、支持部材2の下の回路基板3面に100V以上の回路配線を設けても、充分に絶縁状態が確保されるため、絶縁信頼性の高い構造となる。
【0030】
また、この時、図5に示すように、支持部材足2bの挿入長さcを、半導体部品リード線足1cの長さ(a+b)の挿入長さbに合わせ、この長さを、例えば1〜3mm程度にすれば、半田付けがし易くなり、確実に固着できるようになる
【0031】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図1に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)を用いて風を送風すると、更に、放熱性を向上させることができる。
【0032】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0033】
なお、この完成品から放熱フィン4を取外す時には、支持部材2の足2bとL字状シングルインライン構造のリード線足1cの半田を溶融して外した後に、ネジ5を緩めて外すことになる。
【0034】
実施の形態2.
この実施の形態2について図2を用いながら説明する。
この実施の形態2においては、実施の形態1の構成において、放熱フィン4の螺着部4aをバカ穴4bとし、支持部材2の取付穴2aを、ネジ5を螺着する螺着部2fとして、ネジ5を放熱フィン4の取付穴4bから半導体部品1の取付穴1aを通して支持部材2の螺着部2fに螺着させるようにしたものである。
なお、その他の構成は実施の形態1とほぼ同じなので、説明を割愛する。
【0035】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、螺着部2fを有する支持部材2の足2bを回路基板3の取付穴3bに挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たり、支持部材2の挿入が完了すると、次に、この支持部材2の上に半導体部品1を載せながら、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入し、支持部材2と半導体部品1との相対位置関係をほぼ決める。
即ち、回路基板3の取付穴3b,3cを介して支持部材2と半導体部品1の互いの位置関係を決める。
【0036】
次に、この位置関係が決まった状態で、半田リフロー装置等を用いて半田で支持部材2と半導体部品1を回路基板3に固定した後、半導体部品1の上に放熱シート16及び、または放熱フィン4を載せ、互いの取付穴1aと穴4bとがほぼ合致するようにする。
【0037】
次に、この状態で、ネジ5を放熱フィンの取付穴4bから順次放熱シートの穴16b。半導体部品の穴1aを通して、支持部材2の螺着部2fに螺着させ、放熱フィン4、放熱シート16及び、または半導体部品1を回路基板3に固着させて組立を完了する。
【0038】
以上説明したように、本構成にすると、放熱フィン4が搭載されない状態で、半導体部品1と支持部材2を半田で回路基板3に固着できるので、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けができるようになる。
しかも、リサイクルや保守メンテナンス関係から放熱フィン4のみを取外す必要があるときでも、単に、ネジ5を緩るめれば外すことができるようになるため、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0039】
また、図5に示すように、支持部材2の高さdをある程度設け、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
【0040】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図1に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)で風を送風すると、更に、放熱性を向上させることができる。
【0041】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0042】
実施の形態3.
この実施の形態3について図3を用いながら説明する。
この実施の形態3においては、実施の形態1の構成において、ネジ5を通すためのネジ穴3aを回路基板3に設けたものである。
なお、その他の構成は実施の形態1とほぼ同じなので、説明を割愛する。
【0043】
次に、このように構成された基板部品の放熱器取付動作について説明する。
まず、取付穴2aを有する支持部材2の足2bを回路基板3の取付穴3bに挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たり、支持部材2の挿入が完了すると、次に、この支持部材2の上に半導体部品1を載せながら、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入し、支持部材2と半導体部品1との相対位置関係をほぼ決める。
即ち、回路基板3の穴3b,3cを介して支持部材2と半導体部品1の互いの位置関係を決める。
【0044】
次に、この位置関係が決まった状態で、半田リフロー装置等を用いて半田で支持部材2と半導体部品1を回路基板3に固定した後、半導体部品1の上に放熱シート16及び、または放熱フィン4を順次載せ、互いの取付穴がほぼ合致するようにする。
【0045】
次に、この状態で、ネジ5を回路基板3のネジ穴3a貫通させて、順次、支持部材2、放熱シート16及び、または半導体部品1の各取付穴2a,16a,1aに挿入した後、このネジ5を放熱フィン4の螺着部4aに螺着させ、放熱フィン4、放熱シート16及び、または半導体部品1を放熱フィン4に取付けて一体化させる。
【0046】
以上説明したように、本構成にすると、放熱フィン4が搭載されない状態で、半導体部品1と支持部材2を半田で回路基板3に固着できるので、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けができるようになる。
しかも、リサイクルや保守メンテナンス関係から放熱フィン4のみを取外す必要があるときでも、単に、ネジ5を緩るめれば外すことができるようになるため、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0047】
また、図4又は5に示すように、半導体部品1と基板3の間に空間を設けているので、支持部材2に触れることなく配線を引けると共に、風を通すことができるため、基板搭載面を有効活用でき、かつ放熱性能を向上させることができる。
【0048】
次に、この完成品に通電すると、この通電時の半導体部品1から放出された熱は、図3に示すように、放熱フィン4及び支持部材2、並びにこの支持部材2の取付面の半導体表面から放出されるので、これらの部位に送風機等(図示せず)で風を送風すると、更に、放熱性能が向上することになる。
【0049】
また、放熱シート16を半導体部品1と放熱フィン4との間に設けるようにすると、密着性が良くなるので、更に放熱性を向上させることができる。
【0050】
実施の形態4.
この実施の形態4について図6,7を用いながら説明する。
この実施の形態4においては、実施の形態2又は3の構成において、支持部材2の足2bの構造強度を回路基板3の構造強度よりも弱くし、図7に示すように、放熱フィン4が半導体部品1を介して支持部材2にネジ5で固定される時に生じる取付歪、即ち、半導体リード線足1cの高さ方向の取付バラツキによって生じる高さ方向の取付歪を支持部材の足2bの変形させることにより、吸収するようにしたものである。
なお、その他の構成は実施の形態3とほぼ同じなので、説明を割愛する。
【0051】
次に、このように支持部材足2bの構造強度を回路基板3の構造強度よりも弱くすると、半導体部品1のリード線足1cの挿入寸法バラツキ等によって生じる組立時の歪力が支持部材2の足2bを介して回路基板3に加えられるような状態になったとしても、支持部材足2bの板厚を薄くしたり、その材質強度を弱くしているので、回路基板3よりも先に支持部材の足2bが変形し、歪力を吸収するようになるため、紙フェノールやガラスエポキシなどの材質からなる回路基板3の割れや半田クラック、強いては半導体部品の割れや曲がり等のトラブルを防止できるようになる。
【0052】
なお、この時、半導体部品1のリード線足1cの構造強度が支持部材2の足2bの構造強度よりも弱い場合は、歪力は半導体部品1のリード線足1cの変形によって吸収されることになる。
【0053】
実施の形態5.
この実施の形態5について図8を用いながら説明する。
この実施の形態5においては、実施の形態1から4の構成において、図8に示すように、支持部材2の半導体部品1を支持する部位に絶縁部材17を設けたものである。
なお、その他の構成は実施の形態1から4とほぼ同じなので、説明を割愛する。
【0054】
なお、このように支持部材2の半導体部品1を支持する部位に、例えば、電気絶縁性の樹脂でモールドを施すと、半田付けの関係から金属材料の支持部材2と半導体部品の搭載面、もしくは半導体部品1やその他の部品を取付けるためのネジ等の締結手段とを電気的に絶縁することができるようになるため、互いの電圧差が例えば100V以上でも、充分に絶縁状態を維持できるので、信頼性の高い基板搭載部品の放熱器取付構造が得られる。
【0055】
実施の形態6.
この実施の形態6においては、実施の形態3の構成における基板部品の放熱器組立方法に関するものであり、この組立方法ついて図9を用いながら説明する。
【0056】
まず、この図9に示すように、ネジ等の締結手段5を通すネジ穴3aおよび支持部材2の足2bを通すための穴3b,並びに半導体部品1のリード線足1cを通すためのリード線穴3cを有する回路基板3の支持部取付穴3bに支持部材2の足2bを挿入し、この挿入により支持部材2のストッパ部2eが回路基板3の表面に当たった時点で、回路基板3ヘの支持部材2の搭載を完了する(S1)。
【0057】
次に、この回路基板に搭載された支持部材2の上に半導体部品1を搭載し、半導体部品1のリード線足1cを回路基板3のリード線穴3cに挿入して、半導体部品1の回路基板3に対する搭載を完了する(S2)。
【0058】
次に、この搭載状態のものを半田槽に流し、リード線足1cと支持部材2の足2bを半田で回路基板3に固定し、半導体部品1と支持部材2を回路基板3に固定する(S3)。
【0059】
次に、この回路基板3に固定された半導体部品1の上に放熱フィン4を搭載し、締結手段としてのネジ5を回路基板3のネジ穴3aから、順次支持部材2の取付穴2a及び半導体部品1の取付穴1aを通して放熱フィン4の螺着部4aに螺着させて、組立を完了する(S4)。
【0060】
なお、以上各ステップのS3とS4の間に、支持部材2と半導体部品1の間に電気絶縁物や比較的熱伝導の良い物質例えばシリコンラバーやシリコングリス等を取付けるステップを挿入してもよい。
【0061】
以上説明したようなステップで製造されるため、放熱フィン4からの放熱による半田温度の低下を防止しながら、上手く半田付けできるので、信頼性の高い組立方法が得られる。
【0062】
また、以上説明した実施の形態1から6において、放熱フィン4と半導体部品1のリード線足1cとの距離が2mm以内の時は、電気絶縁を確保するため、図3に示すように、放熱フィン4とリード線足1cとの間にシリコンや樹脂モールドなどの電気絶縁物を挿入して、絶縁性を確保するような構造にしても良い。
【0063】
また、以上の説明では、シングルインライン構造の半導体部品1としたが、両足の半導体部品1でも良い。
【0064】
【発明の効果】
この発明は、回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたので、支持部材によって回路基板と支持部材との間に空間が設けられ、また放熱フィンが脱着自在に熱伝導の悪い基板搭載部品を介して回路基板に取付けられるため、基板搭載面を有効活用しながら組立性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造が得られる。
【0065】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の足を前記回路基板の各穴へ同時に挿入して半田固定できる構成にしたので、組立性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造が得られる。
【0066】
また、前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成にしたので、組立・分解性が良く、半田固定が確実に行われる基板搭載部品の放熱器取付構造が得られる。
【0067】
また、取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたので、組立・分解性の良い基板搭載部品の放熱器取付構造が得られる。
【0068】
また、前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪を吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたので、回路基板に取付けられる基板搭載部品と支持部材との高さ方向のズレが生じても、このズレによる歪力を支持部材の取付足が吸収するようになるため、回路基板の割れや半田クラック、強いては半導体部品の割れや曲がり等のトラブルを防止した基板搭載部品の放熱器取付構造が得られる。
【0069】
また、前記支持部材が、前記基板搭載部品を搭載する面に絶縁層を有するので、電気絶縁性の良い基板搭載部品の放熱器取付構造が得られる。
【0070】
また、放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたので、更に確実に放熱性能が向上した基板搭載部品の放熱器取付構造が得られる。
【0071】
また、電気絶縁物が、前記放熱フィンと前記基板搭載部品との端面空間の間を埋めるように設けられたので、放熱フィンと基板搭載部品との距離が短くても絶縁性の優れた基板搭載部品の放熱器取付構造が得られる。
【0072】
また、前記支持部材の足が、前記回路基板から前記支持部材までの空間距離を3mm以上維持するように構成されたので、支持部材下の回路基板に配線パターンを描いても絶縁性が確保されるため、基板搭載面を有効活用しながら絶縁性の優れた基板搭載部品の放熱器取付構造が得られる。
【0073】
また、送風機が、前記放熱フィンに風を送るように設けられたので、更に、放熱性能が向上した基板搭載部品の放熱器取付構造が得られる。
【0074】
また、ネジ等の締結手段を通す穴、並びに支持部材の取付足及び半導体部品のリード線足を通す穴を有する回路基板の穴に支持部材の取付足をそのストッパ部が当たるまで挿入して支持部材を回路基板に搭載する第1のステップと、
この搭載された支持部材の上に基板搭載部品を搭載しながら、そのリード線足を回路基板の穴に挿入して基板搭載部品を回路基板に組立てる第2のステップと、
これらの搭載状態で半田槽によってリード線足及び取付足を回路基板に半田で固定する第3のステップと、
この固定された基板搭載部品の上に放熱フィンを搭載し、締結手段を回路基板の取付穴から順次支持部材の取付穴、基板搭載部品の取付穴を経て放熱フィンの螺着部に螺着させる第4のステップと、を備えたので、
放熱フィンからの放熱による半田温度の低下を防止しながら、上手く半田付けできるので、信頼性の高い組立方法が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における基板搭載部品の放熱器取付構造の概略構造図である。
【図2】この発明の実施の形態2における基板搭載部品の放熱器取付構造の概略構造図である。
【図3】この発明の実施の形態3における基板搭載部品の放熱器取付構造の概略構造図である。
【図4】この発明の実施の形態1から6における支持部材の概略構造図である。
【図5】この発明の実施の形態1から6における支持部材と基板搭載部品との関係を示した図である。
【図6】この発明の実施の形態4における概略構造図である。
【図7】この発明の実施の形態4における支持部材の足の変形図である。
【図8】この発明の実施の形態5における支持部材の概略構造図である。
【図9】この発明の実施の形態6における放熱器の組立フロー図である。
【図10】従来の基板搭載部品の放熱器取付構造の概略構造図である。
【図11】従来の他の基板搭載部品の放熱器取付構造の概略構造図である。
【符号の説明】
1 半導体部品、 1a 半導体取付穴、 1c リード線足、 2 支持部材、 2a  取付穴、 2b 取付足、 2c 支持深さ、 2d 支持高さ、 2f 螺着部、 2e ストップ部、 3回路基板、 3a ネジ穴、 3b 支持部穴、 3c リード線穴、 4 放熱フィン、 4a 螺着部、 4b 取付穴、 5 ネジ、 10 半田、 16 放熱シート、 17 電気絶縁物。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiator mounting structure for a heat-generating component mounted on a circuit board and a method of assembling the radiator.
[0002]
[Prior art]
FIG. 10 is a view showing a general radiator mounting structure of a board-mounted component in a conventional single-in-line structure. In this figure, reference numeral 1 denotes a semiconductor or the like having an L-shaped single-in-line lead wire foot 1c. The board component 3 has the semiconductor component 1 attached thereto, and a circuit board for connecting each electric component, and the radiating fins 4 provided on the circuit board 3 via the support portion 15 for radiating heat of the semiconductor component. Reference numeral 5 denotes a screw for connecting and fixing the semiconductor component 1 to the radiating fin 4, reference numeral 10 denotes a solder for fixing the foot of the semiconductor component 1 to the circuit board 3, and reference numeral 15 denotes a fin support for supporting the radiating fin 4.
[0003]
Next, the operation of attaching the radiation fins to the board component configured as described above will be described.
First, when the semiconductor 1 as each mounting component and each component such as the radiation fin 4 are mounted on the circuit board 3 and fixed, the semiconductor component 1 is fixed to the radiation fin 4 with the screw 5 and then mounted on the substrate. When soldering is performed, all the legs of the semiconductor 1 and the fin support 15 are simultaneously inserted into the mounting holes 3a of the circuit board 3 and then soldered. If the positions of the mounting holes 3a of the circuit board 3 do not match, the semiconductor 1 and the radiating fins 4 cannot be combined with the circuit board 3 unless the positions are corrected, and the heat generated by the semiconductor 1 is radiated. It cannot be released from the fin 4.
[0004]
Conversely, if the semiconductor 1 and the radiating fins 4 are connected to each other by the screws 5 after the semiconductor 1 and the feet of the fin supporting portions 15 are fixed to the circuit board 3 by soldering, the positional relationship between the semiconductors 1 and the fins 15 is shifted. When soldered, the screw 5 cannot be inserted. Therefore, the solder must be melted in order to correct the positional deviation, the position should be adjusted properly, and after re-soldering, the screw 5 must be inserted and assembled. The heat generated by the semiconductor 1 cannot be released from the radiation fins 4.
[0005]
As described above, in the conventional radiator structure of a board mounted component, there is a problem that the circuit board cannot be fixed unless the positions of the semiconductor components and the radiating fins are corrected as the mounted components, so that the assemblability is poor. Was.
[0006]
Further, in the conventional radiator structure of the board-mounted component, as described above, in any case, the radiating fins 4 are soldered in a state of being directly attached to the board 3 via the metal fin supporting portions 15. Further, the temperature of the solder decreases due to the heat radiation performance of the radiation fins, and the substrate temperature cannot be made substantially uniform, which causes a problem that soldering does not work well.
[0007]
Furthermore, when only the radiating fins 4 are removed from the circuit board 3 for the purpose of recycling or maintenance, the solder of the feet of the fin support portion must be removed and the screws 5 must be removed, which makes the removal and replacement work complicated. Had become something.
[0008]
As another conventional radiator mounting structure for a board component, for example, as shown in FIG. 11, there is one disclosed in Japanese Utility Model Laid-Open No. 58-114047.
This also has a structure in which the semiconductor components 1 having a single in-line structure are mounted on the radiation fins 4 and connected to each other by screws, and the connected components are mounted on the circuit board 3 and fixed by soldering. Problems.
[0009]
[Problems to be solved by the invention]
As described above, in the conventional radiator mounting structure and the method of assembling the board mounted components, the structure cannot be fixed to the circuit board unless the positions of the semiconductor components and the radiating fins are corrected as the mounted components. There was a problem of bad.
[0010]
Further, at the time of soldering, there is a problem that the solder temperature is lowered due to the heat radiation performance of the fins, and the soldering is not successful.
[0011]
Furthermore, when removing only the radiating fin parts for the purpose of recycling or maintenance, etc., it is necessary to remove the solder of the feet of the fin support portion and remove the screw 5, which requires a complicated removal operation. There was a problem.
[0012]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and provides a radiator mounting structure of a board mounted component and a method of assembling the same, which have good assembling / disassembling properties while effectively utilizing a board mounting surface and reliably perform solder fixing. The purpose is to get.
[0013]
[Means for Solving the Problems]
In the present invention, a circuit board, a board mounted component that is soldered to the circuit board via a foot as a lead wire, generates heat when energized, and soldered to the circuit board via a mounting foot, A support member that supports the board-mounted component and forms a space between the circuit board and the board-mounted component, and is detachably attached to the support member via the board-mounted component by fastening means; Radiation fins for dissipating heat when the components are energized.
[0014]
Further, the configuration in which the heat radiation fins are attached to the support member via the board mounted component is configured such that the foot of the board mounted component and the support member can be simultaneously inserted into each hole of the circuit board and fixed by soldering. It was done.
[0015]
Also, the configuration in which the heat radiation fins are attached to the support member via the board mounted component can fix the solder by inserting each foot of the board mounted component and the support member sequentially into each hole of the circuit board. It is configured.
[0016]
Further, a mounting hole is provided in the circuit board, so that the fastening means can be fixed from an opposite mounting surface of the circuit board.
[0017]
Further, the structural strength of the mounting foot is made weaker than the structural strength of the circuit board so that the mounting foot of the support member absorbs a strain generated when the heat radiation fin is mounted on the support member.
[0018]
Further, the support member has an insulating layer on a surface on which the board mounting component is mounted.
[0019]
Further, a heat radiating sheet is provided between the heat radiating fin and the board mounted component to reduce contact resistance between the heat radiating fin and the board mounted component.
[0020]
Further, an electrical insulator is provided so as to fill a space between end faces of the heat radiation fin and the board mounted component.
[0021]
Further, the feet of the support member are configured to maintain a spatial distance from the circuit board to the support member of 3 mm or more.
[0022]
Further, a blower is provided so as to blow air to the radiation fins.
[0023]
Also, a circuit board, a board-mounted component that is fixed to the circuit board via a foot as a lead wire and generates heat when energized, and a board-mounted component that is fixed to the circuit board via a mounting foot and mounts the board-mounted component A board mounted component comprising: a support member for supporting a surface; and a radiating fin that is detachably attached to the support member via the board mounted component by fastening means and radiates heat when the board mounted component is energized. In the radiator mounting structure of
The support member is inserted by inserting the mounting member of the support member into a hole of a circuit board having a hole through which a fastening means such as a screw passes, and a hole through which the mounting member of the support member and the lead wire of the semiconductor component pass. A first step of mounting on a circuit board;
A second step of inserting the lead wire feet into the holes of the circuit board while assembling the board mounted parts on the circuit board, while mounting the board mounted parts on the mounted support member;
A third step of fixing the lead wire feet and the mounting feet to the circuit board by soldering with a solder bath in these mounted states;
A radiating fin is mounted on the fixed board mounted component, and fastening means is screwed to the screwed portion of the radiating fin through the mounting hole of the support member and the mounting hole of the board mounted component sequentially from the mounting hole of the circuit board. And a fourth step.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIG.
First, 1 in these figures is mounted on a circuit board 3, has a foot 1c as a lead wire, and has a single-in-line semiconductor component that generates heat when energized, and 2 is mounted on the side of the substrate of the semiconductor component 1. A supporting member for forming an air passage space between the semiconductor 1 and the circuit board 3; a circuit board 3 for holding the semiconductor component 1 via the supporting member 2; Radiation fins 5 held through the member 2 and radiating heat from the semiconductor component 1 are screws as fastening means for attaching the support member 2 to the radiation fin 4 via the semiconductor component 1.
In order to allow the screw 5 to pass through, the semiconductor component 1 and the support member 2 are provided with mounting holes 1a and 2a, respectively. 4a is provided.
[0025]
Further, between the semiconductor component 1 and the radiating fins 4, a radiating sheet 16 made of a material having an electrical insulation property and a relatively good thermal conductivity, for example, silicon rubber or the like is sometimes provided due to a radiating property. In addition, the contact resistance of the gap due to the unevenness of the surfaces is reduced to improve the heat conduction.
Further, as the material of the mounting foot 2b of the support member 2, since this is inserted into the mounting hole 3b of the circuit board 3 and fixed with solder, a material that can be easily soldered, for example, a material such as copper or brass, Alternatively, a material plated with tin or the like is used.
[0026]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, the screws 5 are sequentially inserted from the mounting holes 2a of the support member 2 into the heat radiating sheet 16 and / or the mounting holes 16a, 1a of the semiconductor component 1, and screwed to the screwing portions 4a of the heat radiating fins 4. 4. The heat dissipation sheet 16 and / or the semiconductor component 1 are attached to the support member 2 and integrated.
[0027]
Next, the foot 2b and the lead wire 1c of the integrated support member 2 are inserted into the foot holes 3b and 3c of the circuit board 3, and the stop 2e of the support member 2 hits the surface of the circuit board 3 by this insertion. Then, the insertion is completed and the circuit board 3 is fixed to the circuit board 3 by soldering.
At this time, since the radiation fins 4 are fixed to the circuit board 3 via the semiconductor component 1 having poor thermal conductivity by soldering, the heat of the solder is not radiated from the radiation fins 4, so that the solder temperature does not decrease. , So that soldering can be performed successfully.
[0028]
As described above, according to this structure, the heat of the solder does not radiate from the radiating fins 4, so that a mounting structure of the board component that can be successfully soldered is obtained.
In addition, since a space is provided between the semiconductor component 1 and the substrate 3, wiring can be drawn without touching the support member 2 and air can be passed, so that the substrate mounting surface can be effectively utilized and heat radiation performance can be improved. improves.
[0029]
Further, as shown in FIG. 4 or 5, the height d of the support member 2 is provided to some extent, and a space is provided between the semiconductor component 1 and the substrate 3, so that wiring can be drawn without touching the support member 2, and Since the air can pass through, the substrate mounting surface can be effectively used, and the heat radiation performance can be improved.
Moreover, at this time, if the height d (insulation space distance) of the support member 2 is 3 mm or more, even if circuit wiring of 100 V or more is provided on the surface of the circuit board 3 below the support member 2, a sufficient insulation state is secured. Therefore, a structure having high insulation reliability is obtained.
[0030]
At this time, as shown in FIG. 5, the insertion length c of the support member foot 2b is adjusted to the insertion length b of the length (a + b) of the semiconductor component lead wire foot 1c, and this length is set to, for example, 1 When it is set to about 3 mm, soldering becomes easy, and it can be securely fixed.
[0031]
Next, when electricity is supplied to the finished product, the heat released from the semiconductor component 1 at the time of the electricity supply is, as shown in FIG. 1, the radiation fins 4 and the support member 2, and the semiconductor surface of the mounting surface of the support member 2. Therefore, when air is blown to these portions using a blower or the like (not shown), the heat radiation can be further improved.
[0032]
Further, when the heat radiating sheet 16 is provided between the semiconductor component 1 and the heat radiating fins 4, the adhesiveness is improved, so that the heat radiating property can be further improved.
[0033]
When removing the heat radiation fins 4 from this finished product, the solder of the foot 2b of the support member 2 and the lead wire foot 1c of the L-shaped single in-line structure is melted and removed, and then the screw 5 is loosened and removed. .
[0034]
Embodiment 2 FIG.
Embodiment 2 will be described with reference to FIG.
In the second embodiment, in the configuration of the first embodiment, the screwing portion 4a of the heat radiation fin 4 is formed as a stupid hole 4b, and the mounting hole 2a of the support member 2 is formed as a screwing portion 2f into which the screw 5 is screwed. The screw 5 is screwed from the mounting hole 4b of the radiation fin 4 to the screwing portion 2f of the support member 2 through the mounting hole 1a of the semiconductor component 1.
The other configuration is almost the same as that of the first embodiment, and the description is omitted.
[0035]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, the foot 2b of the support member 2 having the threaded portion 2f is inserted into the mounting hole 3b of the circuit board 3, and the stopper 2e of the support member 2 hits the surface of the circuit board 3 by this insertion, so that the support member 2 is inserted. Upon completion, the lead wire 1c of the semiconductor component 1 is inserted into the lead wire hole 3c of the circuit board 3 while the semiconductor component 1 is placed on the support member 2, and the connection between the support member 2 and the semiconductor component 1 is established. Determine the relative positional relationship.
That is, the positional relationship between the support member 2 and the semiconductor component 1 is determined via the mounting holes 3b and 3c of the circuit board 3.
[0036]
Next, in a state where the positional relationship is determined, the support member 2 and the semiconductor component 1 are fixed to the circuit board 3 by soldering using a solder reflow device or the like, and then the heat radiation sheet 16 and / or the heat radiation The fins 4 are placed so that the mounting holes 1a and the holes 4b substantially coincide with each other.
[0037]
Next, in this state, the screws 5 are sequentially inserted from the mounting holes 4b of the heat radiation fins to the holes 16b of the heat radiation sheet. Through the hole 1a of the semiconductor component, it is screwed to the screwed portion 2f of the support member 2, and the heat radiation fin 4, the heat radiation sheet 16 and / or the semiconductor component 1 are fixed to the circuit board 3 to complete the assembly.
[0038]
As described above, according to this configuration, the semiconductor component 1 and the supporting member 2 can be fixed to the circuit board 3 by soldering in a state where the radiating fins 4 are not mounted. Prevents soldering while preventing it.
Moreover, even when it is necessary to remove only the radiating fins 4 due to recycling or maintenance, the screws 5 can be removed simply by loosening the screws 5, so that the radiation of the board mounted parts having good assembling and disassembling properties can be achieved. A container mounting structure is obtained.
[0039]
Further, as shown in FIG. 5, since the height d of the support member 2 is provided to some extent and a space is provided between the semiconductor component 1 and the substrate 3, wiring can be drawn without touching the support member 2 and wind is generated. Since it can pass through, the substrate mounting surface can be effectively used, and the heat radiation performance can be improved.
[0040]
Next, when electricity is supplied to the finished product, the heat released from the semiconductor component 1 at the time of electricity supply is: FIG. As shown in (1), the heat is released from the radiating fins 4 and the support member 2 and the semiconductor surface of the mounting surface of the support member 2, so that when air is blown to these parts by a blower or the like (not shown), the heat is further released. Performance can be improved.
[0041]
Further, when the heat radiating sheet 16 is provided between the semiconductor component 1 and the heat radiating fins 4, the adhesiveness is improved, so that the heat radiating property can be further improved.
[0042]
Embodiment 3 FIG.
The third embodiment will be described with reference to FIG.
In the third embodiment, a screw hole 3a for passing the screw 5 is provided in the circuit board 3 in the configuration of the first embodiment.
The other configuration is almost the same as that of the first embodiment, and the description is omitted.
[0043]
Next, the radiator mounting operation of the board component configured as described above will be described.
First, the foot 2b of the supporting member 2 having the mounting hole 2a is inserted into the mounting hole 3b of the circuit board 3, and the stopper 2e of the supporting member 2 hits the surface of the circuit board 3 by this insertion, and the insertion of the supporting member 2 is completed. Then, while placing the semiconductor component 1 on the support member 2, the lead wire foot 1c of the semiconductor component 1 is inserted into the lead wire hole 3c of the circuit board 3, and the relative position between the support member 2 and the semiconductor component 1 is increased. Determine the positional relationship.
That is, the positional relationship between the support member 2 and the semiconductor component 1 is determined via the holes 3b and 3c of the circuit board 3.
[0044]
Next, in a state where the positional relationship is determined, the support member 2 and the semiconductor component 1 are fixed to the circuit board 3 by soldering using a solder reflow device or the like, and then the heat radiation sheet 16 and / or the heat radiation The fins 4 are sequentially placed so that the mounting holes of the fins 4 substantially match each other.
[0045]
Next, in this state, the screws 5 are passed through the screw holes 3a of the circuit board 3 and sequentially inserted into the mounting holes 2a, 16a, 1a of the support member 2, the heat radiation sheet 16, and / or the semiconductor component 1, The screw 5 is screwed to the screwing portion 4a of the heat radiation fin 4, and the heat radiation fin 4, the heat radiation sheet 16 and / or the semiconductor component 1 are attached to the heat radiation fin 4 and integrated.
[0046]
As described above, according to this configuration, the semiconductor component 1 and the supporting member 2 can be fixed to the circuit board 3 by soldering in a state where the radiating fins 4 are not mounted. Prevents soldering while preventing it.
In addition, even when it is necessary to remove only the radiating fins 4 due to recycling or maintenance, the screws 5 can be removed simply by loosening the screws 5, so that the radiation of the board mounted parts with good assembling and disassembling properties can be achieved. A container mounting structure is obtained.
[0047]
Further, as shown in FIG. 4 or 5, since a space is provided between the semiconductor component 1 and the substrate 3, wiring can be drawn without touching the support member 2 and air can be passed through, so that the substrate mounting surface Can be effectively utilized, and the heat radiation performance can be improved.
[0048]
Next, when the completed product is energized, the heat radiated from the semiconductor component 1 at the time of energization is, as shown in FIG. 3, the radiating fins 4 and the support member 2, and the semiconductor surface of the mounting surface of the support member 2. Therefore, when air is blown to these parts by a blower or the like (not shown), the heat radiation performance is further improved.
[0049]
Further, when the heat radiating sheet 16 is provided between the semiconductor component 1 and the heat radiating fins 4, the adhesiveness is improved, so that the heat radiating property can be further improved.
[0050]
Embodiment 4 FIG.
The fourth embodiment will be described with reference to FIGS.
In the fourth embodiment, in the configuration of the second or third embodiment, the structural strength of the foot 2b of the support member 2 is made weaker than the structural strength of the circuit board 3, and as shown in FIG. The mounting strain caused when the semiconductor member 1 is fixed to the support member 2 with the screw 5 via the semiconductor component 1, that is, the mounting strain in the height direction caused by the mounting variation in the height direction of the semiconductor lead wire foot 1c is reduced by the foot 2b of the support member. It is made to absorb by deforming.
The other configuration is almost the same as that of the third embodiment, and the description is omitted.
[0051]
Next, when the structural strength of the supporting member foot 2b is made weaker than the structural strength of the circuit board 3, the distorting force at the time of assembling caused by the variation in the insertion dimension of the lead wire foot 1c of the semiconductor component 1 causes the supporting member 2 to be distorted. Even when the support member foot 2b is applied to the circuit board 3 via the foot 2b, the supporting member foot 2b is thinned or its material strength is weakened, so that the support member foot 2b is supported earlier than the circuit board 3. Since the legs 2b of the member are deformed and absorb the distortion force, troubles such as cracking of the circuit board 3 made of a material such as paper phenol or glass epoxy, solder cracking, and in the event of a crack or bending of the semiconductor component are prevented. become able to.
[0052]
At this time, when the structural strength of the lead wire 1c of the semiconductor component 1 is weaker than the structural strength of the foot 2b of the support member 2, the distortion is absorbed by the deformation of the lead wire 1c of the semiconductor component 1. become.
[0053]
Embodiment 5 FIG.
Embodiment 5 will be described with reference to FIG.
In the fifth embodiment, in the configuration of the first to fourth embodiments, as shown in FIG. 8, an insulating member 17 is provided on a portion of the support member 2 that supports the semiconductor component 1.
Note that other configurations are almost the same as those of the first to fourth embodiments, and a description thereof will be omitted.
[0054]
If the portion of the support member 2 supporting the semiconductor component 1 is molded with, for example, an electrically insulating resin, the support member 2 made of a metal material and the mounting surface of the semiconductor component or Since it becomes possible to electrically insulate the fastening means such as screws for attaching the semiconductor component 1 and other components, even if the mutual voltage difference is, for example, 100 V or more, the insulation state can be sufficiently maintained. A highly reliable radiator mounting structure for board-mounted components can be obtained.
[0055]
Embodiment 6 FIG.
The sixth embodiment relates to a method for assembling a radiator for a board component in the configuration of the third embodiment, and this assembling method will be described with reference to FIG.
[0056]
First, as shown in FIG. 9, a screw hole 3a for passing the fastening means 5 such as a screw, a hole 3b for passing the foot 2b of the support member 2, and a lead wire for passing the lead wire foot 1c of the semiconductor component 1. The foot 2b of the support member 2 is inserted into the support portion mounting hole 3b of the circuit board 3 having the hole 3c, and when the stopper 2e of the support member 2 hits the surface of the circuit board 3 by this insertion, the circuit board 3 The mounting of the supporting member 2 is completed (S1).
[0057]
Next, the semiconductor component 1 is mounted on the support member 2 mounted on the circuit board, and the lead wire foot 1c of the semiconductor component 1 is inserted into the lead wire hole 3c of the circuit board 3, and the circuit of the semiconductor component 1 is mounted. The mounting on the substrate 3 is completed (S2).
[0058]
Next, this mounted state is poured into a solder bath, the lead wire foot 1c and the foot 2b of the support member 2 are fixed to the circuit board 3 by soldering, and the semiconductor component 1 and the support member 2 are fixed to the circuit board 3 ( S3).
[0059]
Next, the radiation fins 4 are mounted on the semiconductor component 1 fixed to the circuit board 3, and screws 5 as fastening means are sequentially attached to the mounting hole 2 a of the support member 2 and the semiconductor from the screw hole 3 a of the circuit board 3. The assembly is completed by screwing through the mounting hole 1a of the component 1 to the screwing portion 4a of the radiation fin 4 (S4).
[0060]
It should be noted that between S3 and S4 in each of the above steps, a step of attaching an electrical insulator or a material having relatively good heat conductivity, such as silicon rubber or silicon grease, between the support member 2 and the semiconductor component 1 may be inserted. .
[0061]
Since it is manufactured in the steps described above, soldering can be performed well while preventing a decrease in solder temperature due to heat radiation from the heat radiation fins 4, and a highly reliable assembly method can be obtained.
[0062]
In the first to sixth embodiments described above, when the distance between the radiation fin 4 and the lead wire foot 1c of the semiconductor component 1 is within 2 mm, as shown in FIG. An electrical insulator such as silicon or resin mold may be inserted between the fin 4 and the lead wire foot 1c to provide a structure that ensures insulation.
[0063]
In the above description, the semiconductor component 1 has a single in-line structure.
[0064]
【The invention's effect】
The present invention provides a circuit board, a board mounted component that is solder-fixed to the circuit board via a foot as a lead wire and generates heat when energized, and a board that is solder-fixed to the circuit board via a mounting foot. A support member for supporting a mounted component and forming a space between the circuit board and the board mounted component, and being detachably attached to the support member via the board mounted component by fastening means; And a radiating fin that dissipates heat when energized, so that a space is provided between the circuit board and the supporting member by the supporting member, and the radiating fin is detachably attached via a board mounting component having poor heat conduction. As a result, a radiator mounting structure for a board-mounted component that has good assemblability while effectively utilizing the board-mounting surface and that can be securely fixed by soldering can be obtained.
[0065]
Further, the configuration in which the heat radiation fins are attached to the support member via the board mounted component is configured such that the foot of the board mounted component and the support member can be simultaneously inserted into each hole of the circuit board and fixed by soldering. As a result, a radiator mounting structure for a board-mounted component with good assemblability and reliable solder fixing is obtained.
[0066]
Also, the configuration in which the heat radiation fins are attached to the support member via the board mounted component can fix the solder by inserting each foot of the board mounted component and the support member sequentially into each hole of the circuit board. With this configuration, it is possible to obtain a radiator mounting structure for a board mounted component that has good assembling / disassembling properties and secures soldering.
[0067]
Also, mounting holes are provided in the circuit board so that the fastening means can be fixed from the non-mounting surface of the circuit board, so that a radiator mounting structure of a board mounted component having good assembling and disassembling properties can be obtained.
[0068]
Further, since the mounting feet of the support member are made weaker in the structural strength of the mounting feet than the structural strength of the circuit board so as to absorb the distortion generated when the radiating fins are mounted on the supporting member, Even if there is a displacement in the height direction between the board mounting component to be mounted and the support member, the mounting feet of the support member absorb the distortion force due to this displacement, so that the circuit board cracks, solder cracks, and semiconductors A radiator mounting structure for a board mounted component that prevents troubles such as cracking or bending of the component can be obtained.
[0069]
Further, since the support member has an insulating layer on the surface on which the board-mounted component is mounted, a radiator mounting structure for the board-mounted component having good electrical insulation can be obtained.
[0070]
Further, since the heat radiation sheet is provided between the heat radiation fin and the substrate mounted component, and the contact resistance between the heat radiation fin and the substrate mounted component is reduced, the heat radiation performance is more reliably improved. The radiator mounting structure is obtained.
[0071]
Also, since the electrical insulator is provided so as to fill the space between the end faces of the heat radiation fins and the board mounted components, the board mounted with excellent insulation even if the distance between the heat radiation fins and the board mounted components is short. A radiator mounting structure for parts is obtained.
[0072]
Further, since the feet of the support member are configured to maintain a spatial distance from the circuit board to the support member of 3 mm or more, insulation is ensured even if a wiring pattern is drawn on the circuit board below the support member. Therefore, a radiator mounting structure for a board-mounted component having excellent insulation properties while effectively utilizing the board-mounting surface can be obtained.
[0073]
Further, since the blower is provided so as to send the wind to the radiating fins, a radiator mounting structure of the board mounted component with further improved heat radiation performance can be obtained.
[0074]
In addition, the mounting foot of the support member is inserted into the hole of the circuit board having a hole through which fastening means such as a screw and a hole through which the mounting member of the supporting member and the lead wire of the semiconductor component pass, and the supporting member is inserted until the stopper portion hits the hole. A first step of mounting the member on a circuit board;
A second step of inserting the lead wire feet into the holes of the circuit board while assembling the board mounted parts on the circuit board, while mounting the board mounted parts on the mounted support member;
A third step of fixing the lead wire feet and the mounting feet to the circuit board by soldering with a solder bath in these mounted states;
A radiating fin is mounted on the fixed board mounted component, and fastening means is screwed to the screwed portion of the radiating fin through the mounting hole of the support member and the mounting hole of the board mounted component sequentially from the mounting hole of the circuit board. With the fourth step,
Since soldering can be performed well while preventing a decrease in solder temperature due to heat radiation from the radiation fins, a highly reliable assembly method can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a radiator mounting structure of a board mounted component according to Embodiment 1 of the present invention.
FIG. 2 is a schematic structural diagram of a radiator mounting structure of a board-mounted component according to a second embodiment of the present invention.
FIG. 3 is a schematic structural diagram of a radiator mounting structure for a board-mounted component according to Embodiment 3 of the present invention.
FIG. 4 is a schematic structural diagram of a support member according to the first to sixth embodiments of the present invention.
FIG. 5 is a diagram showing a relationship between a support member and a board mounted component according to the first to sixth embodiments of the present invention.
FIG. 6 is a schematic structural diagram according to a fourth embodiment of the present invention.
FIG. 7 is a modified view of a foot of a support member according to Embodiment 4 of the present invention.
FIG. 8 is a schematic structural diagram of a support member according to Embodiment 5 of the present invention.
FIG. 9 is an assembly flowchart of a radiator according to Embodiment 6 of the present invention.
FIG. 10 is a schematic structural view of a conventional radiator mounting structure for a board-mounted component.
FIG. 11 is a schematic structural view of a radiator mounting structure of another conventional board mounted component.
[Explanation of symbols]
Reference Signs List 1 semiconductor component, 1a semiconductor mounting hole, 1c lead wire foot, 2 support member, 2a mounting hole, 2b mounting foot, 2c support depth, 2d support height, 2f screwed portion, 2e stop portion, 3 circuit board, 3a Screw hole, 3b support hole, 3c lead wire hole, 4 heat radiation fin, 4a screw portion, 4b mounting hole, 5 screw, 10 solder, 16 heat radiation sheet, 17 electrical insulator.

Claims (11)

回路基板と、この回路基板にリード線としての足を介して半田固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して半田固定され、前記基板搭載部品を支持して前記回路基板と前記基板搭載部品との間に空間を形成する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えたことを特徴とする基板搭載部品の放熱器取付構造。A circuit board, and a board mounted component that is soldered to the circuit board via a foot as a lead wire and generates heat when energized, and is soldered and fixed to the circuit board via a mounting foot to support the board mounted component And a support member that forms a space between the circuit board and the board mounted component, and is detachably attached to the support member via the board mounted component by fastening means, and is used when the board mounted component is energized. A radiator mounting structure for a board-mounted component, comprising: radiating fins for radiating heat. 前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材の足を前記回路基板の各穴へ同時に挿入して半田固定できる構成にしたことを特徴とする請求項1に記載の基板搭載部品の放熱器取付構造。The configuration in which the radiating fins are attached to the support member via the board mounted component is configured so that the foot of the board mounted component and the support member can be simultaneously inserted into each hole of the circuit board and fixed by soldering. The radiator mounting structure for a board-mounted component according to claim 1, wherein: 前記放熱フィンが前記基板搭載部品を介して前記支持部材に取付けられた構成が、前記基板搭載部品及び前記支持部材のそれぞれの足を順次前記回路基板の各穴に挿入して半田固定できる構成にしたことを特徴とする請求項1に記載の基板搭載部品の放熱器取付構造。The configuration in which the radiating fins are attached to the support member via the board mounted component is such that the legs of the board mounted component and the support member can be sequentially inserted into the respective holes of the circuit board and fixed by soldering. The radiator mounting structure for a board-mounted component according to claim 1, wherein: 取付穴が、前記回路基板に設けられ、前記締結手段を前記回路基板の反搭載面から固定できるようにしたことを特徴とする請求項3に記載の基板搭載部品の放熱器取付構造。The radiator mounting structure for a board-mounted component according to claim 3, wherein a mounting hole is provided in the circuit board so that the fastening means can be fixed from an opposite mounting surface of the circuit board. 前記支持部材の取付足が、前記放熱フィンを前記支持部材に取付ける時に発生する歪を吸収するように前記回路基板の構造強度よりも当該取付足の構造強度を弱くしたことを特徴とする請求項3又は4に記載の基板搭載部品の放熱器取付構造。The structural strength of said mounting foot is made weaker than the structural strength of said circuit board so that the mounting foot of said support member absorbs the distortion which occurs when attaching said radiation fin to said support member. 5. A radiator mounting structure for a board-mounted component according to 3 or 4. 前記支持部材が、前記基板搭載部品を搭載する面に絶縁層を有することを特徴とする請求項1から5までのいずかに記載の基板搭載部品の放熱器取付構造。The radiator mounting structure for a board-mounted component according to any one of claims 1 to 5, wherein the support member has an insulating layer on a surface on which the board-mounted component is mounted. 放熱シートが、前記放熱フィンと前記基板搭載部品との間に設けられ、前記放熱フィンと基板搭載部品との間の接触抵抗を小さくしたことを特徴とする請求項1から6までのいずかに記載の基板搭載部品の放熱器取付構造。7. The heat radiation sheet according to claim 1, wherein a heat radiation sheet is provided between the heat radiation fin and the board mounted component to reduce contact resistance between the heat radiation fin and the board mounted component. A radiator mounting structure for a board-mounted component according to the item. 電気絶縁物が、前記放熱フィンと前記基板搭載部品との端面空間の間を埋めるように設けられたことを特徴とする請求項1から7までのいずかに記載の基板搭載部品の放熱器取付構造。The radiator for a board-mounted component according to any one of claims 1 to 7, wherein an electrical insulator is provided so as to fill a space between end faces of the radiating fin and the board-mounted component. Mounting structure. 前記支持部材の足が、前記回路基板から前記支持部材までの空間距離を3mm以上維持するように構成されたことを特徴とする請求項1から8までのいずかに記載の基板搭載部品の放熱器取付構造。The board mounting component according to any one of claims 1 to 8, wherein the feet of the support member are configured to maintain a spatial distance from the circuit board to the support member of 3 mm or more. Heatsink mounting structure. 送風機が、前記放熱フィンに風を送るように設けられたことを特徴とする請求項1から8までのいずかに記載の基板搭載部品の放熱器取付構造。。The radiator mounting structure for a board-mounted component according to any one of claims 1 to 8, wherein a blower is provided to send air to the radiating fins. . 回路基板と、この回路基板にリード線としての足を介して固定され、通電時に熱を発生する基板搭載部品と、前記回路基板に取付足を介して固定され、前記基板搭載部品の搭載面を支持する支持部材と、この支持部材に前記基板搭載部品を介して脱着自在に締結手段で取付けられ、前記基板搭載部品の通電時の熱を放熱する放熱フィンと、を備えた基板搭載部品の放熱器取付構造において、
ネジ等の締結手段を通す穴、並びに支持部材の取付足及び半導体部品のリード線足を通す穴を有する回路基板の穴に支持部材の取付足をそのストッパ部が当たるまで挿入して支持部材を回路基板に搭載する第1のステップと、
この搭載された支持部材の上に基板搭載部品を搭載しながら、そのリード線足を回路基板の穴に挿入して基板搭載部品を回路基板に組立てる第2のステップと、
これらの搭載状態で半田槽によってリード線足及び取付足を回路基板に半田で固定する第3のステップと、
この固定された基板搭載部品の上に放熱フィンを搭載し、締結手段を回路基板の取付穴から順次支持部材の取付穴、基板搭載部品の取付穴を経て放熱フィンの螺着部に螺着させる第4のステップと、を備えたことを特徴とする基板搭載部品の放熱器の組立方法。
A circuit board, a board mounted component that is fixed to the circuit board via a foot as a lead wire and generates heat when energized, and a mounting surface of the board mounted component that is fixed to the circuit board via a mounting foot. The heat radiation of the board mounted component comprising: a supporting member to be supported; and radiating fins detachably attached to the supporting member via the board mounted component by fastening means, and radiating heat when the board mounted component is energized. In the container mounting structure,
The support member is inserted by inserting the mounting member of the support member into a hole of a circuit board having a hole through which a fastening means such as a screw passes, and a hole through which the mounting member of the support member and the lead wire of the semiconductor component pass. A first step of mounting on a circuit board;
A second step of inserting the lead wire feet into the holes of the circuit board while assembling the board mounted parts on the circuit board, while mounting the board mounted parts on the mounted support member;
A third step of fixing the lead wire feet and the mounting feet to the circuit board by soldering with a solder bath in these mounted states;
A radiating fin is mounted on the fixed board mounted component, and fastening means is screwed to the screwed portion of the radiating fin through the mounting hole of the support member and the mounting hole of the board mounted component sequentially from the mounting hole of the circuit board. A method of assembling a radiator for a board-mounted component, comprising: a fourth step.
JP2002171600A 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components Expired - Fee Related JP3925317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002171600A JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002171600A JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Publications (2)

Publication Number Publication Date
JP2004022591A true JP2004022591A (en) 2004-01-22
JP3925317B2 JP3925317B2 (en) 2007-06-06

Family

ID=31171412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002171600A Expired - Fee Related JP3925317B2 (en) 2002-06-12 2002-06-12 Heat sink mounting structure for board mounted components

Country Status (1)

Country Link
JP (1) JP3925317B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310552A (en) * 2005-04-28 2006-11-09 Densei Lambda Kk Heat sink mounting structure
WO2016162991A1 (en) * 2015-04-08 2016-10-13 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017098392A (en) * 2015-11-24 2017-06-01 パナソニックIpマネジメント株式会社 Electronic circuit device
CN110429070A (en) * 2019-07-03 2019-11-08 惠州市乾野微纳电子有限公司 Can two-side radiation power component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310552A (en) * 2005-04-28 2006-11-09 Densei Lambda Kk Heat sink mounting structure
WO2016162991A1 (en) * 2015-04-08 2016-10-13 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN106057752A (en) * 2015-04-08 2016-10-26 三菱电机株式会社 Semiconductor device and manufacturing method of semiconductor device
EP3093885A4 (en) * 2015-04-08 2017-01-04 Mitsubishi Electric Corporation Semiconductor device and semiconductor device manufacturing method
JPWO2016162991A1 (en) * 2015-04-08 2017-08-24 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US20180019186A1 (en) * 2015-04-08 2018-01-18 Mitsubishi Electric Corporation Semiconductor device and manufacturing method of semiconductor device
US10269681B2 (en) 2015-04-08 2019-04-23 Mitsubishi Electric Corporation Semiconductor device and manufacturing method of semiconductor device
CN106057752B (en) * 2015-04-08 2019-05-28 三菱电机株式会社 The manufacturing method of semiconductor device and semiconductor device
JP2017098392A (en) * 2015-11-24 2017-06-01 パナソニックIpマネジメント株式会社 Electronic circuit device
CN110429070A (en) * 2019-07-03 2019-11-08 惠州市乾野微纳电子有限公司 Can two-side radiation power component
CN110429070B (en) * 2019-07-03 2024-05-28 无锡市乾野微纳科技有限公司 Power element capable of radiating heat from two sides

Also Published As

Publication number Publication date
JP3925317B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
TW550979B (en) Electronic circuit device and method for manufacturing the same
JP2004179309A (en) Heat dissipating structure for printed circuit board and method for manufacturing the same
JP2010186953A (en) Power semiconductor device and method of manufacturing the same
JP3925317B2 (en) Heat sink mounting structure for board mounted components
JP2009081246A (en) Semiconductor mounting substrate, and manufacturing method thereof
JP2001168476A (en) Radiation structure on circuit substrate
RU2363070C2 (en) Independent electronic component and method of its mounting
JP2004235481A (en) Heat sink holder, semiconductor device having heat sink and method of mounting semiconductor device
JP2014007362A (en) Power element heat dissipation structure and manufacturing method therefor
JP2011082344A (en) Method for locking electronic component and electronic apparatus
US20090067130A1 (en) Arrangement for heat dissipation
JP2001068887A (en) Cooling structure of printed-circiut board
JP2006060139A (en) Inverter control board
JP5145168B2 (en) Semiconductor device
JP4913798B2 (en) System comprising thermal conductor and method of assembly
JP3134860B2 (en) Hybrid integrated circuit device
JP5118086B2 (en) Semiconductor element mounting structure
JP2011124452A (en) Attachment device for heating component and method for mounting attachment device of heating component to heat sink
JP2019009341A (en) Heat dissipating unit of heat generating element
JP4711240B2 (en) Heat sink support structure
JP2006041240A (en) Printed wiring board with excellent heat radiation property, its manufacturing method and usage
JP6021722B2 (en) Current auxiliary member and high current substrate using current auxiliary member
JP2003332506A (en) Heat dissipating structure of heating element
JP2005038878A (en) Heatsink device
JP3319250B2 (en) IC package parts detachment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees