JP3922623B2 - Crucible abnormality detection method - Google Patents
Crucible abnormality detection method Download PDFInfo
- Publication number
- JP3922623B2 JP3922623B2 JP2001178459A JP2001178459A JP3922623B2 JP 3922623 B2 JP3922623 B2 JP 3922623B2 JP 2001178459 A JP2001178459 A JP 2001178459A JP 2001178459 A JP2001178459 A JP 2001178459A JP 3922623 B2 JP3922623 B2 JP 3922623B2
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- concentration
- heating
- detection method
- abnormality detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、金属やコンクリート等の不燃物を溶融したり、可燃物を燃焼させたうえその焼却灰をそのまま溶融するために用いられるルツボの、加熱昇温工程における異常を検知する方法に関するものである。
【0002】
【従来の技術】
廃棄物処理のために金属や不燃物等を高温で溶融したり、可燃性の廃棄物を燃焼させたうえその焼却灰をそのまま溶融するためには、例えば高周波溶融炉の内部にアルミナや炭化珪素等からなるセラミック製のルツボをセットし、周囲の誘導コイルにより誘導加熱する方法が取られている。ルツボはもちろん使用前に検査され、外観上の欠陥のないものだけが用いられる。しかしルツボを1500℃以上の高温にまで加熱昇温する工程において、熱膨張に起因する大きな引張応力が胴下部に発生する場合があり、胴下部の外表面に局所的なクラックや剥離を生ずることがある。
【0003】
このような異常は初期においてはごく軽微なものであるが、これを無視してそのまま加熱昇温を続けると、最悪の場合にはルツボ破損に至る可能性がある。そこで本発明者等は、溶融炉の内部にテレビカメラを配置し、ルツボの外観変化を監視する方法を検討した。しかしこの方法には次のような問題があるため、実用化は困難であることが判明した。
▲1▼ルツボとその外周を囲う耐火物との隙間は数cm程度と狭いため、この隙間からルツボの全周を監視するためには10本以上の多数のテレビカメラが必要となる。
▲2▼1500℃以上の高温環境下で安定に作動する耐熱性のカメラの入手が困難である。
▲3▼ルツボ表面は赤熱状態にあるため、外観イメージの変化をテレビカメラで把握することは困難であり、温度カメラを用いたとしても、初期の微小なクラックや剥離は検出できない。
【0004】
【発明が解決しようとする課題】
本発明は上記のような従来の問題点を解決し、加熱昇温工程においてルツボの外表面に微細なクラックや剥離を生じた場合に、直ちに精度よくこれらを検出することができるルツボの異常検知方法を提供するためになされたものである。
【0005】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明は、カーボン又はカーボン化合物を含み、表面に酸化防止用の釉薬層を有するセラミック製のルツボを加熱昇温する工程において、ルツボの周囲を流れるパージ空気中のCO2又はCOの濃度を測定し、その変化によりルツボの表面に微細なクラックまたは剥離が生じる異常を検知することを特徴とするものである。この場合、パージ空気をルツボの高さ以下の場所からサンプリングすることが好ましい。なお、本発明は、ルツボを高周波溶融炉により加熱する場合に用いるに特に適したものである。
【0006】
本発明のルツボの異常検知方法は、加熱昇温工程においてセラミック製のルツボの表面に微細なクラックや剥離を生じた場合に、ルツボの内部に含まれるカーボン又はカーボン化合物が空気中の酸素と反応してCO2又はCOとなることを利用したものである。高温状態においてこの化学変化は瞬時に進むため、パージ空気中のCO2又はCOの濃度を測定することにより、非常に精度よくつぼの異常検知を行なうことができる。
【0007】
【発明の実施の形態】
以下に本発明の実施形態を示す。
図1は、高周波溶融炉の内部にルツボ1をセットした状態を示す断面図である。ルツボ1は高温に耐え得るセラミック製であり、昇降台2の上に載せられ、その外周は数cmの間隔で円筒状の耐火物壁3に囲まれている。耐火物壁3の外周には誘導加熱用のコイル(図示せず)が設置され、溶融対象物が装入されたルツボ1を加熱している。
【0008】
溶融対象物は前記したようにさまざまであるが、金属廃棄物中で最も多い鉄の融点が約1500℃であるから加熱温度は1500℃以上とすることが好ましい。しかしルツボ1の強度と発生熱応力の関係から加熱温度を2000℃以上とすることは好ましくなく、実用運転では最高温度は1600℃以下とすることが好ましい。なお誘導加熱炉は、周波数が50〜200Hzの低周波誘導炉と周波数が500〜10kHzの高周波誘導炉とに大別されるが、電気効率及び溶融速度の点で500〜1000Hzの領域が好ましい。
【0009】
誘導加熱を行なうためには導電性の発熱体が必要であり、溶融しようとする内容物がセラミックスやコンクリート等の非導電性物質である場合を考慮して、セラミック中に黒煙粉末やタールピッチ等のカーボンを含有させた導電性ルツボが一般的に用いられている。この場合のカーボン含有量は30〜40%とすることが好ましい。30%未満では発熱しにくくなって溶融性能が低下し、40%を超えると強度が低下するからである。
【0010】
また溶融しようとする内容物が金属を含む導電性物質に限定される場合には、ルツボ1自体を導電性とする必要はないため、SiC等のカーボン化合物を含有する炭化物系セラミックが用いられることが多い。本発明は、これらのカーボンを含むセラミック製のルツボ、及びカーボン化合物を含むセラミック製のルツボの何れにも適用できる。なお、導電性、非導電性のいずれのルツボ1の表面にも、高温下での酸化を防止するための釉薬が塗布されているのが普通である。
【0011】
図1に示すように、耐火物壁3の下部にはパージ空気供給口4が設けられ、ルツボ1の周囲に図示のような上向きのパージ空気流を形成している。このパージ空気は内容物が加熱されて燃焼した際の燃焼ガスが、昇降台2の方向に流入してくることを防止する役割を持つ。
【0012】
本発明では、このパージ空気をサンプリングノズル5から吸引し、分析計6によりCO2又はCOの濃度を測定する。ルツボ1の表面が健全であれば、CO2濃度は大気中と同じく約350ppmで安定しており、CO濃度はほぼ0である。しかし加熱昇温工程においてルツボ1の表面にクラックや剥離を生じると、酸化防止用の釉薬層が破れ、パージ空気中の酸素がルツボ1に含まれるカーボン又はカーボン化合物と瞬時に反応してCO2又はCOとなる。このため分析計6によりCO2又はCOの濃度を測定することにより、ルツボ1の表面の異常を瞬時に検出することが可能となる。
【0013】
なお実験により確認したところ、加熱温度が600℃ではCO濃度がCO2濃度よりもきわめて高く、1000℃ではCO2濃度の方がきわめて高くなることが確認された。CO濃度とCO2濃度が逆転する温度は800℃付近である。このため、全温度領域をカバーするためには分析計6としてCO2濃度計及びCO濃度計を用いることが好ましく、800℃以上の高温領域のみをカバーするだけでよければCO2濃度計のみを用いればよい。
【0014】
本発明では、サンプリングノズル5の設置位置よりも下方で発生したルツボ1の表面の異常のみを検出することができる。このため、できるだけ広範囲をカバーするためにはサンプリングノズル5の設置位置を高くすることが好ましい。しかしサンプリングノズル5をルツボ1の口部に接近させると、ルツボ1の内部の被溶融物から発生するCO2の影響を受けて誤動作するため、ルツボ1の全高の7割程度の高さ以下とすることが好ましい。なお、前記したようにルツボ1のクラックや剥離は胴下部で発生する可能性が高いので、ルツボ1の口部付近の表面が検出対象から外れても実害はない。
【0015】
【実施例】
以下に本発明の実施例を示す。
カーボンを含むセラミック製導電性ルツボの表面に釉薬を塗布したものを準備し、その内部に金属、保温材、コンクリートを充填し、高周波誘導炉にセットし加熱昇温した。昇温開始後はルツボのパージ空気中のCO2濃度を連続測定した。
昇温開始約65分後にルツボの温度が約1650℃になったときにパージ空気中のCO2濃度が約500ppmから4200ppmまで急上昇したため、ルツボの温度を下げ溶融操作を停止した。停止後、ルツボの外観調査を行ったところ表面に微細な亀裂が生じていた。亀裂は表面のみであり溶融物の漏洩等は全く無かった。
【0016】
ルツボを昇温し、温度が800℃以上となった以降のルツボの温度とCO2濃度の挙動を図2のグラフに示した。CO2濃度が約800℃で上昇しはじめるのはルツボ表面のカーボンの燃焼であり、約1100℃で徐々に低下するのはルツボ表面に塗布した釉薬の焼成による酸化防止効果である。約65分後に急激にCO2濃度が上昇したのは亀裂発生により釉薬の塗布していない表面が露呈されその部分のカーボンが急激に燃焼したためである。
このように亀裂発生によるCO2濃度の変化は顕著であり、容易に検出することが可能であった。
【0017】
【発明の効果】
以上に説明したように、本発明のルツボの異常検知方法は、ルツボの周囲を流れるパージ空気中のCO2又はCOの濃度を測定してその変化によりルツボの表面の異常を検知するので、サンプリングノズル以下の高さであれば、ルツボ表面のどの部分で発生した異常をも迅速かつ確実に検出することができる。しかも本発明の方法は外観検査ではないため、赤熱状態にあるルツボの表面の異常を正確に把握することができるうえ、ルツボの周囲に多数のセンサを配置する必要もないため、設備コストも安価ですむ利点もある。本発明の方法により異常が検出された場合には直ちに昇温停止等の手段を講ずることができるので、ルツボ破損事故を未然に防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す断面図である。
【図2】実施例におけるルツボ温度とCO2濃度との変化を示すグラフである。
【符号の説明】
1 ルツボ、2 昇降台、3 耐火物壁、4 パージ空気供給口、5 サンプリングノズル、6 分析計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting an abnormality in a heating and heating process of a crucible used for melting incombustible materials such as metal and concrete, or burning inflammable ash as it is after burning combustible materials. is there.
[0002]
[Prior art]
In order to melt metals and incombustible materials at a high temperature for waste disposal, or to burn incinerated ash as it is after burning combustible waste, alumina, silicon carbide, for example, is used inside a high-frequency melting furnace. A method is adopted in which a ceramic crucible made of, for example, is set and induction heating is performed by a surrounding induction coil. Crucibles are, of course, inspected before use, and only those that are not defective in appearance are used. However, in the process of heating and raising the crucible to a high temperature of 1500 ° C. or higher, a large tensile stress due to thermal expansion may occur in the lower part of the cylinder, causing local cracks or peeling on the outer surface of the lower part of the cylinder. There is.
[0003]
Such an abnormality is very slight in the initial stage, but if it is ignored and heating and heating is continued as it is, the crucible may be damaged in the worst case. Therefore, the present inventors examined a method of monitoring a change in the appearance of the crucible by arranging a television camera inside the melting furnace. However, since this method has the following problems, it has been found difficult to put it into practical use.
(1) Since the gap between the crucible and the refractory surrounding the outer periphery is as narrow as several centimeters, in order to monitor the entire circumference of the crucible from this gap, a large number of TV cameras of 10 or more are required.
(2) It is difficult to obtain a heat-resistant camera that operates stably in a high temperature environment of 1500 ° C. or higher.
(3) Since the surface of the crucible is in a red hot state, it is difficult to grasp the change in the appearance image with a television camera, and even if a temperature camera is used, the initial minute cracks and peeling cannot be detected.
[0004]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems and can detect crucible abnormality immediately and accurately when a crack or peeling occurs on the outer surface of the crucible in the heating and heating step. It was made to provide a method.
[0005]
[Means for Solving the Problems]
The present invention has been made in order to solve the aforementioned problem, see contains carbon or carbon compound, in the step of heating heating a ceramic crucible having a glaze layer for preventing oxidation on the surface, purge flow around the crucible It is characterized by measuring the concentration of CO 2 or CO in the air and detecting abnormalities in which fine cracks or peeling occurs on the surface of the crucible due to the change. In this case, it is preferable to sample the purge air from a location below the height of the crucible. The present invention is particularly suitable for use when a crucible is heated by a high-frequency melting furnace.
[0006]
According to the crucible abnormality detection method of the present invention, when fine cracks or peeling occurs on the surface of the ceramic crucible in the heating temperature raising step, the carbon or carbon compound contained in the crucible reacts with oxygen in the air. Thus, CO 2 or CO is utilized. Since this chemical change proceeds instantaneously in a high temperature state, it is possible to detect the abnormality of the crucible with very high accuracy by measuring the concentration of CO 2 or CO in the purge air.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are shown below.
FIG. 1 is a cross-sectional view showing a state in which a crucible 1 is set inside a high-frequency melting furnace. The crucible 1 is made of ceramic that can withstand high temperatures, and is placed on a
[0008]
Although the objects to be melted are various as described above, the heating temperature is preferably 1500 ° C. or higher because the melting point of the most iron in the metal waste is about 1500 ° C. However, from the relationship between the strength of the crucible 1 and the generated thermal stress, it is not preferable to set the heating temperature to 2000 ° C. or higher. In practical operation, the maximum temperature is preferably 1600 ° C. or lower. The induction heating furnace is roughly classified into a low-frequency induction furnace having a frequency of 50 to 200 Hz and a high-frequency induction furnace having a frequency of 500 to 10 kHz, and a region of 500 to 1000 Hz is preferable in terms of electric efficiency and melting rate.
[0009]
In order to perform induction heating, a conductive heating element is required. Considering the case where the content to be melted is a nonconductive material such as ceramics or concrete, black smoke powder or tar pitch is contained in the ceramic. A conductive crucible containing carbon such as is generally used. In this case, the carbon content is preferably 30 to 40%. If it is less than 30%, heat generation is difficult and the melting performance is lowered, and if it exceeds 40%, the strength is lowered.
[0010]
In addition, when the content to be melted is limited to a conductive material containing a metal, it is not necessary to make the crucible 1 itself conductive, and therefore a carbide ceramic containing a carbon compound such as SiC should be used. There are many. The present invention is applicable to both ceramic crucibles containing these carbons and ceramic crucibles containing carbon compounds. Note that a glaze for preventing oxidation at a high temperature is usually applied to the surface of both the conductive and non-conductive crucibles 1.
[0011]
As shown in FIG. 1, a purge air supply port 4 is provided at the lower part of the
[0012]
In the present invention, the purge air is sucked from the sampling nozzle 5 and the concentration of CO 2 or CO is measured by the analyzer 6. If the surface of the crucible 1 is healthy, the CO 2 concentration is stable at about 350 ppm as in the atmosphere, and the CO concentration is almost zero. However, if cracking or peeling occurs on the surface of the crucible 1 in the heating and heating process, the anti-oxidation glaze layer is broken, and oxygen in the purge air reacts instantaneously with carbon or carbon compounds contained in the crucible 1 to produce CO 2. Or it becomes CO. Therefore, by measuring the concentration of CO 2 or CO with the analyzer 6, it is possible to instantaneously detect an abnormality in the surface of the crucible 1.
[0013]
Note was confirmed by experiments, CO concentration in the heating temperature of 600 ° C. is extremely higher than the CO 2 concentration, it was confirmed that the better of 1000 ° C. In the CO 2 concentration becomes extremely high. The temperature at which the CO concentration and the CO 2 concentration are reversed is around 800 ° C. For this reason, it is preferable to use a CO 2 concentration meter and a CO concentration meter as the analyzer 6 in order to cover the entire temperature range. If only the high temperature range of 800 ° C. or higher is required, only the CO 2 concentration meter is used. Use it.
[0014]
In the present invention, it is possible to detect only the abnormality of the surface of the crucible 1 generated below the position where the sampling nozzle 5 is installed. For this reason, it is preferable to raise the installation position of the sampling nozzle 5 in order to cover as wide a range as possible. However, if the sampling nozzle 5 is brought close to the mouth of the crucible 1, it malfunctions due to the influence of CO 2 generated from the melted material inside the crucible 1, so that the total height of the crucible 1 is about 70% or less. It is preferable to do. As described above, cracks and peeling of the crucible 1 are highly likely to occur in the lower part of the body, so there is no actual harm even if the surface near the mouth of the crucible 1 is removed from the detection target.
[0015]
【Example】
Examples of the present invention are shown below.
A ceramic conductive crucible containing carbon was prepared by applying a glaze to the surface, filled with metal, a heat insulating material, and concrete, set in a high frequency induction furnace, and heated to raise the temperature. After the start of temperature increase, the CO 2 concentration in the purge air of the crucible was continuously measured.
When the temperature of the crucible reached about 1650 ° C. about 65 minutes after the start of temperature increase, the concentration of CO 2 in the purge air rapidly increased from about 500 ppm to 4200 ppm. Therefore, the melting operation was stopped by lowering the temperature of the crucible. After the stop, the external appearance of the crucible was examined, and fine cracks were formed on the surface. The crack was only on the surface and there was no leakage of the melt.
[0016]
The temperature of the crucible and the behavior of the crucible temperature and CO 2 concentration after the temperature reached 800 ° C. or higher are shown in the graph of FIG. It is combustion of carbon on the crucible surface that the CO 2 concentration begins to rise at about 800 ° C., and a gradual decrease at about 1100 ° C. is an antioxidant effect due to the burning of the glaze applied to the crucible surface. The reason why the CO 2 concentration suddenly increased after about 65 minutes was that the surface on which no glaze was applied was exposed due to the occurrence of cracks, and the carbon in that portion burned rapidly.
Thus, the change in the CO 2 concentration due to the occurrence of cracks was remarkable, and could be easily detected.
[0017]
【The invention's effect】
As described above, the crucible abnormality detection method according to the present invention measures the concentration of CO 2 or CO in the purge air flowing around the crucible and detects the abnormality of the surface of the crucible based on the change. If the height is equal to or less than the nozzle, it is possible to quickly and reliably detect an abnormality occurring in any part of the crucible surface. Moreover, since the method of the present invention is not an appearance inspection, it is possible to accurately grasp abnormalities on the surface of the crucible in a red hot state, and it is not necessary to arrange a large number of sensors around the crucible, so the equipment cost is also low. There are also benefits. When an abnormality is detected by the method of the present invention, it is possible to immediately take measures such as stopping the temperature rise, so that a crucible breakage accident can be prevented in advance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a graph showing changes in crucible temperature and CO 2 concentration in Examples.
[Explanation of symbols]
1 crucible, 2 lift, 3 refractory wall, 4 purge air supply port, 5 sampling nozzle, 6 analyzer
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001178459A JP3922623B2 (en) | 2001-06-13 | 2001-06-13 | Crucible abnormality detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001178459A JP3922623B2 (en) | 2001-06-13 | 2001-06-13 | Crucible abnormality detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002372376A JP2002372376A (en) | 2002-12-26 |
JP3922623B2 true JP3922623B2 (en) | 2007-05-30 |
Family
ID=19019156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001178459A Expired - Fee Related JP3922623B2 (en) | 2001-06-13 | 2001-06-13 | Crucible abnormality detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3922623B2 (en) |
-
2001
- 2001-06-13 JP JP2001178459A patent/JP3922623B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002372376A (en) | 2002-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2326319C2 (en) | Induction furnace for operation at high temperatures | |
CN114487257A (en) | Atmosphere-controllable solid combustion characteristic research experimental device and experimental method | |
JP4321824B2 (en) | Method and apparatus for monitoring the bottom of melting furnace | |
JP3922623B2 (en) | Crucible abnormality detection method | |
US3822873A (en) | Furnace for melting or heating metals | |
JP4056534B2 (en) | Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus | |
JP4707635B2 (en) | Method and apparatus for monitoring the bottom of melting furnace | |
JP3590243B2 (en) | Furnace wall cooling structure of electric melting furnace | |
CN208887801U (en) | The measuring system of the bottom temperature of direct current electric arc furnace | |
JP5096797B2 (en) | Level measurement method for ash melting furnace | |
JP3480786B2 (en) | Induction melting furnace leak detector | |
CN219607097U (en) | Furnace door structure convenient for replacing heat-resistant material | |
US7681455B2 (en) | Method and device for monitoring the state of the protective covering of a rotary furnace burner | |
JP3781326B2 (en) | Detection method of furnace wall damage in plasma melting furnace | |
JPH10115559A (en) | Sensor apparatus for use in furnace | |
CN205782963U (en) | A kind of incinerator dual firing chamber for waste incineration | |
CN218566186U (en) | Sealed dry cooling device for roasting crucible | |
JPH10122544A (en) | Control method of molten boundary layer in melting furnace of incinerated residue | |
JP2004144443A (en) | Operation controller and its method for dc electric type melting furnace | |
JP2004156865A (en) | Device and method for controlling operation of plasma arc type melting furnace | |
JPH029905B2 (en) | ||
JP2000161868A (en) | Method for evaluating damage on refractory | |
JPH0648316Y2 (en) | Heat treatment furnace | |
JP3550673B2 (en) | Furnace | |
JP3522455B2 (en) | Method and apparatus for calcination of radioactive solid waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070216 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3922623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110302 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120302 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130302 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140302 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |