JP3922569B2 - Steel and marine steel structures - Google Patents

Steel and marine steel structures Download PDF

Info

Publication number
JP3922569B2
JP3922569B2 JP2003055943A JP2003055943A JP3922569B2 JP 3922569 B2 JP3922569 B2 JP 3922569B2 JP 2003055943 A JP2003055943 A JP 2003055943A JP 2003055943 A JP2003055943 A JP 2003055943A JP 3922569 B2 JP3922569 B2 JP 3922569B2
Authority
JP
Japan
Prior art keywords
steel
sheet pile
steel sheet
corrosion
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055943A
Other languages
Japanese (ja)
Other versions
JP2004263262A (en
Inventor
正浩 野路
清一 小山
啓眞 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003055943A priority Critical patent/JP3922569B2/en
Publication of JP2004263262A publication Critical patent/JP2004263262A/en
Application granted granted Critical
Publication of JP3922569B2 publication Critical patent/JP3922569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海岸、湾岸、河川において岸壁や護岸形成等に使用される鋼材および海洋鋼構造物に関する。
【0002】
【従来の技術】
近年、建造物を取り巻く環境に対する意識の高まり、建設コスト縮減等のニーズ等により、構造物の長寿命化が重要課題となっている。これまでは、構造物の供用年数を50年程度に設定しておけば十分とされたものでも、100年以上の供用年数を設定するケースも見受けられる。特に、海洋鋼構造物の場合、長期供用を図るためには、如何にして構造物の耐食性を高めるかが課題の一つとされ、これまで様々な研究がなされてきた。
従来、海洋鋼構造物を防食する方法として、耐海水ステンレス鋼板やチタンクラッド鋼板などの高耐食性金属板からなる被覆材をその外周に被覆する方法が知られている(例えば、特許文献1、特許文献2参照)。
【0003】
【特許文献1】
特開平11−293663号公報
【特許文献2】
特開2000−199224号公報
【0004】
【発明が解決しようとする課題】
ところが、海洋鋼構造物が、鋼矢板や鋼管矢板などのように継手を有する構造物であったり、継手を有しない場合であっても、海洋鋼構造物自体が例えばH形鋼杭のように複雑な形状の場合には、複雑な形状の金属被覆材を製造するのは困難である。
また、海洋鋼構造物が鋼管杭の場合には、金属被覆材の加工はしやすいものの、被覆材自体に漂流物などが衝突して貫通孔が生じると、この部分で異種金属接触腐食が発生するので、その対策として絶縁や保護を目的として樹脂を挟んでおく必要がある。
【0005】
本発明は、このような事情に鑑みて為されたもので、どのような形状の構造物であっても複雑な形状の被覆材を製造する必要がなく、防食部の損傷により防食効果が低下する恐れのない鋼材および海洋鋼構造物を提供することを目的とする。
【0006】
【課題を解決するための手段】
【0010】
請求項1に記載の鋼材は、長手方向に連続する継手を有し、この継手同士を連結して矢板壁を製造可能な炭素鋼とステンレス鋼とからなる鋼材であって、継手から継手に至る部位の少なくとも一部が下記(1)式で表される孔食指数PIが40以上のステンレス鋼であることを特徴とする。
孔食指数PI=[Cr]+3.3{[Mo]+0.5[W]}+16[N]・・・(1)
ここで、[ ]内は各元素の重量%を表す。
【0011】
本発明は、例えば、U形、ハット形、H形等の鋼矢板、鋼管矢板、角形鋼管に継手を取り付けたボックス形鋼矢板、ハット形鋼矢板のウェブにH形鋼やT形鋼などを取り付けた鋼材など、継手を有する様々な形状の鋼材に適用できる。また、炭素鋼とステンレス鋼とは、例えば、溶接によって接合したり、あるいはボルト等の固定具により接合したりすることができる。この場合、ボルト等の固定具も上記(1)式で表される孔食指数PIが40以上のステンレス鋼により形成されていることが好ましい。
【0012】
請求項1に記載の発明においては、継手から継手に至る部位の少なくとも一部が、海水に対する耐食性能が極めて大きい上記(1)式で表される孔食指数PIが40以上のステンレス鋼により構成されている。したがって、鋼材のこの面が海側に面するように配置すれば、海に面し腐食環境の厳しい部分の耐食性能の向上させることができる。
また、炭素鋼にステンレス鋼を接合するだけで良く、ステンレス鋼は海側に面する一部分だけで良いので、鋼材の製造コストを低く抑えることができる。
さらに、ステンレス鋼自体が高い耐食性を有するので、金属被覆による防食のように、漂流物が衝突し貫通孔が生じ、異種金属接触腐食が発生して防食性が低下する恐れもない。したがって、長期間にわたって高耐食性を有する矢板壁等を製造することができる。
【0013】
ここで、孔食指数が40以上のステンレス鋼とする部位は、鋼材が水底地盤に打ち込まれた際に水に接する部位等、腐食しやすい部位とすればよいが、その他の部位もステンレス鋼としてもよい。
【0014】
請求項2に記載の海洋鋼構造物は、請求項1に記載の鋼材が、水底地盤に打ち込まれて成る海洋鋼構造物であって、前記鋼材が水底地盤に打ち込まれた際に干満帯近傍の水中部となる位置および飛沫帯となる位置が、前記ステンレス鋼であることを特徴とする。
【0015】
請求項2に記載の発明においては、水底地盤に打ち込まれた際に、海水などの水に接することで腐食しやすい、干満帯近傍の水中部および飛沫帯となる部分の腐食が防止され、長期間の供用年数を有し、長期的に安定して使用することができる。
すなわち、打設後の防食処理をすることなく鋼材を打設するだけで、耐食性に優れた海洋鋼構造物とすることができるので、現場での施工速度に優れコスト削減が図れるのみならず、海中作業による作業性の低下や現場作業者の技量のばらつきにより耐食性が損なわれることもない。
【0016】
請求項3に記載の海洋鋼構造物は、請求項2に記載の発明において、電気防食が施されていることを特徴とする。
【0017】
請求項3に記載の発明においては、炭素鋼とステンレス鋼の接合位置が水中に位置する場合でも異種金属接触腐食を防ぐことができる。また、岸に沿って水底地盤に打ち込まれた海洋鋼構造物の水に接する鋼面部分には、電気防食が施されているので、チタン材で海洋鋼構造物を被覆する従来のもののように水素吸収による脆化が起こる恐れがなく、鋼面部分における腐食を防ぐことができる。
【0018】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を詳細に説明する。
図1〜図3は、本発明の第1の実施の形態を示す図であって、図1は、本実施の形態に係る海洋構造物としての矢板壁の要部を示す概略縦断面図、図2は、図1の矢板壁の横断面図、図3は、図1の矢板壁の斜視図である。
本実施の形態に係る矢板壁10は、複数個の鋼矢板(鋼材)1が、海岸7Aに沿って直立するように海底地盤(水底地盤)7に打ち込まれるとともに、これらの鋼矢板1が直線状に連結されて形成されている。この鋼矢板(海洋鋼構造物)1は、U形鋼矢板であって、ウェブ2とこのウェブ2の両端からそれぞれ斜めに立ち上げられたフランジ3,3と各フランジ3,3の端部に対称形に設けられた継手4,4とを備えている。矢板壁10は、各鋼矢板1が交互に反対向きに配置され、隣接する継手4,4どうしが係合されて形成されている。
【0019】
矢板壁10を形成する鋼矢板1の上端部1aは、それぞれ陸上に設けられる湾岸構造物のコンクリート製の基端部5に埋設されており、下端部1bは海底地盤7に埋め込まれ、さらに上端部1aと下端部1bとの間の部位は、それぞれ下方から海中に配置される海中部(水中部)1cと、海が干満した際の海面レベルSが変動する範囲(H.W.L〜L.W.Lの間)と略同レベルに位置する干満帯1dと、波の飛沫がかかる飛沫帯1eとなっており、1fは気中部となっている。
【0020】
鋼矢板1は、炭素鋼からなるU形鋼矢板21と、このU形鋼矢板21と断面が同一で、かつ下記(1)式で表される孔食指数(Pitting Index : PI)が40以上のステンレス鋼からなるU形鋼矢板22とが長手方向に溶接により接合されて形成されている。
孔食指数PI=[Cr]+3.3{[Mo]+0.5[W]}+16[N]・・・(1)
ここで、[ ]内は各元素の重量%を表す。
この鋼矢板1においては、上端部1aから気中部1f、飛沫帯1e、干満帯1dおよび海中部1cの干満帯1d直下の部分に渡る部分が、上記ステンレス鋼からなるU形鋼矢板22により構成されており、このU形鋼矢板22の下方に炭素鋼からなるU形鋼矢板21が接合されている。
なお、孔食指数PIが40以上のステンレス鋼は、自然海水慣用において孔食や隙間腐食が起こりにくいものである。
【0021】
ここで、U形鋼矢板(ステンレス鋼)22を構成する孔食指数が40以上のステンレス鋼材としては、例えば、社団法人鋼材倶楽部編「海洋鋼構造物の防食Q&A」技報堂出版に挙げられている、フェライト系・オーステナイト系・二相系の耐海水性ステンレス鋼など、上記(1)式を満足する耐食性ステンレス鋼であれば良い。
ステンレス鋼は、その組成により大きく性質が異なるので、孔食指数を満足することに加えて、鋼矢板の形状に応じて溶接性や加工性、コストという観点からも適当な材料を選定すれば良い。例えば、Cr含有量が高い高耐食性フェライト系ステンレス鋼は、特にCやNを低減しておかないと耐衝撃特性が損なわれ易い他、溶接時には大気中のNを吸収すると溶着鋼の靭性が低下するという問題がある。また、オーステナイト系ステンレス鋼は、比較的Ni,Mo量が高く高価であり、かつ隙間腐食感受性があるという課題がある。すなわち、材料選定の際には、耐食性に加えて必要とされる曲げ加工等の加工性、接合時の溶接性、コスト等を勘案して最適材料を選定すれば良い。この観点より、本発明において用いる耐食性ステンレス鋼としてふさわしい材料としては、特開平5−132741号公報記載の高耐食・高強度二相ステンレス鋼が一例として挙げられる。
【0022】
特開平5−132741号公報記載の二相ステンレス鋼材は、重量%で、C:0.03%以下、Si:1.0%以下、Mn:1.5%以下、P:0.040%以下、S:0.008%以下、sol.Al:0.04%以下、Ni:5.0〜9.0%、Cr:23.0%〜27.0%、Mo:2.0〜4.0%、W:1.5%を超え5.0%まで、N:0.24〜0.32%、Fe及び不可避不純物:残部なる化学組織を有し、しかも前記(1)式で表される孔食指数が40以上である高耐食・高強度二相ステンレス鋼である。この二相ステンレス鋼は、耐食性が極めて高く、強度が高いので、流木等の浮遊物衝突による損傷の恐れが低い。さらに、σ相等の金属間化合物の析出が少なく熱的組織安定性に優れるので、溶接の熱影響による鋭敏化や脆化という問題もなく、加工性や溶接性に優れ、さらに、NiやMo量も少ないので、比較的安価であるという点で本発明に使用するステンレス鋼(U形鋼矢板22)に適している。
【0023】
上記鋼矢板1において、炭素鋼からなるU形鋼矢板21のうち、海中部1cを構成する部分、海中に接触する鋼面部分には、流電陽極6が設けられ、この流電陽極6により前記鋼面部分の腐食が防止される電気防食処理がなされている。この電気防食により、U形鋼矢板(ステンレス鋼)22とU形鋼矢板(炭素鋼)21との接合部分の異種金属接触腐食が防止される。鋼面の腐食を防止する(−0.77V vs. SCEより卑な電位に保つ)ため用いられる流電陽極としては、Al合金、Zn合金等が使用される。
【0024】
なお、前記の高耐食・高強度二相ステンレス鋼はフェライト相を含むため若干の水素脆化感受性を有する材料なので、U形鋼矢板(ステンレス鋼)22に用いる場合には、-1.05V vs. SCEより卑な電位にはならないよう過防食に配慮する必要がある。流電陽極としてAL合金を用いた場合であっても、一般的に、−1.05Vvs. SCEより卑な電位にはならず、流電陽極の製品としてのばらつきを考えても、高々−1.10V vs. SCE程度である。なお、Zn合金を用いた場合には高々−1.0Vvs. SCE程度である。また、海中部の鋼面の腐食を防ぐ目的で取り付ける流電陽極は、あまり浅い位置に取り付けると、流木等の衝突により流電陽極自体が外れる等の懸念があることや、鋼面全体を効果的に防食すること等により、流電陽極はU形鋼矢板(ステンレス鋼)22の下端よりさらに下に取り付けられる。
【0025】
一般的には、前記二相ステンレスをU形鋼矢板22に用いた場合であっても、二相ステンレスによるU形鋼矢板22の下端位置の電位は、流電陽極取り付け位置よりも貴となり、−1.05V vs. SCEより十分に貴な電位となるので、前記二相ステンレスをU形鋼矢板22に用いても、実用上、水素脆化の恐れはない。つまり、適正カソード防食電位域がないチタン被覆の場合と異なり、流電陽極取り付け位置やZn合金による流電陽極を用いる等の配慮をするだけでよく、従来の電気防食と塗装との併用工法において、過防食に伴う塗膜の陰極剥離を防ぐため、防食電位に配慮するのと同様の配慮をするだけでよい。
【0026】
また、鋼矢板1において、U形鋼矢板(ステンレス鋼)22とU形鋼矢板(炭素鋼)21との接合部分の陸側の土砂と接する面には、ポリウレタン塗装(防食被覆)が施されている。一般的に、U形鋼矢板(ステンレス鋼)22とU形鋼矢板(炭素鋼)21との接合部分の土砂と接触する陸側においては、酸素の供給が少なく腐食速度は小さいので、異種金属接触によるU形鋼矢板(炭素鋼)21の腐食速度は海側のそれに比べて非常に遅い。したがって、必ずしも防食の必要はないが、前記鋼矢板1では、前記接合部の近傍をポリウレタン塗装により防食被覆を施している。また、U形鋼矢板(ステンレス鋼)22の陸側の土砂と接する面をポリウレタン塗装し、カソードとなる面積をより小さくすることにより、異種金属接触腐食がさらに発生し難いものとすることもできる。
【0027】
このように矢板壁10を構成する鋼矢板1において、上端部1aから気中部1f、飛沫帯1e、干満帯1dおよび海中部1cの干満帯1d直下の部分に渡る部分が、孔食指数が40以上のステンレス鋼材を用いたU形鋼矢板により構成されており、この部分の耐食性能の向上を図ることができる。
【0028】
以上の通り、本発明によれば、耐食被覆するため必要となるクラッド鋼の複雑な加工の問題、さらには、クラッド鋼端部における異種金属接触腐食という様々な従来技術の課題を解決することが可能となる。また、流木等の衝突による損傷に伴い異種金属接触腐食が発生する恐れもなく、耐食効果を維持することができるので、従来のように絶縁や保護を目的として樹脂を介在させるなどの必要がない。
また、工場で管理された状態で炭素鋼と高耐食性ステンレス鋼とを接合し、この鋼材を現場にて打設するだけでよいので、海中作業が伴うことによるコストアップの問題のみならず、現場作業者の技量のばらつきによる耐食性のばらつき発生の問題も生じない。
そして、この容易に製造することができる高耐食性を具備する鋼矢板1を連結してなる矢板壁10は、長期期間にわたって安定して供用することができる。
【0029】
なお、上述の実施の形態では、U形鋼矢板22を鋼矢板1における上端部1aから海中部1cの干満帯1d直下の部分までに渡る部分に設けたが、U形鋼矢板(ステンレス鋼)22をこれ以外の部分に設けることもできる。また、U形鋼矢板(ステンレス鋼)22およびU形鋼矢板(炭素鋼)21は、複数個を長手方向に接合することもできる。
【0030】
また、上述の実施の形態においては、鋼矢板1により構成される矢板壁10は、海岸に設けられたものとしたが、本発明はこれに限定されるものではなく、湾岸、川岸などにおいて岸壁や護岸として利用されるものなどでもよい。
【0031】
図4および図5は、本発明の第2の実施の形態を示す図であって、図4は、本実施の形態に係る鋼材を示す斜視図、図5は、図4の鋼材を使用した矢板壁の横断面図である。
【0032】
図4に示すように、本実施の形態に係る鋼材(鋼矢板)30は、ハット形鋼矢板40のウェブにH形鋼50が溶接により接合されて構成されている。
ハット形鋼矢板40は、ウェブ41と、このウェブ41の両端からそれぞれ斜めに立ち上げられたフランジ42,42と、各フランジ42,42の各端部からウェブ41と平行に延びる腕部43,43と、各腕部43,43の各端部に設けられた継手44,45とを備えている。H形鋼50は、ウェブ51と、このウェブ51の両端にそれぞれ設けられたフランジ52,52とを備えている。鋼材30は、ハット形鋼矢板40のウェブ41における腕部43と反対側の面と、H形鋼50の一方のフランジ52の外側面とが当接され、溶接により一体化されている。
【0033】
ハット形鋼矢板40は、炭素鋼からなるハット形鋼矢板60と、このハット形鋼矢板60と断面が同一で、かつ前記(1)式で表される孔食指数が40以上のステンレス鋼からなるハット形鋼矢板70とが長手方向に溶接により接合されている。
【0034】
このように構成された鋼材(鋼矢板)30が、第1の実施の形態と同様に、海岸に沿って直立するように海底地盤(水底地盤)に複数個打ち込まれるとともに、これらの鋼材30が直線状に連結されることにより、矢板壁が形成される。すなわち、図5に示すように、複数個の鋼材30がハット形鋼矢板40が海側に位置するように配置され、隣接する継手44,45が係合されて直線状に連結されることにより、矢板壁10Aが形成される。なお、本実施の形態では、鋼材30どうしを連結する例で説明するが、鋼材30と鋼材40とを交互に配置するなど、連結する鋼材は必ずしも同形状の鋼材どうしでなくても良い。
【0035】
第1の実施の形態の場合と同様に、この矢板壁10Aを形成する鋼材30の上端部は、それぞれ陸上に設けられる湾岸構造物のコンクリート製の基端部に埋設されており、下端部は海底地盤に埋め込まれ、さらに上端部と下端部との間の部位は、それぞれ下方から海中に配置される海中部(水中部)と、海が干満した際の海面レベルが変動する範囲(H.W.L〜L.W.Lの間)と略同レベルに位置する干満帯と、波の飛沫がかかる飛沫帯となっており、飛沫帯と埋設された上端部との間は気中部となっている。
【0036】
この鋼材(海洋鋼構造物)30においては、海側に位置するハット形鋼矢板40の上端部から気中部、飛沫帯、干満帯および海中部の干満帯直下の部分に渡る部分が、前記(1)式で表される孔食指数が40以上のステンレス鋼からなるハット形鋼矢板70により構成されており、このハット形鋼矢板(ステンレス鋼)70の下方に炭素鋼からなるハット形鋼矢板60が接続されている。
【0037】
鋼材30において、ハット形鋼矢板40の炭素鋼からなるハット形鋼矢板60のうち、海中部を構成する部分、海中に接触する鋼面部分には、第1の実施の形態の場合と同様に、流電陽極が設けられ、この流電陽極により前記鋼面部分の腐食が防止される電気防食処理がなされている。この電気防食により、ハット形鋼矢板70とハット形鋼矢板60との接合部分の異種金属接触腐食が防止される。
【0038】
また、鋼材30において、ハット形鋼矢板(ステンレス鋼)70とハット形鋼矢板(炭素鋼)60との接合部分、およびハット形鋼矢板(ステンレス鋼)70とH形鋼50との接合部分の陸側の土砂と接する面には、第1の実施の形態の場合と同様に、ポリウレタン塗装(防食被覆)が施されている。一般的に、陸側の土砂と接触するこれらの接合部分においては、酸素の供給が少なく腐食速度は小さいものであるため、異種金属接触によるハット形鋼矢板(炭素鋼)60およびH形鋼50の腐食速度は海側のそれに比べて非常に遅いものとなっており、防食の必要はない。しかし、前記鋼材30では、ハット形鋼矢板(ステンレス鋼)70の陸側の土砂と接する面をポリウレタン塗装し、カソードとなる面積をより小さくすることにより、異種金属接触腐食がさらに発生し難いものとなっている。
【0039】
図6は、本発明の第3の実施の形態に係るH形鋼矢板を示す斜視図である。
このH形鋼矢板(鋼材)80は、ウェブ81と、このウェブ81の両端にそれぞれ溶接により接合されたフランジ82,82とを備えている。各フランジ82の両端部にはそれぞれ継手83が形成されている。両フランジ82,82の一方のフランジ82は、フランジ(炭素鋼)84と、このフランジ84と断面が同一で、かつ前記(1)式で表される孔食指数が40以上のステンレス鋼からなるフランジ85とが長手方向に溶接により接合(接続)されて形成されている。
【0040】
このように構成されたH形鋼矢板80が、第1の実施の形態と同様に、海岸に沿って直立するように海底地盤(水底地盤)に複数個打ち込まれるとともに、これらのH形鋼矢板80が直線状に連結されることにより、矢板壁が形成される。すなわち、複数個のH形鋼矢板80が、フランジ(ステンレス鋼)85とフランジ(炭素鋼)84とを備えたフランジ82が海側に位置するように配置され、隣接する継手83どうしが係合されて直線状に連結されることにより、矢板壁が形成される。
【0041】
このH形鋼矢板(海洋鋼構造物)80においては、海側に位置するフランジ82の上端部から気中部、飛沫帯、干満帯および海中部の干満帯直下の部分に渡る部分が、前記(1)式で表される孔食指数が40以上のステンレス鋼からなるフランジ85により構成されており、このフランジ84の下方に炭素鋼からなるフランジ84が接続されている。
【0042】
図7は、本発明の第4の実施の形態に係る鋼管杭を示す斜視図である。
この鋼管杭(鋼材)90は、炭素鋼からなる鋼管91と、この鋼管91と断面が同一で、かつ前記(1)式で表される孔食指数が40以上のステンレス鋼からなる鋼管92とが長手方向に溶接により接合されて形成されている。
【0043】
このように構成された鋼管杭90が、水底地盤に打ち込まれて海洋鋼構造物とされる場合には、鋼管杭90の上端部から気中部、飛沫帯、干満帯および海中部の干満帯直下の部分に渡る部分が、前記(1)式で表される孔食指数が40以上のステンレス鋼からなる鋼管92により構成されており、この鋼管92の下方に炭素鋼からなる鋼管91が接合されている。
【0044】
【発明の効果】
以上説明したように、本発明によれば、長期間の供用年数に耐えうる高防食性を備えたものとなり、水底地盤に下端部が埋め込まれた際に、表面が水に接触していても長期的に安定して使用することができる。
また、炭素鋼に、孔食指数PIが40以上のステンレス鋼からなるステンレス鋼を長手方向に接続すればよいので、複雑な形状の被覆材を製造する必要がなく、製作が容易である。
さらに、漂流物などが衝突して損傷した場合でも防食効果が低下しない。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る矢板壁の要部を示す概略縦断面図である。
【図2】図1の矢板壁の横断面図である。
【図3】図1の矢板壁の斜視図である。
【図4】本発明の第2の実施の形態に係る鋼材を示す斜視図である。
【図5】図4の鋼材を使用した矢板壁の横断面図である。
【図6】本発明の第3の実施の形態に係るH形鋼矢板を示す斜視図である。
【図7】本発明の第4の実施の形態に係る鋼管杭を示す斜視図である。
【符号の説明】
1 鋼矢板(鋼材、海洋鋼構造物)
1a 上端部
1b 下端部
1c 海中部(水中部)
1d 干満帯
1e 飛沫帯
1f 気中部
6 流電陽極
7 海底地盤(水底地盤)
10,10A 矢板壁
21 U形鋼矢板(炭素鋼)
22 U形鋼矢板(ステンレス鋼)
30 鋼材(海洋鋼構造物)
40 ハット形鋼矢板
50 H形鋼
60 ハット形鋼矢板(炭素鋼)
70 ハット形鋼矢板(ステンレス鋼)
80 H形鋼矢板(鋼材、海洋鋼構造物)
84 フランジ(炭素鋼)
85 フランジ(ステンレス鋼)
90 鋼管杭(鋼材、海洋鋼構造物)
91 鋼管(炭素鋼)
92 鋼管(ステンレス鋼)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material and a marine steel structure used for forming a quay or revetment on a coast, a bay, and a river.
[0002]
[Prior art]
In recent years, increasing the life of structures has become an important issue due to the growing awareness of the environment surrounding buildings and the need to reduce construction costs. Until now, even if it is sufficient to set the service life of a structure to about 50 years, there are cases where a service life of 100 years or more is set. In particular, in the case of marine steel structures, one of the issues is how to improve the corrosion resistance of the structures in order to use them for a long time, and various studies have been conducted so far.
Conventionally, as a method for preventing corrosion of a marine steel structure, a method is known in which a coating made of a highly corrosion-resistant metal plate such as a seawater-resistant stainless steel plate or a titanium clad steel plate is coated on the outer periphery thereof (for example, Patent Document 1, Patent). Reference 2).
[0003]
[Patent Document 1]
JP-A-11-293663 [Patent Document 2]
JP 2000-199224 A
[Problems to be solved by the invention]
However, even if the marine steel structure is a structure having a joint, such as a steel sheet pile or a steel pipe sheet pile, or even if it does not have a joint, the marine steel structure itself is, for example, an H-shaped steel pile. In the case of a complicated shape, it is difficult to manufacture a metal coating material having a complicated shape.
In addition, when the marine steel structure is a steel pipe pile, it is easy to process the metal cladding, but when a floating material collides with the cladding itself and a through hole is created, dissimilar metal contact corrosion occurs in this part. Therefore, as a countermeasure, it is necessary to sandwich a resin for the purpose of insulation and protection.
[0005]
The present invention has been made in view of such circumstances, and it is not necessary to manufacture a covering material having a complicated shape regardless of the shape of the structure, and the anticorrosion effect is reduced due to damage to the anticorrosion part. It aims at providing the steel materials and marine steel structure which do not have a fear of doing.
[0006]
[Means for Solving the Problems]
[0010]
The steel material according to claim 1 is a steel material made of carbon steel and stainless steel having joints continuous in the longitudinal direction and capable of producing a sheet pile wall by connecting the joints to each other. At least a part of the portion is stainless steel having a pitting corrosion index PI expressed by the following formula (1) of 40 or more.
Pitting index PI = [Cr] +3.3 {[Mo] +0.5 [W]} + 16 [N] (1)
Here, the inside of [] represents weight% of each element.
[0011]
The present invention includes, for example, U-shaped, hat-shaped, H-shaped steel sheet piles, steel pipe sheet piles, box-shaped steel sheet piles with joints attached to square steel pipes, and hat-shaped steel sheet pile webs of H-shaped steel, T-shaped steel, etc. It can be applied to various shapes of steel materials having joints such as attached steel materials. Moreover, carbon steel and stainless steel can be joined by welding, for example, or can be joined by a fixture such as a bolt. In this case, it is preferable that a fixing tool such as a bolt is also made of stainless steel having a pitting corrosion index PI expressed by the above formula (1) of 40 or more.
[0012]
In the invention according to claim 1 , at least a part of the portion from the joint to the joint is made of stainless steel having a pitting corrosion index PI represented by the above formula (1) having extremely high corrosion resistance against seawater of 40 or more. Has been. Therefore, if it arrange | positions so that this surface of steel materials may face the sea side, it can improve the corrosion resistance of the part which faces the sea and has a severe corrosive environment.
Moreover, it is only necessary to join the stainless steel to the carbon steel, and the stainless steel may be only a part facing the sea side, so that the manufacturing cost of the steel material can be kept low.
Furthermore, since the stainless steel itself has high corrosion resistance, there is no possibility that the drifting material collides and a through-hole is generated as in the case of corrosion prevention by metal coating, and the corrosion resistance is deteriorated due to the occurrence of different metal contact corrosion. Therefore, a sheet pile wall having high corrosion resistance over a long period of time can be manufactured.
[0013]
Here, the part to be made of stainless steel having a pitting corrosion index of 40 or more may be a part that easily corrodes, such as a part that comes into contact with water when the steel material is driven into the bottom of the ground, but other parts are also made of stainless steel. Also good.
[0014]
The marine steel structure according to claim 2 is a marine steel structure in which the steel material according to claim 1 is driven into the bottom of the ground, and when the steel is driven into the bottom of the ground, near the tidal zone. The position that becomes the underwater part and the position that becomes the splash band are the stainless steel.
[0015]
In the invention according to claim 2 , when being driven into the bottom of the ground, corrosion of the underwater portion near the tidal zone and the portion that becomes a splash zone is prevented from being easily corroded by contact with water such as seawater. It has a service life of a period and can be used stably in the long term.
In other words, it is possible to obtain a marine steel structure with excellent corrosion resistance by simply placing the steel material without performing anticorrosion treatment after placing, so that not only the construction speed at the site is excellent, but cost reduction can be achieved, Corrosion resistance is not impaired by workability degradation due to underwater work or variations in the skills of field workers.
[0016]
Marine steel structure according to claim 3 is the invention according to claim 2, characterized in that the cathodic protection is applied.
[0017]
In invention of Claim 3 , even when the joining position of carbon steel and stainless steel is located in water, dissimilar metal contact corrosion can be prevented. In addition, since the steel surface part that touches the water of the marine steel structure driven into the water bottom ground along the shore is subjected to cathodic protection, like the conventional one that coats the marine steel structure with titanium material There is no fear of embrittlement due to hydrogen absorption, and corrosion on the steel surface portion can be prevented.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1-3 is a figure which shows the 1st Embodiment of this invention, Comprising: FIG. 1 is a schematic longitudinal cross-sectional view which shows the principal part of the sheet pile wall as an offshore structure which concerns on this Embodiment, 2 is a cross-sectional view of the sheet pile wall of FIG. 1, and FIG. 3 is a perspective view of the sheet pile wall of FIG.
In the sheet pile wall 10 according to the present embodiment, a plurality of steel sheet piles (steel materials) 1 are driven into the seabed ground (water bottom ground) 7 so that they stand upright along the coast 7A, and these steel sheet piles 1 are straight. It is formed to be connected in a shape. This steel sheet pile (marine steel structure) 1 is a U-shaped steel sheet pile, and is formed at the end of each of the flanges 3, 3 and the flanges 3, 3 raised obliquely from both ends of the web 2. Joints 4 and 4 provided symmetrically are provided. The sheet pile wall 10 is formed such that the steel sheet piles 1 are alternately arranged in opposite directions and adjacent joints 4 and 4 are engaged with each other.
[0019]
The upper end portion 1a of the steel sheet pile 1 forming the sheet pile wall 10 is embedded in a concrete base end portion 5 of a gulf structure provided on land, and the lower end portion 1b is embedded in the seabed ground 7, and further the upper end portion. The part between the part 1a and the lower end part 1b is an underwater part (underwater part) 1c arranged in the sea from below and a range in which the sea level S varies when the sea is full (HWL ~ Ld) is a tidal zone 1d located at substantially the same level as LW and L), and a splash zone 1e to which waves are splashed, and 1f is the air.
[0020]
The steel sheet pile 1 has a U-shaped steel sheet pile 21 made of carbon steel, the U-shaped steel sheet pile 21 having the same cross section, and a pitting corrosion index (Pitting Index: PI) expressed by the following equation (1 ) of 40 or more. A U-shaped steel sheet pile 22 made of stainless steel is joined by welding in the longitudinal direction.
Pitting index PI = [Cr] +3.3 {[Mo] +0.5 [W]} + 16 [N] (1)
Here, the inside of [] represents weight% of each element.
In this steel sheet pile 1, a portion extending from the upper end portion 1a to the aerial portion 1f, the splash zone 1e, the tidal zone 1d, and the tidal zone 1d of the underwater portion 1c is constituted by the U-shaped steel sheet pile 22 made of the above stainless steel. A U-shaped steel sheet pile 21 made of carbon steel is joined below the U-shaped steel sheet pile 22.
Stainless steel having a pitting corrosion index PI of 40 or more is less susceptible to pitting corrosion and crevice corrosion when natural seawater is used.
[0021]
Here, as a stainless steel material having a pitting corrosion index of 40 or more constituting the U-shaped steel sheet pile (stainless steel) 22, for example, it is listed in the “Corrosion Prevention Q & A for Marine Steel Structures” published by the Gihodo Publishing. Corrosion-resistant stainless steels that satisfy the above formula (1) , such as ferritic, austenitic, and two-phase seawater-resistant stainless steels, may be used.
Stainless steel has different properties depending on its composition, so in addition to satisfying the pitting index, an appropriate material may be selected from the viewpoint of weldability, workability, and cost according to the shape of the steel sheet pile. . For example, high corrosion resistance ferritic stainless steel with a high Cr content is particularly susceptible to impairing the impact resistance unless C and N are reduced, and the toughness of the welded steel can be improved by absorbing N 2 in the atmosphere during welding. There is a problem of lowering. In addition, austenitic stainless steel has a problem that it has a relatively high amount of Ni and Mo, is expensive, and is susceptible to crevice corrosion. In other words, when selecting a material, the optimum material may be selected in consideration of workability such as bending required in addition to corrosion resistance, weldability at the time of joining, cost, and the like. From this viewpoint, as a material suitable for the corrosion-resistant stainless steel used in the present invention, a high corrosion resistance and high strength duplex stainless steel described in JP-A-5-132741 can be cited as an example.
[0022]
The duplex stainless steel material described in JP-A-5-132741 is, by weight, C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less, P: 0.040% or less, S: 0.008% or less, sol Al: 0.04% or less, Ni: 5.0-9.0%, Cr: 23.0% -27.0%, Mo: 2.0-4.0%, W: over 1.5% to 5.0%, N: 0.24-0.32%, Fe and inevitable impurities : A high corrosion resistance and high strength duplex stainless steel having a remaining chemical structure and a pitting corrosion index represented by the above formula (1) of 40 or more. Since this duplex stainless steel has extremely high corrosion resistance and high strength, there is a low risk of damage due to collision of floating objects such as driftwood. Furthermore, since there is little precipitation of intermetallic compounds such as σ phase and excellent thermal structure stability, there is no problem of sensitization or embrittlement due to the heat effect of welding, and it is excellent in workability and weldability. Therefore, it is suitable for the stainless steel (U-shaped steel sheet pile 22) used in the present invention in that it is relatively inexpensive.
[0023]
In the steel sheet pile 1, among the U-shaped steel sheet piles 21 made of carbon steel, a portion that constitutes the underwater portion 1 c and a steel surface portion that is in contact with the sea are provided with a flowing current anode 6. An anti-corrosion treatment is performed to prevent corrosion of the steel surface portion. By this anticorrosion, the dissimilar metal contact corrosion of the junction part of the U-shaped steel sheet pile (stainless steel) 22 and the U-shaped steel sheet pile (carbon steel) 21 is prevented. As the galvanic anode used for preventing corrosion of the steel surface (maintaining a lower potential than −0.77 V vs. SCE), an Al alloy, a Zn alloy, or the like is used.
[0024]
Since the high corrosion resistance and high strength duplex stainless steel contains a ferrite phase and has a slight hydrogen embrittlement susceptibility, when used for the U-shaped steel sheet pile (stainless steel) 22, 1.05 V vs. It is necessary to consider over-corrosion protection so that it does not become a lower potential than SCE. Even when AL alloy is used as a current-carrying anode, generally it is not a lower potential than -1.05Vvs. SCE. vs. About SCE. When a Zn alloy is used, it is at most about −1.0 Vvs. SCE. Also, if the current-carrying anode attached to prevent corrosion of the steel surface in the sea is installed in a shallow position, there is a concern that the current-carrying anode itself may come off due to a collision with driftwood, etc. The galvanic anode is attached further below the lower end of the U-shaped steel sheet pile (stainless steel) 22, for example, by corrosion protection.
[0025]
In general, even when the duplex stainless steel is used for the U-shaped steel sheet pile 22, the potential at the lower end position of the U-shaped steel sheet pile 22 by the duplex stainless steel is more noble than the galvanic anode attachment position, Since the potential is sufficiently nobler than −1.05 V vs. SCE, there is practically no fear of hydrogen embrittlement even when the duplex stainless steel is used for the U-shaped steel sheet pile 22. In other words, unlike the case of titanium coating that does not have the proper cathodic protection potential range, it is only necessary to consider the mounting position of the galvanic anode or the galvanic anode made of Zn alloy. In order to prevent cathodic peeling of the coating film due to over-corrosion prevention, it is only necessary to take the same consideration as in consideration of anti-corrosion potential.
[0026]
In the steel sheet pile 1, polyurethane coating (anticorrosion coating) is applied to the surface of the joint portion between the U-shaped steel sheet pile (stainless steel) 22 and the U-shaped steel sheet pile (carbon steel) 21 in contact with the earth and sand. ing. In general, on the land side where the U-shaped steel sheet pile (stainless steel) 22 and the U-shaped steel sheet pile (carbon steel) 21 are in contact with the earth and sand, the supply of oxygen is small and the corrosion rate is low. The corrosion rate of the U-shaped steel sheet pile (carbon steel) 21 due to contact is very slow compared to that on the sea side. Therefore, although it is not always necessary to prevent corrosion, the steel sheet pile 1 is provided with an anticorrosion coating in the vicinity of the joint by polyurethane coating. Further, the surface of the U-shaped steel sheet pile (stainless steel) 22 that contacts the land-side earth and sand is coated with polyurethane, and the area serving as the cathode is further reduced, so that the contact corrosion of different metals can be further prevented. .
[0027]
In the steel sheet pile 1 constituting the sheet pile wall 10 in this way, the portion extending from the upper end 1a to the mid air portion 1f, the splash zone 1e, the tidal zone 1d, and the portion immediately below the tidal zone 1d of the underwater portion 1c has a pitting corrosion index of 40. It is comprised by the U-shaped steel sheet pile using the above stainless steel materials, and the improvement of the corrosion resistance performance of this part can be aimed at.
[0028]
As described above, according to the present invention, it is possible to solve the problems of complicated processing of clad steel necessary for corrosion-resistant coating, and further various problems of conventional metal contact corrosion at the end of the clad steel. It becomes possible. Moreover, there is no risk of contact corrosion of dissimilar metals due to damage caused by collision with driftwood, etc., and the corrosion resistance effect can be maintained, so there is no need to intervene resin for the purpose of insulation and protection as in the past. .
Also, carbon steel and highly corrosion-resistant stainless steel can be joined in a factory-controlled state, and it is only necessary to place this steel on site. There is no problem of variation in corrosion resistance due to variations in the skill of the operator.
And the sheet pile wall 10 formed by connecting the steel sheet piles 1 having high corrosion resistance that can be easily manufactured can be used stably over a long period of time.
[0029]
In addition, in the above-mentioned embodiment, although the U-shaped steel sheet pile 22 was provided in the part ranging from the upper end part 1a in the steel sheet pile 1 to the part just below the tidal zone 1d of the underwater part 1c, a U-shaped steel sheet pile (stainless steel). 22 can also be provided in other parts. A plurality of U-shaped steel sheet piles (stainless steel) 22 and U-shaped steel sheet piles (carbon steel) 21 can be joined in the longitudinal direction.
[0030]
Moreover, in the above-mentioned embodiment, although the sheet pile wall 10 comprised by the steel sheet pile 1 shall be provided in the shore, this invention is not limited to this, A quay in a gulf, a riverbank, etc. It may be used as a revetment.
[0031]
4 and 5 are views showing a second embodiment of the present invention. FIG. 4 is a perspective view showing a steel material according to the present embodiment, and FIG. 5 uses the steel material of FIG. It is a cross-sectional view of a sheet pile wall.
[0032]
As shown in FIG. 4, a steel material (steel sheet pile) 30 according to the present embodiment is configured by joining an H-shaped steel 50 to a web of a hat-shaped steel sheet pile 40 by welding.
The hat-shaped steel sheet pile 40 includes a web 41, flanges 42 and 42 that are obliquely raised from both ends of the web 41, and arm portions 43 that extend in parallel with the web 41 from each end of each flange 42 and 42. 43, and joints 44 and 45 provided at the end portions of the arm portions 43 and 43, respectively. The H-shaped steel 50 includes a web 51 and flanges 52 and 52 provided at both ends of the web 51. In the steel material 30, the surface of the web 41 of the hat-shaped steel sheet pile 40 on the side opposite to the arm portion 43 is brought into contact with the outer surface of one flange 52 of the H-shaped steel 50 and integrated by welding.
[0033]
The hat-shaped steel sheet pile 40 is made of a carbon steel hat-shaped steel sheet pile 60 and a stainless steel sheet having the same cross section as the hat-shaped steel sheet pile 60 and having a pitting corrosion index represented by the above formula (1) of 40 or more. A hat-shaped steel sheet pile 70 is joined in the longitudinal direction by welding.
[0034]
As in the first embodiment, a plurality of steel materials (steel sheet piles) 30 configured in this way are driven into the seabed ground (water bottom ground) so as to stand upright along the coast, and these steel materials 30 are A sheet pile wall is formed by being connected linearly. That is, as shown in FIG. 5, a plurality of steel materials 30 are arranged so that the hat-shaped steel sheet pile 40 is located on the sea side, and the adjacent joints 44 and 45 are engaged and connected linearly. A sheet pile wall 10A is formed. In the present embodiment, an example in which the steel materials 30 are connected to each other will be described. However, the steel materials to be connected may not necessarily be the same shape steel materials, for example, the steel materials 30 and the steel materials 40 may be alternately arranged.
[0035]
As in the case of the first embodiment, the upper end portion of the steel material 30 forming the sheet pile wall 10A is embedded in the base end portion made of concrete of the gulf structure provided on land, and the lower end portion is The area between the upper end and the lower end embedded in the seafloor ground is the underwater part (underwater part) arranged in the sea from below, and the range in which the sea level changes when the sea is full (H. (Between W.L and L.W.L), a tidal zone that is located at substantially the same level as that of the W.L.L.W.L, and a splash zone where waves are splashed. It has become.
[0036]
In this steel material (marine steel structure) 30, the portion extending from the upper end of the hat-shaped steel sheet pile 40 located on the sea side to the air, the splash zone, the tidal zone, and the portion directly below the tidal zone in the sea is the above ( A hat-shaped steel sheet pile 70 made of stainless steel having a pitting index represented by the formula ( 1) is 40 or more, and a hat-shaped steel sheet pile made of carbon steel below the hat-shaped steel sheet pile (stainless steel) 70. 60 is connected.
[0037]
In the steel material 30, in the hat-shaped steel sheet pile 60 made of carbon steel of the hat-shaped steel sheet pile 40, the part constituting the underwater part and the steel surface part contacting the sea are the same as in the case of the first embodiment. An galvanic anode is provided, and the galvanic anode is used to prevent corrosion of the steel surface portion. By this anticorrosion, the dissimilar-metal contact corrosion of the junction part of the hat-shaped steel sheet pile 70 and the hat-shaped steel sheet pile 60 is prevented.
[0038]
Further, in the steel material 30, the joint portion between the hat-shaped steel sheet pile (stainless steel) 70 and the hat-shaped steel sheet pile (carbon steel) 60, and the joint portion between the hat-shaped steel sheet pile (stainless steel) 70 and the H-shaped steel 50. As in the case of the first embodiment, polyurethane coating (corrosion protection coating) is applied to the surface in contact with the land-side earth and sand. Generally, in these joint portions that are in contact with the earth and sand on the land side, the supply of oxygen is small and the corrosion rate is low. Therefore, the hat-shaped steel sheet pile (carbon steel) 60 and the H-shaped steel 50 due to the contact with different metals. Corrosion rate is much slower than that on the sea side, so there is no need for corrosion protection. However, in the steel material 30, the surface of the hat-shaped steel sheet pile (stainless steel) 70 in contact with the land-side earth and sand is coated with polyurethane, and the area serving as the cathode is further reduced, so that different metal contact corrosion is less likely to occur. It has become.
[0039]
FIG. 6 is a perspective view showing an H-shaped steel sheet pile according to the third embodiment of the present invention.
The H-shaped steel sheet pile (steel material) 80 includes a web 81 and flanges 82 and 82 joined to both ends of the web 81 by welding. Joints 83 are formed at both ends of each flange 82. One flange 82 of both flanges 82 and 82 is made of a flange (carbon steel) 84 and stainless steel having the same cross section as that of the flange 84 and a pitting corrosion index represented by the above formula (1) of 40 or more. The flange 85 is joined (connected) by welding in the longitudinal direction.
[0040]
A plurality of H-shaped steel sheet piles 80 configured in this manner are driven into the seabed ground (water bottom ground) so as to stand upright along the coastline, as in the first embodiment, and these H-shaped steel sheet piles. A sheet pile wall is formed by connecting 80 in a straight line. That is, a plurality of H-shaped steel sheet piles 80 are arranged such that a flange 82 having a flange (stainless steel) 85 and a flange (carbon steel) 84 is located on the sea side, and adjacent joints 83 are engaged with each other. The sheet pile wall is formed by being connected linearly.
[0041]
In this H-shaped steel sheet pile (marine steel structure) 80, the portion extending from the upper end of the flange 82 located on the sea side to the air, the splash zone, the tidal zone, and the portion directly below the tidal zone in the sea is the above ( It is comprised by the flange 85 which consists of stainless steel whose pitting corrosion index represented by 1) type | formula is 40 or more, and the flange 84 which consists of carbon steel is connected to the lower part of this flange 84. FIG.
[0042]
FIG. 7 is a perspective view showing a steel pipe pile according to the fourth embodiment of the present invention.
The steel pipe pile (steel material) 90 includes a steel pipe 91 made of carbon steel, a steel pipe 92 made of stainless steel having the same cross section as the steel pipe 91 and a pitting corrosion index represented by the above formula (1) of 40 or more. Are joined by welding in the longitudinal direction.
[0043]
When the steel pipe pile 90 configured in this manner is driven into the bottom of the ground to form an offshore steel structure, the upper part of the steel pipe pile 90 is directly below the aerial part, splash zone, tidal zone, and submarine zone. The portion extending over this portion is constituted by a steel pipe 92 made of stainless steel having a pitting corrosion index represented by the above formula (1) of 40 or more, and a steel pipe 91 made of carbon steel is joined below the steel pipe 92. ing.
[0044]
【The invention's effect】
As described above, according to the present invention, it has a high anticorrosive property that can withstand a long-term service life, and when the lower end portion is embedded in the water bottom ground, even if the surface is in contact with water. It can be used stably in the long term.
Further, since it is only necessary to connect the stainless steel made of stainless steel having a pitting index PI of 40 or more to the carbon steel in the longitudinal direction, it is not necessary to manufacture a covering material having a complicated shape, and the manufacturing is easy.
Furthermore, even if a drifting object collides and is damaged, the anticorrosion effect does not deteriorate.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a main part of a sheet pile wall according to a first embodiment of the present invention.
2 is a cross-sectional view of the sheet pile wall of FIG. 1. FIG.
FIG. 3 is a perspective view of a sheet pile wall of FIG. 1;
FIG. 4 is a perspective view showing a steel material according to a second embodiment of the present invention.
5 is a cross-sectional view of a sheet pile wall using the steel material of FIG.
FIG. 6 is a perspective view showing an H-shaped steel sheet pile according to a third embodiment of the present invention.
FIG. 7 is a perspective view showing a steel pipe pile according to a fourth embodiment of the present invention.
[Explanation of symbols]
1 Steel sheet pile (steel materials, marine steel structures)
1a Upper end 1b Lower end 1c Underwater part (underwater part)
1d Tidal zone 1e Splashing zone 1f Midair part 6 Current-carrying anode 7 Submarine ground (water bottom ground)
10, 10A sheet pile wall 21 U-shaped steel sheet pile (carbon steel)
22 U-shaped sheet pile (stainless steel)
30 Steel (marine steel structure)
40 Hat-shaped steel sheet pile 50 H-shaped steel 60 Hat-shaped steel sheet pile (carbon steel)
70 Hat-shaped steel sheet pile (stainless steel)
80 H-shaped steel sheet pile (steel material, marine steel structure)
84 Flange (carbon steel)
85 Flange (stainless steel)
90 Steel pipe piles (steel materials, marine steel structures)
91 Steel pipe (carbon steel)
92 Steel pipe (stainless steel)

Claims (3)

長手方向に連続する継手を有し、この継手同士を連結して矢板壁を製造可能な炭素鋼とステンレス鋼とからなる鋼材であって、継手から継手に至る部位の少なくとも一部が下記(1)式で表される孔食指数PIが40以上のステンレス鋼であることを特徴とする鋼材。
孔食指数PI=[Cr]+3.3{[Mo]+0.5[W]}+16[N]・・・(1)
ここで、[ ]内は各元素の重量%を表す。
It has a joint that is continuous in the longitudinal direction, and is a steel material made of carbon steel and stainless steel that can be connected to each other to produce a sheet pile wall, and at least a part of the portion from the joint to the joint is the following (1 steel) pitting index PI of the formula is characterized by a more than 40 stainless steel.
Pitting index PI = [Cr] +3.3 {[Mo] +0.5 [W]} + 16 [N] (1)
Here, the inside of [] represents weight% of each element.
請求項1に記載の鋼材が、水底地盤に打ち込まれて成る海洋鋼構造物であって、
前記鋼材が水底地盤に打ち込まれた際に干満帯近傍の水中部となる位置および飛沫帯となる位置が、前記ステンレス鋼であることを特徴とする海洋鋼構造物。
The steel material according to claim 1 is a marine steel structure formed by being driven into a submarine ground,
A marine steel structure characterized in that when the steel material is driven into a submarine ground, a position that becomes an underwater portion near a tidal zone and a position that becomes a splash zone are the stainless steel.
電気防食が施されていることを特徴とする請求項2に記載の海洋鋼構造物。The marine steel structure according to claim 2 , wherein the marine steel structure is subjected to cathodic protection.
JP2003055943A 2003-03-03 2003-03-03 Steel and marine steel structures Expired - Fee Related JP3922569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055943A JP3922569B2 (en) 2003-03-03 2003-03-03 Steel and marine steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055943A JP3922569B2 (en) 2003-03-03 2003-03-03 Steel and marine steel structures

Publications (2)

Publication Number Publication Date
JP2004263262A JP2004263262A (en) 2004-09-24
JP3922569B2 true JP3922569B2 (en) 2007-05-30

Family

ID=33119811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055943A Expired - Fee Related JP3922569B2 (en) 2003-03-03 2003-03-03 Steel and marine steel structures

Country Status (1)

Country Link
JP (1) JP3922569B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6204135B2 (en) * 2013-09-30 2017-09-27 エムエスアイソーラー株式会社 Solar power module mount
JP6941951B2 (en) * 2017-03-27 2021-09-29 Jfe建材株式会社 Corrugated steel plate waterway member
JP2020111913A (en) * 2019-01-09 2020-07-27 Jfeエンジニアリング株式会社 Reinforced concrete structure
JP7441688B2 (en) 2020-03-12 2024-03-01 日鉄建材株式会社 Stainless steel sheet pile construction equipment and stainless steel sheet pile wall construction method
JP7490414B2 (en) 2020-03-30 2024-05-27 日鉄建材株式会社 Steel sheet pile walls and construction methods for steel sheet pile walls
JP7441700B2 (en) 2020-03-30 2024-03-01 日鉄建材株式会社 Construction methods for steel sheet pile walls and steel sheet pile walls

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791584B2 (en) * 1989-03-28 1995-10-04 日本鋼管株式会社 Method for producing clad steel sheet for seawater resistance
JP2500162B2 (en) * 1991-11-11 1996-05-29 住友金属工業株式会社 High strength duplex stainless steel with excellent corrosion resistance
JPH11104749A (en) * 1997-09-29 1999-04-20 Nippon Steel Corp Steel belt for press forming and manufacture therefor
JP2001087855A (en) * 1999-09-21 2001-04-03 Nkk Corp Corrosion protective structure and corrosion protective method for steel structure
JP3820346B2 (en) * 2000-10-27 2006-09-13 住金プラント株式会社 Steel plate butt welding method and apparatus
JP4146994B2 (en) * 2000-11-28 2008-09-10 建装工業株式会社 Cathodic protection device

Also Published As

Publication number Publication date
JP2004263262A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4586489B2 (en) Steel and structures with excellent beach weather resistance
JP5092932B2 (en) Marine steel structures, steel pipe piles, steel sheet piles and steel pipe sheet piles
JP2010144209A (en) Steel, steel sheet pile, steel pipe sheet pile, steel pipe stake, steel sheet pile wall, and steel pipe sheet pile wall
JP5233829B2 (en) Steel and structures with excellent beach weather resistance
JP2014506966A (en) Pipe piles, support structures and retaining walls
JP5271785B2 (en) Steel sheet pile anticorrosion structure and anticorrosion method
JP3922569B2 (en) Steel and marine steel structures
JP4262018B2 (en) Structure building member and manufacturing method thereof
JP4953887B2 (en) Structure of heavy anticorrosion coated steel sheet pile excellent in anticorrosion of joint part and steel sheet pile used for the structure
JP3823922B2 (en) Steel pipe sheet pile and sheet pile wall
JP5769302B2 (en) Steel sheet pile anticorrosion protective cover and anticorrosion method
JP4179133B2 (en) Manufacturing method of stainless clad steel pipe
JP2010144207A (en) Steel pipe sheet pile and steel pipe sheet pile wall
JP4569294B2 (en) Steel pipe sheet pile and steel pipe sheet pile wall
JP4823126B2 (en) Structure of heavy anticorrosion coated steel sheet pile excellent in anticorrosion of joint part and steel sheet pile used for the structure
Creamer Splash zone protection of marine structures
JP2020111911A (en) Seawater concrete structure
JP5834684B2 (en) Steel sheet pile structure, steel sheet pile
Schmitt et al. Corrosion performance of constructional steels in marine applications
JP4827782B2 (en) Structure of heavy anticorrosion coated steel sheet pile excellent in anticorrosion of joint part and steel sheet pile used for the structure
JP3413515B2 (en) Hydrogen absorption embrittlement buffering method for titanium clad steel
Francis Iron and carbon steel
JP6747616B1 (en) Fender structure and water area steel structure
JP4823122B2 (en) Heavy duty anticorrosion coated steel sheet pile structure with excellent anticorrosion properties at joints
Shifler Electrochemistry and Forms of Corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3922569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees