JP3922905B2 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
JP3922905B2
JP3922905B2 JP2001319879A JP2001319879A JP3922905B2 JP 3922905 B2 JP3922905 B2 JP 3922905B2 JP 2001319879 A JP2001319879 A JP 2001319879A JP 2001319879 A JP2001319879 A JP 2001319879A JP 3922905 B2 JP3922905 B2 JP 3922905B2
Authority
JP
Japan
Prior art keywords
tank
electrolyte
cell stack
cell
return pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319879A
Other languages
Japanese (ja)
Other versions
JP2003123807A (en
Inventor
毅 寒野
康充 筒井
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001319879A priority Critical patent/JP3922905B2/en
Publication of JP2003123807A publication Critical patent/JP2003123807A/en
Application granted granted Critical
Publication of JP3922905B2 publication Critical patent/JP3922905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レドックスフロー電池に関するものである。特に、セルスタック上部において発生する負圧を抑制できるレドックスフロー電池に関するものである。
【0002】
【従来の技術】
従来のレドックスフロー電池として特開平4-4568号公報に記載のものが知られている。これは、電解液を貯留するタンクの上部にセルスタックを設けた構成である。この構成により、電解液の循環を止めて充電を終了した際、セルスタック内の電解液を重力でタンク内に復帰させ、セルスタック内に電解液が残存しないようにして自己放電に伴う電力貯蔵効率の低下を改善している。
【0003】
【発明が解決しようとする課題】
しかし、このような構成のレドックスフロー電池では、セルスタックの内部に負圧が生じるという問題がある。
【0004】
レドックスフロー電池システムの構成は電解液タンクの上方に電池セルスタックが配置され、ポンプにより送液循環している。電解液を循環するとセルスタック内の電解液面がタンク内の電解液面よりも常に高く、サイホン効果によりセルスタック上部は負圧になってしまう。セルスタック上部が負圧になってしまうと、セル内部の通液路(例えばセルフレームにおけるマニホールドから電極側へのガイド溝)が陥没して電解液の循環が行えなくなってしまう。
【0005】
従って、本発明の目的は、セルスタック上部における負圧の発生を抑制することができるレドックスフロー電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、タンク内における不活性ガスの気相部と復路配管の上部とを、前記気相部から復路配管への気体の流通を許容する逆止弁を有する分岐管で接続することで上記の目的を達成する。
【0007】
【0008】
【0009】
【0010】
発明レドックスフロー電池は、電解液を貯留するタンクと、タンクにおける電解液の液面より上部に配置されて、電解液が循環されるセルスタックと、セルスタックとタンクとをつなぐ往路配管および復路配管とを具えタンク内を電解液の液相部と不活性ガスの 気相部とに区画し、このタンク内の気相部と復路配管の上部とに接続される分岐管を設けると共に、この分岐管に、前記気相部から復路配管への気体の流通を許容する逆止弁を設けていることを特徴とする
【0011】
ルスタック内部が負圧にならないようにするために、復路配管に開閉弁を設け、この開閉弁を絞る構成がある。しかしながら、開閉弁を設ける場合には、圧力損失が増大してポンプ動力が大きくなったり、さらにはバルブの開度調整などシステムの運転管理が複雑になってしまう問題点がある。本発明によれば、タンク内を電解液の液相部と不活性ガスの気相部とに区画し、このタンク内の気相部と復路配管の上部とに接続される分岐管を設けると共に、この分岐管に、前記気相部から復路配管への気体の流通を許容する逆止弁を設けているので、復路配管内が負圧になった場合、復路配管内にタンク内の不活性ガスを流入させることができ、負圧になることを解消することができる。
【0012】
【0013】
なお、本発明レドックスフロー電池は復路配管には逆止弁を介して不活性ガスが流入し、復路配管内に大気が流入することはないので、電解液の酸化を抑制することができる。不活性ガスには窒素やアルゴンが利用できる。
【0014】
また、通常、タンク内は電解液の液相部と気体の気相部とに区画されている。ここで、気相部を不活性ガスとし、分岐管をタンク内の気相部に接続すれば、タンク内の気相部から不活性ガスを復路配管に供給することができるので、構成を簡略化することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は、本発明レドックスフロー電池の一例を示す概略構成図である。この電池は、セルスタック10とタンク20とを具え、これら両者の間は往路配管30と復路配管40とで接続されている。往路配管30の途中には電解液をセルスタック10に循環させるポンプ50が設けられている。ここでは、一つのタンク20しか示していないが、実際には正極電解液用と負極電解液の2つのタンクが存在する。
【0016】
このタンク20内には電解液が貯留されている。通常、タンク内部は電解液のある液相部と、その上部の気相部とからなり、気相部には電解液の酸化を防止するために窒素ガスが封入されている。
【0017】
一方、セルスタック10は、その全体がタンク内の電解液の液面よりも上方に設けられており、従来から用いられているレドックスフロー電池のセルスタックと同様である。図2に基づいてレドックスフロー電池の動作原理を説明する。図2ではセルとタンクがほぼ同じ高さ位置に示されているが、実際にはセルがタンクの上部に設けられている。
【0018】
この電池は、イオン交換膜からなる隔膜4で正極セル1Aと負極セル1Bとに分離されたセル1を具える。正極セル1Aと負極セル1Bの各々には正極電極5と負極電極6とを内蔵している。正極セル1Aには正極電解液を供給・排出するための正極用タンク20Aが往路配管30A,復路配管40Aを介して接続されている。負極セル1Bにも負極電解液を導入・排出する負極用タンク20Bが同様に往路配管30B、復路配管40Bを介して接続されている。各電解液にはバナジウムイオンなどイオン価数が変化するイオンの水溶液を用い、ポンプ50A、50Bで循環させ、正負極電極5,6におけるイオンの価数変化反応に伴って充放電を行う。バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次のとおりである。
【0019】
正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
【0020】
図3は、セルスタックの概略構成図である。通常、レドックスフロー電池には、複数のセルが積層されたセルスタック10と呼ばれる構成が利用される。各セルは、隔膜4の両側にカーボンフェルト製の正極電極5および負極電極6を具える。そして、正極電極5と負極電極6の各々の外側には、セルフレーム70が配置される。
【0021】
セルフレーム70は、プラスチック製のフレーム枠71と、その内側に固定されるプラスチックカーボン製の双極板72とを具える。フレーム枠71には、マニホールドと呼ばれる複数の孔が形成されている。1枚のセルフレームには、例えば下辺に4つ、上辺に4つの合計8つのマニホールドが設けられ、下辺の2つが正極電解液供給用、残り2つが負極電解液供給用、上辺の2つが正極電解液排出用、残り2つが負極電解液排出用となっている。マニホールドは、多数のセルを積層することで電解液の流路を構成し、図2における往路配管・復路配管30A,30B,40A,40Bへとつながっている。
【0022】
【0023】
【0024】
【0025】
【0026】
本例では、復路配管40の最上部において分岐を採り、その分岐管80の途中に逆止弁90を設けている。分岐管80は一端が逆止弁90を介して復路配管40に接続され、他端がタンク20の気相部に接続されている。
【0027】
ここで、セルスタック10の上部が正圧の場合は、逆止弁90の作用により気相部内の窒素ガスが分岐管内を通って復路配管40に供給されることはない。一方、電解液をセルスタック 10 に流通すると、サイホン効果により、セルスタック 10 の上部が負圧になる。負圧の場合は、逆止弁90が窒素ガスの流通を許容するため、気相部から分岐管80を介して窒素ガスが復路配管40に供給される。そのため、復路配管内の負圧を解消することができる。この構成では、復路配管40自体にバルブを設けないため、電解液を流通する際に圧力損失が増加することがない。さらに、タンク20内の窒素ガスを復路配管40に供給できるため、独立して窒素ガスの供給機構を用いる必要がない。
【0028】
【0029】
【0030】
【0031】
【0032】
【0033】
【発明の効果】
以上説明したように、本発明レドックスフロー電池によれば、タンク内における不活性ガスの気相部と復路配管の上部とを、前記気相部から復路配管への気体の流通を許容する逆止弁を有する分岐管で接続することで、復路配管内が負圧になった場合に、分岐管から逆止弁を介してタンク内の不活性ガスを復路配管内に導入し、負圧を解消することができる。
【図面の簡単な説明】
【図1】逆止弁を用いた本発明レドックスフロー電池の概略構成図である。
【図2】レドックスフロー電池の動作原理の説明図である。
【図3】セルスタックの説明図である。
【符号の説明】
1 セル
1A 正極セル
1B 負極セル
4 隔膜
5 正極電極
6 負極電極
10 セルスタック
20 タンク
20A 正極用タンク
20B 負極用タンク
30,30A,30B 往路配管
40,40A,40B 復路配管
50,50A,50B ポンプ
70 セルフレーム
71 フレーム枠
72 双極板
80 分岐管
90 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a redox flow battery. In particular, the present invention relates to a redox flow battery that can suppress negative pressure generated in the upper part of the cell stack.
[0002]
[Prior art]
As a conventional redox flow battery, a battery described in JP-A-4-4568 is known. This is a configuration in which a cell stack is provided in the upper part of a tank for storing an electrolytic solution. With this configuration, when charging is terminated by stopping the circulation of the electrolyte, the electrolyte in the cell stack is returned to the tank by gravity, so that the electrolyte does not remain in the cell stack and power is stored due to self-discharge. Improve efficiency drop.
[0003]
[Problems to be solved by the invention]
However, the redox flow battery having such a configuration has a problem that negative pressure is generated inside the cell stack.
[0004]
In the configuration of the redox flow battery system, a battery cell stack is arranged above the electrolyte tank, and the liquid is circulated by a pump. When the electrolytic solution is circulated, the electrolytic solution level in the cell stack is always higher than the electrolytic solution level in the tank, and the upper part of the cell stack becomes negative due to the siphon effect. If the upper part of the cell stack becomes negative pressure, a liquid passage inside the cell (for example, a guide groove from the manifold to the electrode side in the cell frame) is depressed, and the electrolytic solution cannot be circulated.
[0005]
Accordingly, an object of the present invention is to provide a redox flow battery capable of suppressing the generation of negative pressure in the upper part of the cell stack.
[0006]
[Means for Solving the Problems]
The present invention connects the gas phase part of the inert gas in the tank and the upper part of the return pipe with a branch pipe having a check valve that allows the gas to flow from the gas phase part to the return pipe. To achieve the objectives.
[0007]
[0008]
[0009]
[0010]
The redox flow battery of the present invention includes a tank for storing an electrolytic solution, a cell stack that is disposed above the liquid level of the electrolytic solution in the tank, and an outward piping and a return path that connect the cell stack and the tank. comprising a pipe, with a tank is partitioned into a gas phase portion of the liquid phase and the inert gas of the electrolytic solution, providing a branch pipe connected to the upper portion of the gas phase portion and the return pipe in the tank, The branch pipe is provided with a check valve that allows gas to flow from the gas phase portion to the return pipe .
[0011]
To ensure that cell Rusutakku inside does not become negative pressure, the opening and closing valve provided in the return pipe, there is a configuration to narrow the opening and closing valve. However, when the on-off valve is provided, there is a problem that the pressure loss increases and the pump power increases, and further, the operation management of the system becomes complicated such as adjusting the opening of the valve. According to the present invention, the inside of the tank is divided into a liquid phase part of the electrolyte and a gas phase part of the inert gas, and a branch pipe connected to the gas phase part in the tank and the upper part of the return pipe is provided. The branch pipe is provided with a check valve that allows gas to flow from the gas phase portion to the return pipe, so that when the pressure in the return pipe becomes negative , the inert gas in the tank is placed in the return pipe. Gas can be allowed to flow in and negative pressure can be eliminated.
[0012]
[0013]
In the redox flow battery of the present invention , the inert gas flows into the return line via the check valve, and the atmosphere does not flow into the return line, so that the oxidation of the electrolyte can be suppressed. Nitrogen or argon can be used as the inert gas.
[0014]
Also, the tank is usually divided into a liquid phase part of the electrolyte and a gas phase part of the gas. Here, the gas phase and the inert gas, by connecting the branch pipe to the gas phase in tank, can be fed to the return pipe of an inert gas from the gas phase part in the tank Runode, structure Can be simplified.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a schematic configuration diagram showing an example of the redox flow battery of the present invention. This battery includes a cell stack 10 and a tank 20, and the two are connected by an outward piping 30 and a backward piping 40. In the middle of the forward pipe 30 is a pump 50 for circulating the electrolyte in the cell stack 10 is kicked set. Although only one tank 20 is shown here, there are actually two tanks for the positive electrode electrolyte and the negative electrode electrolyte.
[0016]
An electrolytic solution is stored in the tank 20. Usually, the inside of the tank is composed of a liquid phase portion with an electrolyte and a gas phase portion above the electrolyte, and nitrogen gas is sealed in the gas phase portion to prevent oxidation of the electrolyte.
[0017]
On the other hand, the entire cell stack 10 is provided above the liquid level of the electrolytic solution in the tank, and is the same as the cell stack of the redox flow battery conventionally used. The operation principle of the redox flow battery will be described with reference to FIG. In FIG. 2, the cell and the tank are shown at substantially the same height, but the cell is actually provided at the top of the tank.
[0018]
This battery includes a cell 1 separated into a positive electrode cell 1A and a negative electrode cell 1B by a diaphragm 4 made of an ion exchange membrane. A positive electrode 5 and a negative electrode 6 are built in each of the positive electrode cell 1A and the negative electrode cell 1B. A positive electrode tank 20A for supplying and discharging a positive electrode electrolyte is connected to the positive electrode cell 1A via an outward piping 30A and a return piping 40A. Similarly, a negative electrode tank 20B for introducing and discharging a negative electrode electrolyte to the negative electrode cell 1B is also connected via an outward piping 30B and a return piping 40B. Each electrolyte solution uses an aqueous solution of ions such as vanadium ions whose valence changes, is circulated by pumps 50A and 50B, and is charged and discharged along with the valence change reaction of the positive and negative electrodes 5 and 6. When an electrolytic solution containing vanadium ions is used, the reaction that occurs during charging and discharging in the cell is as follows.
[0019]
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)
[0020]
FIG. 3 is a schematic configuration diagram of the cell stack. Usually, a redox flow battery uses a configuration called a cell stack 10 in which a plurality of cells are stacked. Each cell includes a positive electrode 5 and a negative electrode 6 made of carbon felt on both sides of the diaphragm 4. A cell frame 70 is disposed outside each of the positive electrode 5 and the negative electrode 6.
[0021]
The cell frame 70 includes a plastic frame frame 71 and a plastic carbon bipolar plate 72 fixed on the inside thereof. A plurality of holes called manifolds are formed in the frame frame 71. One cell frame is provided with a total of eight manifolds, for example, four on the lower side and four on the upper side, with the lower two for supplying the positive electrode electrolyte, the remaining two for supplying the negative electrode electrolyte, and the upper two for the positive electrode. The electrolyte is for discharging, and the remaining two are for discharging the negative electrode electrolyte. The manifold forms a flow path for the electrolyte by stacking a large number of cells, and is connected to the forward piping / return piping 30A, 30B, 40A, and 40B in FIG.
[0022]
[0023]
[0024]
[0025]
[0026]
In this example, a branch is taken at the uppermost part of the return pipe 40, and a check valve 90 is provided in the middle of the branch pipe 80. One end of the branch pipe 80 is connected to the return pipe 40 via the check valve 90, and the other end is connected to the gas phase part of the tank 20.
[0027]
Here, when the upper part of the cell stack 10 is at a positive pressure, the nitrogen gas in the gas phase portion is not supplied to the return pipe 40 through the branch pipe by the action of the check valve 90. On the other hand, when flowing through the electrolyte to the cell stack 10, by siphon effect, the top of the cell stack 10 becomes negative pressure. In the case of negative pressure, since the check valve 90 allows the nitrogen gas to flow, nitrogen gas is supplied from the gas phase portion to the return pipe 40 via the branch pipe 80. Therefore, the negative pressure in the return pipe can be eliminated. In this configuration, since no valve is provided in the return pipe 40 itself, pressure loss does not increase when the electrolyte is circulated. Furthermore, since the nitrogen gas in the tank 20 can be supplied to the return pipe 40, it is not necessary to use a nitrogen gas supply mechanism independently.
[0028]
[0029]
[0030]
[0031]
[0032]
[0033]
【The invention's effect】
As described above, according to the redox flow battery of the present invention, the check for allowing the gas flow from the gas phase to the return pipe is allowed to flow between the gas phase of the inert gas and the upper part of the return pipe in the tank. By connecting with a branch pipe with a valve, when the inside of the return pipe becomes negative pressure, the inert gas in the tank is introduced into the return pipe from the branch pipe via the check valve to eliminate the negative pressure. can do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a redox flow battery of the present invention using a check valve .
FIG. 2 is an explanatory diagram of the operating principle of a redox flow battery.
FIG. 3 is an explanatory diagram of a cell stack.
[Explanation of symbols]
1 cell
1A positive electrode cell
1B Negative electrode cell
4 Diaphragm
5 Positive electrode
6 Negative electrode
10 cell stack
20 tanks
20A positive electrode tank
20B negative electrode tank
30,30A, 30B Outward piping
40,40A, 40B Return piping
50,50A, 50B pump
70 cell frame
71 frame
72 bipolar plate
80 branch pipe
90 Check valve

Claims (1)

電解液を貯留するタンクと、
タンクにおける電解液の液面より上部に配置されて、電解液が循環されるセルスタックと、
セルスタックとタンクとをつなぐ往路配管および復路配管とを具え
タンク内を電解液の液相部と不活性ガスの気相部とに区画し、
このタンク内の気相部と復路配管の上部とに接続される分岐管を設けると共に、この分岐管に、前記気相部から復路配管への気体の流通を許容する逆止弁を設けていることを特徴とするレドックスフロー電池。
A tank for storing electrolyte,
A cell stack that is disposed above the level of the electrolyte in the tank and in which the electrolyte is circulated;
Comprising a forward pipe and the return pipe connecting the cell stack and the tank,
The tank is partitioned into a liquid phase part of the electrolyte and a gas phase part of the inert gas,
A branch pipe connected to the gas phase part in the tank and the upper part of the return pipe is provided, and a check valve is provided in the branch pipe to allow the gas to flow from the gas phase part to the return pipe. A redox flow battery.
JP2001319879A 2001-10-17 2001-10-17 Redox flow battery Expired - Fee Related JP3922905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319879A JP3922905B2 (en) 2001-10-17 2001-10-17 Redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319879A JP3922905B2 (en) 2001-10-17 2001-10-17 Redox flow battery

Publications (2)

Publication Number Publication Date
JP2003123807A JP2003123807A (en) 2003-04-25
JP3922905B2 true JP3922905B2 (en) 2007-05-30

Family

ID=19137362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319879A Expired - Fee Related JP3922905B2 (en) 2001-10-17 2001-10-17 Redox flow battery

Country Status (1)

Country Link
JP (1) JP3922905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502202B1 (en) * 2005-10-31 2007-02-15 En O De Energy On Demand Produ REDOX FLOW BATTERY AND METHOD FOR OPERATING SUCH BATTERY
US8668997B2 (en) * 2011-06-20 2014-03-11 United Technologies Corporation System and method for sensing and mitigating hydrogen evolution within a flow battery system
CN217822889U (en) * 2022-08-10 2022-11-15 寰泰储能科技股份有限公司 Non-flat-layer arranged all-vanadium redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes

Also Published As

Publication number Publication date
JP2003123807A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
KR101291753B1 (en) Manifold for reducing shunt current and redox flow battery including the same
CN103733409B (en) System and method for sensing and mitigating hydrogen evolution within a flow battery system
JP2002329522A (en) Secondary battery and its operation method
JP5831112B2 (en) Cell frame, cell stack, and redox flow battery
WO2017204530A1 (en) Redox flow battery
JP5642172B2 (en) Operation method of fuel cell
WO2019106723A1 (en) Redox flow battery
JP3922905B2 (en) Redox flow battery
JPS61227370A (en) Fuel battery assembly
JP2002329523A (en) Cell frame for redox flow battery
JP5354942B2 (en) Fuel cell system
CN218447995U (en) Fuel cell
JPS63119166A (en) Fuel battery
JP2003100337A (en) Intermittent circulation type redox flow cell
JP3673252B2 (en) Fuel cell stack
JP2003123808A (en) Redox flow cell
KR100531817B1 (en) Fuel supply structure for fuel cell bipolar plate
JP6629911B2 (en) Redox flow battery
JP2006179373A (en) Fuel cell system
WO2020021610A1 (en) Regeneration device for electrolyte solution for redox flow batteries, redox flow battery, and method for producing regenerated electrolyte solution for redox flow batteries
JP4925078B2 (en) Polymer electrolyte fuel cell
JP2010003603A (en) Fuel cell stack
CN218632127U (en) Electrochemical hydrogen pump
CN221508236U (en) Electrode frame with flow channel cross-sectional area changing along with length gradient of distance between liquid inlet and liquid outlet
KR20040100141A (en) Fuel supply structure for fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Ref document number: 3922905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees