JP2000161868A - Method for evaluating damage on refractory - Google Patents

Method for evaluating damage on refractory

Info

Publication number
JP2000161868A
JP2000161868A JP10341333A JP34133398A JP2000161868A JP 2000161868 A JP2000161868 A JP 2000161868A JP 10341333 A JP10341333 A JP 10341333A JP 34133398 A JP34133398 A JP 34133398A JP 2000161868 A JP2000161868 A JP 2000161868A
Authority
JP
Japan
Prior art keywords
damage
refractory
buried
terminal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341333A
Other languages
Japanese (ja)
Inventor
Masaya Takayama
真哉 高山
Katsumi Iijima
活巳 飯島
Yoshinobu Kobayashi
啓信 小林
Hideaki Utsuno
英明 宇津野
Yoshiyuki Kojima
慶享 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10341333A priority Critical patent/JP2000161868A/en
Publication of JP2000161868A publication Critical patent/JP2000161868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance reliability of a melting furnace for thermally decomposing, melting and solidifying refuse by detecting damage of an apparatus composed of refractories based on the state change of a medium before and after passing through the refractories thereby facilitating evaluation of damage on the apparatus in the furnace and prediction of service life. SOLUTION: When refuse is melted and solidified, combustion gas and char produced from a thermal decomposition unit under high temperature are fed, along with air, through an inlet 1 to a melting furnace body 2 where they are heated to produce molten slag. Damage on refractories employed in the apparatus is detected by coating the surface of a buried substance with a substance exhibiting a damage rate different from that of the refractories. Variation in the physical properties of the buried substance is determined by measuring state change of a medium before and after passing through the buried terminal, e.g. increase of resistance due to abrasion of graphite, breakage of a metal lead or variation of current velocity or temperature in a metal tube circulating a gas, attributed to melting or abrasion of the coating material of the buried terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物を溶融固化
するガス化溶融炉において、炉本体を構成する耐火物の
溶融スラグによる損傷量を、耐火物に埋設した物質の物
性値の変化を検知することにより、実際の使用環境下に
おいて耐火物からなる炉内機器の損傷量を評価し、寿命
を予測する損傷量評価方法を提供する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification and melting furnace for melting and solidifying waste, which measures the amount of damage caused by the molten slag of the refractory constituting the furnace body and the change in physical properties of the substance embedded in the refractory. The present invention relates to a technique for evaluating a damage amount of a furnace device made of a refractory in an actual use environment by detecting the damage, and for providing a damage amount evaluation method for estimating a life.

【0002】[0002]

【従来の技術】従来、家庭から排出される一般廃棄物や
産業廃棄物は回収後、焼却炉で燃却処分されている。し
かし、焼却によって発生する焼却灰の埋め立て地を確保
するとともにダイオキシン等の有害物質の離散を防止す
ることが環境保全の面から望まれる。一般廃棄物を熱分
解した後、発生したガスとチャーにより自己燃焼し、廃
棄物を溶融固化するガス化溶融炉は上記の要求を満足す
ると共に、省エネの面からも将来の廃棄物溶融システム
として注目を集めている。
2. Description of the Related Art Conventionally, general waste and industrial waste discharged from households are collected and then incinerated in an incinerator. However, it is desired from the viewpoint of environmental protection to secure a landfill for incinerated ash generated by incineration and to prevent harmful substances such as dioxin from being dispersed. After pyrolysis of general waste, the gasification and melting furnace, which self-combustes with the generated gas and char and melts and solidifies the waste, satisfies the above requirements and also as a future waste melting system from the viewpoint of energy saving. Attracting attention.

【0003】ガス化溶融炉の構造と機能を図1に示す。
熱分解装置により高温化で生成した燃焼ガスとチャーは
空気とともにチャー,空気送入口1を経由し、溶融炉本
体2に供給される。供給されたチャーは燃焼ガスと空気
を混合し約1400℃で加熱され溶融スラグとなる。溶
融スラグは炉壁3とスラグタップ4を経由し、スラグ冷
却水槽に落下し固化したスラグはスラグ取り出し口6よ
り搬出される。一方、燃焼後のガスは旋回流を形成し、
排出口7より排出される。
FIG. 1 shows the structure and function of a gasification and melting furnace.
The combustion gas and char generated by the pyrolysis device at a high temperature are supplied to the melting furnace main body 2 via the char and the air inlet 1 together with air. The supplied char mixes the combustion gas and air and is heated at about 1400 ° C. to become molten slag. The molten slag passes through the furnace wall 3 and the slag tap 4, falls into the slag cooling water tank, and solidified slag is carried out from the slag outlet 6. On the other hand, the gas after combustion forms a swirling flow,
It is discharged from the discharge port 7.

【0004】定型煉瓦や不定形耐火物(キャスタブル)
により構成されている炉内機器の損傷量評価方法は施設
稼働後の目視による検査に限られている。実機部材の付
近に被測定材を置き超音波などで損傷評価する方法(文
献;セラミックスの非破壊評価技術)で耐火物へのセン
サーの取り付けや計測装置の付加など耐熱環境下では適
用不可能である。また、実機部材の付近に被測定材を設
置し、被測定材の損傷量を評価することにより機器の寿
命を予測する方法では実機部材自体の損傷量を直接評価
しておらず正確な損傷量は評価はできない。
[0004] Fixed bricks and irregular refractories (castable)
The method for evaluating the amount of damage to in-furnace equipment, which is constituted by the above, is limited to visual inspection after operation of the facility. It is not applicable in a heat-resistant environment, such as mounting a sensor on a refractory or adding a measuring device by a method of placing a material to be measured near the actual machine and evaluating the damage by ultrasonic waves (literature; non-destructive evaluation technology for ceramics). is there. In addition, in the method of estimating the life of the equipment by installing the material to be measured near the actual equipment and evaluating the amount of damage to the material to be measured, the amount of damage to the actual equipment itself is not directly evaluated, Cannot be evaluated.

【0005】[0005]

【発明が解決しようとする課題】耐火物により構成され
る炉内機器はチャーの燃焼時に発生する高温のガスと1
400〜1500℃の溶融スラグに曝される過酷な腐食
性環境下にある。特に高温の溶融スラグは耐火物を溶損
させ、耐火物内部に浸透し、化学反応によって変質層を
形成させ、温度変動による構造的スポーリングを生ずる
などの材料損傷を与える。
The in-furnace equipment made of a refractory has a high temperature gas generated during the combustion of the char and a high temperature gas.
It is in a severe corrosive environment exposed to molten slag at 400 to 1500 ° C. Particularly, the molten slag at a high temperature causes the refractory to be eroded, penetrates into the refractory, forms a deteriorated layer by a chemical reaction, and causes material damage such as structural spalling due to temperature fluctuation.

【0006】このため、本発明の目的は、耐火物により
構成される炉内機器の損傷量を評価し、寿命を予測する
ことが溶融炉の信頼性を向上させる耐火物の損傷量評価
方法を提供することにある。
[0006] Therefore, an object of the present invention is to provide a method for evaluating the amount of damage to a refractory in which the reliability of a melting furnace is improved by evaluating the amount of damage to in-furnace equipment constituted by the refractory and estimating the life. To provide.

【0007】[0007]

【課題を解決するための手段】本発明は、耐火物中に1
次元以上埋設した端子の物性値を測定し、損傷量を段階
的に評価することによって実環境下における炉内機器の
寿命を判断し、保守および部品の交換を決定することに
ある。
According to the present invention, there is provided a refractory comprising:
The purpose of the present invention is to measure the physical properties of terminals buried in dimensions or more, evaluate the damage in stages, determine the life of the furnace equipment in the actual environment, determine maintenance and replace parts.

【0008】埋設されるセンシング物質は酸素との接触
によって酸化損耗する黒鉛や、電気的信号を伝達する1
400℃以上の融点を有するW,Pt,Mo等の金属製
の導線,気体を循環させた1400℃以上の融点を有す
る耐熱金属製の中空管、などが適用可能であり、炉内機
器を構成する耐火物と損傷速度の異なる耐火物を被覆す
ることによって耐火物自身が損傷する以前に劣化を予測
することも可能な要素より構成される。代表的な埋設端
子を用いた炉壁構造を図2,図4,図6に示す。
[0008] The embedded sensing material is graphite which is oxidized and worn by contact with oxygen, and which transmits electric signals.
Metallic wires such as W, Pt, and Mo having a melting point of 400 ° C. or more, and heat-resistant metal hollow tubes having a melting point of 1400 ° C. or more in which gas is circulated can be applied. It is composed of elements that can predict the deterioration before the refractory itself is damaged by coating the refractory with the different refractory from the constituent refractory. A furnace wall structure using a typical buried terminal is shown in FIGS.

【0009】本発明による損傷量評価端子を構成する埋
設物質の物性値の変化は、埋設端子の被覆材が溶損また
は損耗することによって生ずる、黒鉛の損耗減少による
抵抗値の上昇,金属製導線の断線,気体を循環させた金
属製管内の流速,温度変化など埋設物質内部を移動する
媒体の通過前後の状態変化を測定することによって炉内
機器の損傷を評価する。
The change in the physical property value of the buried substance constituting the damage evaluation terminal according to the present invention is caused by an increase in the resistance value due to a decrease in the abrasion of graphite caused by the erosion or abrasion of the coating material of the buried terminal, and a metallic conductor. The damage to the furnace equipment is evaluated by measuring changes in the state before and after the passage of the medium moving inside the buried substance, such as disconnection of the pipe, flow velocity in the metal pipe in which the gas is circulated, and temperature changes.

【0010】一般に耐火物は多孔質であるため、実機部
材内部では1000℃以上の高温腐食性のガス環境下に
あり、埋設物質の黒鉛や金属は腐食や酸化により劣化す
る。実機部材に用いられる耐火物とこれに埋設される埋
設物質の被覆材との組み合わせにおいて、端子の被覆材
としては耐熱性を有するAl23,SiO2,Cr23
ZrO2 などの酸化物以外に、Si34,TiNなどの
窒化物、C,SiCなどの骨材および粒子からなる気孔
率の低い耐火物が有効である。
Generally, refractories are porous, so that they are in a high-temperature corrosive gas environment of 1000 ° C. or higher inside the actual machine members, and graphite and metals as buried substances are deteriorated by corrosion and oxidation. In a combination of a refractory used for a member of an actual machine and a covering material of a buried substance embedded in the refractory, heat-resistant Al 2 O 3 , SiO 2 , Cr 2 O 3 ,
In addition to oxides such as ZrO 2 , nitrides such as Si 3 N 4 and TiN, aggregates such as C and SiC, and low-porosity refractories made of particles are effective.

【0011】埋設物質の被覆材はスラグに対する溶損速
度が炉内機器を構成する耐火物に対する溶損速度よりも
速いことが望まれる。なぜなら耐火物中への著しいスラ
グの浸透をより事前に検知する必要があるためである。
It is desired that the coating material of the buried substance has a higher erosion rate for slag than a erosion rate for refractories constituting furnace equipment. This is because it is necessary to detect in advance the significant penetration of slag into the refractory.

【0012】[0012]

【表1】 [Table 1]

【0013】主要な耐火物の溶損および浸透性を回転円
筒式浸漬試験により評価した。試料は15mmφ×60mm
の円筒状試験片を用いた。使用したスラグの組成は35
wt%SiO2 −30wt%CaO−5wt%MgO−2
wt%Na2O−2wt%TiO2 、試験温度は140
0℃、浸漬時間は1〜10時間、試験片の回転数は30
0rpm とした。試験結果を表1に示す。溶損速度は
(a),(b),(c), (d),(e)の順で速く、Cr2
3系の(c),(d)はスラグが浸透しやすい。したが
って、耐火物と被覆材の組み合わせとして、炉壁および
スラグタップを耐火物(c)〜(d)で構成し埋設される
端子の被覆材に(a),(b)を使用するのが適切であ
る。
[0013] The erosion and permeability of the main refractories were evaluated by a rotating cylindrical immersion test. The sample is 15mmφ × 60mm
Was used. The composition of the slag used was 35
wt% SiO 2 -30 wt% CaO-5 wt% MgO-2
wt% Na 2 O-2wt% TiO 2, test temperature 140
0 ° C., immersion time is 1 to 10 hours, rotation number of test piece is 30
It was set to 0 rpm. Table 1 shows the test results. Erosion rate (a), faster in the order of (b), (c), (d), (e), Cr 2
In the O 3 -based (c) and (d), slag easily penetrates. Therefore, as a combination of a refractory and a covering material, it is appropriate that the furnace wall and the slag tap are composed of the refractory materials (c) to (d) and (a) and (b) are used as the covering material of the embedded terminal. It is.

【0014】(c),(d)のようなスラグが浸透が著し
い耐火物では、スラグに対する溶損速度が予め実験的に
求められた耐火物と被覆材を組み合わせることによっ
て、耐火物中へのスラグの浸透深さおよび耐火物の溶損
量が評価できる。
In the case of refractories in which slag is remarkably infiltrated as shown in (c) and (d), the erosion rate of the slag is determined by combining the refractory and the coating material, which have been experimentally determined in advance, so that the slag can be incorporated into the refractory. The penetration depth of the slag and the amount of erosion of the refractory can be evaluated.

【0015】埋設物の配置は、1次元,2次元,3次元
が可能であり各端子の物性値を測定することにより、耐
火物の損傷箇所および損傷量を経時的に評価できる。
The arrangement of the buried object can be one-dimensional, two-dimensional, or three-dimensional. By measuring the physical properties of each terminal, the damage location and the damage amount of the refractory can be evaluated with time.

【0016】上記に示した端子を予め炉内機器の設計限
界深さに埋設すれば、端子がスラグの浸入を検知した信
号を外部に設置した安全回路に伝達することにより、投
入廃棄物量,燃焼ガス温度等を適正量に制御するととも
に、緊急時には灰溶融システム全体を自動停止し、重大
事故の発生を未然に防止することが可能である。
If the terminals described above are buried in advance at the design limit depth of the furnace equipment, the terminal transmits a signal that detects the intrusion of slag to a safety circuit installed outside, so that the amount of waste input and combustion can be reduced. In addition to controlling the gas temperature and the like to an appropriate amount, it is possible to automatically stop the entire ash melting system in an emergency and prevent a serious accident from occurring.

【0017】[0017]

【発明の実施の形態】請求項に記載した事項に従い損傷
評価機能を有する端子を埋設した灰溶融炉の構成部材を
作製し、請求項目を実施。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A component of an ash melting furnace in which a terminal having a damage evaluation function is buried is manufactured according to the items described in the claims, and the claimed items are implemented.

【0018】<実施例1>廃棄物焼却灰溶融プラントの
なかの炉壁材について検討を行った。図2は黒鉛に耐火
物を被覆した端子の構造とこれを埋設した耐火物からな
る炉壁構造を示す。端子は形状が5mmφ×10mmの黒鉛
にアルミナ系耐火物のキャスタブル(98wt%Al2
3)を10mm被覆させた。また、黒鉛の抵抗を測定す
るために白金の導線を黒鉛に埋め込み接続した。
<Example 1> A furnace wall material in a waste incineration ash melting plant was examined. FIG. 2 shows a structure of a terminal in which graphite is coated with a refractory and a furnace wall structure made of the refractory in which the terminal is embedded. The terminals are made of graphite with a shape of 5 mmφ × 10 mm and castable with alumina refractory (98 wt% Al 2
O 3 ) was coated 10 mm. In addition, a platinum lead wire was embedded in graphite and connected to measure the resistance of graphite.

【0019】炉壁用耐火物には85wt%Al23−1
0wt%Cr23を主成分とするアルミナ・クロミア系
耐火物のキャスタブルを使用し、型に流し込むとともに
上記端子を埋設し、自然乾燥させた後1000℃に加熱
焼成し肉厚10cmの炉構造とした。
85 wt% Al 2 O 3 -1 is used for refractories for furnace walls.
Using a castable of alumina-chromia refractory containing 0 wt% Cr 2 O 3 as a main component, pouring it into a mold, embedding the above terminals, naturally drying, heating and firing at 1000 ° C., and furnace structure with a wall thickness of 10 cm And

【0020】炉壁耐火物に埋設した端子の配向は耐火物
の溶損量を段階的に評価できるように、端子(A)〜端
子(D)を深さ方向に対してそれぞれ1cm間隔,周方向
に対して炉壁材最表面から端子の先端がぞれぞれ2cm,
4cm,6cm,8cmの深さになるように埋設した。焼却灰
と飛灰からなる混合灰を上記炉構造を有する溶融炉にて
約1400℃に加熱し、混合灰を溶融スラグ化させた。
The orientation of the terminals buried in the furnace wall refractory is such that the terminals (A) to (D) are arranged at intervals of 1 cm in the depth direction so that the amount of erosion of the refractory can be evaluated stepwise. The tip of each terminal is 2cm from the outermost surface of the furnace wall material in the direction.
It was buried to a depth of 4 cm, 6 cm and 8 cm. The mixed ash composed of incinerated ash and fly ash was heated to about 1400 ° C. in a melting furnace having the above furnace structure to convert the mixed ash into molten slag.

【0021】ここで、焼却灰の組成は30wt%SiO
2 −15wt%Al23−15wt%CaO−5wt%N
2O、飛灰は40wt%SiO2 −15wt%Al2
3−15wt%CaO−5wt%Fe23を主要成分と
する。この結果、炉壁材が溶融スラグによって溶損する
と共に端子の被覆材が溶損し、黒鉛が損耗減少すること
によって各々の端子の抵抗値は運転時間に対して図3の
ように抵抗値の変化を示し、炉壁材の溶損量を実環境下
において段階的に評価できることが確認できた。
Here, the composition of the incinerated ash is 30 wt% SiO
2 -15wt% Al 2 O 3 -15wt % CaO-5wt% N
a 2 O, fly ash is 40 wt% SiO 2 -15 wt% Al 2 O
The 3 -15wt% CaO-5wt% Fe 2 O 3 as main components. As a result, the furnace wall material is eroded by the molten slag and the terminal coating material is eroded, and the graphite is reduced in wear. As a result, the resistance value of each terminal changes with the operation time as shown in FIG. As a result, it was confirmed that the amount of erosion of the furnace wall material can be evaluated stepwise under the actual environment.

【0022】<実施例2>図4は実施例1の埋設物質に
使用した黒鉛の代わりに耐熱合金の中空管を用いた端子
の構造を示す。内径5mm,外径6mmの中空管をコの字に
曲げ、埋設部分を実施例1と同一のキャスタブルで施工
し被覆した。管内にN2 ガスを一定の流速で循環させ、
外部で流速を測定した。炉壁構造および端子の配置は実
施例1と同一である。耐火物が溶損するとともに端子の
被覆材が溶損し、管内に溶融スラグが流出し固化するこ
とによって図5のように管内のガス流速の低下を示し、
段階的に炉壁材の損傷量を評価できることを確認した。
<Embodiment 2> FIG. 4 shows the structure of a terminal using a heat-resistant alloy hollow tube in place of the graphite used for the buried substance of the embodiment 1. A hollow tube having an inner diameter of 5 mm and an outer diameter of 6 mm was bent in a U-shape, and the buried portion was constructed and cast with the same castable as in Example 1. Circulate N 2 gas at a constant flow rate in the pipe,
The flow rate was measured externally. The furnace wall structure and the arrangement of the terminals are the same as in the first embodiment. As the refractory is melted and the terminal coating material is melted and the molten slag flows out and solidifies in the pipe, the gas flow velocity in the pipe decreases as shown in FIG.
It was confirmed that the damage amount of the furnace wall material could be evaluated step by step.

【0023】また、N2 ガスの入口温度と出口温度の差
を測定し、減肉によるN2 ガスへの入熱量の変化を測定
することでも耐火物の損傷を予測することが可能であ
る。この場合、運転モードによる温度変動を相殺するた
めに、健全部に別途同一の中空管を設置し、運転温度の
変動に起因する温度差変化をキャンセルすることが望ま
しい。
Further, to measure the difference between the inlet temperature and the outlet temperature of the N 2 gas, also by measuring the change in heat input to the N 2 gas by thinning it is possible to predict the damage of refractories. In this case, in order to cancel the temperature fluctuation due to the operation mode, it is preferable to separately install the same hollow tube in the sound part to cancel the temperature difference change caused by the operation temperature fluctuation.

【0024】<実施例3>図6は埋設物質に金属製の導
線を用いた端子の構造を示す。埋設部分を実施例1と同
一方法で施工・被覆した直径1mmの白金線をコの字に曲
げ、外部で電流値を測定する。炉壁構造および端子の配
置は実施例1と同一である。耐火物が溶損するのにとも
なって端子の被覆材が溶損し、図7のように導線の断線
が測定され炉壁材の損傷量を段階的に評価できることを
確認した。
<Embodiment 3> FIG. 6 shows a structure of a terminal using a metal conductive wire as an embedded material. A 1 mm-diameter platinum wire having a buried portion constructed and covered in the same manner as in Example 1 is bent into a U-shape, and the current value is measured outside. The furnace wall structure and the arrangement of the terminals are the same as in the first embodiment. As the refractory melted, the coating material of the terminal was melted, and as shown in FIG. 7, the disconnection of the conductor was measured, and it was confirmed that the damage amount of the furnace wall material could be evaluated stepwise.

【0025】[0025]

【発明の効果】本発明によれば、溶融炉炉内機器を構成
する耐火物中に埋設させた端子を1次元以上配置させ、
当該端子の抵抗値,電流値,気体の流速等の物性の変化
を測定することにより、耐火物からなる機器の損傷量が
評価ができるため、廃棄物溶融炉,石炭ガス化炉,金属
溶融炉等の耐火物からなる機器の信頼性を向上させるこ
とができる。
According to the present invention, the terminals buried in the refractory constituting the equipment in the melting furnace are arranged at least one dimension.
By measuring changes in physical properties such as the resistance value, current value, and gas flow velocity of the terminal, the amount of damage to refractory equipment can be evaluated, so that waste melting furnaces, coal gasification furnaces, metal melting furnaces It is possible to improve the reliability of equipment made of refractory such as.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の旋回灰溶融炉の構成を説明する側断面
図。
FIG. 1 is a side sectional view illustrating a configuration of a swirling ash melting furnace of the present invention.

【図2】損傷量評価端子を埋設した炉壁構造を示す平面
図。
FIG. 2 is a plan view showing a furnace wall structure in which a damage evaluation terminal is embedded.

【図3】灰溶融炉運転時間と損傷量評価端子の抵抗率と
の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between an ash melting furnace operation time and a resistivity of a damage evaluation terminal.

【図4】耐熱鋼製の中空管を用いた端子の構造と炉壁構
造とを示す断面図。
FIG. 4 is a cross-sectional view showing a structure of a terminal using a heat-resistant steel hollow tube and a furnace wall structure.

【図5】灰溶融炉運転時間と損傷量評価端子のN2 ガス
流速との関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between an ash melting furnace operation time and a N 2 gas flow rate at a damage amount evaluation terminal.

【図6】白金線を用いた端子の構造と炉壁構造を示す平
面図。
FIG. 6 is a plan view showing a structure of a terminal using a platinum wire and a furnace wall structure.

【図7】灰溶融炉運転時間と損傷量評価端子の電流値と
の関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between an ash melting furnace operation time and a current value of a damage evaluation terminal.

【符号の説明】[Explanation of symbols]

1…チャー空気送入口、2…溶融炉本体、3…炉壁、4
…スラグタップ、5…スラグ冷却水槽、6…スラグ取り
出し口、7…排出口、8…Al23−Cr23系耐火
物、9…断熱部、10…アンカー、11…被覆材(Al
23系耐火物)、12…黒鉛、13…白金線、14…耐
熱鋼製の中空管。
DESCRIPTION OF SYMBOLS 1 ... Char air inlet, 2 ... Melting furnace main body, 3 ... Furnace wall, 4
... slag tap, 5 ... slag cooling water bath, 6 ... slag outlet, 7 ... exhaust port, 8 ... Al 2 O 3 -Cr 2 O 3 based refractories, 9 ... heat insulating portion, 10 ... anchor, 11 ... covering material ( Al
2 O 3 refractory), 12: graphite, 13: platinum wire, 14: heat-resistant steel hollow tube.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/027 ZAB F23G 5/50 R 4K056 5/50 G01N 13/04 G01N 13/04 27/04 Z 27/04 B09B 3/00 302E 303K (72)発明者 小林 啓信 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宇津野 英明 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 児島 慶享 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 2G060 AA20 AE01 AF07 AG01 EA06 KA11 3K061 AA23 AC01 AC11 AC12 AC13 BA05 BA06 DA01 DA11 DB17 FA05 FA17 FA28 3K062 AA23 AB03 AC01 AC11 AC12 AC13 BA02 BA05 CA01 CB03 DA36 DA40 4D004 AA46 AA50 AB09 CA27 CA29 CA45 CC02 DA01 DA20 4G012 JG03 4K056 AA05 CA02 FA19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23G 5/027 ZAB F23G 5/50 R 4K056 5/50 G01N 13/04 G01N 13/04 27/04 Z27 / 04 B09B 3/00 302E 303K (72) Inventor Hironobu Kobayashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Hideaki Utsuno, Ibaraki Prefecture Hitachi 1-1, Hitachi, Ltd. (72) Inventor Yoshitaka Kojima 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 2G060 AA20 AE01 AF07 AG01 EA06 KA11 3K061 AA23 AC01 AC11 AC12 AC13 BA05 BA06 DA01 DA11 DB17 FA05 FA17 FA28 3K062 AA23 AB03 AC01 AC11 AC12 AC13 BA02 BA05 CA01 CB03 DA36 DA40 4D0 04 AA46 AA50 AB09 CA27 CA29 CA45 CC02 DA01 DA20 4G012 JG03 4K056 AA05 CA02 FA19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】廃棄物を熱分解ガス化し溶融固化する溶融
炉において、耐火物により構成される機器の損傷を耐火
物内部を移動する媒体の通過前後の状態変化により検出
することを特徴とする耐火物の損傷量評価方法。
In a melting furnace for thermally decomposing a waste into a gas, pyrolysis gas is melted and solidified, wherein damage to equipment constituted by the refractory is detected by a change in state before and after passage of a medium moving inside the refractory. Refractory damage evaluation method.
【請求項2】廃棄物を熱分解ガス化し溶融固化する溶融
炉において、機器に使用される耐火物と損傷速度の異な
る物質を埋設物質の表面に被覆し、耐火物の損傷を検知
できることを特徴とする埋設端子とその埋設端子を用い
て損傷を予測することを特徴とする耐火物の損傷量評価
方法。
2. In a melting furnace in which waste is pyrolyzed into gas and melted and solidified, the surface of the buried substance is coated with a substance having a different damage rate from that of a refractory used in equipment, and damage to the refractory can be detected. A method for evaluating the amount of damage to a refractory, wherein the damage is predicted using the buried terminal and the buried terminal.
【請求項3】廃棄物を熱分解ガス化し溶融固化する溶融
炉において、請求項1又は2に記載の埋設物を損傷の進
行方向と平行に1次元以上設置することにより、スラグ
の浸透および溶損を段階的に評価できることを特徴とす
る耐火物の損傷量評価方法。
3. A melting furnace in which waste is pyrolyzed into gas and melted and solidified, and the slag is infiltrated and melted by installing the buried object according to claim 1 or more in one or more dimensions parallel to the direction of damage. A method for evaluating the amount of damage to a refractory, characterized in that the loss can be evaluated stepwise.
【請求項4】耐火物の内部にスラグおよびガス雰囲気と
接触し損傷する物質よりなる端子を埋設し、端子の電気
的,磁気的,熱的特性等の変化を測定することにより耐
火物における損傷の進行を検知することを特徴とする耐
火物の損傷量評価方法。
4. A terminal made of a substance which comes into contact with and is damaged by slag and a gas atmosphere inside the refractory, and the change in the electrical, magnetic, thermal characteristics, etc. of the terminal is measured to thereby prevent damage to the refractory. A method for evaluating the amount of damage to a refractory, characterized by detecting the progress of fire.
【請求項5】請求項1から4のいずれか1項に記載した
損傷量評価方法を用い、耐火物からなる構成機器の損傷
を検知し、システムの信頼性向上を有する一般ゴミ,産
業廃棄物,原子力廃棄物および製鉄用溶融炉に使用する
ことを特徴とする耐火物の損傷量評価方法。
5. A general garbage or industrial waste having a reliability improvement of a system by detecting damage to a component device made of a refractory by using the damage amount evaluation method according to any one of claims 1 to 4. A method for evaluating the amount of damage to refractories, which is used in melting furnaces for nuclear waste and steelmaking.
JP10341333A 1998-12-01 1998-12-01 Method for evaluating damage on refractory Pending JP2000161868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341333A JP2000161868A (en) 1998-12-01 1998-12-01 Method for evaluating damage on refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341333A JP2000161868A (en) 1998-12-01 1998-12-01 Method for evaluating damage on refractory

Publications (1)

Publication Number Publication Date
JP2000161868A true JP2000161868A (en) 2000-06-16

Family

ID=18345254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341333A Pending JP2000161868A (en) 1998-12-01 1998-12-01 Method for evaluating damage on refractory

Country Status (1)

Country Link
JP (1) JP2000161868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143491A1 (en) * 2017-02-01 2018-08-09 박성재 System for integratedly managing heated member and method for controlling same
CN108709790A (en) * 2018-05-02 2018-10-26 佛山市高明区杨和金属材料专业镇技术创新中心 A kind of exhaust apparatus of microwave dissolver
WO2023153757A1 (en) * 2022-02-09 2023-08-17 엑셀로 주식회사 Refractory body wear detection sensor and system
US11940218B2 (en) 2017-02-01 2024-03-26 Seung Jae Park Integrated heated member management system and method for controlling same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143491A1 (en) * 2017-02-01 2018-08-09 박성재 System for integratedly managing heated member and method for controlling same
US11940218B2 (en) 2017-02-01 2024-03-26 Seung Jae Park Integrated heated member management system and method for controlling same
CN108709790A (en) * 2018-05-02 2018-10-26 佛山市高明区杨和金属材料专业镇技术创新中心 A kind of exhaust apparatus of microwave dissolver
WO2023153757A1 (en) * 2022-02-09 2023-08-17 엑셀로 주식회사 Refractory body wear detection sensor and system

Similar Documents

Publication Publication Date Title
JP2000161868A (en) Method for evaluating damage on refractory
CZ291083B6 (en) Method of indicating real time indications of corrosion and rate of material degradation of a component and apparatus for making the same
JP2669277B2 (en) Method and apparatus for estimating life of ceramic sintered body
JP2011158206A (en) Melt level measuring device and melt level measuring method
JP2001263620A (en) Plasma arc melting furnace
JP2009079872A (en) Refractory lining layer structure of torpedo car furnace body and method for determining thickness of refractory lining layer of torpedo car furnace body
JPH08254530A (en) Method and system for estimation of life by nondestruction of ceramic member
JPH07270356A (en) High-temperature corrosion-monitoring apparatus
US5749932A (en) Refractory electrodes for joule heating and methods of using same
JP3739940B2 (en) Waste melting furnace
JP3496690B2 (en) Melting furnace and its zirconia refractories
JPH10122544A (en) Control method of molten boundary layer in melting furnace of incinerated residue
JP2001012722A (en) Heating/melting processing apparatus
JP2004045030A (en) Waste melting furnace
JP2004019977A (en) Melting furnace
JP3375758B2 (en) Furnace for melting waste
Ishino et al. Optimisation of evaluation techniques for glass furnace refractories
JP3922623B2 (en) Crucible abnormality detection method
JP3542263B2 (en) Furnace wall structure of electric melting furnace
JP3375722B2 (en) Apparatus and method for melting incinerated ash and incinerated fly ash
JP2000233968A (en) Melting section member containing ceramic fiber
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
JPH10196925A (en) High-temperature air heater and combustion melting furnace
JP3139663B2 (en) Apparatus and method for melting incinerated ash and incinerated fly ash
JP2003287395A (en) Ceramic pipe for heat exchanger and method of manufacture